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a b s t r a c t 

Early detection is critical to control Alzheimer’s disease (AD) progression and postpone cognitive decline. 

Traditional medical procedures such as magnetic resonance imaging are costly, involve long waiting lists, 

and require complex analysis. Alternatively, for the past years, researchers have successfully evaluated AD 

detection approaches based on machine learning and electroencephalography (EEG). Nonetheless, these 

approaches frequently rely upon manual processing or involve non-portable EEG hardware. These aspects 

are suboptimal regarding automated diagnosis, since they require additional personnel and hinder porta- 

bility. In this work, we report the preliminary evaluation of a self-driven AD multi-class discrimination 

approach based on a commercial EEG acquisition system using sixteen channels. For this purpose, we 

recorded the EEG of three groups of participants: mild AD, mild cognitive impairment (MCI) non-AD, and 

controls, and we implemented a self-driven analysis pipeline to discriminate the three groups. First, we 

applied automated artifact rejection algorithms to the EEG recordings. Then, we extracted power, entropy, 

and complexity features from the preprocessed epochs. Finally, we evaluated a multi-class classification 

problem using a multi-layer perceptron through leave-one-subject-out cross-validation. The preliminary 

results that we obtained are comparable to the best in literature (0.88 F1-score), what suggests that AD 

can potentially be detected through a self-driven approach based on commercial EEG and machine learn- 

ing. We believe this work and further research could contribute to opening the door for the detection of 

AD in a single consultation session, therefore reducing the costs associated to AD screening and poten- 

tially advancing medical treatment. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The term dementia refers to a group of neurological patholo- 

ies dominated by a progressive loss of cognitive functions [1] . 

mong these pathologies, Alzheimer’s disease (AD) represents be- 

ween 60% and 70% of the cases, and affects more than fifty million 

eople worldwide [2] . AD patients experience a decline in cogni- 

ive areas such as reasoning, memory, and orientation. Although 

his disease was firstly observed in 1906, its etiology remains un- 

lear, and a definitive diagnosis can only be established upon brain 

utopsy. Nonetheless, researchers have identified two main hall- 

arks that start to form before the impairment is notable: amy- 
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oid plaques and neurofibrillary tangles [ 3 , 4 ]. Amyloid plaques are 

eposits of proteins that lose their standard structure and aggre- 

ate around the neurons. Alternatively, neurofibrillary tangles are 

hickened fibrils that encircle the nucleus of the neurons. In this 

ontext, mild cognitive impairment (MCI) is considered as a tran- 

itional stage between normal aging and AD. MCI patients expe- 

ience minor memory losses, but they do not interfere with their 

aily-life activities. However, previous studies have found MCI pa- 

ients progress to AD faster than healthy individuals of the same 

ge [5] . Consequently, early detection is crucial to control the pro- 

ression of the disease and defer the intellectual decline [6] . 

The purpose of AD detection techniques is to expose the cog- 

itive and physical effects produced by the disease. Traditionally, 

his is accomplished through neuropsychological tests and medical 

rocedures. Neuropsychological tests are evaluations designed to 
under the CC BY-NC-ND license 
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ssess the intellectual areas affected in the AD course, like mem- 

ry, orientation, and language. However, previous works have re- 

orted their lack of sensitivity and high variability [ 7 , 8 ]. Alter-

atively, medical procedures are designed to unfold the physi- 

al damages produced in specific brain areas. Among them, cere- 

rospinal fluid (CSF) analysis is the most reliable, since it allows 

he study of biomarkers linked to amyloid plaques and neurofibril- 

ary tangles [9] . However, this fluid is obtained via lumbar punc- 

ure, a costly and invasive medical procedure not feasible for all 

atients. Conversely, medical imaging techniques enable the repre- 

entation of static and functional images of the brain. These im- 

ges are rendered using different procedures such as magnetic res- 

nance imaging (MRI) [10] , positron emission tomography (PET) 

11] , and single photon emission computed tomography (SPECT) 

12] . Even though these techniques are accurate, they lack tempo- 

al resolution, involve long waiting lists, and their analysis is tra- 

itionally based on visual inspection. Therefore, these procedures 

epresent an unsuitable alternative towards early detection. 

Alternatively, for the past decade researchers have explored the 

se of electroencephalography (EEG) for AD detection [13–16] . EEG 

s a neurophysiology technique to acquire brain electrical signals 

hrough electrodes placed on the scalp. This technique is afford- 

ble, portable, and non-invasive. Hence, it represents a promising 

lternative for the detection of neurological diseases. In this re- 

ard, researchers have recently approached AD detection through 

he combination of EEG processing and machine learning algo- 

ithms. As the authors of [17] outline in their comprehensive re- 

iew, these studies typically target two main goals: detection of 

D cohorts and analysis of AD progression. Detection studies at- 

empt to classify well defined clinical cohorts such as AD and MCI. 

onversely, progression studies attempt to identify the participants 

ho convert to AD after a longitudinal evaluation. In AD detec- 

ion studies, such as the one presented in this paper, researchers 

ypically extract features to characterize the three main AD effects 

n EEG activity: slowing, complexity reduction, and loss of syn- 

hronization [17–20] . These effects are quantified using multiple 

eatures, including: spectral and wavelet analysis (slowing) [ 21 , 22 ], 

ntropy and information theory (complexity) [23–26] , and coher- 

nce (synchronization) [ 15 , 27 ]. For this purpose, the usual method- 

logical stages considered in state-of-the-art works include pre- 

rocessing, time-frequency and non-linear analysis, feature extrac- 

ion, and classification. For instance, in [28] , the authors investi- 

ated a feature selection system in the context of two binary clas- 

ification tasks: MCI vs controls, and mild AD vs controls. Their 

esults were promising as they obtained classification rates of 0.95 

nd 1, respectively, using synchrony and relative power features. 

imilarly, the authors of [21] applied cluster analysis using power 

nd coherence measures to a similar classification task, yielding a 

lassification accuracy of 0.91. More recently, in [29] , the authors 

stimated statistical coefficients from a time-frequency map to per- 

orm two classification tasks: AD vs controls, and AD vs MCI, yield- 

ng accuracies of 0.96 and 0.87, respectively. In [30] , the authors 

valuated the classification of AD patients, frontotemporal demen- 

ia patients (FTD), and controls, from resting state EEG activity. The 

uthors obtained 0.86 accuracy for the FTD vs controls task using a 

andom forest classifier. Alternatively, they obtained 0.79 accuracy 

or the AD vs controls task using a decision tree classifier. 

Although the study of AD progression is not the goal of the 

resent work, we believe it is worth to note that multiple works 

ave focused on this problem for the past years. Typically, the au- 

hors of these works perform an EEG acquisition follow-up from 

articipants at risk of suffering AD. In [31] , for instance, they 

erformed an initial and a three-month follow-up evaluation of 

 group of MCI patients using high-density EEG. Then, the au- 

hors successfully applied a convolutional neural network (CNN) 

nd power spectral density (PSD) features to classify the recordings 
2 
nto AD and MCI. They also analyzed which channels and frequen- 

ies resulted more active in the AD progression. Although deep 

earning algorithms, such as the CNN, have been successfully ap- 

lied to AD cohort discrimination and progression analysis, these 

lgorithms have not yet been applied on large EEG datasets [17] . 

The works referred before attempted to discriminate AD cohorts 

hrough binary classification. Conversely, a few authors have ap- 

roached AD detection as a three-class classification problem. This 

ind of approach is essential for the simplification of the detec- 

ion protocol. The first attempt was presented in [32] , where the 

uthors extracted complexity and spectral features to discriminate 

CI, AD, and controls using a pairwise classification method. In 

25] , the authors trained a multilayer perceptron (MLP) to discrimi- 

ate the three cohorts from spectral and non-linear features, yield- 

ng an accuracy of 0.63. In [33] , the authors tackled a three-class 

lassification task via deep learning. They proposed the application 

f a CNN to classify MCI patients, AD patients, and controls from 

D grayscale images obtained from the PSD of the EEG. Alterna- 

ively, although the most studied three-class classification task cor- 

esponds to MCI vs AD vs controls, the authors of [34] successfully 

nalyzed the mild AD vs moderate AD vs controls task. More re- 

ently, in [35] , the authors proposed a new Wavelet based analysis 

eferred as lacsogram. They used cepstrum and lacsogram distance 

eatures to classify MCI patients, AD patients, and controls, and 

hey obtained a classification accuracy of 0.96. Likewise, in [36] , 

he authors successfully evaluated a similar classification task un- 

er different resting conditions. 

In general, the works discussed in the previous paragraph ap- 

roached three-class classification of AD cohorts with success. 

onetheless, they present certain features that hinder the self- 

riven detection of the disease. For instance, the need for visual 

nspection of the EEG signals, hardware-based artifact processing, 

r the use of clinical EEG acquisition systems that require trained 

ersonnel to be operated. In contrast, self-driven AD classification 

ould contribute to reducing the costs associated to screening and 

elp to advance medical treatment. In this context, the use of com- 

ercial EEG acquisition devices and the implementation of self- 

riven EEG processing pipelines may have the potential to speed 

p the analysis, foster reproducibility, and would not require ad- 

itional personnel to be operated. Considering this, in this paper 

e report the preliminary results of a fully self-driven approach 

or AD three-class discrimination based on a commercial EEG ac- 

uisition device and self-driven processing. To evaluate our ap- 

roach, we conducted a study alongside the Cognitive and Behav- 

oral Neurology Unit (CBNU) at Hospital Universitario Virgen de las 

ieves de Granada (Spain). We recorded the resting state brain ac- 

ivity of a group of MCI patients, AD patients, and controls, using 

 sixteen-channel wearable acquisition device. Then, we performed 

rtifact rejection through automated independent component anal- 

sis (ICA) and Autoreject, a self-driven artifact rejection algorithm. 

e evaluated a multi-layer perceptron (MLP) for the three-class 

iscrimination of the three study groups via leave-one-subject-out 

LOSO) cross-validation. The preliminary results that we obtained 

re comparable to the best in literature. Although the sample size 

hat we considered is reduced, our results suggest that AD and 

CI could potentially be detected using a self-driven multiclass ap- 

roach based on commercial wearable EEG. This is promising from 

he standpoint of screening protocols, since it could potentially en- 

ble the inclusion of AD detection techniques that are ubiquitous, 

ffordable, and accurate. Nonetheless, further research must vali- 

ate the conclusions yielded in this work. 

. M aterials and methods 

In this section, we review the main aspects of the study 

ethodology. First, we describe the cohorts involved in this re- 
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Table 1 

Group, sex, and age distribution of the participants involved in the study. The age 

column includes the mean age ± the standard deviation. 

Group Females Males Age 

MCI-non-AD 0 6 72.8 ± 6.5 

mild AD 7 4 68.3 ± 4.6 

control 8 1 66.7 ± 3.4 
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Fig. 1. (Left) Electrode setup selected for this study. We considered sixteen elec- 

trodes from the extended 10-20 International System to uniformly cover the scalp. 

(Right) Versatile semi-dry acquisition system used for the EEG data capture. The 

system operates at a fixed sampling rate of 256 Hz and provides support for six- 

teen electrodes. 
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earch. Then, we disclose the experimental procedure, and we re- 

ort the processing steps that we applied. Finally, we describe the 

eature extraction procedure and the implementation of the three- 

lass classification. 

.1. Participants 

The head of the CBNU recruited twenty-six participants for this 

tudy. Table 1 shows the participants group, sex, and age distribu- 

ions. The participants labeled as mild AD and MCI-non-AD were 

BNU patients at Hospital Universitario Virgen de las Nieves. These 

atients were diagnosed from PET- Amyloid or CSF analysis. 

CSF analysis was carried out by two different laboratories dur- 

ng the recruitment period, and the reference cutoff value for the 

atients was that established by the corresponding laboratory. This 

utoff value was based on a model of AD patients versus non-AD 

atients with no age stratification. CSF was obtained via lumbar 

uncture using a 20-gauge needle and syringe. The samples were 

ollected in polypropylene collection tubes and sent immediately 

o the laboratory, where an ELISA Innotest assay was used to de- 

ermine levels of A β42, total- τ , and τ -phosphorylated fraction. The 

esults of the analysis were codified as normal or pathological. 

PET-Amyloid was analyzed using 18F-florbetaben (FBB) by 

rained nuclear medicine specialists who had completed the learn- 

ng curve for accredited PET-FBB scan interpretation and were 

linded to the clinical situation of the patient. They reported the 

cans as positive (loss of grey-white matter contrast; regional cor- 

ical tracer uptake in any cortical target region: lateral tempo- 

al, frontal, posterior cingulate precuneus, or parietal), or negative 

good grey-white matter contrast; no tracer uptake in target re- 

ions) for amyloid plaque presence. Cases with doubtful imaging 

esults were discussed by both specialists to achieve a consensus. 

These medical analysis were performed under the highest clini- 

al guarantees, and we considered them as the gold standard for 

he patients diagnosis. Consequently, we labeled the patients as 

ild AD (CSF pathological results or PET positive amyloid plaque 

resence) and MCI-non-AD (CSF normal results or PET negative 

myloid plaque presence). The rest of the participants were healthy 

ge matched controls who did not report any neurological condi- 

ion and were not CBNU patients. To conduct the study, we fol- 

owed a protocol approved by the ethics committee at Hospital 

niversitario Virgen de las Nieves de Granada. Furthermore, the 

articipants signed an informed consent before the start of the ex- 

eriment, and clinical personnel supervised them throughout the 

ntire session. 

.2. Setup and experimental procedure 

The objective behind the engagement of the participants was 

he acquisition of their resting state EEG activity for our study. 

onetheless, taking advantage of the fact that the participants at- 

ended the consulting room for the acquisition, they performed a 

ognitive test consisting of two cognitive tasks. The details regard- 

ng such test are not reported in this work since they are out of 

he scope of this study, and they did not interfere with the EEG 

cquisition in any manner. 
3 
Before the start of the experiment, we requested the partici- 

ants to carefully read and sign the informed consent. Then, we 

cquired three minutes of their eye-open resting state EEG activity 

n three instants: prior to the first cognitive task, after this task, 

nd after the second cognitive task. To prevent edge effects, we 

nly studied the central two-minute segment of each recording. To 

erform our analysis, we concatenated the three recordings associ- 

ted to each participant, hence, we considered a total EEG time of 

ix minutes per participant. 

To record the brain electrical activity, we used the Versatile 

ireless wearable system by Bitbrain. This commercial device in- 

ludes a Bluetooth acquisition module working at 256 Hz, and an 

EG headset with semi-dry electrodes. For the electrode setup, we 

onsidered sixteen sensors located at positions Fp1, Fp2, F5, Fz, F6, 

7, T8, C3, Cz, C4, P5, Pz, P6, O1, Oz, and O2 of the extended 10-20

nternational System, and we referenced them to the left ear lobe. 

e selected this sensor montage to evenly cover the scalp follow- 

ng setups from analogous studies [ 21 , 37 , 38 ]. Fig. 1 represents the

lectrode setup selected in this study along with the Versatile sys- 

em. 

.3. Signal processing 

First, we filtered the raw EEG signals with a 1690 order band- 

ass FIR filter with 1-45 Hz passband and zero phase-shift. We se- 

ected a FIR filter rather than an IIR filter because our analysis did 

ot entail high throughput restrictions, and we gave priority to fil- 

er control and stability [38] . Then, we split the filtered signals into 

our-second epochs without overlapping. 

Subsequently, we implemented automated artifact rejection in 

wo steps: Autoreject and ICA. First, we applied the Autoreject 

lgorithm to automatically find an artifact threshold per chan- 

el and identify and reject bad data spans. Autoreject is an auto- 

ated data-driven artifact rejection algorithm based on Bayesian 

ptimization and cross-validation. The algorithm is available as 

 Python module and its application is straightforward. In terms 

f performance, Autoreject has been evaluated against several 

atasets and achieved equal or better performance compared to 

ypical approaches. We refer the interested reader to [39] , where 

he developers of the algorithm provide a comprehensive review 

f its implementation and evaluation. Subsequently, we applied ICA 

o correct blink artifacts. ICA enables the decomposition of a sig- 

al conformed by multiple sources into those sources and a mix- 

ng matrix. This is particularly useful to process EEG signals, as 

hey represent the combination of internal brain sources. Based on 

his, ICA is typically used to detect and remove artifactual compo- 

ents such as blinks. These components display high variance and 

 spatial distribution towards the frontotemporal area of the scalp. 
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Fig. 2. Self-driven signal processing pipeline implemented in this study. Initially, 

we applied a 1-45 Hz bandpass FIR filter to remove the power line interference 

and retain the desired spectral content. Then, we segmented the filtered signals 

into four-second epochs without overlapping. Finally, we implemented automated 

artifact removal in two stages: Autoreject algorithm and ICA. The input and output 

signals represent the raw EEG and the preprocessed epochs of a single participant. 
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Table 2 

List of hyperparameters evaluated during grid search cross-validation a . 

Stage Hyperparameter Value range 

Epoch averaging Epochs averaged 6, 8, 10, 12 

Feature selection Feature percentage 10, 25, 50, 75, 100 

Classification Layer sizes 3-3-3, 4-4-4, 5-5-5 

Alpha 10 −6 , 10 −5 , 10 −4 , 10 −3 

Activation relu, tanh 

a Note that for the layer sizes parameter, each figure between the parenthesis 

refers to a hidden layer, and its value represents the number of neurons in the layer. 

For instance, 4-4-4 represents a MLP with three hidden layers and four neurons in 

each layer. 
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Fig. 3. Self-driven feature extraction and classification pipeline. First, we performed 

feature extraction on the preprocessed epochs. This procedure yielded a feature ma- 

trix with M rows (epochs) and N features. Then, we averaged every S consecutive 

epochs to improve the signal-to-noise ratio (we assessed S values of 6, 8, 10, and 

12). Subsequently, we performed grid search cross-validation to obtain the best set 

of hyperparameters for the classification pipeline. 
herefore, to identify the blink artifact component, we used Fp1 as 

n electro-oculogram proxy, and automatically identified the com- 

onent that showed the highest correlation with this sensor. Then, 

e removed the blink component from the source matrix, and we 

econstructed the EEG signals. Fig. 2 shows the signal processing 

tage described in this subsection. 

.4. Feature extraction 

After applying the EEG processing pipeline, we extracted three 

eatures per EEG channel from each preprocessed epoch: relative 

ower (RP) in the five main EEG bands, spectral entropy (SE), and 

jorth complexity (HC). We examined these features because they 

ave been already validated in analogous studies [ 21 , 32 , 40–42 ]. RP

epresents the fraction of the total signal power that is contained 

n a frequency range. Alternatively, SE represents the Shannon en- 

ropy of the power spectrum of the signal. SE describes the unifor- 

ity of the power spectrum distribution, and, hence, the irregular- 

ty of the EEG. Therefore, SE is minimal for a pure sine wave and

aximal for white noise [43] . Finally, HC is one of the three Hjorth

arameters (activity, mobility, and complexity), and is derived as 

he ratio of the mobility of the first derivative of the signal to the 

obility of the signal itself [44] . The mathematical representation 

f the three features described in this paragraph are presented in 

qs. (1 )- (3) . 

P = 

∑ f o 
f i 

P 
∑ 

∀ f P 
(1) 

E = −
∑ 

f 

S ( f ) ∗ log 2 S ( f ) (2) 

C = 

σs 
′′ / σs 

′ 
σs 

′ / σs 
(3) 

n Eq. (1 ), f i and f o represent the lower and upper frequency 

ounds of a particular frequency band. For this study, we estimated 

P in the five main EEG bands: delta (1-4 Hz), theta (4-8 Hz), al- 

ha (8-13 Hz), beta (13-30 Hz), and gamma ( > 30 Hz). In Eq. (2 ), f

epresents the frequencies in the frequency range of the signal, and 

 represents its normalized power spectrum. Finally, in Eq. (3 ), σ s , 

s 
′ , and σ s 

′ ′ represent the variance of the signal, the variance of 

ts first derivative, and the variance of its second derivative. 

After the feature extraction from the preprocessed epochs, we 

oncatenated the features to create the feature matrix. Then, fol- 

owing the approach presented in [45] , we averaged the features of 

very S adjacent rows in the feature matrix to increase the signal- 

o-noise ratio and reduce the size of the dataset. We examined four 

alues for S: 6, 8, 10, and 12, and we kept the one that yielded the

est performance. 

.5. Classification 

Following feature extraction, we implemented a three-step clas- 

ification pipeline including feature scaling, feature selection, and 
4 
lassification. First, the feature scaler normalizes the features be- 

ween zero and one. This technique is extensively applied in 

achine learning to enhance the performance of non-tree-based 

odels. Then, the feature selector gathers the most relevant fea- 

ures according to a predefined strategy. We suggest the interested 

eader to review [46] for a comprehensive review of frequent fea- 

ure selection strategies. In this study, we applied a method based 

n the chi-squared test to identify the features most related to the 

arget. We selected this strategy owing to its intrinsic speed. Lastly, 

or the last stage of the pipeline, we selected a MLP as this algo- 

ithm inherently allows multilabel classification. 

To find the best combination of hyperparameters for the el- 

ments in the pipeline we applied grid-search. For the feature 

atrix averaging procedure described the last paragraph of Sec- 

ion 2.4, we evaluated different values for the number of rows 

o average. For the feature selection stage, we evaluated differ- 

nt values for the percentage of features selected. For the MLP, 

e evaluated different values for the architecture of the net- 

ork, the L2 penalty (Alpha), and the activation function. Table 2 

hows the different value ranges we considered during grid search 

or all the mentioned hyperparameters. We refer the interested 

eader to the scikit-learn documentation for a comprehensive 

escription of the hyperparameters reported in this table. The 

est combination of hyperparameters is reported in the Results 

ection. 

To evaluate the classification performance during the grid 

earch, we applied cross-validation using a built-in function from 

cikit-learn Python module (GridSearchCV). This function evalu- 

tes the classification pipeline using different sets of hyperparam- 

ters and a cross-validation scheme. Since this study involves the 

iscrimination of clinical groups, we followed a LOSO strategy. 

hereby, data is split into as many folds as participants. Then, for 

ach fold, the training set holds data from all the participants ex- 

ept one, whose data is reserved for the test set. Thus, informa- 

ion from a participant is never in the training set and the test 

et at the same time. This prevents from positive bias and repre- 

ents a robust alternative to evaluate the general performance of 

he model. Fig. 3 displays the stages described in this section. 
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Table 3 

Classification report for the mild AD vs MCI-non-AD vs control discrimination prob- 

lema. 

Cohort Precision Recall F1-score 

mild AD 0.91 0.82 0.88 

±
0.05 

MCI-non-AD 0.71 0.88 

control 0.92 0.78 

a We estimated the metrics displayed in this table after gathering all the test true 

labels and classifier predictions from the cross-validation. The right-most column 

represents the average cross-validation F1-score ± the standard error of the mean 

(SEM). 

Table 4 

Best set of hyperparameters found via grid search cross- 

validation. 

Hyperparameter Best value 

Epochs averaged 12 

Feature percentage 100 

MLP Layer sizes 5-5-5 

MLP Alpha 10 −6 

MLP Activation relu 

4

f

. Results 

In this section, we report the results we obtained for the three- 

lass classification problem examined in this study. Owing to lack 

f cooperation (S09 and S18), presence of additional diseases (S12), 

nd poor signal quality (S21 and S26), we excluded the data from 

ve participants. Hence, we considered data from twenty-one par- 

icipants in our analysis. 

Fig. 4 represents the confusion matrix at the epoch level. To 

reate this matrix, we gathered the true epoch labels and classi- 

er predictions from the test sets used during cross-validation, and 

e estimated the distribution of the predictions across the three 

lasses. 

Fig. 5 shows the confusion matrix at the subject level. In this 

ase, we evaluated the ability of the classifier to discriminate the 

articipants via majority vote. This is, if the model correctly clas- 

ified most of the epochs for a given participant, we considered it 

orrectly discriminated the participant. Otherwise, we considered 

t misclassified the participant. 

Table 3 presents a class report with the scores obtained by 

he model during cross-validation in terms of precision and recall. 

o create this table, we followed the procedure described for the 

poch-level confusion matrix. We also included the average cross- 

alidation F1-score. 

Lastly, the best set of hyperparameters found via grid search is 

eported in Table 4 . 
ig. 4. Epoch-level confusion matrix for the discrimination of MCI-non-AD, mild 

D, and controls. 

ig. 5. Subject-level confusion matrix for the discrimination of MCI-non-AD, mild 

D, and controls. 
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5 
. D iscussion 

The purpose of this study was to evaluate the potential of a 

ully self-driven approach for AD three-class discrimination based 

n a commercial EEG acquisition device and automated process- 

ng. To this end, we recorded the resting state activity of a group 

f participants from these cohorts, and we developed a classifica- 

ion pipeline built on signal processing and machine learning. We 

sed a commercial wearable EEG acquisition device that does not 

equire trained experts to be operated. Thus, no further personnel 

side from a neurologist is required to perform the data acquisi- 

ion. The preliminary results that we obtained suggest that self- 

riven multiclass discrimination of AD cohorts from commercial 

EG can be successfully performed. This may contribute to opening 

he door for the future implementation of affordable and portable 

arly AD screening techniques. Nonetheless, further research is re- 

uired to validate the preliminary results reported in this work. 

In terms of epoch-level performance, the confusion matrix in 

ig. 4 suggests that remarkable classification performance can be 

chieved following the approach presented in this work. Specifi- 

ally, classification accuracy yielded by our classifier was 81.58%, 

7.72%, and 78.33% for the MCI-non-AD, mild AD, and control 

pochs analyzed. Notably, the classifier yielded the best results for 

he mild AD and MCI-non-AD groups. This points at its ability to 

dentify the patient cohorts, what is essential in the discrimination 

f clinical groups. This is further noted in the participant-level con- 

usion matrix displayed in Fig. 5 . According to this figure, our ap- 

roach only misclassified a control participant. Naturally, the same 

onclusions are drawn from the cross-validation metrics reported 

n Table 3 . As shown in this table, the classifier yielded an average

1-score of 0.88 ± 0.05. 

According to the preliminary results obtained in this work, 

e believe a self-driven multi-class classification approach could 

resent some advantages compared to the approaches reported in 

iterature. For clarity, Table 5 summarizes the main aspects of re- 

ated approaches. First, it is important to acknowledge that a di- 

ect comparison between these works is not entirely feasible due 

o the heterogeneity of the cohorts reported. Whilst most studies 

onsidered AD, MCI, and controls [ 16 , 32 , 36 , 47 ], other studies eval-

ated different clinical groups. For instance, [34] examined mild 

D, AD, and controls, and [35] evaluated MCI, mild AD (ADM), ad- 

anced AD (ADA), and controls. In this sense, we believe the co- 

orts that we considered (MCI-non-AD, mild AD, and controls) are 
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Table 5 

Comparison of studies on multi-class discrimination of AD cohorts. The columns indicate, from left to right, the authors, the cohorts involved, the diagnosis procedure to 

label the cohorts, the EEG acquisition device, the number of sensors utilized during the acquisition, the artifact rejection technique applied, and the performance metrics 

yielded for the multi-class discrimination of the cohorts. 

Study Cohorts Diagnosis EEG device Sensors 

Artifact 

rejection Performance 

McBride et al. [32] 17 early AD 16 MCI 15 

HC 

Cognitive tests 

and other 

evaluations 

Neuroscan II 32 Not reported F1-score = 0.83 (subject-level) 

Ruiz-Gómez et al. [25] 37 AD 37 MCI 37 HC NIA-AA XLTEK Natus 

medical 

19 Visual 

inspection 

Accuracy = 0.63 (subject -level) 

Tzimourtra et al. [34] 8 mild AD 6 AD 10 HC MMSE Nihon Kohden EEG 

2100 

19 Hardware F1-score = 0.85 (epoch-level) 

Ieracitano et al. [47] 63 AD, 63 MCI 63 HC DSMMD Not disclosed 19 Visual 

inspection 

F1-score = 0.81 (epoch-level) 

Oltu et al. [16] 8 AD 16 MCI 11 HC MoCA Nihon Kohden EEG 

1200 

19 Hardware Accuracy = 0.94 (epoch-level) 

Rodrigues et al. [35] 11 HC 8 MCI 11 ADM 

8 ADA 

MMSE Not disclosed 19 Not specified AUC = 0.95 (epoch-level) 

Sharma et al. [36] 16 AD 16 MCI 15 HC DSMMD SOMNOscreen EEG 

32 

21 EEGLAB F1-score = 0.85 (epoch-level) 

Our approach 8 mild AD 5 

MCI-non-AD 8 HC 

CSF/PET Versatile EEG 16 16 Autoreject and 

ICA 

F1-score = 0.88 (epoch-level) 

Accuracy = 0.95 (subject -level) 
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he most suitable for early detection research. Another fundamen- 

al difference among these studies is the diagnosis procedure. Most 

revious works diagnosed the participants based on neuropsycho- 

ogical tests: [ 34 , 35 ] applied the mini mental state examination 

MMSE), [ 16 , 36 ] used the Montreal cognitive assessment (MoCA), 

 36 , 47 ] applied the recommendations of the Diagnostic and Sta- 

istical Manual of Mental Disorders (DSMMD), [25] followed the 

uidelines of the National Institute of Aging and Alzheimer’s Asso- 

iation (NIA-AA), and [32] applied a battery of cognitive tests and 

ther evaluations. Conversely, we identified the participants based 

n the diagnosis yielded from a CSF analysis and a PET scan, med- 

cal procedures with higher reliability compared to neuropsycho- 

ogical examinations. In terms of electrode setup, most of these 

orks selected 19-21 sensors [ 16 , 25 , 34–36 , 47 ], with only [32] us-

ng a considerably higher number of sensors (32). In this sense, 

e believe the use of a low number of electrodes promotes partici- 

ant comfort and simplifies the montage. Regarding the acquisition 

ystem, we used the device with the highest degree of portability 

ompared to the rest of approaches gathered in Table 5 , as most of

hem utilized medical-oriented systems with reduced mobility. 

Regarding artifact processing, [24] and [47] performed epoch 

anual selection based on visual inspection. This is unsuitable 

rom the early detection standing point because it involves addi- 

ional personnel and delays the analysis. Alternatively, [34] and 

16] used the built-in capabilities of their acquisition hardware, 

he Nihon Kohden EEG system, to perform artifact rejection, what 

inders the flexibility of their proposal. Instead, [36] used EEGLAB 

oolbox for MATLAB to perform artifact rejection. However, the au- 

hors do not specify if they used a manual or an automated pro- 

edure. Finally, [42] and [35] did not specify the artifact removal 

echniques applied. For this preliminary study, we applied Autore- 

ect and automated ICA. We believe this is a more appropriate al- 

ernative for artifact rejection because the analysis remains self- 

riven, what is essential for early detection, and also fosters the 

eproducibility of the results yielded. 

With respect to performance, a direct comparison is hindered 

y the heterogeneity of the cohorts and the metrics used to eval- 

ate the results. The F1-score reported in these works ranges from 

.81 to 0.89 [ 32 , 34 , 36 , 47 ]. Other authors reported accuracy values

etween 0.63 and 0.94 [ 16 , 25 , 47 ]. Alternatively, [35] reported ex-

ellent results in terms of the area under the curve (AUC). As per 

he results reported in Table 3 , a self-driven approach based on a 

ommercial EEG device, such as the one introduced in this work, 
6 
an achieve a performance that is comparable to the best results 

n literature. 

. Conclusions 

In this study, we evaluated the potential of a fully self-driven 

pproach for AD three-class discrimination using a commercial 

EG acquisition system. For this purpose, we conducted a study 

nvolving participants from three cohorts: MCI-non-AD, mild AD, 

nd healthy age-matched controls. First, we recorded their eye- 

pen resting state brain activity, and then we implemented a self- 

riven pipeline including artifact rejection, feature extraction, and 

lassification. For artifact rejection, we applied Autoreject, a data- 

riven algorithm, and ICA. Then, we extracted the relative power, 

jorth complexity, and spectral entropy from the clean epochs. 

inally, we performed grid search cross-validation under a LOSO 

trategy. 

In terms of performance, the preliminary results that we ob- 

ained are comparable to those reported in analogous studies, or 

ven better in some cases. These results are promising since self- 

riven detection could potentially outperform existing approaches, 

romote early detection, contribute to reducing costs, and encour- 

ge the reproducibility of results. This may help reduce detection 

imes associated with other traditional medical procedures like 

linical EEG and nuclear medicine procedures. In this regard, early 

etection is paramount to control neural loss and defer cognitive 

ecline. This is especially important in the case of middle-aged 

dults, since the impact of the disease in their social life and work- 

lace is higher compared to older adults. 

Alternatively, whilst the median number of participants in the 

tudies discussed in Table 5 is forty-seven, we only considered 

wenty-one. Therefore, in future studies, we must evaluate the ap- 

roach described in this paper on a larger sample to reinforce the 

onclusions drawn in this work. In addition, we are aware the par- 

icipants involved in this and similar studies, do not strictly repre- 

ent the typical patients who attend to neurology services. These 

atients, usually suffer from other pathologies apart from demen- 

ia. Hence, to effectively transfer EEG-based self-driven approaches 

nto the clinical ecosystem, we must evaluate their performance on 

eal-life participants. This way, in the future, patients may benefit 

rom accurate, fast, and affordable detection approaches that help 

dvance their medical treatments. 
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