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Abstract
Background and Objectives
Frontotemporal dementia (FTD) is a highly heritable disorder. The majority of genetic cases
are caused by autosomal dominant pathogenic variants in the chromosome 9 open reading
frame 72 (c9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) gene.
As motor disorders are increasingly recognized as part of the clinical spectrum, the current
study aimed to describe motor phenotypes caused by genetic FTD, quantify their temporal
association, and investigate their regional association with brain atrophy.

Methods
We analyzed baseline visit data of known carriers of a pathogenic variant in the c9orf72, GRN, or
MAPT gene from the Genetic Frontotemporal Dementia Initiative cohort study. Principal com-
ponent analysis with varimax rotation was performed to identify motor sign clusters that were
compared with respect to frequency and severity between groups. Associations with cross-sectional
atrophy patterns were determined using voxel-wise regression. We applied linear mixed effects
models to assess whether groups differed in the association betweenmotor signs and estimated time
to symptom onset.
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Results
A total of 322 pathogenic variant carriers were included in the analysis: 122 c9orf72 (79 presymptomatic), 143 GRN (112
presymptomatic), and 57MAPT (43 presymptomatic) pathogenic variant carriers. Principal component analysis revealed 5 motor
clusters, which we call progressive supranuclear palsy (PSP)-like, bulbar amyotrophic lateral sclerosis (ALS)-like, mixed/ALS-like,
Parkinson disease (PD) like, and corticobasal syndrome–like motor phenotypes. There was no significant group difference in the
frequency of signs of different motor phenotypes. However, mixed/ALS-like motor signs were most frequent, followed by PD-like
motor signs. Although the PSP-like phenotype was associated with mesencephalic atrophy, the mixed/ALS-like phenotype was
associated with motor cortex and corticospinal tract atrophy. The PD-like phenotype was associated with widespread cortical and
subcortical atrophy. Estimated time to onset, genetic group and their interaction influenced motor signs. In c9orf72 pathogenic
variant carriers, motor signs could be detected up to 25 years before expected symptom onset.

Discussion
These results indicate the presence of multiple natural clusters of motor signs in genetic FTD, each correlated with specific
atrophy patterns. Their motor severity depends on time and the affected gene. These clinicogenetic associations can guide
diagnostic evaluations and the design of clinical trials for new disease-modifying and preventive treatments.

Frontotemporal dementia (FTD) refers to a heterogeneous
group of neurodegenerative disorders. The associated clinical
syndromes classically affect personality and social behavior or
language.1 They are a common cause of early-onset dementia2

and are highly heritable.3,4 The majority of genetic cases are
caused by pathogenic variants in 1 of 3 genes: chromosome 9
open reading frame 72 (c9orf72),5 progranulin (GRN),6 and
microtubule-associated protein tau (MAPT).7 C9orf72 path-
ogenic variants are most common.

Because of the clinical heterogeneity, a precise knowledge of
clinical presentations correlated with genetic subgroups is
essential to guide diagnostic workup and assist decisions re-
garding genetic testing. It will also become increasingly im-
portant as disease-modifying drug trials are underway in each
of the 3 genetic FTD groups.8-10

Patients can also present with a wide range of motor signs,
including those commonly associated with amyotrophic lateral
sclerosis (ALS),11 Parkinson disease (PD), progressive supra-
nuclear palsy (PSP), or corticobasal syndrome (CBS).12,13 We
propose that the anatomic distribution of pathologic brain
changes determines the clinical phenotype. This distribution
can be defined in terms of brain regions14 or functionally in
terms of degeneration of the first and secondmotor neuron and
basal ganglia.15 The identification of motor structure-function
relationships in sporadic FTD is hindered by uncertainty of the
molecular pathology. This challenge is addressed by the anal-
ysis of genetic FTD.

Although there is a wide literature covering behavioral and
linguistic features in FTD, detailed phenotypic characteriza-
tion of motor disorders is mostly in sporadic cases14 or in the
form of case reports or case series.16 Longitudinal data on
motor phenotypes are lacking. We aimed to describe motor
phenotypes in genetic FTD, from the Genetic Fronto-
temporal dementia Initiative (GENFI). We examined motor
sign occurrence in the course of the disease, including the
presymptomatic phase, and tested whether structural brain
changes are associated with particular motor phenotypes.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
The study was performed according to the Declaration of
Helsinki (1991). Ethical approval for conduction of the study
has been obtained at the coordinating site at University
College London and all participating centers. Written in-
formed consent was obtained from every participant.

Participants
To assess motor findings in genetic FTD, we used Data
Freeze 3 from the GENFI multicenter cohort study, gathered
between January 30, 2012, and January 31, 2017. The GENFI
consists of research centers across Europe and Canada (genfi.
org.uk/) and enrolls participants who are known carriers of a
pathogenic variant in c9orf72, GRN, orMAPT or are at risk of
carrying a pathogenic variant because a first-degree relative

Glossary
ALS = amyotrophic lateral sclerosis; c9orf72 = chromosome 9 open reading frame 72; CBS = corticobasal syndrome; EYO =
estimated years to symptom onset; FTD = frontotemporal dementia; GENFI = Genetic Frontotemporal dementia Initiative;
GRN = progranulin; LI = laterality index; LME = linear mixed effect; MAPT = microtubule-associated protein tau; MDS =
multidimensional scaling; MP = motor phenotype; PCA = principal component analysis; PD = Parkinson disease; PSP =
progressive supranuclear palsy.
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was a known carrier. A pathogenic c9orf72 expansion was
defined as more than 30 repeats. Participants were genotyped
at their local site. All eligible and interested participants were
enrolled. A total of 322 pathogenic variant carriers, including
122 c9orf72 (79 presymptomatic), 143 GRN (112 pre-
symptomatic), and 57 MAPT pathogenic variant carriers (43
presymptomatic) were included in the analysis. Baseline visit
data were used.

Participants underwent a standardized clinical assessment
consisting of medical history, family history, and physical
examination. Participants not yet demonstrating clear evi-
dence of progressive cognitive, behavioral, or motor symp-
toms were classified as presymptomatic. Estimated years to
symptom onset (EYO) was defined as the difference between
the participants’ current age and the mean age at onset within
the participants’ family.17

Assessment of Motor Impairment
The presence and severity of the following signs was assessed:
supranuclear gaze palsy, impaired eyelid function, facial weak-
ness, bulbar palsy, pseudobulbar palsy, neck weakness, neck
rigidity, respiratory muscle weakness, myoclonus, rest tremor,
postural tremor, dystonia, chorea, bradykinesia, rigidity, limb
apraxia, alien limb phenomenon, cortical sensory loss, limb
fasciculations, spasticity, limb weakness, hyperreflexia, ataxia,
arising from chair, sitting down, and postural instability. Se-
verity of signs was scored as follows: score 0 = no impairment,
score 0.5 = very mild impairment, score 1 = mild impairment,
score 2 = moderate impairment, and score 3 = severe impair-
ment (eTable 1, links.lww.com/WNL/C158). For motor signs
affecting different limbs, the score of the most severely affected
limb was used. To assess limb motor asymmetry, laterality
indices (LIs) defined as the difference of left and right were
calculated. For motor signs scoring 4 extremities, the mean of
side differences was calculated. To assess overall asymmetry,
the amount of the sum of all LIs was used.

MRI Acquisition and Analysis
MRI data were available in 286/322 patients. MRIs were ac-
quired on a 3 T scanner with a 1.1 mm isotropic resolution
(GE, Philips, Siemens Prisma, Siemens Skyra, Siemens Trio).

Acquisition protocols were synchronized across scanners and
sites to achieve the best possible match.

Voxel-based morphometry was performed using the Statisti-
cal Parametric Mapping toolbox (SPM12)18 in MATLAB
(MathWorks, Natick, MA). Images were segmented into
probability maps of gray matter, white matter, and CSF,
nonlinearly transformed using DARTEL19 to create a study
specific template for white and gray matter and normalized to
the Montreal Neurological Institute space with Jacobian
modulation. Spatial smoothing was applied using a full width
at half maximum 6-mm Gaussian kernel. An estimate of total
intracranial volume for each subject was computed by sum-
ming the 3 tissue class volumes.20

Statistical Analysis
Data were analyzed using IBM SPSS Statistics for Windows
(version 25.0; IBM Corp., Armonk, NY). Nondichotomized
mean scores of demographic data were compared via the Kruskal-
Wallis test and post hocBonferroni-correctedMann-Whitney test.
Chi-square analysis was used to check for significant differences in
sex. Standard statistical significance level was set at p < 0.05.

To identify groups of similar clinical variables, our set of
motor scores as well as overall LI were subjected to a principal
component analysis (PCA) with varimax rotation. Variables
with factor loadings below 0.4 were eliminated from the
analysis and the PCA run anew. Components were labeled
post hoc according to the pattern of signs. No a priori as-
sumptions regarding the clustering of motor signs were ap-
plied. To visualize the similarity of variables assigned to a
specific component during PCA, multidimensional scaling
(MDS) was performed. Furthermore, to visualize possible
gene clustering between phenotype clusters, a between-cases
MDS was performed. For each group, the variance in each
dimension was calculated, and a Levene test was performed to
assess possible inequality of variances.

To test for differences of motor signs depending on the af-
fected gene, we calculated for each participant a sum score
from the variables of each component. As overall LI has a
different scale than the other variables, it was analyzed separately.

Table 1 Demographics of the Study Sample

C9orf72 (n = 122) GRN (n = 143) MAPT (n = 57) p Value

Symptoms, presymptomatic/symptomatic 79/43b 112/31a 43/14 0.041

Age, y 52.2 (13.9)c 50.0 (13.4)c 45.1 (12.1)a,b 0.003

Education, y 13.9 (3.2) 13.9 (3.9) 14.3 (3.4) 0.571

Sex, female/male 66/56 88/55 34/23 0.462

EYO, y −8.0 (13.0) −10.1 (13.1) −7.8 (12.2) 0.224

Abbreviations: C9orf72 = chromosome 9open reading frame72; EYO = estimated years to symptomonset;GRN =progranulin;MAPT =microtubule-associated
protein tau.
Significantly different compared with ac9orf72, bGRN, and cMAPT. Bold values indicate significance (p < 0.05).
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Sum scores were compared via Kruskal-Wallis and post hoc
Bonferroni-corrected Mann-Whitney tests between groups.

To assess the proportion of the predominant phenotype of pa-
tients with motor signs depending on the affected gene, cases
were assigned to the component with the highest PCA-based
sum score. In addition, the frequency of signs of different

components was determined for each group. Chi-square analysis
was used to check for significant differences in frequency of signs.

We assessed for each component the association between the
sum scores and the patterns of atrophy using linear regression
models. Data of patients with a sum score of 0 were excluded.
The estimate of total intracranial volume was included as a
covariate. Probability maps of gray matter and white matter
were analyzed separately. T-maps were merged for visualiza-
tion purposes. Images of the association between the sum
scores of component 5 and cross-sectional atrophy patterns
were partly flipped according to the expected atrophy pattern.
The hemisphere with the expected atrophy (based on later-
alization of motor symptoms) was arranged to the left. Ab-
solute threshold masking was set at 0.1 to prevent interference
by nonbrain voxels (p < 0.001, cluster threshold k = 20 voxel).

In addition, we applied linear mixed-effects (LME) models21

to assess differences between genetic groups in function of the
calculated sum scores. Via LME we performed a modeling of
the predictor variables as a linear model combining fixed and
random effects; the former accounting for known sources of
variation such as groups or time, the later accounting for the
variance contribution of clusters in the data and correlations
within members of each cluster.

We tested several models including random intercepts per
family and site.17 Fixed effect variables included EYO, genetic
group, and sex, along with interactions between genetic group
and EYO. Nonlinear time dependence was expected, so a
second-order contribution of EYO, including an interaction
with genetic group, was added to the model. Higher-order
contributions and logarithmic transformations were tested
with no significant improvement of the model.

We applied a type II Wald χ2 test to the model, to estimate the
relationship between the fixed variables and the sum scores.
Afterward, the 3-way empirical significance was estimated
from a Monte-Carlo sampling of the models for each sum
score22 every 5 years in the EYO range from −25 to +10 to
identify each sign’s degree of differentiation. As indicator of
the point in time at which motor signs of each component and
genetic group start to increase, the time at which the lower
95% CI crosses zero on the x-axis was used. These analyses
were performed using R 3.6.3.

Data Availability
Data will be shared according to the GENFI data sharing
agreement, after review by the GENFI data access committee
with final approval granted by the GENFI steering committee.

Results
Demographics
Demographics of the study sample are provided in Table 1.
MAPT pathogenic variant carriers were younger compared
with the other groups. The proportion of presymptomatic

Table 2 Rotated Component Matrix

Component

PSP-
MP

Bulbar
ALS-MP

Mixed/
ALS-MP

PD-
MP

CBS-
MP

Neck rigidity 0.833 0.071 0.219 0.086 0.007

Impaired eyelid
function

0.806 −0.043 0.135 −0.120 −0.072

Supranuclear gaze
palsy

0.783 −0.026 0.051 −0.005 0.149

Dystonia 0.754 −0.048 0.058 −0.026 0.114

Pseudobulbar palsy 0.723 0.021 0.020 0.137 −0.105

Ataxia 0.463 −0.011 −0.093 0.271 0.165

Respiratory muscle
weakness

0.002 0.956 0.038 −0.051 −0.006

Neck weakness 0.007 0.951 0.062 −0.048 −0.012

Bulbar palsy −0.003 0.843 0.128 −0.072 0.007

Facial weakness 0.027 0.775 0.276 0.025 −0.063

Myoclonus 0.007 0.720 −0.048 0.318 0.112

Spasticity 0.335 0.130 0.740 0.049 0.056

Limb weakness −0.049 0.544 0.687 0.002 0.004

Limb fasciculations −0.170 −0.136 0.669 0.061 0.081

Arising from chair 0.562 0.398 0.613 0.067 −0.042

Bradykinesia 0.493 −0.004 0.602 0.423 0.075

Sitting down 0.580 0.393 0.581 0.063 −0.048

Postural instability 0.562 0.352 0.576 0.152 0.119

Hyperreflexia 0.218 0.327 0.501 0.015 0.198

Rest tremor 0.051 0.047 −0.095 0.856 0.053

Postural tremor −0.011 0.011 0.121 0.806 0.020

Overall LI 0.098 0.058 0.425 0.665 0.384

rigidity 0.418 −0.045 0.198 0.469 0.188

Cortical sensory loss 0.041 0.036 −0.037 −0.023 0.798

Limb apraxia 0.025 −0.004 0.090 0.313 0.774

Alien limb
phenomenon

0.062 −0.009 0.133 0.051 0.590

Abbreviations: ALS-MP = amyotrophic lateral sclerosis–like motor pheno-
type; CBS-MP = corticobasal syndrome–like motor phenotype; LI = laterality
index; PD-MP = Parkinson disease–like motor phenotype; PSP-MP = pro-
gressive supranuclear palsy–like motor phenotype.
Factor loadings exceeding 0.4 are color coded depending on the associated
component.
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participants was lower in c9orf72 compared with GRN path-
ogenic variant carriers. Groups did not differ in terms of ed-
ucation, sex, and EYO.17,23

PCA and Multidimensional Scaling
Both the Bartlett test (χ2 (351) 7,662.23, p < 0.001) and the
Kaiser-Meyer-OlkinMeasure of Sampling Adequacy (KMO=
0.766) indicated that variables were suitable for PCA with
varimax rotation, which revealed the presence of 7 compo-
nents with eigenvalues above 1. As 2 of these components
contained only 2 variables, these were excluded from the
analysis, leaving a 5-component solution explaining 67.3% of
variance. The motor sign chorea was excluded as its factor
loadings were below 0.4.

The variables group in the components as follows (details in
Table 2):

1. Neck rigidity, impaired eyelid function, supranuclear gaze
palsy, dystonia, pseudobulbar palsy, and ataxia: we call
this the PSP-like motor phenotype (PSP-MP).

2. Respiratory muscle weakness, neck weakness, bulbar
palsy, facial weakness, and myoclonus: we call this the
bulbar ALS-like motor phenotype (bulbar ALS-MP).

3. Spasticity, limb weakness, limb fasciculations, arising from
chair, bradykinesia, sitting down, postural instability, and
hyperreflexia: we call this the mixed/ALS-like motor
phenotype (mixed/ALS-MP), as this phenotype contains
both nonspecific motor signs like bradykinesia and typical
ALS features like spasticity, limb weakness, fasciculations,
and hyperreflexia.

4. Rest tremor, postural tremor, overall LI, and rigidity: we
call this the PD-like motor phenotype (PD-MP).

5. Cortical sensory loss, limb apraxia, and alien limb
phenomenon: we call this the CBS-like motor phenotype
(CBS-MP).

Of note, high scores on a certain component do not make a
specific diagnosis, the names given are but a simplified label
for a cluster of signs. MDS confirmed the grouping of vari-
ables as reasonable (normalized raw stress 0.040)
(Figure 1A). In addition, a between-cases MDS (normalized
raw stress 0.002) was performed (Figure 1B). The Levene test
detected significant inequality of variances in dimension 1
between groups (p = 0.039) with highest variances in c9orf72
pathogenic variant carriers. No significant group differences
were detected in dimension 2.

Severity of Motor Signs
The Kruskal-Wallis test detected significant group differences
of sum scores of the bulbar ALS-MP, mixed/ALS-MP, and
PD-MP with highest sum scores in c9orf72 pathogenic variant
carriers (Figure 2A). Sum scores of the mixed/ALS-MP and
PD-MP were lowest in MAPT pathogenic variant carriers,
whereas sum scores of the bulbar ALS-MP were lowest in
GRN pathogenic variant carriers. Sum scores of the PSP-MP
and CBS-MP were highest in c9orf72 and lowest in MAPT
pathogenic variant carriers; however, statistical significance
was not reached. As presymptomatic participants were largely
normal on their clinical examination, differences of sum scores
between groups at baseline examination were mainly driven
by symptomatic participants.

Figure 1 Multidimensional Scaling of Motor Signs and Genetic Cases, Respectively

(A) Two-dimensional spatial representation based on the similarity of clinical variables as revealed by MDS. Variables that have been assigned to a specific
motor phenotype by PCA are color coded. (B) Two-dimensional spatial representation based on the similarity of cases as revealed by MDS. Cases are color
coded according to their affected gene. ALS = amyotrophic lateral sclerosis; c9orf72 = chromosome 9 open reading frame 72; CBS = corticobasal syndrome;
GRN = progranulin;MAPT =microtubule-associated protein tau;MDS =multidimensional scaling; MP =motor phenotype; PCA = principal component analysis;
PD = Parkinson disease; PSP = progressive supranuclear palsy.
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Frequency of Motor Signs
When looking at the group of pathogenic variant carriers
showing motor signs, no significant group differences could
be detected regarding the frequency of signs of different
motor phenotypes (Figure 2B). This was similar when look-
ing at the whole group (eFigure 1, links.lww.com/WNL/
C158), χ2 analysis detected only significant group differences
regarding the frequency of signs of the bulbar ALS-MP with
highest frequency of signs in c9orf72 pathogenic variant
carriers.

Signs of the mixed/ALS-MP were most frequent across groups
(63.3%–76.9%), followed by signs of the PD-MP (51.0%–61.5%).
Signs of the CBS-MP (26.5% and 38.5%, respectively) were
slightly more frequent than signs of the PSP-MP (20.4% and
30.8%, respectively) in GRN and MAPT pathogenic variant car-
riers. In contrast, in c9orf72 pathogenic variant carriers, signs of
the PSP-MP (34.7%) occurred more frequently than signs of the
CBS-MP (30.8%). The least common signs were those of the
bulbar ALS-MP (7.7%–13.5%). This was the case in all genetic
groups, regardless of whether the cohort of patients showing
motor signs or the whole cohort was analyzed.

Predominance Phenotype
In c9orf72 pathogenic variant carriers, the most frequent
predominant phenotype was the mixed/ALS-MP (44%),
followed by signs of the PD-MP (33%) (Figure 3), whereas
this was the other way round in GRN and MAPT pathogenic
variant carriers (PD-MP: 43% and 54%, respectively; mixed/
ALS-MP: 35% and 38%, respectively). Although 21.7% of
c9orf72 pathogenic variant carriers with a predominant
mixed/ALS-MP had confirmed motor neuron disease, in
none of the patients with aGRN orMAPT pathogenic variant,
motor neuron disease was diagnosed. The third most com-
mon predominant phenotype was the CBS-MP in all genetic
groups, which was equally frequent in c9orf72 and GRN
(≈15%) and slightly less frequent in MAPT pathogenic vari-
ant carriers (8%). In c9orf72 pathogenic variant carriers, the
PSP-MP (4%) was slightly more frequent than the bulbar
ALS-MP (2%). All c9orf72 pathogenic variant carriers with a
predominant bulbar ALS-MP had confirmed motor neuron
disease. None of the GRN pathogenic variant carriers showed
a predominant bulbar ALS-MP, and no MAPT pathogenic
variant carrier showed a predominant PSP-MP or mixed/
ALS-MP.

Figure 2 Severity and Frequency of Motor Signs

(A) Comparison of the severity ofmotor signs as defined by the sumscores of the individualmotor phenotypes according to the affected gene. (B) Comparison
of the frequency of motor signs between pathogenic variant carriers showing motor signs. Patients may present motor signs of different phenotypes;
therefore, the sum of frequencies does not add up to 100%. ALS = amyotrophic lateral sclerosis; c9orf72 = chromosome 9 open reading frame 72; CBS =
corticobasal syndrome; GRN = progranulin; MAPT = microtubule-associated protein tau; MP = motor phenotype; PD = Parkinson disease; PSP = progressive
supranuclear palsy.

Figure 3 Proportion of the Dominant Clinical Phenotype of Patients With Motor Signs Depending on the Affected Gene

Cases were assigned to the componentwith the highest PCA-based sum score. As patientsmay presentmotor signs of othermotor phenotypes in addition to
the signs of the predominating motor phenotype, this figure is not congruent with Figure 2B. ALS = amyotrophic lateral sclerosis; c9orf72 = chromosome 9
open reading frame 72; CBS = corticobasal syndrome;GRN = progranulin;MAPT =microtubule-associated protein tau;MP =motor phenotype; PCA = principal
component analysis; PD = Parkinson disease; PSP = progressive supranuclear palsy.
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Atrophy Patterns
Voxel-wise regression revealed sum scores of the PSP-MP to be
highly correlatedwithmesencephalic atrophy (Figure 4, eFigure 3,
eTable 2, links.lww.com/WNL/C158). Atrophy clusters corre-
lating with sum scores of the bulbar ALS-MP were rather small
and distributed over all lobes with a focus on the frontal and
temporal lobe. For the mixed/ALS-MP, the clusters of white
matter atrophyweremainly located in extranuclear and brain stem
white matter as well as in subcortical white matter of the medial
frontal and precentral gyrus. Clusters of gray matter atrophy were
located in the precentral, medial frontal, and superior frontal gyrus
(Figure 4C). In addition, clusters of gray matter atrophy could be
detected in both cerebellar tonsils, the left declive, insula and
posterior cingulate. Sum scores of the PD-MP showed a high
correlation with diffuse cerebral and cerebellar cortical and sub-
cortical atrophy (Figure 4B). Only small atrophy clusters corre-
lating with the sum scores of the CBS-MP mainly located in the
temporal, occipital, and parietal lobes could be detected.

LME Models
The visual distribution of sum scores and overall laterality over
EYO is depicted in Figure 5. The Type IIWald χ2 test revealed a
significant effect of EYO on the sum scores of the PSP-MP (p <
0.001), mixed/ALS-MP (p = 0.030), and PD-MP (p < 0.001)
and a significant effect of genetic group on the sum scores of the
mixed/ALS-MP (p < 0.001) and PD-MP (p = 0.016). The
interaction of EYO and genetic group had a significant effect on
the sum scores of the PD-MP (p = 0.027). None of the variables
included in the model reached statistical significance when
evaluating the sum scores of the bulbar ALS-MP and CBS-MP.

As a possible indicator of signs starting to emerge, we de-
termined for each component and genetic group the point in
time at which the lower 95% CI of the model crosses the
x-axis. Although no clear onset of signs could be detected for

the bulbar ALS-MP, in c9orf72 and GRN pathogenic variant
carriers, an increase of signs of the PSP-MP could be detected
already shortly before estimated onset (Figure 5). In c9orf72
pathogenic variant carriers, an increase of signs of the mixed/
ALS-MP was detectable already 25 years before the estimated
onset. Signs of the PD-MP started to increase more than 15
years before estimated onset in c9orf72 and GRN pathogenic
variant carriers and around 5 years before estimated onset in
MAPT pathogenic variant carriers, whereas signs of the CBS-
MP increased 10 years before estimated onset in c9orf72
pathogenic variant carriers and more than 5 years before es-
timated onset in GRN pathogenic variant carriers.

Sum scores of the PD-MP were significantly higher in c9orf72
compared with GRN andMAPT pathogenic variant carriers 5
years before estimated onset (Figure 5) and significantly
higher in MAPT compared with GRN pathogenic variant
carriers 15 years after estimated onset. Sum scores of the CBS-
MP were significantly higher in c9orf72 compared withMAPT
pathogenic variant carriers 15 years before estimated onset
and converged 15 years after estimated onset. Furthermore,
they were significantly higher in GRN compared with MAPT
pathogenic variant carriers 10 years before estimated onset
and converged 10 years after estimated onset. The earliest
point at which sum scores of the CBS-MP were significantly
higher in c9orf72 compared with GRN pathogenic variant
carriers was 10 years after estimated onset. We noted no
significant group differences of sum scores of the PSP-MP,
bulbar ALS-MP, and mixed/ALS-MP over time.

Discussion
We present a data-driven approach to demonstrate the phe-
notypic range of motor signs, their association with time to
expected onset as well as with specific atrophy patterns in

Figure 4 Correlation of Sum Scores of Motor Phenotypes With Cerebral Atrophy Using Linear Regression Models

T-maps from the analysis of gray and white
matter were merged for visualization purposes.
(A) PSP-like motor phenotype, arising from
c9orf72, GRN, andMAPT pathogenic variants, not
progressive supranuclear palsy pathology. (B)
PD-like motor phenotype, arising from c9orf72,
GRN, and MAPT pathogenic variants, not PD. (C)
Mixed/ALS-like motor phenotype, arising from
c9orf72,GRN, andMAPT pathogenic variants. ALS
= amyotrophic lateral sclerosis; c9orf72 = chro-
mosome 9 open reading frame 72; CBS = corti-
cobasal syndrome; GRN = progranulin; MAPT =
microtubule-associated protein tau; PD = Par-
kinson disease; PSP = progressive supranuclear
palsy.
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genetic FTD. PCA confirmed the presence of natural clusters
of motor phenotypes, a PSP-like, a bulbar ALS-like, a mixed/
ALS-like, a PD-like, and a CBS-like motor phenotype.

The prevalence of signs of these phenotypes in the overall
cohort was similar across genetic groups. This is in line with a
recent review and meta-analysis.13 However, in our cohort,
signs of the mixed/ALS-MP were most frequent across
groups, followed by signs of the PD-MP. The most common
phenotype inGRN andMAPT pathogenic variant carriers was
PD-MP, closely followed by mixed/ALS-MP: this was the
other way round in c9orf72 pathogenic variant carriers. This
was to be expected in c9orf72 pathogenic variant carriers but is
rather unexpected in GRN and MAPT pathogenic variant
carriers, as the occurrence of ALS-like signs has only rarely
been described in these conditions.4,24 Of interest, this was
only in part due to the nonspecific variables with high cross
loadings on the PSP-MP and PD-MP contained in this

phenotype cluster, as the frequency of the remaining signs of
the third component was still 16.1% in GRN and 15.8% in
MAPT pathogenic variant carriers, with the most frequent
sign being hyperreflexia. However, typical ALS signs like limb
weakness, fasciculations, and spasticity were present as well.

In previous reports, parkinsonism and Richardson syndrome
have been described in association with MAPT pathogenic
variants,25-27 but in our overall cohort, motor signs of a PSP-
MP, PD-MP, and CBS-MP occurred most frequently in
c9orf72 followed by GRN pathogenic variant carriers. In-
triguingly, no MAPT pathogenic variant carrier exhibited a
predominant PSP-MP. This may be due to the small number
of MAPT pathogenic variant carriers showing motor signs
(n = 13). The fact that motor disorders and parkinsonism are
typically brought into connection with a MAPT pathogenic
variant may be caused by the earlier discovery of MAPT
pathogenic variants in people with PSP-like phenotypes,7

Figure 5 Calculated Sum Scores and Overall Laterality Index (With 95% CIs), Respectively, vs Estimated Years to Symptom
Onset

An early increase of motor signs, up to 25 years before the
expected symptom onset, could be detected in c9orf72
pathogenic variant carriers. In MAPT pathogenic variant
carriers, motor signs occurred latest. The point in time at
which the lower 95% CI of the model crosses the x-axis is
marked by a vertical bar in the respective color for each
group. Although the severity of motor signs remained
highest in c9orf72 pathogenic variant carriers over time,
severity of motor signs of GRN andMAPT pathogenic variant
carriers progressively converged. Individual data points are
not plotted to prevent disclosure of genetic status. However,
the time of the examination is marked on the x-axis by a
colored dash. ALS = amyotrophic lateral sclerosis; c9orf72 =
chromosome 9 open reading frame 72; CBS = corticobasal
syndrome; GRN = progranulin; MAPT = microtubule-associ-
ated protein tau; MP = motor phenotype; PD = Parkinson
disease; PSP = progressive supranuclear palsy.
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8 years earlier than GRN6 and 13 years earlier than c9orf72.5

Therefore, a higher number of papers reporting MAPT
pathogenic variants may have skewed the perception of
prevalence, leading to the impression thatMAPT has a higher
proportion of motor disorders.

The more frequent occurrence of signs of the CBS-MP in
c9orf72 compared with GRN pathogenic variant carriers is
surprising as previous reports have described CBS to be most
often associated with GRN pathogenic variants.28-30 This
discrepancy may be due to the fact that most previous studies
on motor disorders in genetic FTD have been case reports
and case series that have focused on the predominance phe-
notype without describing accompanying low-grade signs. In
fact, when looking solely at patients showing motor signs,
GRN pathogenic variant carriers were similarly likely to show
a predominant CBS-MP compared with c9orf72 pathogenic
variant carriers.

Signs of a bulbar ALS-MP were most frequent in c9orf72
pathogenic variant carriers31 and could rarely be detected in
GRN and MAPT pathogenic variant carriers. None of the
GRN and MAPT pathogenic variant carriers showing motor
signs exhibited a predominant bulbar ALS-MP. The presence
of manifest bulbar signs therefore effectively excludes the
presence of GRN and MAPT pathogenic variants.

Although the clinical phenotype is known to be highly hetero-
geneous across all pathogenic variants under investigation,32 the
between-casesMDS performed demonstrates tightly overlapping
phenotype clusters, albeit with higher variance in c9orf72 patho-
genic variant carriers and a more consistent syndrome for GRN
andMAPT. This is reflected by the higher frequency and greater
severity of signs across all phenotype clusters in c9orf72 compared
with GRN and MAPT pathogenic variant carriers. In agreement
with the concept that the anatomy determines the phenotype,15

we were able to demonstrate strong clinicoanatomic correlations.
This is reassuring about the validity of phenotype clusters defined
by PCA. In agreement with previous studies on PSP-Richardson
syndrome33,34 and PSP-like signs in sporadic FTD,14 the severity
of the PSP-MP correlated with mesencephalic atrophy. The
bulbar ALS-MP correlated with small areas of atrophy, mainly in
the frontal and temporal lobe. This is consistent with previous
studies reporting atrophy in frontotemporal regions, especially in
patients additionally displaying behavioral or language signs,35,36

which was the case in all of our patients showing signs of the
bulbar ALS-MP.

As expected, mixed/ALS-MP signs correlated with bilateral
atrophy of the motor and premotor cortex and the cortico-
spinal tracts including the internal capsule and brainstem.35,37

As in previous reports on the FTD-ALS continuum, clusters
of atrophy in further frontotemporal regions38 and the cere-
bellum were also detectable.39,40

Surprisingly, there was only a small correlation of the PD-MP
with basal ganglia atrophy but widespread cortical and

subcortical correlates. Recent studies have demonstrated a
similar widespread pattern of subtle bilateral cortical thinning
involving frontal, parietal, temporal, and occipital lobes and
extensive white matter damage already in early PD.41-43

However, our cases carry FTD pathogenic variants associated
with TDP-43 and tau-pathology, not alpha-synucleinopathy.
Dual pathology can occur but is very unlikely to be common
across the GENFI cohort sufficient to cause the correlations
with atrophy. The absence of basal ganglia atrophy may reflect
the different underlying molecular pathology of PD-like MP
in genetic FTD vs PD. The data suggest that mild PD-like
signs in genetic FTD are rather due to diffuse cortical and
subcortical atrophy than profound degeneration of the basal
ganglia.

Even when flipping images according to the expected clinical
atrophy pattern, only small atrophy clusters correlated with
the CBS-MP. These were in the parietal, temporal, and oc-
cipital lobes. Although the clinical presentation of CBS is
typically asymmetric, the variable overall LI was assigned to
the PD-MP, not the CBS-MP by PCA, which explains why
atrophy clusters correlating with the CBS-MP are not asym-
metrically distributed. The fact that the factor loading of the
variable overall LI on the CBS-MP was comparatively low
may, however, be due to the small number of participants
showing motor signs of the CBS-MP (n = 33).

Previous studies in CBS have demonstrated that atrophy
patterns44,45 and cerebral glucosemetabolism46 differ depending
on the underlying pathology. Although in patients with corti-
cobasal degeneration, the premotor cortex, supplemental motor
area, and insula are typically affected, those with TDP-43 pa-
thology exhibit pronounced frontotemporal atrophy, and pa-
tients with CBS with underlying Alzheimer pathology show
more posterior atrophy, in parietal and temporal lobes. Although
small, the atrophy clusters detected in our cohort seem to cor-
respond to the atrophy detected in CBS caused by Alzheimer
pathology. However, it is also possible that a differing distribu-
tion of pathology depending on the affected genes could have led
to a mutual cancellation of atrophy patterns in our pooled
analysis.

Previous studies in genetic FTD described changes in neu-
ropsychological measures and structural imaging 5–10 years
before expected onset.17 We show the emergence of motor
signs up to 25 years before expected onset. Furthermore, our
results demonstrate that severity of signs depends on the
affected gene and that its effect varies over time. Mixed/ALS-
MP, PD-MP, and CBS-MP signs occurred earliest in c9orf72
pathogenic variant carriers, in agreement with the early de-
tectable structural imaging findings17,47 and slow progress
described in some c9orf72 patients.48-50 In contrast, inMAPT
pathogenic variant carriers that have been typically described
in association with motor disorders, motor signs occurred
later. Although the severity of signs remained highest in
c9orf72 pathogenic variant carriers, severity with GRN and
MAPT pathogenic variant carriers converged over time.
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As the majority of participants are alive, no valid conclusion
on the influence of motor signs on overall survival can be
drawn. However, an effect of motor signs, especially of the
bulbar and mixed/ALS-MP, seems likely and should be in-
vestigated in future studies.

Besides the high number of patients with genetic FTD and the
prospective evaluation of signs, the identification of natural
clusters of motor signs by PCA represents a key strength of
our study. Applying a data-driven approach allows for an
objective analysis that does not follow classical clinical con-
cepts and is not influenced by a priori assumptions.

A limitation of the current study that needs to be considered is
the lack of a comparison to data from healthy controls.
However, the primary aim was to compare motor disorders
and their development over time between the genetic groups
under investigation. We analyzed only cross-sectional differ-
ences between different genetic groups at different times from
estimated onset. Whether the progression of signs, especially
in the presymptomatic phase when subtle signs may be
challenging to measure, is followed within individuals has to
be shown in future longitudinal studies. Furthermore, a rep-
lication of phenotypes in another cohort would be of interest
but is difficult to pursue due to the rarity of genetic FTD.
Another limitation is the method used for estimation of es-
timated years to symptom onset. There is a significant cor-
relation between an individual's age at onset andmean familial
age at onset for MAPT pathogenic variants. This correlation is
weak for c9orf72 and GRN, such that EYO becomes a surro-
gate of age.

Keeping these limitations in mind, our data reveal the pres-
ence of natural clusters of motor signs in genetic FTD. Their
severity increases over time and depends on the affected gene.
The emergence of motor signs occurs early in the pre-
symptomatic period, up to 25 years before estimated onset.
Motor phenotypes have distinctive anatomic correlates.
Given the heterogeneity of signs and symptoms and pheno-
typic overlap, these clinicogenetic associations of motor
phenotypes in genetic FTD will help clinicians in their di-
agnostic workup, assist in decision making regarding genetic
testing, and the design of preventive and disease-modifying
treatments.
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de Economı́a, Innovación, Ciencia y Empleo (Junta de
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de Mémoire (CIME),
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21. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using
lme4. 2014. arXiv preprint arXiv:14065823.

22. North BV, Curtis D, Sham PC. A note on the calculation of empirical P values from
Monte Carlo procedures. Am J Hum Genet. 2002;71(2):439-441. doi:10.1086/341527.

23. Moore KM, Nicholas J, GrossmanM, et al. Age at symptom onset and death and disease
duration in genetic frontotemporal dementia: an international retrospective cohort
study. Lancet Neurol. 2020;19(2):145-156. doi:10.1016/s1474-4422(19)30394-1.

24. Origone P, Geroldi A, Lamp M, et al. Role of MAPT in pure motor neuron disease:
report of a recurrent mutation in Italian patients. Neuro-degenerative Dis. 2018;18(5-
6):310-314. doi:10.1159/000497820.

25. Baba Y, Tsuboi Y, BakerMC, et al. The effect of tau genotype on clinical features in FTDP-
17. Parkinsonism Relat Disord. 2005;11(4):205-208. doi:10.1016/j.parkreldis.2005.01.003.

26. Siuda J, Fujioka S,Wszolek ZK. Parkinsonian syndrome in familial frontotemporal dementia.
Parkinsonism Relat Disord. 2014;20(9):957-964. doi:10.1016/j.parkreldis.2014.06.004.

27. Ogaki K, Li Y, Takanashi M, et al. Analyses of the MAPT, PGRN, and C9orf72
mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism Relat Disord.
2013;19(1):15-20. doi:10.1016/j.parkreldis.2012.06.019.

28. Kelley BJ, Haidar W, Boeve BF, et al. Prominent phenotypic variability associated with
mutations in Progranulin. Neurobiol Aging. 2009;30(5):739-751. doi:10.1016/
j.neurobiolaging.2007.08.022.

29. Baizabal-Carvallo JF, Jankovic J. Parkinsonism, movement disorders and genetics
in frontotemporal dementia. Nat Rev Neurol. 2016;12(3):175-185. doi:10.1038/
nrneurol.2016.14.

30. Arienti F, Lazzeri G, Vizziello M, et al. Unravelling genetic factors underlying
corticobasal syndrome: a systematic review. Cells. 2021;10(1):171. doi:10.3390/
cells10010171.

31. Cooper-Knock J, Shaw PJ, Kirby J. The widening spectrum of C9ORF72-related
disease; genotype/phenotype correlations and potential modifiers of clinical pheno-
type. Acta Neuropathol. 2014;127(3):333-345. doi:10.1007/s00401-014-1251-9.

32. Benussi A, Padovani A, Borroni B. Phenotypic heterogeneity of monogenic fronto-
temporal dementia. Front Aging Neurosci. 2015;7:171. doi:10.3389/fnagi.2015.00171.

33. Albrecht F, Bisenius S, Neumann J, Whitwell J, Schroeter ML. Atrophy in midbrain &
cerebral/cerebellar pedunculi is characteristic for progressive supranuclear palsy—a
double-validation whole-brain meta-analysis. Neuroimage Clin. 2019;22:101722. doi:
10.1016/j.nicl.2019.101722.

34. Whitwell JL, Jack CR Jr, Parisi JE, et al. Midbrain atrophy is not a biomarker of
progressive supranuclear palsy pathology. Eur J Neurol. 2013;20(10):1417-1422. doi:
10.1111/ene.12212.

35. Dadar M, Manera AL, Zinman L, et al. Cerebral atrophy in amyotrophic lateral
sclerosis parallels the pathological distribution of TDP43. Brain Commun. 2020;2(2):
fcaa061. doi:10.1093/braincomms/fcaa061.

36. Chen ZY, Liu MQ, Ma L. Gray matter volume changes over the whole brain in the
bulbar- and spinal-onset amyotrophic lateral sclerosis: a voxel-based morphometry
study. Chin Med Sci J. 2018;33(1):20-28. doi:10.24920/11804.

37. Agosta F, Spinelli EG, Filippi M. Neuroimaging in amyotrophic lateral sclerosis:
current and emerging uses. Expert Rev Neurother. 2018;18(5):395-406. doi:10.1080/
14737175.2018.1463160.

38. Agosta F, Ferraro PM, Riva N, et al. Structural brain correlates of cognitive and
behavioral impairment in MND. Hum Brain Mapp. 2016;37(4):1614-1626. doi:
10.1002/hbm.23124.

39. Tan RH, Devenney E, Dobson-Stone C, et al. Cerebellar integrity in the amyotrophic
lateral sclerosis-frontotemporal dementia continuum. PLoS One. 2014;9(8):e105632.
doi:10.1371/journal.pone.0105632.

40. Keil C, Prell T, Peschel T, Hartung V, Dengler R, Grosskreutz J. Longitudinal dif-
fusion tensor imaging in amyotrophic lateral sclerosis. BMC Neurosci. 2012;13:141.
doi:10.1186/1471-2202-13-141.
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