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Abstract: Meta-analysis techniques allow researchers to jointly analyse different studies to determine
common effects. In the field of transcriptomics, these methods have gained popularity in recent
years due to the increasing number of datasets that are available in public repositories. Despite
this, there is a limited number of statistical software packages that implement proper meta-analysis
functionalities for this type of data. This article describes DExMA, an R package that provides a
set of functions for performing gene expression meta-analyses, from data downloading to results
visualization. Additionally, we implemented functions to control the number of missing genes, which
can be a major issue when comparing studies generated with different analytical platforms. DExMA
is freely available in the Bioconductor repository.

Keywords: missing data; gene expression; meta-analysis; R-package; data imputation
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1. Introduction

In recent years, due to the widespread use of high-throughput gene expression tech-
nologies, the amount of gene expression data stored in public databases such as GEO [1]
has grown drastically [2]. Gene expression is the process by which a product (usually a
protein) is generated from the information encoded in genes. Gene expression studies
usually measure the expression levels of thousands of genes simultaneously and generate
a gene expression matrix with thousands of variables (genes) and tens or hundreds of
samples. Each element of the matrix represents the amount of mRNA of a gene in a sample.
One of the main types of analyses carried out in these studies is finding genes that are
differentially expressed among groups of samples by means of hypothesis testing of mean
differences (case–control studies). Therefore, these databases are invaluable resources to
help researchers perform new analyses and gain new scientific insights.

A meta-analysis is a statistical technique that has achieved considerable popularity
during the last few years for the integration of gene expression studies and making infer-
ences about a population of interest. Gene expression meta-analyses have been widely
applied for different purposes such as increasing statistical power for the identification
of biomarkers [3,4], the discovery of common gene expression patterns between differ-
ent diseases [5,6], or the search for inverse gene expression patterns between different
conditions [7].

An important step of a meta-analysis is to carry out prior quality control to reduce bias,
check the homogeneity of data, detect unmeasured values, etc. This also helps to select the
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most appropriate method to be applied and avoid inaccurate results. The publication of
inconsistent results and misinterpretations has been severely criticized in recent years [8,9].
Therefore, it is necessary to implement dedicated software that allows users to apply the
different meta-analysis methods properly.

R packages have been previously developed for gene expression meta-analyses such
as MetaIntegrator [10] or MetaVolcanoR [11]. Surprisingly, most of the available packages
discard the genes not available in all the datasets included in the meta-analysis. Neverthe-
less, these missing genes may lead to the omission of relevant information, losing relevant
patterns, and this can cause different results to be obtained between studies [12]. In other
contexts, a typical solution to deal with missing values is to impute the missing values
from the samples with available data within the same study. However, this approach is not
applicable to gene expression meta-analyses, since expression values are absent for all the
samples. The use of models to impute these missing genes from the correlation with other
non-missing genes has been proposed [12]. Furthermore, methods that perform imputation
from the samples of other studies have also been proposed, obtaining fewer errors when
comparing the imputed and real values [13]. Nevertheless, none of these methods have
been previously implemented in gene expression meta-analysis packages.

The DExMA package has been implemented to perform all the steps of gene expression
meta-analyses, providing two functions to treat missing genes across datasets. The first
approach is based on imputing missing genes from the samples of other studies using the k-
nearest neighbours (sampkeKNN method) [13]. The second approach consists of considering
those genes with available values in a minimum proportion of datasets selected by the user
in the meta-analysis.

Moreover, DExMA allows users to download data from the GEO database simply by
using the corresponding codes. In addition, it includes quality control steps and heterogene-
ity testing. This package is available in the Bioconductor repository (http://bioconductor.
org/packages/release/bioc/html/DExMA.html, accessed on 31 August 2022).

In this article, we describe the main functions and functionalities of the DExMA
package. In the first section, the different implemented meta-analysis methods are described.
Next, we present the workflow through a use case with simulated data, and in the last
section, we present results from the analysis of real expression datasets.

2. Materials and Methods
2.1. Meta-Analysis Methods

A gene expression meta-analysis encompasses a set of statistical methods that allow
us to combine results from different gene expression studies to obtain a single result with
greater statistical power and sample size. The most suitable method depends on the nature
and characteristics of the analysed datasets [14]. The DExMA package includes most of the
methods from the two main meta-analysis approaches: effect size combination and p-value
combination.

2.1.1. Effect Size Combination Methods

A meta-analysis based on effect size combination aims to explain the strength of
a measure (effect) between different groups (e.g., experimental and control groups). In
the specific case of gene expression studies, the effect to be calculated is the difference
in standardized means between the expression level of the experimental group and the
control group. This model has the following assumptions [15]:

• There is independence between the experimental and the control group.
• Both the experimental and control groups are distributed according to a normal

distribution with means µE and µC, respectively, and with the same σ2 variance.

Therefore, the effect size of a gene in the i-th dataset (Ti) is described as:

Ti =
µE − µC

σ
(1)

http://bioconductor.org/packages/release/bioc/html/DExMA.html
http://bioconductor.org/packages/release/bioc/html/DExMA.html
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The DExMA package internally calculates Hedges’ g as an estimator of the effect size,
which is obtained [15]:

Ti = c(m)×
=
yE −

=
yC

S
(2)

where:

• c(m) = 1− 8
4(nE+nC)−9 , is a factor that corrects the positive bias. nE and nC are the

sample sizes of the experimental and control groups, respectively.
• =

yE and
=
yC are the gene expression means of the experimental and control group,

respectively.

• S =

√
(nE−1)S2

E+(nC−1)S2
C

nE+nC−2 is the standard deviation between studies. S2
E and S2

C are the

variances in the experimental and control groups, respectively.

Moreover, the within-study variance of this estimator is calculated:

Vi =
nE + nC
nE × nC

+
T2

i
2× (nE + nC)

(3)

Once effect sizes and their variances have been calculated for each gene in the different
studies, the combined effect size must be calculated to determine if a gene is differentially
expressed.

To obtain the combined effect size and its corresponding p-value, DExMA provides the
application of two models: the Fixed Effects Model (FEM) and the Random Effects Model
(REM).

The FEM assumes that all studies share a true common effect size, that is to say,
studies with more information have greater weight in the combined effect size. Therefore, the
combined effect size (T) and its variance (V) for k studies are calculated [15]:

T =
∑k

i=1 ωiTi

∑k
i=1 ωi

(4)

V =
1

∑k
i=1 ωi

(5)

where:

• Ti is the effect size of the i-th study.
• ωi is the weight assigned to the i-th study. In the case of a meta-analysis, the inverse

of the variance is used as weights, ωi =
1
Vi

.

Since the FEM model assumes the existence of normality, the z-value (z) of the combined
effect size for a standard normal:

z =
T√
V

(6)

This z-value is used to calculate the p-value. Furthermore, in the specific case of a gene
expression meta-analysis, this z-value is used to determine if the gene is over-expressed (z >
0) or under-expressed (z < 0).

The REM model considers that the true effect size varies from one study to another,
that is, there is a distribution of the true effect sizes. The combined effect size (T∗) and its
variance (V*) are calculated:

T∗ =
∑k

i=1 ω∗i Ti

∑k
i=1 ω∗i

(7)

V∗ =
1

∑k
i=1 ω∗i

(8)
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In this case, the calculation of the weights differs from the FEM, since it influences both
the within-study variance (Vi) and between-study variance (τ2) [15]. The between-study
variance is obtained:

τ2 =

{
Q−d f

C , Q > d f
0, Q ≤ d f

(9)

where:

• Q = ∑k
i=1 ωi(Ti − T.) represents the total variance, where:

• ωi is the calculated weight for the Fixed Effects Model.
• T. is the combined effect size for the Fixed Effects Model (Equation (2)).

• C = ∑k
i=1 ωi −

∑k
i=1 ω2

i
∑k

i=1 ωi
is a scaling-related factor related to the fact that Q is a weighted

sum of squares.
• df = k − 1 are the degrees of freedom for the meta-analysis.

Therefore, the weights for the REM are calculated:

ω∗i =
1

Vi + τ2 (10)

As in the FEM, the z-value of the combined effect size for a standard normal is calculated:

z =
T∗√
V∗

(11)

As for the FEM, this z-value is used to determine if the gene is over-expressed (z > 0)
or under-expressed (z < 0).

2.1.2. p-Values Combination Methods

A meta-analysis based on p-values combination methods aims to merge all the p-values
from different hypothesis tests into a single p-value. p-value combination methods have
the following assumptions [16]:

• p1, . . . , pk are the p-values from the k independent studies.
• The t1, . . . , tk test statistics have absolute continuous probability distributions under

their corresponding null hypotheses.

In the specific case of a gene expression meta-analysis, it seeks to obtain a combined
p-value for each of the genes. The p-values are obtained from performing a differential
expression analysis for each of the datasets. The DExMA package internally uses the
limma Bioconductor package [17] in order to obtain the individual p-values. Afterward,
to merge the individual p-values, DExMA implements five different p-value combination
methods: Fisher’s method, Stouffer’s method, Tippett’s method, Wilkinson’s method, and
the Aggregated Cauchy Association Test method (ACAT).

Fisher’s method calculates a statistic (SF) as the sum of the logarithm of the p-values,
SF = −2×∑k

i=1 ln(pi) [18]. Under the null hypothesis, SF is distributed as x2 with 2 × k
degrees of freedom [16].

Stouffer’s method assumes that Zi = φ−1(1− pi) [16], where φ is the standard nor-
mal cumulative distribution function. Then, for k independent studies, the statistic is
calculated as the sum of the Zi values divided by the square root of the number of studies,

SS = ∑k
i=1 Zi√

k
. Under the null hypothesis, SS is distributed as a standard normal distri-

bution [16]. Moreover, Stouffer’s method allows the inclusion of each of the datasets,

SS = ∑k
i=1 ωiZi√
∑k

i=1 ω2
i

. The DExMA package implements the square roots of sample sizes as

weights [19].
Tippett’s method (also called the minimum of p-values method) and Wilkinson’s

method (also called the maximum of p-values method) use the minimum of p-values and the
maximum of p-values, respectively, as statistics, that is to say, ST = min(p1, p2, . . . , pi, . . . , pk)
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and SW = max(p1, p2, . . . , pi, . . . , pk). Under the null hypothesis, ST is distributed as a
Beta(1,K), while SW is distributed as a Beta(K,1).

Finally, the ACAT method uses a weighted sum of the Cauchy transformation of
individual p-values, SACAT = ∑k

i=1 ωi tan[(0.5− pi)π], as a statistic, where the weights ωi
are non-negative and ∑k

i=1 ωi = 1. Under the null hypothesis, SACAT is distributed as a
standard Cauchy distribution [20,21].

2.2. Control of Missing Genes

DExMA contains two different approaches to control the possible existence of missing
genes: (i) the selection of the minimum number of datasets in which a gene must appear
and (ii) missing genes imputation.

The first approach consists of performing a meta-analysis by only considering those
genes contained in a minimum number (or proportion) of datasets. For example, if a gene
is in 2 of 4 datasets and the user-defined threshold is that the gene should be contained in
75% of the studies, this gene will be discarded. In the final results, a variable is shown with
the proportion of studies in which the gene is contained to help users to correctly interpret
the results obtained.

The second approach applies the sampleKNN method described by Mancuso et al. [13].
This method imputes the gene expression of a gene by applying the KNN imputation in the
space of samples. Firstly, to impute the expression value of missing genes, the k samples of
datasets without missing genes and with the most similar expression are chosen. Then, the
gene expression of these missing genes is imputed by calculating the weighted average of
the expression in the k selected samples.

3. Results
3.1. The DExMA Package

The DExMA package includes the main methods for gene expression meta-analyses
described previously. The DExMA workflow consists of five main steps (Figure 1): meta-
analysis object creation, gene annotation, quality control, gene expression meta-analysis,
and visualization. The DExMA package provides a set of functions that provide additional
information. Table 1 contains a summary of all available functions.

In this section, the main steps to perform the gene expression meta-analysis are
described. For this purpose, simulated gene expression data contained in the package
itself, called DExMAExampleData, were analysed. The data DExMAExampleData contain six
different objects:

• “listMatrixEX”: a list of four expression matrices.
• “listPhenodatas”: a list of the four phenodata dataframes corresponding to four expres-

sion matrices.
• “listExpressionSets”: a list of four ExpressionSet objects. It contains the same informa-

tion as listMatrixEX and listPhenodatas.
• “ExpressionSetStudy5”: an ExpressionSet object similar to the ExpressionSets objects of

listExpressionSets.
• “maObjectDif”: the meta-analysis object (objectMA) created from the listMatrixEx and

listPhenodatas objects.
• “maObject”: the meta-analysis object (objectMA) after setting all the studies in Official

Gene Symbol annotation.

Specifically, the listMatrixEX and listPhenodatas objects are used in the examples.
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Figure 1. DExMA workflow. The figure shows the main steps of the DExMA package workflow:
(1) data load and meta-analysis object creation, (2) gene annotation, (3) quality control, (4) missing
gene imputation (optional), (5) gene expression meta-analysis, and (6) visualization.

Table 1. Functions implemented in DExMA. Brief description of the functions developed in DExMA.

Function Description

allsameID Sets all datasets of objectMA in the same annotation
(Official Gene Symbol, Entrez, or Ensembl)

batchRemove Reduces the effects of batch or bias through the use of covariates

calculateES Calculates the effects sizes and their variances for each gene and each
dataset using Hedges’ g estimator

createObjectMA Creates the meta-analysis object (objectMA)
dataLog Checks if data are log transformed and transforms them if they are not
downloadGEOData Downloads ExpressionSets objects from GEO database
elementObjectMA Creates an object that can be added to a meta-analysis object (objectMA)

heterogeneityTest Shows a QQ-plot of Cochran’s test and the quantiles of I2 statistic values to
measure heterogeneity

makeHeatmap Shows a heatmap with the expression of significant genes along samples
metaAnalysisDE Performs a meta-analysis using the selected method

pvalueIndAnalysis Performs a differential expression analysis in each of the studies to obtain
the p-values

missGenesImput Imputes missing genes using the sampleKNN method

3.1.1. Meta-Analysis Object Creation

The first step in the analysis is the data entry. To this end, DExMA uses an objectMA
object which is a list of nested lists where each one contains two elements: a gene expression
matrix (with genes in rows and samples in columns) and a vector of 0 and 1 that indicates
the group to which each sample belongs (0 represents the control group and 1 represents
the experimental group).

DExMA provides the function createObjectMA() to facilitate the objectMA creation
(details are provided in the package documentation).

When datasets with different gene names are used, it is necessary to convert them to a
common gene identifier (ID). DExMA provides the allSameID() function, which allows us to
translate genes to a common ID. Supported Gene IDs are official Gen Symbol or standard
IDs from Entrez or Ensembl databases.
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3.1.2. Quality Control

Quality control is a crucial step to conduct a proper meta-analysis and avoid misin-
terpretation. DExMA implements standard pre-processing steps in gene expression data
analysis, such as data normalization and the analysis of heterogeneity [14].

Specifically, the datalog() function can be used to check if the data are in log scale or to
perform log transformation, which is important when p-value combination methods are
applied. To analyse data heterogeneity, DExMA provides the heterogeneityTest() function
that implements two ways of measuring heterogeneity.

On the one hand, it returns a QQ-plot of Cochran’s heterogeneity test (Figure 2) [22].
In the case of homogeneity, it is expected that the majority of the values will be close to the
expected distribution (the central line of the graph).
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Figure 2. Heterogeneity QQ-plot. QQ-plot of Cochran’s heterogeneity test values. The further the
values are from the reference distribution (central line), the more heterogeneity there is.

In the case of homogeneity, it is expected that the majority of the values will be close
to the expected distribution (the central line of the graph). On the contrary, if these points
are distant from the central line, this is an indicator of heterogeneity.

On the other hand, the heterogeneityTest() function returns the quantiles of the I2 statistic.
The I2 statistic measures the inconsistency, that is, the percentage of variation across studies
due to heterogeneity [23]. When interpreting the I2 results, it is considered that there is low
heterogeneity when the I2 value is less than 0.25 [23]. Therefore, to consider homogeneity,
most of the I2 values must be less than 0.25.

3.1.3. Missing Gene Imputation

DExMA allows users to impute the expression of missing genes with the missGenesIm-
put() function, which imputes the unmeasured expression using the k-nearest neighbours
(KNN) in the space of samples (sampleKNN method). The function returns the objectMA with
all the imputed studies.

Moreover, the missGenesImput() function returns an object (imputIndicators) with differ-
ent indicators of the imputation. This item contains:

• imputValuesSample: the number of missing values imputed per sample.
• imputPercentageSample: the percentage of missing values imputed per sample.
• imputValuesGene: the number of missing values imputed per gene.
• imputPercentageGene: the percentage of missing values imputed per gene.

3.1.4. Performing Gene Expression Meta-Analysis

As it has been explained before, the main objective of the DExMA package is to perform
the gene expression meta-analysis of several studies. For this purpose, DExMA includes the
metaAnalysisDE() function. This function allows users to apply seven different techniques
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of meta-analysis described in the methods sections: the Fixed Effect Model (FEM); the
Random Effects Model (REM); Fisher’s p-value combination method (Fisher); Stouffer’s
p-value combination method (Stouffer); Wilkinson’s p-value combination method (maxP);
Tippett’s p-value combination method (minP); and the Aggregated Cauchy Association
Test method (ACAT).

If data imputation has not been previously applied, this function provides the option
of considering genes that are in a minimum number of datasets. For example, if we have
four datasets and we select that a gene must be in 75% of the datasets, those genes that
are present in three or four datasets will be included in the meta-analysis. This allows
users to control missing genes that are only present in a low number of datasets. Once the
meta-analysis is complete, the function returns a table with the obtained results for both
effect sizes and p-values based on the meta-analysis (see the package documentation for
more details).

The results are also provided as heatmaps of the significant differentially expressed
genes (see Figure 3). DExMA provides the makeHeatmap() function for that purpose, which
implements four types of scaling options:

• “rscales”: this applies rescale function of the scales package [24]. Therefore, values will
be between −1 and 1.

• “zscor”: this calculates a z-score value for each gene and sample.
• “swr”: this scales relative to a reference dataset approach [25].
• “none”: no scaling approach is performed.
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Figure 3. Synthetic data heatmap. Heatmap of the meta-analysis results for the 40 most significant
genes. The red colour indicates that a gene is overexpressed in that sample, blue that it is under-
expressed, and grey that is not present.

3.1.5. Other Useful Functions

DExMA provides some functions that allow users to speed up the analysis, correct the
batch effect, or complete the results. With regard to accelerating the meta-analysis process,
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the function downloadGEOData() allows users to download multiple ExpressionSets objects
from the GEO database [1]. In addition, the function elementObjectMA() can be used to
create an element which can be added directly to a previously created objectMA, which
avoids the user having to re-create the object from scratch. Regarding the batch effect
correction, DExMA contains the function batchremove. The batchRemove function eliminates
the effects of different covariates in the data variability. Finally, the functions calculateES()
and pvalueIndAnalysis() return the effect sizes or the individual p-values of each study,
respectively. This can help the user to better understand the results obtained.

3.2. Applying DExMA to Real Data

To illustrate the benefits of the DexMA package, it was applied to three real datasets.
These data belong to systemic lupus erythematosus (SLE) gene expression studies, and they
were extracted from the ADEX database [26]. Specifically, the identifiers of the selected
studies were: GSE24706 [27], GSE50772 [28], and GSE82221_GPL10558 [29]. These studies
were chosen because of their samples were generated from the same cell tissue, peripheral
blood mononuclear cells (PBMCs). In this way, a greater homogeneity between datasets
was ensured than if they were extracted from different cell types. The code used for the
data preparation for the use case is available in Appendix A.

In this case, it was not necessary to apply the allSameID() function, since all the
datasets are annotated in the Official Gene Symbol. In the study of heterogeneity, a QQ-plot
(Figure 4) was obtained in which most of the points were quite far from the reference line.
In addition, 25% of the genes had an I2 greater than 0.71, so it was concluded that there was
heterogeneity between the different datasets. Therefore, as all the studies belonged to the
same tissue, and there was heterogeneity between them, we decided to apply a Random
Effects Model (REM).
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Figure 4. Heterogeneity QQ-plot of SLE data. QQ-plot of Cochran’s heterogeneity test values for the
SLE case study data.

To demonstrate the usefulness of the package, the meta-analysis was applied from
three different approaches:

1. Using only common genes (common genes approach).
2. Considering the genes that are present in at least two of the studies (66%) (minimum

proportion approach).
3. Performing a previous imputation of missing genes before accomplishing the meta-

analysis (called the imputing missing genes approach).

The meta-analysis of only common genes took into account 11,298 genes, which only
represented 49.5% of the total available genes, of which 1896 were found to be significant
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(16.8% of genes considered) (adjusted p-value (FDR) < 0.05). The minimum proportion
approach worked with 14,548 genes, which represented 63.8% of the total available genes,
of which 2444 were found to be significant (16.8% of genes considered). Finally, the meta-
analysis of imputed missing genes considered all available genes, 22,807 genes (22,807), of
which 4830 were found to be significant (21.1% of genes considered).

These results suggest that if only common genes were considered, an important part of
the information would be lost (in this use case, more than 50% of the available genes would
not influence the final result). Moreover, to verify this loss of information, the heatmap of
the 50 most significant genes obtained by the minimum proportion approach was generated
(Figure 5). This heatmap revealed that several of the most significant genes would have
disappeared from the final result if the common genes approach was applied (missing values
are marked in grey).
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Finally, a functional enrichment analysis of the over-expressed genes was performed
using GeneCodis4 [30,31] to validate the biological significance of the obtained results.
The systemic lupus erythematosus pathway did not appear among the 10 most enriched
pathways using the Bioplanet 2019 database [32] when the common genes approach and the
minimum proportion approach were applied (Figure 6). Nevertheless, when the missing genes
imputation was applied, the systemic lupus erythematosus biological pathway became the
most significant pathway. Moreover, genes belonging to this pathway were recovered if
the imputation of the missing genes was applied before the common genes approach and the
minimum proportion approach.
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Figure 6. Graphical representations of the most significant pathways for each of the meta-analysis
approaches. (a) Ten most significant pathways in common genes approach. (b) Ten most significant
pathways considering genes that are contained in at least two studies. (c) Ten most significant
pathways in the missing genes imputation approach. (d) Number of significant genes in top pathways
in each approach.

These results highlight the impact of discarding missing genes in a gene expression
meta-analysis, which can bias the final results.

3.3. Comparison to Other Available R Packages

Currently, apart from DExMA, there are eight R packages available in CRAN or Biocon-
ductor repositories that allow one to perform gene expression meta-analyses: metahdep [33],
GeneMeta [34], metaRNASeq [35], metaSeq [36], metaMA [37], crossmeta [38], MetaIntegra-
tor [10], and MetaVolcanoR [11]. Table 2 shows a summary of the main features of the
packages currently available for performing gene expression meta-analyses.

Most implemented packages usually use previously curated data by the user as input,
while crossmeta allows the use of data downloaded from the GEO database. DExMA has
the advantage that it admits users to work with both user data as well as with GEO-
downloaded datasets. Furthermore, it provides a function that facilitates the creation of the
object needed to perform the meta-analysis from the information entered by the user.

Regarding the different steps of a gene expression meta-analysis, DExMA, unlike the
rest of the packages, contains functions to perform quality control before the meta-analysis
and help in the decision of which meta-analysis method to apply. Several packages mention
the importance of these previous steps; only the MetaIntegrator package implements a
function related to quality control, but it does not include anything about the heterogeneity
of the studies.

Moreover, as previously referenced, most of these packages only perform the analyses
with the genes common to all datasets. Only crossmeta, MetaVolcvanoR, and MetaInetgrator
consider the possible existence of missing genes but do not make any imputation of them,
nor do they show their possible effect on the final result.
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Table 2. Comparison of the main features of gene expression meta-analysis packages. Input: “User
data” means that the user can enter their own data, while “GEO data” means that the user can
include GEO database codes. QC (quality control): “Yes” if the package has implemented functions
for performing quality controls. ES: “Yes” if the package performs effect sizes combination methods.
PV: “Yes” if the package performs p-value combination methods. Considers Missing Genes: “Yes” if
the package somehow considers the unmeasured genes. Imputes Missing genes: “Yes” if the package
somehow imputes the unmeasured genes. Visualization: “Yes” if the package has implemented a
function to visualize the results.

Package Input QC ES PV Considers
Missing Genes

Imputes
Missing Genes Visualization

DExMA GEO/User data Yes Yes Yes Yes Yes Yes

MetaIntegrator [10] User data Yes Yes Yes Yes No Yes

GeneMeta [34] User data No Yes No No No Yes

Metahdep [33] User data No Yes No No No No

Crossmeta [38] User data No Yes No Yes No No

metaMA [37] User data No Yes Yes No No No

metaRNASeq [35] User data No No No No No Yes

metaSeq [36] User data No No No No No No

MetaVolcanoR [11] User data No Yes Yes Yes No Yes

4. Discussion

The accumulation and availability of experimental data in public repositories has
fuelled the development of meta-analysis techniques as important tools to integrate hetero-
geneous datasets. In the field of transcriptomics, these techniques have been applied to
jointly analyse gene expression for biomarker discovery or drug-repurposing applications,
among others. The number of scientific publications with meta-analysis studies is growing
exponentially, and as have been reported [8,9], a high proportion of these published analy-
ses are misleading meta-analyses or have serious methodological flaws. In this context, it
is important for the scientific community that software packages that implement proper
statistical methods and dedicated workflows are available.

This article introduces DExMA, an R package that implements the main steps and
methods for gene expression meta-analyses. Moreover, to avoid the loss of information due
to the use of only common genes, DExMA allows users to deal with missing genes with two
approaches: selecting the proportion of datasets that must contain a gene or imputing the
missing genes by using the KNN imputation method in the space of samples (sampleKNN).
To the best of our knowledge, DExMA is the first gene expression meta-analysis package
that controls missing genes. Although there are other packages that also consider the
possible existence of unmeasured genes (crossmeta, MetaIntegrator, and MetaVolcanoR), none
of them perform the imputation of these missing genes, nor do they show the possible
effect of this lack of information in the results.

DExMA also offers the possibility of using both GEO codes and one’s own data as
well as performing the different steps of a gene expression meta-analysis (homogenizing
gene annotation, quality control, and results visualization), which contributes to making
appropriate use of these methods.
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The following abbreviations are used in this manuscript:

KNN K nearest neighbours
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ID Identifier
SLE systemic lupus erythematosus

Appendix A

Loading and Preparing the Case Study Data Directly from the ADEX Database

The data used in the case study are available in the ADEx database [26] (https:
//adex.genyo.es/, accessed on 15 August 2022). Specifically, we downloaded the fol-
lowing datasets: GSE24706, GSE50772, and GSE82221_GLP10558. Once the studies were
downloaded, four files were obtained:

• GSE24706.tsv: gene expression matrix of the study GSE24706.
• GSE50772.tsv: gene expression matrix of the study GSE50772.
• GSE82221_GPL10558.tsv: gene expression matrix of the study GSE82221.
• metadata.tsv: dataframe with the information from the different samples of the studies

(phenodata).

We loaded these files and prepared them for the use case:
R> #Loading gene expression matrix
R> GSE24706Ex <- as.matrix(read.delim(“GSE24706.tsv”, header = TRUE,
+ row.names = 1))
R> GSE50772Ex <- as.matrix(read.delim(“GSE50772.tsv”, header = TRUE,
+ row.names = 1))
R> GSE82221Ex <- as.matrix(read.delim(“GSE82221_GPL10558.tsv”,
+ header = TRUE, row.names = 1))
R> #Preparing studies phenodatas
R> Pheno <- read.delim(“metadata.tsv”, header = T, row.names = 1)

https://adex.genyo.es/
https://adex.genyo.es/
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R> GSE24706Pheno <- Pheno[colnames(GSE24706Ex),]
R> GSE50772Pheno <- Pheno[colnames(GSE50772Ex),]
R> GSE82221Pheno <- Pheno[colnames(GSE82221Ex),]
Once the expression matrices were loaded and the phenodata were obtained for each

of the studies, the data were ready for the case study.
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