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Abstract
We consider a lognormal diffusion process having a multisigmoidal logistic mean,
useful to model the evolution of a population which reaches the maximum level of
the growth after many stages. Referring to the problem of statistical inference, two
procedures to find the maximum likelihood estimates of the unknown parameters
are described. One is based on the resolution of the system of the critical points
of the likelihood function, and the other is on the maximization of the likelihood
function with the simulated annealing algorithm. A simulation study to validate the
described strategies for finding the estimates is also presented, with a real application
to epidemiological data. Special attention is also devoted to the first-passage-time
problem of the considered diffusion process through a fixed boundary.
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1 Introduction

Growth curveswith sigmoidal behavior arewidely used in several appliedfields includ-
ing biology (see, for instance, Brauer and Castillo-Chavez (2012)), software reliability
(cf. Erto et al. (2020), Inoue and Yamada (2013)) and economics (see, for example,
Smirnov andWang (2020)). During the times different kinds of sigmoidal curves have
been introduced such as logistic, Gompertz, Korf, Bertalanffy, etc. Many efforts have
been made essentially for two main purposes: (i) unification of classical models (see
Chakraborty et al. (2019)), and (ii) generalizations of growth curves (see, for example,
Asadi et al. (2020), Di Crescenzo and Spina (2016) and Romero et al. (2016)).

The differential equations which drive the growth of the aforementioned determin-
istic models are very useful to describe population dynamics. However, in order to
make them more realistic, it is necessary to introduce a noise term in the equation.
In this way, the differential equations are replaced by stochastic ones. Most of the
times, the analysis of the resulting stochastic equation is quite complex, and the tran-
sition probability density of the resulting diffusion process cannot be determined (for
example, see Campillo et al. (2018), in which the authors propose, for this reason,
a new approach to find the maximum likelihood estimates). Models based on diffu-
sion processes are commonly used in various fields of applications, for example plant
dynamics (cf. Rupšys et al. (2020), where a hybrid growth is based on Gompertz and
Vasicek models), resources consumption (for instance, Nafidi et al. (2019) use the
Brennan-Schwartz process to model electricity consumption in Morocco) or partic-
ular fish species growth (cf. a stochastic version of the open-ended logistic model
considered in Yoshioka et al. (2019)).

In a recent paper, Di Crescenzo et al. (2021) focus on the generalization of the
classical logistic growth model introducing more than one inflection point. To this
end, firstly, two different birth-death processes, one with linear birth and death rates
and the other with quadratic rates, were considered. Then, a diffusive approximation
was performed leading to a non-homogeneous lognormal diffusion process with mean
of multi-sigmoidal logistic type. Attention was also given to the description of its
main features of interest in applied contexts. For instance, the mean of the process is
a generalized version of the classical logistic function (see, for instance, Di Crescenzo
and Paraggio (2019)) with more than one inflection point. The transition probability
density of the process has been obtained explicitly and has been applied to plant
dynamics.

Starting from the theoretical results of the previous works, in the present paper
we approach the problem of the inference of the stochastic model. This is done by
means of the maximum likelihood method, thanks to the availability in closed form
of the likelihood function. We also address the treatment of some collateral problems
that emerge in the development carried out, such as: (i) obtaining initial solutions to
solve the system of likelihood equations, and (ii) bounding the parametric space for
addressing the estimation by metaheuristic procedures. All development is supported
by simulation examples. Subsequently, in order to provide an example of application
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to real phenomena, we adopt the proposed model to describe the behavior of the data
on the evolution of COVID-19 in different European countries during the two first
waves of infection. Indeed, some of the main features of the diffusion process, such
as the mean, the mode and the quantiles, may be used for prediction purposes and they
are expressed as a function of the parameters of the process.

The problem of parameters estimation has been considered in several papers, for
instance in Shimizu and Iwase (1987) and in Tanaka (1987). See also the more recent
works ofGarcia (2019), inwhich the author converts themaximizationof the likelihood
function into an equivalent problem regarding the minimization of a square error, and
of Ramos-Ábalos et al. (2020) where maximum likelihood estimates of the parameters
of the powers of the homogeneous Gompertz diffusion process are obtained.

Two different strategies to obtain the maximum likelihood estimates of the param-
eters are introduced. The first is based on the solution of the system of the critical
points of the likelihood function, and the other stems from a meta-heuristic optimiza-
tion method (simulated annealing) to maximize the likelihood function.

This is the outline of the content of the paper. In Sect. 2, the most relevant character-
istics of the deterministic and the corresponding stochastic model are recalled. Then,
the problem of finding the maximum likelihood estimates of the involved parameters
is described in Sect. 3. In several contexts of population dynamics, it may be relevant
to know how long the population spends below a certain control threshold. For this
reason the first-passage-time (FPT) problem is also addressed.More precisely, in Sect.
4, the R-package fptdApprox (see Román-Román et al. (2020)) is used to determine
the approximated FPT density of the lognormal diffusion process through a constant
boundary. With the purpose of validating the described procedures for finding the
maximum likelihood estimates, a simulation study is presented in Sect. 5. Finally, in
Sect. 6 we propose an application of the model to real data concerning the COVID-19
infections in France, Italy, Spain and United Kingdom.

2 Themultisigmoidal logistic model and the corresponding diffusion
process

Consider the classical logistic equation

d

dt
l(t) = rl(t)

[
1 − η

C
l(t)
]
, t ≥ t0,

with r , η,C > 0. If the intrinsic growth rate r is replaced by a polynomial P(t), then
the solution of this equation, with the initial condition l(t0) = l0, is given by

l(t) = l0eQ(t)−Q(t0)

1 − η
C l0
(
1 − eQ(t)−Q(t0)

) , t ≥ t0,

where Q(t) − Q(t0) = ∫ t
t0
P(τ )dτ . With the hypotesis that Q(t) → +∞ when

t → ∞, the carrying capacity of this generalized model is given by C
η
, and thus it

is independent from the initial condition l0. In order to obtain a generalized logistic
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function in which the carrying capacity is dependent on the initial condition, we
consider the following equation (cf. in Di Crescenzo et al. (2021))

d

dt
lm(t) = hθ (t)lm(t), t ≥ t0, (1)

with

hθ (t) := Pβ(t)e−Qβ(t)

η + e−Qβ (t)
, (2)

for η > 0, θ = (η, βT )T with βT = (β1, . . . , βp) ∈ R
p, where

Qβ(t) =
p∑

i=1

βi t
i , βp > 0, (3)

and Pβ(t) = d

dt
Qβ(t). Under these assumptions, the solution of the ordinary differ-

ential equation (1), with initial condition lm(t0) = l0, is the so-called multisigmoidal
logistic function given by

lm(t) = l0
η + e−Qβ (t0)

η + e−Qβ (t)
, t ≥ t0. (4)

We point out that the function lm may exhibit more than one inflection point, and its
carrying capacity is

lim
t→∞ lm(t) = l0

η + e−Qβ (t0)

η
= C

η
, (5)

where C = C(l0, η, β, t0) = l0
(
η + e−Qβ(t0)

)
and Qβ is defined in Eq. (3). It is

easy to note that the function (4) is not monotonous in general, since the monotonicity
intervals depend on the coefficients β1, . . . , βp of the polynomial Qβ , and the carrying
capacity is the maximum value attainable by the function lm . See Fig. 1 for some plots
of the multisigmoidal logistic function.

The investigation of the inflection points in the case of multisigmoidal growth
curves are of great interest. Unfortunately, since the expression of function (4) is quite
complex, these points cannot be obtained explicitly, but it is possible to provide an
equation in the unknown t solved by the inflection points, that is

d

dt
Pβ(t) = P2

β (t)

[
η − e−Qβ (t)

η + e−Qβ (t)

]
. (6)

In Fig. 2, the multisigmoidal logistic function and the corresponding inflection points
are shown for some choices of the parameters.
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Fig. 1 Themultisigmoidal logistic function for some choices of the parameters: t0 = 0, l0 = 10
1+η

, η = e−1,
β1 = 0.1, a β2 = −0.009 and, from bottom to top, β3 = 0.0002, 0.0003, 0.0004; b β2 = −0.007 and,
from bottom to top, β3 = 0.0002, 0.0003, 0.0004
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Fig. 2 The multisigmoidal logistic function and the corresponding inflection points for t0 = 0, l0 = 5,
η = e−1, β1 = 0.1, a β2 = −0.009 and β3 = 0.0002; b β2 = −0.007 and β3 = 0.0001

2.1 The corresponding diffusion process

In Di Crescenzo et al. (2021), a special time-dependent lognormal diffusion process
{X(t); t ∈ I } has been considered, with I = [t0,+∞) and infinitesimal moments

A1(x, t) = hθ (t)x, A2(x) = σ 2x2, (7)

where hθ is defined in (2), θ = (η, βT )T and σ > 0. The aforementioned process is
determined by the following stochastic differential equation, obtained from Eq. (1) by
adding a multiplicative noise term,

dX(t) = hθ (t)X(t)dt + σ X(t)dW (t), X(t0)
d= X0, (8)
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where
d= means equality in distribution, and where W (t) denotes a Wiener process

independent from the (possibly random) initial state X0, for t ≥ t0. We point out that
this is not the only way to randomize the growth deterministic equation. Indeed, in the
case of random catastrophes, it may be more appropriate to consider as a noise term
a Poisson process (see for example Schlomann (2018)). The solution of Eq. (8) is

X(t) = X0 exp
[
Hξ (t0, t) + σ (W (t) − W (t0))

]
, t ≥ t0 (9)

with

Hξ (t0, t) =
∫ t

t0
hθ (τ )dτ − σ 2

2
(t − t0) = log

[
η + e−Qβ(t0)

η + e−Qβ(t)

]
− σ 2

2
(t − t0). (10)

The existence and uniqueness of solution of the linear stochastic differential equation
(8) is ensured by virtue of the continuity of function hθ (t) (see, for example, Arnold
(1974)).Moreover, if either X0 is degenerated at x0, in the sense thatP [X(t0) = x0] =
1, or X0 follows a lognormal distribution Λ1

(
μ0, σ

2
0

)
, then the finite dimensional

distributions of the process are lognormal. Namely, for any n ∈ N and t0 ≤ t1 < . . . <

tn , the vector (X(t1), . . . , X(tn))T follows an n-dimensional lognormal distribution
Λn (ε,
), where the entries of the vector ε are given by

εi = μ0 + Hξ (t0, ti ) = μ0 + log

[
η + e−Qβ (t0)

η + e−Qβ (ti )

]
− σ 2

2
(ti − t0), i = 1, . . . , n,

and the components of the matrix 
 = (σi, j ) are given by

σi, j = σ 2
0 + σ 2 (min

(
ti , t j

)− t0
)
, i, j = 1, . . . , n.

Further, the conditional distribution of the process follows a lognormal distribution,
i.e. for s < t

[X(t)|X(s) = z] ∼ Λ1

(
log z + log

[
η + e−Qβ (s)

η + e−Qβ (t)

]
− σ 2

2
(t − s), σ 2(t − s)

)
.

From the abovementioned distributions, some characteristics associated to the process
can be obtained (cf. Di Crescenzo et al. (2021)). For example, the mean of X(t)
conditional on X(t0) = x0 is given by

m(t |t0) = E [X(t)|X(t0) = x0] = x0
η + e−Qβ (t0)

η + e−Qβ (t)
, t ≥ t0. (11)

Moreover, if X(t0)
d= X0 then the mean of X(t) is

m(t) = E [X(t)] = E [X0]
η + e−Qβ (t0)

η + e−Qβ (t)
, t ≥ t0, (12)
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and the α-percentiles for t ≥ t0 are

Cα[X(t)] = η + e−Qβ (t0)

η + e−Qβ (t)
exp

(
μ0 − σ 2

2
(t − t0) + zα

√
σ 2
0 + σ 2(t − t0)

)
, (13)

for 0 < α < 1, where zα is the α-percentile of the standard normal random variable.
Note that the conditional mean (11) and the mean (12) are multisigmoidal logistic
functions of t , in the sense that they solve the multisigmoidal logistic equation (1).

3 Maximum likelihood estimations

The stochastic model introduced in Sect. 2.1 can be employed in several applications,
especially for describing real populations that exhibit a growth pattern with more than
one inflection point. Clearly, in order to apply this model to real data, the unknown
parameters need to be estimated. In Sect. 2.1 we obtained the distribution of the
diffusion process X(t) defined in (9). Now we propose to estimate the parameters by
means of the classical maximum likelihood method. The adoption of this strategy is
particularly suggested by the availability in closed form of the transition distribution of
the process X(t). Hence, we follow the same lines introduced in Román-Román et al.
(2018) for general lognormal diffusion processes. We consider a discrete sampling of
X(t) based on d independent sample paths, with ni different observation instants for
the i-th sample path, i.e. ti j , j = 1, . . . , ni , for i = 1, . . . , d. For simplicity, assume
that the first observation time is identical for any trajectory, i.e. ti1 = t0, i = 1, . . . , d.
Moreover, let the vector Xi = (X(ti1), . . . , X(tini )

)T contain the variables of the i-th

sample path, for i = 1, . . . , d, and let X = (
X
T
1 | . . . |XT

d

)T
. By supposing that X(t0)

follows a one-dimensional lognormal distributionΛ1
(
μ1, σ

2
1

)
and by considering the

transitions of the process X(t), the probability density function ofX has the following
expression

fX(x) =
d∏

i=1

exp

(
− (log xi1 − μ1)

2

xi1σ1
√
2π

)
·
ni−1∏
j=1

exp

⎛
⎜⎝−

[
log

(
xi, j+1
xi j

)
−mi, j+1, j

ξ

]2

2σ 2Δ
j+1, j
i

⎞
⎟⎠

xi jσ
√
2πΔ

j+1, j
i

,

(14)

where xT = (
x1,1, . . . , x1,n1 | . . . |xd,1, . . . , xd,nd

) ∈ R
n+d+ is a vector of dimension

n + d, with

n =
d∑

i=1

(ni − 1). (15)
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Recalling (10), the parameters in (14) are given by

mi, j+1, j
ξ := Hξ

(
ti j , ti, j+1

) = log

[
η + e−Qβ(ti j )

η + e−Qβ (ti, j+1)

]
− σ 2

2
Δ

j+1, j
i , (16)

and

Δ
j+1, j
i := ti, j+1 − ti j , j = 1, . . . , ni − 1, i = 1, . . . , d,

with

ξ =
(
θT , σ 2

)T =
(
η, βT , σ 2

)T
.

In order to obtain a more manageable expression of the density (14), the following
change of variables may be considered:

V0i = Xi1, i = 1, . . . , d

Vi j =
(
Δ

j+1, j
i

)−1/2
log

Xi, j+1

Xi j
, j = 1, . . . , ni − 1, i = 1, . . . , d.

Hence, the probability density function of the vector V = [
V
T
0 |VT

1 | . . . |VT
d

]T =[
V
T
0 |VT

(1)

]T
, with VT

(1) = (VT
1 | . . . |VT

d

)
, and V

T
i = (Vi1, Vi2, . . . , Vini ), is

fV(v) =
exp

[
− 1

2σ 2
1

(lv0 − μ1Id)
T (lv0 − μ1Id)

]

∏d
i=1 v0i

(
2πσ 2

1

)d/2

·
exp

[
− 1

2σ 2

(
v(1) − γ ξ

)T (
v(1) − γ ξ

)]

(
2πσ 2

)n/2

for v = (v01, . . . , v0d , v11, . . . , v1,n1−1, . . . , vd1, . . . , vd,nd−1)
T ∈ R

n+d , with n
defined in (15), where lv0 = (log v01, . . . , log v0d)

T , and μ1 ∈ R, σ 2
1 ∈ R+,

Id = (1, . . . , 1)Td×1, with γ ξ = (γ
ξ
11, . . . , γ

ξ
1,n1−1, . . . , γ

ξ
d1, . . . , γ

ξ
d,nd−1)

T ∈ R
n×1

and γ
ξ
i j =

(
Δ

j+1, j
i

)−1/2
mi, j+1, j

ξ , for j = 1, . . . , ni − 1 and i = 1, . . . , d.

By setting α = (
μ1, σ

2
1

)T
and supposing that α and ξ are functionally independent,

the log-likelihood function is given by

LV (α, ξ) = L̃V(ξ) − (n + d)

2
log 2π − d

2
log σ 2

1 −
d∑

i=1

log v0i

−
∑d

i=1 (log v0i − μ1)
2

2σ 2
1

, (17)
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with

L̃V(ξ) = −n

2
log σ 2 − Z1 + Φξ − 2Γξ

2σ 2

and

Z1 =
d∑

i=1

ni−1∑
j=1

v2i j , Φξ =
d∑

i=1

ni−1∑
j=1

(
mi, j+1, j

ξ

)2

Δ
j+1, j
i

, Γξ =
d∑

i=1

ni−1∑
j=1

vi jm
i, j+1, j
ξ(

Δ
j+1, j
i

)1/2 .

The maximum likelihood estimations (MLEs) of α = (
μ1, σ

2
1

)T
can be computed

easily. Indeed, by differentiating LV, from (17) we obtain

μ̂1 = 1

d

d∑
i=1

log v0i , σ̂ 2
1 = 1

d

d∑
i=1

(
log v0i − μ̂1

)2
. (18)

Further on, in order to find the maximum likelihood estimates of ξ , two different
approaches are available:

(i) solving the nonlinear system ∂
∂ξ
L̃V = 0,

(ii) maximizing the objective function L̃V.

Hereafter, in the Sects. 3.1 and 3.2 we provide a description of the two strategies,
whereas in Sect. 5 we present an application to a simulation study that involves the
given strategies.
The availability of the probability density function of X in (14) allows to obtain
explicitly the log-likelihood function given in (17). Consequently, following the max-
imum likelihood estimation procedure, in Sect. 3.1 we obtain the associated system
of equations, the final form being reported in Eq. (23) below. However, since such
system does not have an explicit solution, its resolution must be obtained by adopting
numerical methods.

3.1 Solving the nonlinear system

Recalling that θT = (θ0, θ1, . . . , θp) = (η, β1, . . . , βp), the partial derivatives of L̃V

are given by

∂

∂σ 2 L̃V = − n

2σ 2 + Z1 + Φξ − 2Γξ

2σ 4 + Yξ

2σ 2 − Z2

2σ 2 ,

∂

∂θ
L̃V = − 1

2σ 2

[
∂

∂θ
Φξ − 2

∂

∂θ
Γξ

]
,
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where

Yξ :=
d∑

i=1

ni−1∑
j=1

mi, j+1, j
ξ , Z2 :=

d∑
i=1

ni−1∑
j=1

vi j

(
Δ

j+1, j
i

)1/2
,

∂

∂θ
Φξ =

d∑
i=1

ni−1∑
j=1

2mi, j+1, j
ξ

∂
∂θ
mi, j+1, j

ξ

Δ
j+1, j
i

,

∂

∂θ
Γξ =

d∑
i=1

ni−1∑
j=1

vi j(
Δ

j+1, j
i

)1/2 · ∂

∂θ
mi, j+1, j

ξ ,

with

∂

∂θ
mi, j+1, j

ξ =
(

∂

∂θ0
, . . . ,

∂

∂θp

)
mi, j+1, j

ξ .

Hence, theMLEs are the solutions of the following systemof p+2 nonlinear equations

⎧
⎪⎪⎨
⎪⎪⎩

−nσ 2 + Z1 + Φξ − 2Γξ + Yξ σ
2 − Z2σ

2 = 0,
d∑

i=1

ni−1∑
j=1

mi, j+1, j
ξ

Δ
j+1, j
i

· ∂

∂θ
mi, j+1, j

ξ −
d∑

i=1

ni−1∑
j=1

vi j(
Δ

j+1, j
i

)1/2 · ∂

∂θ
mi, j+1, j

ξ = 0.

(19)

By defining the following quantities

lΔ
i,m
θ := 1

η + e−Qβ (tim)

(
−t lim

)
,

δ̄l0 := 1 − δl0 =
{
0, l = 0

1, l 	= 0
,

l D
i,m,n
θ := lΔ

i,m
θ

(
e−Qβ (tim)

)δ̄l0 − lΔ
i,n
θ

(
e−Qβ (tin)

)δ̄l0
, m > n,

(20)

with l = 0, 1, . . . , p, the last p + 1 equations of the system (19) can be written as
follows

−
d∑

i=1

ni−1∑
j=1

mi, j+1, j
ξ

Δ
j+1, j
i

l D
i, j+1, j
θ +

d∑
i=1

ni−1∑
j=1

vi j(
Δ

j+1, j
i

)1/2 l D
i, j+1, j
θ = 0,

l = 0, 1, . . . , p.
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Substituting the expression (16) of mξ in the previous equations, one has

Y θ
l + σ 2

2
W θ

l + X θ
l = 0, l = 0, 1, . . . , p,

where, for any l = 0, 1, . . . , p, one has

W θ
l :=

d∑
i=1

ni−1∑
j=1

l D
i, j+1, j
θ =

d∑
i=1

l D
i,ni ,1
θ ,

Y θ
l :=

d∑
i=1

ni−1∑
j=1

1

Δ
j+1, j
i

log

[
η + e−Qβ (ti, j+1)

η + e−Qβ(ti j )

]
l D

i, j+1, j
θ ,

X θ
l :=

d∑
i=1

ni−1∑
j=1

vi j(
Δ

j+1, j
i

)1/2 l D
i, j+1, j
θ .

Hence, until now, the expression of the system solved by the MLEs is

{
−nσ 2 + Z1 + Φξ − 2Γξ + Yξ σ

2 − Z2σ
2 = 0

Y θ
l + σ 2

2 W θ
l + X θ

l = 0, l = 0, 1, . . . , p.
(21)

The first equation of system (21) can be further simplified. Indeed, by setting

λ
i,m,n
θ := log

η + e−Qβ(tin)

η + e−Qβ (tim)
, m > n Z3 :=

d∑
i=1

Δ
ni,1
i ,

Aθ :=
d∑

i=1

ni−1∑
j=1

(
λ
i, j+1, j
θ

)2

Δ
j+1, j
i

, Bθ :=
d∑

i=1

ni−1∑
j=1

vi jλ
i, j+1, j
θ(

Δ
j+1, j
i

)1/2 ,

Cθ :=
d∑

i=1

ni−1∑
j=1

λ
i, j+1, j
θ ,

(22)

one has

Φξ = Aθ + σ 4

4
Z3 − σ 2Cθ , Γξ = Bθ − σ 2

2
Z2, Yξ = Cθ − σ 2

2
Z3.

Consequently, the system (21) finally becomes

⎧⎨
⎩

σ 2
(
n + σ 2

4 Z3

)
− Z1 − Aθ + 2Bθ = 0

Y θ
l + σ 2

2 W θ
l + X θ

l = 0, l = 0, 1, . . . , p.
(23)
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Note that (23) is a system of p + 2 equations in the unknowns contained in ξ =
(η, β1, . . . , βp, σ

2)T .

Remark 1 For the first equation of the system (23) in the unknown σ 2, since Z3 > 0,
n > 0 and

Z1 + Aθ − 2Bθ =
d∑

i=1

ni∑
j=1

⎛
⎜⎝vi j − λ

i, j+1, j
θ(

Δ
j+1, j
i

)1/2

⎞
⎟⎠

2

≥ 0,

the only acceptable solution is

σ 2 = 2
−n +√n2 + Z3(Z1 + Aθ − 2Bθ )

Z3
.

Clearly, since in general system (23) cannot be solved analytically, then a numerical
approach is needed. Specifically, we adopt the well-known Newton-Raphson method
to solve (23) (for instance, see Dennis and Schnabel (1996)). For such an iterative
method, an initial approximation for the solution of the system is needed. It can be
obtained by a procedure similar to that used by Román-Román et al. (2019). For the
initial solution of the vector θ = (η, β1, . . . , βp

)T , by considering the multisigmoidal
logistic function, i.e.

lm(t) = C

η + e−Qβ (t)
, t ≥ t0,

it can be supposed, without loss of generality, that t0 = 0 (see Remark 2.1 of Di
Crescenzo et al. (2021)), so that

Qβ(t) + log η = − log

(
C/η

lm(t)
− 1

)
.

Then, considering the sampling X = (
X
T
1 | . . . |XT

d

)T
defined in Sect. 3, consisting

of d independent sample paths of the process X(t), for simplicity we suppose that
any sample path of the process has the same number of observations, i.e. ni = N for
any i = 1, . . . , d. However, the following remarks hold even in more general cases.
Moreover, let m j be the values of the mean of the sample paths at the time t j , for
j = 1, . . . , N , that is

m j = 1

d

d∑
i=1

xi j , j = 1, 2, . . . , N , (24)

where xi j is the value of the i-th sample path at the time t j .
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In general, the carrying capacityC/η is unknown.We suppose that the observations
are available over a large time interval, such that the evolution of the population is ter-
minated over such an interval. Hence, the carrying capacity C/η can be approximated
with the last value of the sample mean mN . This approximation can be adopted also
in the other cases, since it is used just to construct an initial solution for the param-
eters of the Newton-Raphson method for the estimate of θ . Thus, we can consider a
polynomial regression for the pairs

(
t j ,− log

(
mN

m j
− 1

))
, j = 1, 2, . . . , N − 1.

The coefficients (β̂1, . . . , β̂p, log η̂) of the approximating polynomialwill be the initial
values for the parameters (βT , log η). Thus, the initial solution for η is given by η̂.

Finally, in order to construct the initial solution of σ 2, let us now recall that for a
lognormal distribution Y ∼ Λ1(α, δ), one has log Y ∼ N (α, δ), so that the quantity
2 log m

mg gives an approximation for δ, wherem andmg are respectively the arithmetic
sample mean and the geometric sample mean of a random sample (y1, . . . , yn) from
Y . Hence, one has

α ≈ 1

n

n∑
i=1

log yi , eα ≈ e
1
n

∑n
i=1 log yi =

(
n∏

i=1

yi

)1/n

= mg.

Since E[Y ] = eα+δ/2 is estimated by the sample mean m, we have

m ≈ eα+δ/2 ≈ mg · eδ/2, δ ≈ 2 log
m

mg
.

As a consequence, in our setting an estimate for σ 2
0 + σ 2t j is given by

σ 2
j = 2 log

m j

mg
j

, j = 1, . . . , N ,

where m j and mg
j denote respectively the arithmetic and the geometric sample mean

of the observations performed at the time t j . Hence, an initial approximation for σ 2

can be obtained by performing a simple linear regression of σ 2
j − σ 2

0 against t j .
In conclusion, in order to obtain the maximum likelihood estimates of the parame-

ters contained in ξ = (η, β1, . . . , βp, σ
2)T, the steps of the proposed strategy to solve

the system (23) are:

(i) finding an initial solution for the parameters η andβ with a polynomial regression

of − log
(
mN
m j

− 1
)
against t j , for any j = 1, . . . , N − 1;

(ii) finding an initial solution for σ 2 with a simple linear regression of σ 2
j −σ 2

0 against

t j , with σ 2
j = 2 log

m j

mg
j
, for any j = 1, . . . , N and where σ 2

0 can be obtained by

means of the second of Eqs. (18);
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(iii) using the Newton-Raphson method to solve the system (23), with the initial
solutions determined at steps (i) and (ii).

The adoption of the above strategy requires to start from good initial solutions for
the unknown parameters. Unfortunately, even in this case it is not always possible to
guarantee the convergence of this method. For this reason, recently various procedures
have been proposed aimed at addressing the maximization of the likelihood function,
by viewing this as a direct optimization problem. Indeed, there is a wide range of
stochastic metaheuristic methods, which can be classified into two large families:
those based on trajectories and those based on swarms. Hereafter, in Sect. 3.2 we
employ one of the most widely used, the Simulated Annealing. This method requires
necessarily to bound the parametric space, and this matter is the object of Sect. 3.2.2.

3.2 Maximizing the log-likelihood function

Let us now illustrate a strategy based on Simulated Annealing (S.A.) and finalized
to obtain the MLEs for the parameters of the process (9). We first provide a brief
description of this method in Sect. 3.2.1. Then, in Sect. 3.2.2 we describe a suitable
criterion to restrict the parametric space, this being essential to apply the S.A. method
in the remainder of the paper.

3.2.1 Brief notes on Simulated Annealing

The aim of this section is to determine the MLEs by using the S.A. algorithm. The
aforementioned method, introduced in Kirkpatrick et al. (1983), is a meta-heuristic
optimization algorithm used for problems like finding argmin

θ∈�
f (θ). It is considered

more suitable with respect to other numerical algorithms since it needs less restrictive
conditions regarding the regularity of the domain � and the analytical properties of
the objective function f . The algorithm works such that in every step a random point
is chosen in the solution space. If the new solution is better than the previous one,
then the latter is replaced. Otherwise, if the new solution is worse than the previous,
then the latter may be replaced with a probability rate ρ = min{exp(−Δ f /T ), 1}
which depends on the increase of the objective function Δ f = f (ξ)− f (θ0) and on a
suitable scale factor T , that is named ‘temperature’ in agreementwith themetallurgical
process of annealing that inspired this algorithm. We recall that the S.A. is successful
because it avoids local minima. In recent years it has been widely used in the context
of estimation in diffusion processes (see, for example Luz Sant’Ana et al. (2018) and
Román-Román and Torres-Ruiz (2015)).

In this context, the algorithm works in the following way. It begins with an initial
choice θ0 for the parameters of interest, then ξ is generated fromanuniformdistribution
in a neighborhood ν(θ0) of θ0. Then, a new value θ1 of θ is obtained in such a way

θ1 =
{

ξ, with probability ρ

θ0, with probability 1 − ρ.
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Consequently, if f (ξ) ≤ f (θ0), then ρ = 1 and therefore θ0 is replaced by ξ . Other-
wise, if f (ξ) > f (θ0), then ξ may be accepted anyway with probability ρ ∈ (0, 1).
The temperature T is defined in such a way that at the beginning the probability
of accepting ξ is high, and during the execution of the algorithm the function T
decreases. The initial temperature T0 must be sufficiently large so that the algorithm
accept the solutions which let the objective function increases with a large probabil-
ity p0. In literature, the choices of the initial parameters are usually p0 = 0.9 and
T0 = −Δ f +/ log p0, where Δ f + denotes the average increase of the objective func-
tion in an application test where all the solutions which cause an increase are accepted.
The cooling process which defines the temperature T is usually chosen of geometric
type, i.e. Ti = γ Ti−1 for i = 1, 2, . . . . Usually the constant γ is chosen among 0.8
and 0.99 in order to have a slow cooling procedure. In our case, we set γ = 0.95. In
any iteration of the algorithm, a chain of L new solutions is obtained, for L = 50. As
required, the algorithm stops when at least one of the following rules is satisfied: (i)
the last L obtained values are equal, (ii) the maximum number of iterations (1000, in
our case) is attained, (iii) the final temperature TF = 10−7 is reached.

3.2.2 Bounding the parametric space

S.A. needs a restriction of the solution space �, namely the set which contains the
parameters ξ = (η, βT , σ 2)T. Until now, this space is continuous and unbounded,
since

� =
{
(η, βT , σ 2)

T : η > 0, β1, . . . , βp−1 ∈ R, βp > 0, σ 2 > 0
}

.

We consider 0 < σ < 0.1 so that the simulated sample paths are less variable around
the sample mean, and thus the multisigmoidal logistic profile is advisable. For the
parameters β = (β1, . . . , βp

)T , we find the confidence intervals by using the data of
the polynomial regression performed previously to find the initial solutions. More in
detail, it is known that the carrying capacity of the multisigmoidal logistic model with

t0 = 0 is l0
(
1 + 1

η

)
(see Eq. (5)). The carrying capacity can be approximated with

the last value of the sample mean, whereas the initial value l0 with the first value of
the sample mean (24), so that one has

mN ≈ m1

(
1 + 1

η

)
. (25)

From Eq. (25), it easily follows η ≈
(
mN
m1

− 1
)−1

and thus an approximation of η is

η̂ =
(
mN

m1
− 1

)−1

.

Considering Eqs. (4) and (5), for t0 = 0 one has

lm(t) = C

η + e−Qβ (t)
,
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so that

Qβ(t) = − log

(
C

lm(t)
− η

)
.

Hence, by replacing η with its estimate η̂, we can use the resulting confidence inter-
vals of the parameters of the polynomial regression as intervals of variation for the
parameter β of the diffusion process. We adopt a confidence level equal to 0.999, to
attain a high probability that the true parameter β belong to the computed intervals.

In order to approximate the range of variation of η, from Eq. (25) we have that the
last value of the i-th sample path satisfies

xi,ni ≈ xi,1 + xi,1
η

, i = 1, 2, . . . , d,

where xi, j with i = 1, 2, . . . , d and j = 1, 2, . . . , ni are the sample data. Hence, for
the range of variation of η one has η ∈ (a, b), where

a := min
1≤i≤d

(
xi,ni
xi,1

− 1

)−1

, b := max
1≤i≤d

(
xi,ni
xi,1

− 1

)−1

. (26)

In conclusion, the following bounded intervals are employed:

• for β1, . . . , βp we consider the confidence intervals of the coefficients of the poly-

nomial regression of − log
[(

mN
m j

− 1
)

η̂
]
against t j , for j = 1, . . . , N , where

η̂ =
(
mN

m1
− 1

)−1

,

• for η we consider the interval Iη = (a, b), with a and b defined in (26),
• for σ 2 we consider the interval Iσ 2 = (0, 0.01).

3.3 Asymptotic distribution of theMLEs

On the ground of the results given in Sect. 5 of Román-Román et al. (2018), in this
section we aim to determine the asymptotic distribution of the MLEs (i) of the param-
eters μ1, σ

2
1 of the initial distribution, and (ii) of the parameters ξ = (η, βT , σ 2)T of

the process.

(i) The exact distribution of μ̂1 is normalN
(

μ1,
σ 2
1
d

)
, whereas the exact distribution

of d
σ̂ 2
1

σ 2
1
is chi-square χ2

d−1, cf. Román-Román et al. (2018).

(ii) The asymptotic distribution of ξ̂ is a (p + 2)-dimensional normal distribution
with mean ξ and covariance matrix I (ξ)−1, i.e. Np+2

(
ξ, I (ξ)−1

)
, where I (ξ)

denotes Fisher’s information matrix of ξ . For the diffusion process X(t) with a
multisigmoidal logistic mean,
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I (ξ) ∈ R
(p+2)×(p+2) can be expressed as

I (ξ) = 1

σ 2

(
�ξ − 1

2

(
∂
∂θ

γξ

)

− 1
2

(
∂
∂θ

γξ

)T n
2σ 2 − Z3

4 ,

)
, (27)

where �ξ ∈ R
(p+1)×(p+1) is given by

�ξ =
d∑

i=1

ni−1∑
j=1

(Δ
j+1, j
i )−1

(
∂

∂θ
mi, j+1, j

ξ

)(
∂

∂θ
mi, j+1, j

ξ

)T

,

with

(
∂

∂θ
mi, j+1, j

ξ

)T

=
(
−0D

i, j+1, j
θ , . . . ,−pD

i, j+1, j
θ

)
,

and l Dθ
i, j+1, j is defined in the third of Eqs. (20). Moreover, ∂

∂θ
γξ ∈ R

(p+1)×1 is
defined as

∂

∂θ
γξ =

d∑
i=1

ni−1∑
j=1

∂

∂θ
mi, j+1, j

ξ .

Finally, Z3 is given in the second of Eqs. (22). We point out that the matrix (27)
will be used in Sect. 5 to determine the asymptotic variances for the estimates of the
parameters and an approximation of the confidence intervals. Indeed, by applying the
delta method (cf. Oehlert (1992)), any q-parametric function g(ξ̂ ) with q ≤ p + 2
asymptotically has a q-dimensional normal distribution, i.e. (cf. Román-Román et al.
(2018))

Nq

(
g(ξ),∇g(ξ)T I (ξ)−1∇g(ξ)

)
,

where ∇g(ξ) is the vector of partial derivatives of g(ξ) with respect to ξ .
In the following section we address a relevant problem for the applications, namely

the FPT problem of the diffusion process X(t) through a continuous boundary. Sub-
sequently, in Sect. 5 we adopt a simulation-based approach as the basis of both
computational methods described so far, namely the Newton-Raphson method and
the S.A. method. The estimates of the parameters obtained through these methods are
then used to perform inference on the FPT density.

4 First-passage-time problem

The FPT problem of a stochastic process X(t) through a boundary S(t) is a problem
of great interest in many fields of application, such as medicine, biology or mathe-
matical finance, since the threshold S(t) may represent a critical value of the modeled
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population size. Considering a stochastic process {X(t); t0 ≤ t ≤ T }, the FPT of the
process X(t) through the continuous boundary S(t), given X(t0) = x0, is defined as
the following random variable

T =
⎧⎨
⎩
inf
t≥t0

{X(t) > S(t)|X(t0) = x0} , x0 < S(t0)

inf
t≥t0

{X(t) < S(t)|X(t0) = x0} , x0 > S(t0).

Finding the expression of the distribution of the variable T is hard in general. How-
ever, in literature there are several studies for particular types of processes, for example
diffusion processes. It has been shown that if S(t) is a continuous and differentiable
function, then the density of T , denoted by g (S(t), t |x0, t0), solves a II-kind Volterra
equation (cf. Eq. (2.4) of Buonocore et al. (1987)). The aforementioned Volterra equa-
tion has an explicit solution only for certain special boundaries (see for example Sects.
2.3 and 4.3 of Giorno and Nobile (2019) in which the FPT density through special
boudaries has been obtained for the restricted Gompertz-type diffusion processes). In
certain instances, it is appropriate to adopt numerical procedures in order to approxi-
mate its solution. To this aim Buonocore et al. (1987) proposed a simple but efficient
algorithm, based on the composite trapezoidal formula. More in detail, Theorem 4
of Buonocore et al. (1987) proves the convergence of the approximated FPT density
to the theoretical one. However, the application of the proposed numerical procedure
requires (i) the choice of a suitable step h of integration which ensures a good approx-
imation of the real solution, (ii) the choice of an initial time instant t0 and (iii) the
choice of the final time instant T = t0 + Nh. Román-Román et al. (2008) studied
the problems related to the practical application of the numerical procedure. The first
problem is linked with a suitable choice of h. Indeed, taking into account the result
of Theorem 4 of Buonocore et al. (1987), it is easy to note that the convergence is
ensured when h → 0+. Consequently, the value of h should be small enough, but suf-
ficiently far from 0. Indeed, if h is excessively small, then the computational cost may
increase in vain because, with a larger integration step, a similar approximation may
be obtained with a smaller number of iterations. On the other hand, if h is excessively
large, the approximation may be unsatisfactory. These problems depend on the local-
ization of the FPT T , and may be solved if the range of variation of T is known. For
this reason, Román-Román et al. (2008) introduced a function, called ‘FPT location’
(FPTL), finalized to obtain, from a heuristic point of view, the range of variation of
T . Specifically, the FPTL function is defined as follows

FPT L(t) =
{
P [X(t) > S(t)|X(t0) = x0] , x0 < S(t0)

P [X(t) < S(t)|X(t0) = x0] , x0 > S(t0)

=
{
1 − F (S(t), t |x0, t0) , x0 < S(t0)

F (S(t), t |x0, t0) , x0 > S(t0),

where F(x, t |x0, t0) is the transition distribution of the process X(t). Referring to the
diffusion process with infinitesimal moments given by Eq. (7), and by considering a
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fixed and constant boundary S > x0, given X(t0) = x0, the FPTL function for the
process X(t) is given by

FPT L(t) = 1 − Φ (C(t)) ,

where Φ is the standard normal distribution and

C(t) = 1

σ
√
t − t0

{
log S − log x0 − log

[
η + e−Qβ (t0)

η + e−Qβ (t)

]
+ σ 2

2
(t − t0)

}
.

The information provided by the FPTL function is relevant for an efficient application
of the algorithm proposed by Buonocore et al. (1987). Indeed, thanks to the FPTL
function, an adaptive step of integration can be obtained. In this way, the execution
time of the algorithm is reduced.

Example 1 Let X(t) be a diffusion processwith infinitesimalmoments (7), with p = 3,
Qβ(t) = 0.1t − 0.009t2 + 0.0002t3, η = e−1, σ = 0.01, t0 = 0, and X0 = 5 a.s.
See Fig. 3 for the plot of 100 simulated sample paths of the process. Let us study the
FPT density through the fixed boundary S = 3 x0 = 15, by using the information
provided by the FPTL function and the R package fptdApprox (for references, see
Román-Román et al. (2012), Román-Román et al. (2014) and Román-Román et al.
(2020)).

Figure 4a shows the FPTL function (obtained by means the function FPTL of the
package fptdApprox), whereas the approximated FPT density (obtained using the
package fptdApprox) is plotted in Fig. 4b. Other useful quantities related to the FPT
density are given in Table 1.

5 Simulation

In Sect. 3, two procedures have been introduced to obtain the MLEs of the param-
eters involved in the diffusion process (9). The former procedure is based on the
numerical resolution of a system of nonlinear equations, whereas the latter is based
on the application of S.A. algorithm. In this section, a simulation study is developed
to verify the validity of the two aforementioned procedures. We consider the diffusion
process X(t) with infinitesimal moments (7), for p = 3, and β1 ∈ {0.1, 0.5}, β2 ∈
{−0.009,−0.007}, β3 ∈ {0.0002, 0.0004}, η ∈ {

e−1, e−3
}
and σ ∈ {0.01, 0.05}.

These choices of the parameters are performed arbitrarily, to obtain different patterns
of the growth curve. For example, the choice β1 = 0.1, β2 = −0.009, β3 = 0.0002,
η = e−1 refers to the case of a non monotonous multisigmoidal logistic function,
whereas the choice β1 = 0.1, β2 = −0.007, β3 = 0.0003 and η = e−1 to the case of
an increasing multisigmoidal logistic curve (see Fig. 5). To estimate the parameters in
ξ , we consider the 32 combinations of the values of the parameters listed in Table 2,
with x0 = 5 in every case. For each case, we simulate 200 sample paths of X(t), by
generating 501 simulated points at equidistant times for 0 ≤ t ≤ 50.
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Fig. 3 100 simulated sample paths of the process X(t) with p = 3, Qβ(t) = 0.1t − 0.009t2 + 0.0002t3,

η = e−1, σ = 0.01, t0 = 0 and x0 = 5. The black line represents the sample mean of the process, while
the red line represents the boundary S = 15
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Fig. 4 a The FPTL function and b the approximated FPT density of the process X(t) through the constant
boundary S = 15, for the same assumptions of Fig. 3
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Table 1 The mean, the standard deviation, the mode, the first, the fifth and the ninth decile of the FPT of
the process X(t) through the boundary S = 15

Mean St. dev. Mode 1st decile 5th decile 9th decile

40.18765 1.568392 39.92321 39.02346 40.11264 41.58065
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(b)

Fig. 5 100 simulated sample paths of the diffusion process for σ = 0.01, η = e−1 and a β1 = 0.1,
β2 = −0.009, β3 = 0.0002 and b β1 = 0.1, β2 = −0.007, β3 = 0.0003 (simulation study)

The remainder of this section is organized as follows: (a) since the degree of the
polynomial Qβ is unknown a priori, we propose the use of the strategy described
in Román-Román et al. (2019), by increasing the degree until the goodness of fit is
optimal; (b) considering the degree obtained at the step (a), we use the two procedures
described in Sects. 3.1 and 3.2 to find the MLEs of the parameters.

The choice of the best degree of the polynomial Qβ is performed under the goodness
of fit criteria based on the four following measures:

(i) the absolute relative error (RAE) between the sample mean and the estimated
mean, i.e.

RAEp = 1

N

N∑
i=1

∣∣∣mi − Ê(X (p)(ti ))
∣∣∣

mi
, p = 2, 3, . . . ,

where Ê(X (p)(ti )) denotes the mean of the estimated process considering a poly-
nomial Qβ of degree p;

(ii) the Akaike information criterion (AIC), which is defined as

AICp = 2(p + 2) − 2LV(α̂, ξ̂ ), p = 2, 3 . . . ,
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(iii) the Bayesian information criterion (BIC), which is given by

BICp = (p + 2) log(n) − 2LV(α̂, ξ̂ ), p = 2, 3 . . . ,

where n represents the number of observations,
(iv) the resistor-average distance (DRA) between the sample distribution fC and the p-

th estimated distribution fSp , for p = 2, . . . , 6, which is defined as the following
harmonic mean (cf. Johnson and Sinanovic (2001)):

DRA( fC || fSp )(t) = DKL( fC || fSp )(t) · DKL( fSp || fC )(t)

DKL( fC || fSp )(t) + DKL( fSp || fC )(t)
, t ≥ t0,

where DKL denotes the Kullback-Leibler divergence. Assuming that the sample
distribution is lognormal with parameters

μC (t) ≈ μ̂t = log(mg(t)), σ 2
C (t) ≈ σ̂ 2

t = 2 log
m(t)

mg(t)
,

and that the estimated distribution is lognormal with parameters

μ(t) ≈ μ̂0 + Hξ̂ (t0, t), σ (t) ≈ σ̂ 2
0 + σ̂ 2(t − t0),

the Kullback-Leibler divergence between the sample distribution fC and the p-th
estimated distribution fSp for p = 2, . . . , 6 is given by, for any t ≥ t0

DKL( fC || fSp )(t)

= 1

2

⎡
⎢⎣log

(
σ̂ 2
0 + σ̂ 2(t − t0)

σ̂ 2
t

)
+

σ̂ 2
t +

(
μ̂t − μ̂0 − Hξ̂ (t0, t)

)2

σ̂ 2
0 + σ̂ 2(t − t0)

− 1

⎤
⎥⎦ ,

with Hξ̂ (t0, t) defined in (10). Clearly, if the theoretical distribution of the process
is known, one can alternatively compute the resistor-average distance between the
theoretical and the estimated distribution. We consider the expected distance and
the median of the distance as reference values for the resistor-average distance.

In cases (ii) and (iii), the stochastic model is characterized by p + 2 parameters.
Moreover, LV(α, ξ) is defined in (17), and α̂ and ξ̂ are the MLEs of the parameters
α and ξ . The best fit is attained for the smallest value of the considered goodness
measures. Table 3 shows the estimated parameters for the case no. 1 of Table 2, which
is obtained by solving the system (23) for different degrees of the polynomial Qβ .
Furthermore, the results about the goodness of measures are given in Table 4 and in
Fig. 6. It can be noticed that the estimated parameters for p = 3 and p = 4 are
almost identical, and that β4 is very close to zero in the case p = 4. Hence, the results
concerning the measures of goodness obtained in these two cases are quite similar.
This conclusion is also confirmed by the analysis of the RAE measures (in Table 4),
that are often used to measure the fit error of the model in terms of the fit of the mean
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Table 4 The goodness measures for different degree

Degree RAE BIC AIC Median of DRA Mean of DRA

2 0.163198755 −6986.46 −7006.983 1.076721237 1.874847040

3 0.001667815 −10261.07 −10286.721 0.001035228 0.001668560

4 0.001390662 −10254.13 −10284.916 0.001149273 0.001916131

5 0.413978453 34449.77 34449.77 54.690728902 84.305882377

6 0.416847669 47306.94 47306.94 69.316641926 94.836470468

For the resistor-average distance DRA , the estimated and the theoretical distributions are considered (sim-
ulation study)
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Fig. 6 The resistor average distance between a–b the sample and the estimated distribution, and c–d the
theoretical and estimated distribution for the case 1 of Table 2, for different degrees of the polynomial
(simulation study)
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Fig. 7 The RAE for a η = e−1 and σ ∈ [0.01, 0.05], b σ = 0.05 and η ∈
[
e−3, e−1

]
and c σ = 0.01,

η = e−1 and with respect of the number of replications. In all the cases Qβ(t) = 0.1t−0.009t2+0.0002t3

(simulation study)

function. The analysis is performed in terms of the scale of judgment of the model
accuracy based on the Mean Absolute Percentage Error (MAPE), cf. Klimberg et al.
(2010) and Lewis (1982). Indeed, the judgment suggested by the MAPE shows that
p = 3 and p = 4 are referred as highly accurate, whereas p = 2 is evaluated as good
forecast, with both p = 5 and p = 6 considered as reasonable forecast. Consequently,
the choice p = 3 is taken as the best, since it involves the lowest number of parameters.

The same result can be obtained for the other parameters choices, but it is omitted
for brevity. Here, we limit to mention that the AIC and its Bayesian version, the BIC,
provide a global measure of the adjustment to the model in terms of the likelihood
that the model itself gives to the observed sample, so that these measures also allow
for model selection criteria. The AIC and the BIC are seen often as complementary
measures to the use of the Resistor Average Distance between the sample and the
theoretical distributions of the model. However, there is no criterion that indicates that
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Fig. 8 The theoretical, sample and estimated means of the process X(t) for the parameters of the cases
number 1 and 2 of Table 2 (from left to right). The results are obtained via Newton-Raphson method in (a)
and (b) and via S.A. in (c) and (d). (Simulation study)

one measure is better than another, and thus in general the use of several alternative
measures is recommended, as usual in practical applications. In our analysis, the
coincidence of the conclusions suggested by thesemeasures supports thefinal decision.
Hence, from now on, a polynomial of degree p = 3 will be considered.

Table 5 shows the estimated values of the parameters obtained by solving the
nonlinear system (23) bymeans of theNewton-Raphsonmethod. These values provide
good parameters estimates, especially when σ is small. The last column of the Table
5 contains the RAE . In this case, it is defined as

RAE3 = 1

N

N∑
i=1

∣∣∣mi − Ê(X (3)(ti ))
∣∣∣

mi
, (28)

where mi are the values of the sample mean and Ê(X (3)(ti )) are the values of the
estimated mean at the time ti considering a polynomial of degree p = 3. For a
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comparison between σ or η and the RAE , see Fig. 7a–b: it can be noticed that the
value of the RAE shows an increasing trend with respect to the parameter σ , whereas
it shows a constant trend with respect to η. In Fig. 8a–b the theoretical, sample and
estimated sample means for the parameters choices number 1 and 2 of the Table 2 are
shown. Clearly, the best estimation is obtained when σ is small.

Further on, the estimated values obtained via S.A. are given in Table 6, whose last
column contains the value of the RAE defined in Eq. (28). Since S.A. is a heuristic
algorithm, the MLEs have been computed as the average of the results obtained by
10 uses of the procedure. Figure 8c–d provide the theoretical, the sample and the
estimated (via S.A.) means for the cases no. 1 and no. 2 of the Table 2. In addition, in
Fig. 7c, the trend of the RAE is plotted as a function of the number of replications:
clearly, the goodness of the results improves as the number of replications increases.

Moreover, Table 7 contains the estimated values of the parameters (obtained by
solving the system (23)), as well as their real values and the asymptotic estimation
error. Finally, Table 7 provides various confidence intervals obtained by applying the
delta method and using the distribution given in Sect. 3.3 for the case no. 1 of Table 2.

5.1 Approximation of FPT density

In this section, the FPT problem is analyzed.With reference to a diffusion process X(t)
with a multisigmoidal logistic mean and Qβ(t) = 0.1t−0.009t2+0.0002t3, η = e−1

and σ = 0.01, we construct 50 simulated sample paths (see Fig. 9a), each one being
formed by 361 data simulating X(ti ) for ti = (i−1) 0.1, i = 1, . . . , 361. As in Sect. 5,
we first chose the optimal polynomial degree (which corresponds to the best fit), and
then we found the MLEs of the parameters by solving the system (23). Further on, the
R package fptdApprox is used to approximate the FPT density of the process through
a constant threshold S = 15. Table 8 provides the estimated parameters, whereas Fig.
9b shows the theoretical, the sample and the estimated means, for p = 2, 3, 4, 5, 6.

Table 9 provides the four goodness measures for the considered degrees p of the
polynomial Qβ . Figure 10 shows the resistor-average distances between the theoret-
ical and the estimated distributions, and also between the sample and the estimated
distributions. From the given results it follows that the best degree is p = 3.

Using the estimated model obtained so far, we now focus on the approximation of
the FPT density through the boundary S = 15. Figure 11 shows the approximated
FPT density and the FPTL function realized with the package fptdApprox. Finally,
in Table 10 other useful quantities related to the FPT density are provided. It is worth
noting that the results obtained in this section are in agreement with those given in
Example 4.1.

6 Application to real data

Multisigmoidal functions are suitable to model several special growth phenomena in
which the carrying capacity is reached after various stages. In any of these stages
a linear growth trend is followed by an explosion of exponential type which finally
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Fig. 9 a 50 simulated sample paths of the diffusion process X(t) for σ = 0.01 , η = e−1 and Qβ(t) =
0.1t − 0.009t2 + 0.0002t3. b Theoretical, sample and estimated means of the process X(t) for the FPT
density approximation (simulation study—FPT problem)

Table 8 The estimated values of the parameters considering p = 2, 3, 4, 5, 6 for the FPT density approxi-
mation (simulation study - FPT problem)

Degree η β1 β2 β3

p = 2 2.5287214 −0.09696011 0.002712063 –

p = 3 0.3425411 0.09735434 −0.008730983 0.0001936518

p = 4 0.9005909 0.08465459 −0.003953699 −0.0001821386

p = 5 0.9005909 0.12376611 −0.014259773 0.0006907176

p = 6 0.9005909 0.04089375 0.016958673 −0.0032783145

Degree β4 β5 β6 σ 2

p = 2 – – – 0.0017740001

p = 3 – – – 1.025400e−04

p = 4 7.788128e−06 – – 8.511030e−05

p = 5 −2.178008e−05 3.477652e−07 – 8.511030e−05

p = 6 2.024839e−04 −5.459791e−06 5.624755e−08 8.511030e−05

flattens to a specific value. A growth of this kind is typical of some fruit species, such
as peaches or coffee berries (see, for instance the application given in Sect. 3 of Di
Crescenzo et al. (2021)). But also some population diseases follow an expansionwith a
multisigmoidal trend. In this section we apply the considered stochastic model to data
concerning the COVID-19 infections in four different European countries, taken from
Worldometers (2020). This is just an example finalized to show an application of the
multisigmoidal logisticmodel, without taking into account specificmore sophisticated
models that describe epidemiological phenomena with greater precision. First of all,
we note that the trend of infections in France, Italy, Spain and United Kingdom is
similar (see Fig. 12a).
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Fig. 10 Resistor-average distance between a the theoretical and the estimated distributions and b between
the sample and the estimated distributions for the FPT density approximation (simulation study - FPT
problem)
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Fig. 11 The approximated FPT density and the FPTL function of the process X(t) through the boundary
S = 15 (simulation study—FPT problem)

Table 10 The mean, the standard deviation, the mode, the first, the fifth and the ninth decile of the FPT of
the process X(t) through the boundary S = 15 (simulation study—FPT problem)

Mean St. dev. Mode 1st decile 5th decile 9th decile

39.88883 1.034443 39.70804 38.83282 39.83612 41.0529

This suggests to view these data as different trajectories of the diffusion process
X(t) defined on I = [t0, t f ], having a multisigmoidal logistic mean (cf. Sect. 2.1).
Hence, in order to find the MLEs of the parameters, we apply the procedure described
in Sect. 3.1. For each country, the initial time t0 = 0 corresponds to the 30-th day
after the one in which the number of infections exceeded 100 (March 30th for France,
March 24th for Italy, March 21st for Spain, April 5th for UK), and the final time is
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Fig. 12 a Number of infections in France, Italy, Spain and United Kingdom, the black line represents the
sample mean. b Sample and the estimated means obtained by solving the system (23) (real application)

chosen as t f = 250. For any path, the data are scaled as divided by their maximum
value, so to be interpreted as a percentage of the last and therefore the maximum value
of the growth curve. The estimated means obtained for different degrees are plotted
in Fig. 12b. Table 11 provides the initial and the estimated values of the parameters,
whereas Table 12 shows the four measures of goodness, for different degrees of the
polynomial. Regarding the RAE , every time the degree increases, the approximation
improves, whereas the AIC , the BIC and resistor-average distance show that the best
choice is p = 3.

Regarding the last measure of goodness, see also Fig. 13a, in which the resistor-
average distances between the sample and the estimated distributions are provided.
Hence, in view of the results obtained for the measures of goodness, the degree p = 3
is considered.

Table 13 shows the estimated values of the parameters, the estimation of their
standard error and the 95%, 90% and 75% percentiles.

Moreover, the α-percentiles (13) of the estimated diffusion process with p = 3
are provided in Fig. 13b with α = 95, 90, 75. Let us now consider a restricted time
range from t0 = 0 to t f = 246, in order to predict the trend of the growth curve in
a short-term prediction analysis. Indeed, forecasting the number of infections during
a disease in progress is interesting also in the case of short terms, especially for the
goodness of estimation (better in this case than in the long term analysis) and for
the timeliness of the results. The considered procedure is the same of the one used
above, so (i) the best degree p for the polynomial Qβ is chosen by considering various
measures of goodness, and (ii) the estimated values of the parameters are used to
construct a diffusion process X(t) defined on I = [0, 250]. The estimated values of
the parameters are given in Table 14, the values of the four measures of goodness are
given in Table 15, and finally in Fig. 14a we provide the resistor-average distances
between the restricted sample and the estimated distributions. See also Fig. 14b for
the plots of the estimated means for different degrees of the polynomial.
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Table 12 RAE , AIC , BIC , the median and the mean of the resistor-average distance DRA considering
different degrees

p 2 3 4 5 6

RAE 0.39085660 0.10404805 0.06853298 0.02087067 0.02030226

AIC −7225.192 −8175.819 −7582.180 −7677.528 −7664.849

BIC −7205.561 −8151.281 −7552.734 −7643.173 −7625.587

Median of DRA 0.2250753 0.1301707 0.1548300 0.1615877 0.1642668

Mean of DRA 1.0586904 0.2741844 0.3218632 0.3103206 0.3106608

For the resistor-average distance, the estimated and the sample distributions are considered (real application)
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Fig. 13 a The resistor-average distances between the sample and the estimated distributions considering
different degrees of the polynomial. b The α-percentiles of the estimated diffusion process X(t) obtained
for a degree p = 3 and for α = 95, 90, 75 (real application)

Also in this case, the RAE does not provide a good measure of goodness, since
every time the degree increases, the approximation improves. From the remaining
results, the best choice is p = 3, which corresponds to the lowest value of the BIC
and of the AIC , and to the lowest resistor-average distance. Hence, considering p = 3
and the corresponding estimated values of the parameters, Fig. 15a provides the sample
and the estimated means in the complete time range, i.e. in IC = [0, 250]. The relative
errors between the values of the sample and the estimated means are given in Table
16; note that in all cases they are less than 3%.

6.1 Approximation of FPT density

This section is devoted to the FPT problem. Considering an initial portion of the
available data and setting a constant boundary, an estimate of the FPT density is
constructed using the numerical procedures recalled in Sect. 4. The resulting FPT
density is then compared to the approximated FPT density obtained by using the
whole data set.
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Table 14 The estimated values of the parameters considering p = 2, 3, 4, 5, 6 (real application with
t f = 246)

Degree η β1 β2 β3

p = 2 0.22079965 0.04165889 −0.0002129137 –

p = 3 0.03650929 0.04792200 −0.0004714958 1.518106e−06

p = 4 0.04101207 0.03985192 −0.0003277795 5.314482e−07

p = 5 0.04101207 0.06778144 −0.0013896339 1.350773e−05

p = 6 0.04101207 0.05704750 −0.0008066323 2.820787e−06

Degree β4 β5 β6 σ 2

p = 2 – – – 2.536393e−04

p = 3 – – – 1.034147e−04

p = 4 2.392264e−09 – – 3.550000e−04

p = 5 −6.103779e−08 1.076581e−10 – 3.550000e−04

p = 6 2.602935e−08 −2.174560e−10 4.540655e−13 3.550000e−04

More in detail, we consider only the first 220 data of COVID-19 infections in the
restricted time range IR = [0, 219] and we investigate the best model to fit them. The
choice of the optimal degree p of the polynomial Qβ is based on the measures of
goodness (i)–(iv) described in Sect. 5. The estimated parameters (given in Table 17)
are obtained by solving the system (23).

By comparing the results given in Table 18 and in Fig. 15b, we choose p = 3 as
the optimal degree.

Then, we fix a constant threshold S = 0.7 which corresponds to the 70% of the
last and maximum data in the complete time range IC = [0, 250] and we use the
R package fptdApprox to obtain an estimation of the FPT density. The choice of
the constant boundary S = 0.7 is not random. Indeed, it is worth observing that the
descendent inflection points correspond to the peaks of the function representing the
daily increments of the infections. More in detail, by means of Eq. (6), the function
representing the samplemean of the infections shows two descendent inflection points,
one at the time tF1 = 21.65 and the other at the time tF2 = 220.66. The population
sizes corresponding to the inflection time instants are SF1 = 0.08 and SF2 = 0.7.
In the time interval [0, tF1], the mean function has a logistic trend, hence the FPT
problem through the boundary SF1 is beyond the scope of the present work. Instead,
since the mean in the time interval [0, tF2] has a multisigmoidal logistic profile, we
focus our attention to the FPT problem through the threshold S = SF2 = 0.7.

The approximated FPT density and the FPTL function of the estimated process
X(t) through the boundary S = 0.7 are plotted in Fig. 15c–d. In order to validate
the predicted results concerning the FPT, we consider also the same problem in the
complete time range IC . The forecasted results for the restricted time range IR and the
approximated results for the complete time range IC are given in Table 19. We note
that the most meaningful index is the mode, since it corresponds to the peak of the FPT
density and the two modes (namely, the mode in the restricted and in the complete
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Fig. 14 a Resistor-average distances between the sample and the estimated distributions in the restricted
time range. b Sample and the estimated means obtained by solving the system (23) in the restricted time
range (real application with t f = 246)

time ranges) are quite close to each other (the relative error between the two values is
about 1%).

7 Conclusions

During the recent years, many sigmoidal stochastic models have been introduced to
study phenomena of interest in various different scientific areas. In order tomodelmore
complex population dynamics in which the maximum level of the growth is reached
after many stages, we referred to the multisigmoidal logistic stochastic growth model.
More in detail, the present work has been devoted to the analysis of the corresponding
statistical inference and of the FPT problem. Two procedures useful to find the MLEs
of the parameters have been described, one based on the resolution of the system of
the critical points of the likelihood function, and the other one based on the maximiza-
tion of the likelihood function by means of the S.A. algorithm. Then, the described
strategies have been validated with a simulation study. The last section of the paper
has been devoted to a real application concerning COVID-19 infections in four dif-
ferent European countries (France, Italy, Spain and United Kingdom). The data have
been fitted using a suitable multisigmoidal logistic stochastic model. Finally, a study
regarding the FPT through a fixed boundary has been also performed.

Future developments can be oriented to find the MLEs of the parameters with other
meta-heuristic optimization procedures (such as Variable Neighborhood Search or
other swarm-based algorithms) in order to obtain nice estimates in a short computa-
tional time. We aim also to introduce a more sophisticated model suitable to describe
better epidemiological dynamicswithmultiplewaves, starting from themultisigmoidal
logistic equation. Moreover, aiming at a thorough analysis of the convergence speed
for parameter estimation in stochastic differential equations, these approaches will
be compared with applications of the recent method called ‘covariance matrix adap-
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Fig. 15 a The sample and the forecasted means in the complete time range IC = [0, 250] considering
a degree p = 3. b Resistor-average distances between the sample and the estimated distributions in the
restricted time range IR . c Approximated FPT density and d FPTL function in the restricted time range IR
through the boundary S = 0.7 (real application—FPT problem)

Table 16 The sample, the forecasted mean and relative error for the last 4 time instants of the complete
range IC = [0, 250], considering a degree p = 3 (real application)

Time 247 248 249 250

Sample mean 0.97179233 0.98096101 0.98949697 1.00000000

Forecasted mean 1.00554923 1.01157710 1.01720499 1.02244759

Relative error 0.03473674 0.0312103 0.02800212 0.02244759
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Table 17 The estimated values of the parameters considering p = 2, 3, 4, 5, 6 in the restricted time range
IC (real application—FPT problem)

Degree η β1 β2 β3

p = 2 0.09416137 0.02514812 −4.247417e−05 –

p = 3 0.04858678 0.05004022 −5.125970e−04 1.693253e−06

p = 4 0.06278231 0.04592707 −4.462889e−04 1.183743e−06

p = 5 0.06278231 0.07198803 −1.559548e−03 1.646946e−05

p = 6 0.06278231 0.05899141 −7.664128e−04 1.337821e−07

Degree β4 β5 β6 σ 2

p = 2 – – – 2.63974e−04

p = 3 – – – 1.226112e−04

p = 4 1.721755e−09 – – 2.359000e−04

p = 5 −8.223093e−08 1.600995e−10 – 2.359000e−04

p = 6 6.730438e−08 −4.672810e−10 9.845081e−13 2.359000e−04

Table 18 The RAE , the AIC , the BIC , the median and the mean of the resistor-average distance DRA of
the parameters for p = 2, 3, 4, 5, 6

Measure of goodness p = 2 p = 3 p = 4 p = 5 p = 6

RAE 0.28460545 0.08631377 0.06598901 0.02791701 0.03225994

AIC −6330.849 −7150.963 −6876.159 −6999.085 −6971.142

BIC −6311.748 −7127.086 −6847.507 −6965.657 −6932.939

Median of DRA 0.2448219 0.1144287 0.1238069 0.1284333 0.1355944

Mean of DRA 0.2635491 0.1260033 0.1405463 0.1325032 0.1328700

For the resistor-average distance, the estimated and the sample distributions are considered (real
application—FPT problem)

Table 19 The mean, the mode, the 1st and the 5th deciles and the standard deviation of the FPT in the
complete time range IC and in the restricted time range IR (real application—FPT problem)

Time range Mean Mode 1st decile 5th decile St. deviation

Complete IC 221.7308 219.8435 212.9876 221.1406 12.21116

Restricted IR 197.6721 222.2305 214.8875 228.3496 80.0505

tation evolution strategy’. Indeed, the latter is used often in the presence of several
parameters (cf., for instance, Ghosh et al. (2012) and Willjuice and Baskar (2010)).
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