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a b s t r a c t 

The use of malware samples is usually required to test cyber security solutions. For that, the correct ty- 

pology of the samples is of interest to properly estimate the exhibited performance of the tools under 

evaluation. Although several malware datasets are publicly available at present, most of them are not 

labeled or, if so, only one class or tag is assigned to each malware sample. We defend that just one la- 

bel is not enough to represent the usual complex behavior exhibited by most of current malware. With 

this hypothesis in mind, and based on the varied classification generally provided by automatic detection 

engines per sample, we introduce here a simple multi-labeling approach to automatically tag the usual 

multiple behavior of malware samples. In the paper, we first analyze the coherence between the behav- 

iors exhibited by a specific number of well-known malware samples dissected in the literature and the 

multiple tags provided for them by our labeling proposal. After that, the automatic multi-labeling scheme 

is executed over four public Android malware datasets, the different results and statistics obtained re- 

garding their composition and representativeness being discussed. We share in a GitHub repository the 

multi-labeling tool developed, for public usage. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The development of cyber security solutions requires an au- 

it or assessment process before deploying them in real environ- 

ents. The goal of such a procedure is to evaluate the performance 

f each particular solution and, from that, to conclude its ben- 

fits, effective performance and potential operational restrictions 

 Leszczyna, 2021; Madhavan et al., 2009 ). 

To obtain valid conclusions from a given assessment process, it 

hould be carried out on in-exploitation environments so that the 

lobal behavior analyzed is fully real. However, that generally does 

mply unacceptable security risks and threats for users, services 

nd systems on the target environment. Hence, controlled evalu- 

tion deployments are usually considered instead. As a particular 

ase, simulation tools can be adopted ( e.g. , Breachlock, Cymulate, 

ntragen, Foresseti, AttackIQ, XM Cyber, among others) ( Couretas, 

019; Hacks et al., 2021; Kavak et al., 2021; Stash, 2022 ). Although 

seful with training aims and to dig into attacks understanding, 

his option is however widely criticized by experts because they 

o not include ‘real’ situations and activities but just mimic them 
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 BirghtTALK, 2021; Maciá-Fernández et al., 2018; Veksler et al., 

018 ). An intermediate solution between in-exploitation environ- 

ents and simulated scenarios and tools is that of considering 

ontrolled real environments. This way, the use of virtual machines 

r isolated physical devices to deploy malicious users, software 

nd/or services is widely accepted. Although more realistic than 

imulation, this solution still presents limitations because some at- 

acks can behave differently depending on the observed environ- 

ent they operate on, thus evading potential traps and analysis 

ools ( CheckPoint, 2022; Gruber and Freiling, 2022; Mills and Legg, 

020; Technologies, 2021 ). 

Whatever the case considered for evaluating a specific cyber 

ecurity solution (real scenarios, sandboxing environments, etc.), 

oth legitimate, ‘normal’ and malicious behaviors should be ana- 

yzed to estimate different operation performance parameters like 

ccuracy, false positive rate, resource consumption, computation 

omplexity, etc. ( Alshaibi et al., 2022; Hassanien and Elhoseny, 

019; Highnam et al., 2021; Sarker et al., 2020 ). Gathering legiti- 

ate traces is not a so difficult task as we can monitor our envi- 

onment to collect regular, expected activities by using a number 

f tools like network sniffers, system logs, etc. Regarding malicious 

ehaviors, they can be specifically deployed and generated either 

anually or through the deployment of well-known malign appli- 
ations or malware. 
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There exists a number of datasets with malware samples pub- 

icly available on the Internet which are able to be used with as- 

essment purposes. However, most of them are not properly la- 

eled with the specific typology or family they belong to, so that 

heir use with evaluation aims is in some sense limited. In fact, 

ach of the samples should be properly tagged to obtain the so- 

alled ground-truth ( QAnalysts, 2022; Tardiff et al., 2016; Zhang 

t al., 2019 ), which is necessary both to develop and evaluate 

upervised machine learning schemes ( Dib et al., 2021; Kasper- 

ky, 2021; Katrenko and Semeniak, 2022; Xin et al., 2018 ). How- 

ver, such a labeling stage is far from being trivial in the cy- 

er security field because of some main reasons. First, an ex- 

ert, manual inspection with classification and tagging purposes 

ould become an arduous task. Second, in case an automatic la- 

eling process is performed, the tags will surely vary depending on 

he specific decisor or classifier considered Abusitta et al. (2021) ; 

aniriho et al. (2022) . 

In this context, we will show how the bulk of works on this 

opic in the literature are intentionally aimed at unifying the deci- 

ion provided by various automatic classifiers, in order to provide 

ust a single label per sample and thus to avoid a supposed confu- 

ion ( Kantchelian et al., 2015 ). Just on the contrary, we defend and

ropose here as a main novelty to take advantage of the potential 

rovision of different labels per sample by separate classifiers to 

onclude multiple, complex behaviors for malware. This way, we 

ntroduce and contribute here: 

• A multi-labeling scheme based on tagging a malware sample 

through the combination of the labels assigned to it by differ- 

ent existing detectors. 

• An experimentation to demonstrate the coherence between the 

multiple labels proposed to be assigned to a malware sample 

and the usual multiple, complex behavior observed for it. 

• Based on the above, a study about the composition and ty- 

pology of malware samples of four well-known public Android 

malware datasets is afterwards performed. 

As a direct result of our multi-labeling methodology, an auditor 

an conclude which datasets are the most appropriate ones for a 

iven assessment process. In other words, audit tasks can be better 

dapted to specific assessment procedures than they are now. 

According to the above, the organization of the rest or the pa- 

er is as follows. Section 2 presents main background on mal- 

are labeling, as well as the existence of different public mal- 

are datasets. After that, Section 3 introduces our malware multi- 

agging methodology based on the labels provided by public mal- 

are classifiers. With the aim of validating the multi-behavior hy- 

othesis for malware, we perform afterwards in the same sec- 

ion a detailed analysis of some malware samples manually dis- 

ected in the literature. From that, we discuss the coherence be- 

ween the several real behaviors concluded for them in the cor- 

esponding works and the various tags provided by our multi- 

abeling methodology for those same specific samples. 

Once concluded the validity of the multi-behavior hypothesis 

or malware, we execute in Section 4 the multi-labeling proposal 

ver four well-known public Android malware datasets. Main re- 

ults and statistics regarding the multiple tags obtained for the 

amples contained are subsequently shown in the same section. 

rom the results obtained, we discuss afterwards in Section 5 the 

eal composition of the specific malware datasets analyzed, so that 

he usefulness of our approach to help in labeling malware sam- 

les with assessment purposes is highlighted. Finally, the work 

s summarized and some future developments pointed out in 

ection 6 . 
2

. Malware datasets and labeling 

As previously stated, the existence of malware datasets is 

idely required for security developers and auditors ( Adhao and 

achghare, 2021; Gençaydin et al., 2021; Highnam et al., 2021; 

reirati et al., 2018; Yang et al., 2021; Yavanoglu and Aydos, 2017 ). 

able 1 shows a number of public malware repositories ( Rokon 

t al., 2020; Ugarte-Pedrero et al., 2019; Zelster ), where different 

alware typologies are considered. 

Provided the generalized adoption of mobile platforms ( Cisco, 

020; GobalWebIndex, 2020 ) and the relevance and impact of se- 

urity threats and malware on that kind of devices at present 

 Agilie; Zimperium, 2022 ), the existence of mobile malware to au- 

it security solutions for this kind of systems is of increasing inter- 

st. This way, despite some of the previously referred datasets con- 

ain such a type of malware samples ( e.g. , VirusShare and VirusTo- 

al, which can provide professionals with important malware re- 

ated apk databases for researching and teaching purposes), there 

xist several available specific mobile malware datasets. Some of 

hem are as follows, where we must remark that the bulk of them 

orrespond to the Android OS as it is the most extended mobile 

latform nowadays ( Statista, 2022; Webtribunal, 2022 ): 

• AAMG Dataset ( http://www.unb.ca/cic/datasets/android-adware. 

html ). 

AAGM dataset is captured by installing the Android apps on 

the real smartphones semi-automated. The dataset is generated 

from 1900 applications as follows: 250 adware apps, 150 apps 

of general malware, 1500 benign apps. 

• AMD Project ( http://amd.arguslab.org ). 

AMD contains 24,553 samples, categorized in 135 varieties 

among 71 malware families ranging from 2010 to 2016. The 

dataset provides an up-to-date picture of the current landscape 

of Android malware, and it is publicly shared with the commu- 

nity. 

• Android Malware Genome Project ( http://www.malgenome 

project.org ). 

Here you can find “more than 1200 malware samples that cover 

the majority of existing Android malware families, ranging from 

their debut in August 2010 to recent ones in October 2011”. 

• Android PRAGuard Dataset ( http://pralab.diee.unica.it/en/ 

AndroidPRAGuardDataset ). 

This dataset contains 10,479 samples, obtained by obfuscat- 

ing the MalGenome and the Contagio Minidump datasets with 

seven different obfuscation techniques. 

• AndroZoo ( https://androzoo.uni.lu ). 

AndroZoo is a growing collection of Android applications col- 

lected from several sources, including the official Google Play 

app market. At the writting time it contains more than 19,5 

million different apks, each of which has been (or will soon be, 

say the authors) analyzed by tens of different antivirus products 

to know which applications are detected as malware. 

• CICAndMal2017 ( https://www.unb.ca/cic/datasets/andmal2017. 

html ). 

Both malware and benign applications are run on real smart- 

phones to avoid runtime behavior modification of advanced 

malware samples that are able to detect the emulator environ- 

ment. More than 10,854 samples (4,354 malware and 6500 be- 

nign) are collected from several sources. In addition, over six 

thousand benign apps from Googleplay market published in 

2015, 2016, 2017 are also collected. Four categories are consid- 

ered: adware, ransomware, scareware, SMS malware. 

• CICMalDroid 2020 ( https://www.unb.ca/cic/datasets/ 

maldroid-2020.html ). 

http://www.unb.ca/cic/datasets/android-adware.html
http://amd.arguslab.org
http://www.malgenomeproject.org
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://androzoo.uni.lu
https://www.unb.ca/cic/datasets/andmal2017.html
https://www.unb.ca/cic/datasets/maldroid-2020.html
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Table 1 

Examples of public malware repositories. 

Dataset Website Description 

Aposemat IoT-23 https://www.stratosphereips.org/ 

datasets-iot23 

A labeled dataset with malicious and benign IoT network traffic. This dataset 

was created as part of the Avast AIC laboratory with the funding of Avast 

Software 

Awesome Open Source https://awesomeopensource.com/ 

project/InQuest/malware-samples 

Malware samples and relevant dissection information 

BODMAS Malware Dataset https: 

//whyisyoung.github.io/BODMAS/ 

BODMAS is short for Blue Hexagon Open Dataset for Malware AnalysiS 

Da2dalus 

The-MALWARE-Repo 

https://github.com/Da2dalus/ 

The- MALWARE- Repo 

A repository full of malware samples 

Gibson malware research 

experimental repository 

https://www.grc.com/malware.htm Malware available for private forensic evaluation and experimentation to 

facilitate individual careful and responsible exploration 

HybridAna-lysis https://www.hybrid-analysis.com/ Offers a database of malware samples but what sets it apart is two things. 

First, a free malware analysis service open to all. Second, the aptly named 

Hybrid Analysis technology that the search uses to compare the sample. It 

checks multiple databases and file collections to detect some of the rarer 

malware samples 

1.55M API Import Dataset 

for Malware Analysis 

https://ieee- dataport.org/open- access/ 

155m- api- import- dataset- malware- 

analysis 

This dataset is part of my Master’s research on malware detection and 

classification using the XGBoost library on Nvidia GPU. The dataset is a 

collection of 1.55 million of 1000 API import features extract from jsonl 

format of the EMBER dataset 2017 v2 and 2018 

InQuestLabs https://labs.inquest.net/ A malware database which offers a solid list of features: Deep file inspection 

(DFI), Aggregate reputation database, Indicators of compromise (IOC), Base64 

regular expression generator, Mixed hex case generator, UInt() trigger 

generator 

Malware Archaeology https://www.malwarearchaeology. 

com/analysis 

It provides malware reports as well as a malware management framework 

Malware-Bazaar https://bazaar.abuse.ch A project from abuse.ch with the goal of sharing malware samples with the 

infosec community, AV vendors and threat intelligence providers 

PacketTotal https://packettotal.com/about.html An engine for analyzing, categorizing, and sharing pcap files. The tool was 

built with the InfoSec community in mind and has applications in malware 

analysis and network forensics. It also provides files containing malware 

samples 

Reddit https://www.reddit.com/r/Malware/ 

comments/dfis29/malware _ repository 

Malware reports and information 

SecRepo https://www.secrepo.com/ Attempt to keep a somewhat curated list of Security related data found, 

created, or pointed to 

SOREL https://ai.sophos.com/2020/12/14/ 

sophos-reversinglabs-sorel-20-million- 

sample- malware- dataset/ 

A production-scale dataset containing metadata, labels, and features for 20 

million Windows Portable Executable files, including 10 million disarmed 

malware samples available for download for the purpose of research on 

feature extraction to drive industry-wide improvements in security 

TekDefense http://www.tekdefense.com/ 

downloads/malware-samples 

For educational purposes only, this web offers files containing malware or 

exploits collected through honeypots and other various means 

TheZoo https://github.com/ytisf/theZoo A project created to make the possibility of malware analysis open and 

available to the public 

URLhaus https://urlhaus.abuse.ch/ A project from abuse.ch with the goal of sharing malicious URLs that are 

being used for malware distribution 

VirusBay https://beta.virusbay.io/ A web-based, collaboration platform that connects security operations center 

(SOC) professionals with relevant malware researchers 

VirusShare https://virusshare.com A repository of malware samples to provide security researchers, incident 

responders, forensic analysts, and the morbidly curious access to samples of 

live malicious code. Access to the site is granted via invitation only 

VirusSign https://www.virussign.com A huge collection of high quality malware samples which, as previously 

stated, is a valuable resource for antivirus industry and threat intelligence to 

improve security related products 

VirusTotal https://www.virustotal.com/gui/home A website created by the Spanish security company Hispasec Sistemas in 

2004, which was acquired by Google in 2012. VirusTotal aggregates many 

antivirus products and online scan engines to check for viruses that the 

user’s own antivirus may have missed, or to verify against any false 

positives. In addition, VirusTotal provides a number of malware samples for 

the community 
The samples composing CICMalDroid 2020 were collected from 

December 2017 to December 2018, the dataset having four 

properties: (i) it has more than 17,341 Android samples; (ii) it 

includes recent and sophisticated Android samples until 2018; 

(iii) it has samples spanning between five different categories: 

Adware, Banking malware, SMS malware, Riskware, and Benign 

Comprehensive; and (iv) it includes the most complete cap- 

tured static and dynamic features compared with other publicly 

available datasets. 

• Contagio Mobile Malware Mini Dump ( http://contagiominidump. 

blogspot.hk ). 
3

Contagio mobile mini-dump offers an upload dropbox for you 

to share your mobile malware samples. Although interesting, 

the dataset is composed of a reduced number of samples. 

• Drebin ( https://www.sec.cs.tu-bs.de/ ∼danarp/drebin/index. 

html ). 

The dataset contains 5560 applications from 179 different mal- 

ware families. The samples have been collected in the period of 

August 2010 to October 2012 and are available by the Mobile- 

Sandbox Project ( Arp et al., 2014; Spreitzenbarth et al., 2013 ). 

• Kharon Malware Dataset ( http://kharon.gforge.inria.fr/dataset ). 

https://www.stratosphereips.org/datasets-iot23
https://awesomeopensource.com/project/InQuest/malware-samples
https://whyisyoung.github.io/BODMAS/
https://github.com/Da2dalus/The-MALWARE-Repo
https://www.grc.com/malware.htm
https://www.hybrid-analysis.com/
https://ieee-dataport.org/open-access/155m-api-import-dataset-malware-analysis
https://labs.inquest.net/
https://www.malwarearchaeology.com/analysis
https://bazaar.abuse.ch
https://packettotal.com/about.html
https://www.reddit.com/r/Malware/comments/dfis29/malware_repository
https://www.secrepo.com/
https://ai.sophos.com/2020/12/14/sophos-reversinglabs-sorel-20-million-sample-malware-dataset/
http://www.tekdefense.com/downloads/malware-samples
https://github.com/ytisf/theZoo
https://urlhaus.abuse.ch/
https://beta.virusbay.io/
https://virusshare.com
https://www.virussign.com
https://www.virustotal.com/gui/home
http://contagiominidump.blogspot.hk
https://www.sec.cs.tu-bs.de/~danarp/drebin/index.html
http://kharon.gforge.inria.fr/dataset
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The Kharon dataset is a collection of malware totally re- 

versed and documented. It analyzes under a microscope a (re- 

duced) number of malware samples like SimpLocker, AndroRAT 

o Minecraft. 

From the above datasets, other repositories are constructed 

o conduct some specific malware related studies, e.g. An- 

roVul ( https://github.com/Zakeya/AndroVul ) and CIDRE ( https:// 

itlab.inria.fr/cidre-public/dada ). 

As already discussed, the samples in the datasets should be 

lassified and labeled in order to precisely estimate the effective 

ccuracy of the security solutions developed and tested through 

hem. However, the labeling process is not a trivial task. Perform- 

ng that manually by experts becomes a time consuming, arduous 

rocess, and, as a consequence, usually unapproachable. On the 

ther hand, the use of automatic labeling procedures is not free 

f limitations either. The most relevant one is the existence of in- 

onsistencies in classification, due to a number or reasons: 

• The classification of a given malware sample can vary from one 

detector to another ( Abt and Baier, 2014; Mohaisen and Alrawi, 

2014; Zhu et al., 2020 ), as the specific patterns, filters or heuris- 

tics established to take the classification decision will directly 

affect the final conclusion about the nature and typology of the 

sample analyzed. In other words, as evidenced in the literature 

( Amer et al., 2022; Dasgupta et al., 2020; Fiky et al., 2021; Im-

tiaz et al., 2021; Kim et al., 2022a; 2021; Lashkari et al., 2018; 

Sihwail et al., 2018; Yerima and Sezer, 2019 ): static detection 

differs from dynamic detection, the monitoring of certain pa- 

rameters or variables (traffic related, filesystem access, permis- 

sions used, etc.) will highlight different environment’s states 

and circumstances, a signature-based detector can provide dif- 

ferent alarm than a anomaly-based one, etc. 

• In addition, there exists a lack of standard naming convention, 

so that vendors can assign different names to the same sample 

( Beck and Connolly, 2006; CARO; GdataSoftware, 2019 ), which 

evidences the necessity of some kind of naming unification. 

Several works in the literature are focused on solving or re- 

ucing inconsistences in malware labels. In this line, authors in 

antchelian et al. (2015) propose to combine multiple anti-virus 

endor labels into a single authoritative ground-truth label. For 

hat, they present both a supervised and a unsupervised technique 

o assign confidence weights to vendors. Instead, an attempt to ob- 

ain AV labels without any prior knowledge or pre-labeled datasets 

s performed in Kim et al. (2022b) . Some other works in the liter-

ture deal with to cluster and unify labels from detection engines. 

his is the case of Sebastián et al. (2016) , where authors introduce 

n automatic labeling tool named AVClass that given the AV labels 

or a potentially massive number of malware samples, it outputs 

he most likely family names for each sample. A similar proposal 

amed Euphony can be found in Hurier et al. (2017) , for which au-

hors claim that, unlike AVClass, no labeled samples are requiered 

o distinguish family names from generic tokens. AVClass’ authors 

ntroduced afterwards AVClass2 ( Silvia and Caballero, 2020 ), which 

ses, and helps building, an open taxonomy that organizes con- 

epts in AV labels, but which is not constrained to a predefined set 

f tags. 

Instead of trying to unify and reduce labels for a given malware 

ample, we propose here to take advantage of the varied classifi- 

ation usually provided by public classifiers to contribute a novel 

ulti-labeling scheme for malware. It operates as follows: 

1. Firstly, a set of public malware detection engines are automat- 

ically consulted about a given sample. As a result, the sample 

will be classified by each consulted engine according to its spe- 

cific criteria and methodology. 
4 
2. From the classes obtained, and taking into the consideration 

a group of pre-defined expected behaviors for malware, each 

sample will be finally assigned with a tuple of labels aimed 

to gather the different potential typologies the sample corre- 

sponds to. 

The central hypothesis behind the multi-labeling scheme in- 

roduced here is the usual complex behavior of current malware, 

o that a given sample can simultaneously behave, let’s say, as a 

otnet, as well as a spyware, a banker or/and some other similar 

alicious codes. As a result of the labeling procedure, each mal- 

are sample will be automatically categorized by means of a set 

f terms related with its potential multiple behaviors. 

This proposal clearly differs from previous existent solutions in 

he literature where a label merging process is defended to usually 

ssign a unique tag per malware sample. Our proposal will ease, 

hile strengthening, the task of creating specific assessment pro- 

edures. 

. Classification and multi-labeling of malware samples 

Every specific malicious apk is usually identified in 

erms of its associated MD5 or SHA hash value, e.g. 

358a97d0f9b0e4b7d8e5a8386105c97. This cryptic name does 

ot allow to know a priori what type of specific malware the sam- 

le corresponds to. However, just making use of the hash value 

e can classify the apk according to its typology by following a 

wo-step procedure: automatic engine-based classification, and 

ehavior-based multiple tagging. For that, we propose to operate 

ach malware sample as follows: 

1. In the first step, an automatic request to a number of well- 

known public detection engines is performed. To ease the pro- 

cess, the VirusTotal’s API is used here. In particular, we con- 

sider API V2 third party Python 3.x scripts, as described in 

VirusTotal (2022) . This way, each filehash is easily analyzed by 

a total of 73 detection engines like Avast, ClamAV, Comodo, 

DrWeb, Fortinet, McAfee, Panda, Symantec or TrendMicro (see 

Table 2 ). 

After this step, the output for a given filehash is the 

classification provided by each of the detection engines 

which positively detect the hash as a malware sample 

(see Table 3 for the specific classification of the filehash 

00eeccd7fab472022060305819493225). 

2. As expected and previously explained, it can be observed that 

the classification of a given malware sample can vary from a 

commercial engine to another. This is accepted due to the spe- 

cific detection procedure implemented in each case, where dif- 

ferent heuristics, codes or other criteria can be considered to 

identify a given sample. Even more, it is possible that the spec- 

imen is not detected by a specific engine because the malware 

does not match the detection rules considered by the detector. 

Thus, with the aim to ‘normalize’ and ‘integrate’ the poten- 

tially multiple classification provided in step 1 before, a sub- 

sequent predefined behavior-based tagging step is carried out. 

For that, we have defined the set of well-known behaviors re- 

lated with threats and risks shown in Table 4 . They are aimed 

to give some order from a behavioral point of view (avoiding 

family name, platform, and any other specific information) to 

the generic categories contained in the AV labels considered in 

Sebastián et al. (2016) . 

This way, implemented in Python, after this second step each 

filehash will be assigned with a sequence of terms from Table 4 . 

For example, the hash 00eeccd7fab472022060305819493225 in 

Table 3 is assigned (from the detection provided by the en- 

gines consulted) with the tuple of behaviors: < adware, gray, 

https://github.com/Zakeya/AndroVul
https://gitlab.inria.fr/cidre-public/dada
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Table 2 

Detection engines consulted by VirusTotal. 

Acronis (Static ML) Ad-Aware AhnLab-V3 Alibaba 

ALYac Antiy-AVL Arcabit Avast 

Avast-Mobile Avira (no cloud) Baidu BitDefender 

BitDefenderFalx BitDefenderTheta Bkav Pro- CAT-QuickHeal 

ClamAV CMC Comodo CrowdStrike Falcon 

Cybereason Cylance Cynet Cyren 

DrWeb eGambit Elastic Emsisoft 

eScan ESET-NOD32 Fortinet F-Secure 

GData Gridinsoft Ikarus Jiangmin 

K7AntiVirus K7GW Kaspersky Kingsoft 

Lionic Malwarebytes MAX MaxSecure 

McAfee McAfee-GW-Edition Microsoft NANO-Antivirus 

Palo Alto Networks Panda Qihoo-360 Rising 

SecureAge APEX SentinelOne (Static ML) Sophos SUPERAntiSpyware 

Symantec Symantec Mobile Insight TACHYON Tencent 

Trapmine Trellix (FireEye) TrendMicro TrendMicro-HouseCall 

Trustlook VBA32 VIPRE ViRobot 

Webroot Yandex Zillya ZoneAlarm by Check Point 

Zoner - - - 

Table 3 

Classification results for the filehash 00eeccd7fab 

472022060305819493225. 

Engine Detection result 

Avira (no cloud) ANDROID/Hiddad.AMAN.Gen 

CAT-QuickHeal Android.Airpush.G (AdWare) 

Comodo ApplicUnwnt@#u4xostpffyi0 

Cynet Malicious (score: 99) 

DrWeb Adware.Airpush.24.origin 

ESET-NOD32 A Variant Of Android/Obfus.QY 

Fortinet Android/AirPush 

Ikarus PUA.AndroidOS.AirPush 

Lionic Riskware.AndroidOS.Airpush.z!c 

MAX Malware (ai Score = 95) 

McAfee Artemis!00EECCD7FAB4 

McAfee-GW-Edition Artemis 

Microsoft Trojan:Win32/Bitrep.B 

NANO-Antivirus Trojan.Android.Airpush.dgwbpp 

Sophos Android Airpush (PUA) 

Symantec Trojan.Gen.MBT 

Symantec Mobile Insight AdLibrary:Airpush 

Tencent A.gray.mfpad 

Trustlook Android.PUA.General 
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M
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3

h

m
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t

o

w
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(

(

pua, riskware, trojan > . 1 That is, the software sample with the 

mentioned hash corresponds to a malware which seems to be- 

have like an adware (a software that includes advertisements), 

a grayware (a software in the thin line between a virus and a 

legitimate software), a pua (potentially unwanted application), 

a riskware (a legitimate program that can cause some damage 

in malicious hands), and a trojan (malware that misleads users 

of its true intent). 

s a summary of the two-step multi-labeling procedure, we can 
bserve that: 

1 We should also probably include in the tuple the term ransomware , as Artemis , 

rovided by McAfee’s detector, corresponds to a variant of this kind of malware. 

d

Table 4 

Malicious behaviors or terms considered for malware operation

adware apt backdoor bank b

click crypto denial dial d

gray grey hijack hoax in

phish porn pua pup ra

scam scrap shim skim sm

trojan vish worm zombie - 

5

1. it is simple regarding implementation, as it relies on already 

available detection engines, and 

2. it is robust and flexible, as it integrates several possible mal- 

ware typologies in just one multi-behavior tuple. 

This labeling methodology will ease the process of selecting 

alware samples to assess particular security solutions, while it 

ill allow to clarify the real composition and representativeness 

f a given set of malware samples. The specific multi-labeling 

ool developed is publicly available at https://github.com/nesg-ugr/ 

ulti- Labeling- Malware , where readers can also find some re- 

ources and samples used in this work. 

.1. Multi-behavior hypothesis and preliminary labeling results 

This section is devoted to roughly validate the multi-behavior 

ypothesis for malware, so that the introduced multi-labeling 

ethodology is concluded to be coherent with it. For that, some 

ell-known particular malware samples dissected and analyzed in 

he literature are presented here and, after that, labeled through 

ur proposal in order to compare the supossed behaviors they have 

ith the tags obtained from their classification. 

The first malware sample to be studied is one of the fearest and 

ost famous Android malware: the Anubis Android Banking Trojan 

 Ning et al., 2020 ). In particular, the pandemidestek version: 

1. Malware name: Anubis-pandemidestek 

2. Apk name: pandemidestek.apk 

3. Apk download link: GitHub_ChickenHook_Apk 

4. SHA256: 231d970ea3195b3ba3e11e390b6def78a1c8eb5f0a8b7 

dccc0b4ec4aee9292ec 

Based on some detailed analysis performed in the literature 

 AndroidReverse ; GitHub_ChickenHook ), we can observe that pan- 

emidestek can present, at least, the following behaviors: 

• Trojan : Once executed by the user, the app icon disappears 

from the launcher. Additionally, this app implements mecha- 

nisms that prevent it to be uninstalled. It can also prevent with- 
. 

omb bootkit bot bug 

ownload drop exploit fraud 

ject joke keylogger lock 

nsom rat risk rootkit 

s spam spy stego 

- - - 

https://github.com/nesg-ugr/Multi-Labeling-Malware
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Table 5 

Malware samples analyzed. 

Apk sample (family) Behaviors reported in the literature (references) Multi-label according to our proposal (#engines) 

Pandemidestek (Anubis) Trojan, Bank, Spy, Download, Phish, Keylogger, SMS, Spam 

( AndroidReverse ; GitHub_ChickenHook ) 

Trojan (24), Bank (8), Spy (4), Download (2), Adware (1), 

Pua (1) 

bb0hhzjs1 / Her Aile’ye 2000 TL 

Pandemi Devlet Deste ̆gi (Anubis) 

Trojan, Bank, Drop, SMS, Phish, Keylogger ( Blog; Irmak ) Trojan (26), Drop (8), Bank (5), Download (1), Ransom 

(1), Pup (1), Adware (1) 

Fedex (FluBot) Trojan, Bank, SMS, Backdoor, Phish ( Incibe-Cert ; 

Prodaft_Flubot ) 

Trojan (11), Bank (5), Backdoor (3), Risk (2), Drop (1), 

Download (1), Pua (1) 

05637 / Sex xonix (SimpleLocker) Trojan, Ransom ( GroDDViewer_SimpleLocker ; 

Kharon_SimpleLocker ) 

Trojan (16), Ransom (6), Adware (2), Lock (1), Spy (1) 

Durak (MobiDash) Adware, Trojan ( GroDDViewer_MobiDash ; 

Kharon_MobiDash ) 

Adware (15), Trojan (7), Pua (4), Pup (3), Risk (1), Spy (1) 

6slmduc1o (Toddler) Trojan, Bank, SMS, Keylogger, Bot ( Prodaft_Toddler ) Trojan (25), Bank (6), Drop (3), Adware (2), Spy (1), Risk 

(1), Download (1) 
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draw permissions. Furthermore, it can boot and reboot, unin- 

stall other apps, disable Play Protect and Lock Screen, etc. 

• Bank : Pandemidestek, as other samples belonging to the Anubis 

family, is particularly designed for stealing banking information 

and performing bank related actions. In this sense, it includes 

a lot of fake phishing portals for the most famous banks in the 

world. It uses several techniques (such as looking for the in- 

stalled apps, faking SMS or geolocation) to detect the possible 

user’s bank apps and accounts to carry out the phishing attack 

( e.g. , with push injections, notification injections combined with 

screenshots or keyboard record). 

• Spy : Furthermore, with the ability of taking screenshots and lo- 

cation tracking, the spyware behavior is also exhibited by this 

malware. 

• Download : The malware also implements the functionality of 

finding and uploading files and exfiltrating information, as well 

as downloading (malicious) files, which is often used to add 

more functionality to the app. 

• SMS : The app implements functionality related to SMS stealing 

too. Moreover, it can enter USSD codes, read the double factor 

authentication received by SMS, etc. 

• Spam : In addition, this sample can send SMS spam, even with 

a link to download the app itself to infect more users (through 

the contact list). 

• Phish : As we have previously described for the ‘bank’ behavior, 

this sample can behave as a phishing related malware. 

• Keylogger : Finally, with the possibility of recording keystrokes, 

this malware sample could also be cataloged within the key- 

logger typology. 

On the other hand, regarding the labels obtained with our 

ulti-labeling procedure for the malware sample, a total of 40 en- 

ines positively detect and classify the apk in the following cate- 

ories: 

1. Trojan : 24 engines. 

2. Bank : 8 engines. 

3. Spy : 4 engines. 

4. Download : 2 engines. 

5. Adware : 1 engine. 

6. Pua : 1 engine. 

As observed, four of the eight behaviors potentially exhibited by 

he Anubis-pandemidestek malware according to the literature are 

lso included in the multi-label tuple derived by our methodology. 

A similar analysis is performed for some additional malware 

amples corresponding to different families. Table 5 shows them 

s well as the results associated to each, both regarding the be- 

aviors concluded by the community from the dissection of the 

amples, and the tags derived by applying our approach to each 

f them. Again, we can see the high correlation and coherence be- 

ween both classifications and, from that, the validity of our multi- 
6 
abeling methodology. At this point, however, we can point out the 

ossibility of avoiding some of the labels, specially those provided 

y a number of engines less than a fixed number, let’s say 1 or 2,

n order to reduce potential erroneous classifications. The consid- 

ration of a given percentage of positive detections over the total 

btained could also be considered to limit the number of tags to 

e assigned to a sample. However, our actual aim now is not to 

onclude which labels are appropriate or not; instead, that deci- 

ion will rely on the user/auditor who is thinking about the possi- 

ility of using a certain labeled sample in a particular assessment 

rocedure. 

From the previous analysis, we can conclude that despite most 

f malware samples usually have a principal behavior ( Trojan in 

he cases above), we can take advantage of other simultaneous be- 

aviors to create more complex and complete malware datasets. In 

ummary, two main facts can be highlighted at this point: 

i) a given malware sample can present a number of different be- 

haviors, while 

ii) the detection procedures implemented by various engines can 

help in complementing and hence completing the classification 

of the sample. 

. Experimentation: Multi-labeling of android malware 

atasets 

Once validated the hypothesis about the usual multi-behavioral 

ature of malware, in this Section we analyze some public mal- 

are datasets in order to obtain the associated multi-tags for the 

omponent samples. This will allow us to conclude the real com- 

osition and representativeness regarding typology and variety of 

alware samples for each of the datasets and, from that, the ap- 

licability and usability of them. 

The specific malware datasets analyzed correspond to four well- 

nown Android malware datasets already mentioned in Section 2 : 

• AMD (A), with a total of 24,553 samples from 2010 to 2016. 

• Drebin (D), composed of 5560 malware samples from 2010 to 

2012 and manually identified by the family name they belong 

to. 

• VirusShare (VS), with 51,632 Android malware samples (from 

a total of around 45,0 0 0,0 0 0 samples in the dataset), collected 

between 2016 and 2018. 

• VirusTotal (VT), a set of 19,092 Android malware samples from 

2017 to 2020 extracted from the corresponding global malware 

dataset. 

The analysis carried out comprises several aspects which are si- 

ultaneously performed for each of the datasets for a proper com- 

arison. As a first step, it should be mentioned that despite all the 

amples provided are supposedly malware, more than 2300 sam- 

les in the VirusShare dataset are undetected by all the engines 
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Fig. 1. Distribution of behaviors observed for the malware datasets analyzed. 
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Table 6 

Multi-behaviors differentiated per sample. 

Simultaneous 

behaviors AMD Drebin Virus Share Virus Total 

Total (2–11) 527 328 1912 1271 

3 56 50 162 102 

4 117 89 288 240 

5 154 94 382 322 

6 107 56 426 276 

7 64 20 311 196 

8 16 4 183 76 

9 1 3 69 32 

o

1

c

m

o

T

h

t

b  

i

o

t

3  

n

h

f

f

e

3

r

T

d

d

1

onsulted, while around 1600 are detected just by one or two en- 

ines and generally classified as ‘suspicious’ or ‘apprisk’ . Also Drebin 

ontains 30 malware samples of this second type. They all are re- 

oved from the datasets for the study that follows. 

Figure 1 shows the number of filehashes (in logarithmic scale 

or a better visualization) assigned to some of the individual be- 

aviors/typologies considered in Table 4 . We can see that behaviors 

ike adware, backdoor, bank, bot, bug, click, download, drop, exploit, 

raud, lock, rat, sms, spyware and trojan appear much more than the 

est in all the datasets. Although in a lower quantity (especially for 

MD), also the behaviors dial and rootkit appear in the four cases. 

In addition to the mentioned behaviors, it is remarkable 

hat the generic categories gray, pup/pua (potentially unwanted 

rogram/application) and riskware are also recurrent in all the 

atasets. 

In the case of AMD, VirusShare and VirusTotal, the behaviors 

orn and ransom appear a number of times too, while none of 

hese two behaviors appear in Drebin. Moreover, VirusShare and 

irusTotal have a significant number of phish samples, and in a 

ower quantity apt, crypto, inject, scam and worm samples. In ad- 

ition, VirusTotal is the only dataset with an appreciable number 

f bomb, hoax and joke samples. AMD and Drebin contain an in- 

ignificant number of all of the previous samples, if any. 

Some behaviors or types like keylogger and spam have around a 

ozen of observations in each of the datasets. Finally, it is remark- 

ble the complete absence in all the datasets of behaviors corre- 

ponding to some categories like bootkit, denial, grey, hijack, scrap, 

him, skim, stego and vish . 

Besides the appearance of individual behaviors, most of the file- 

ashes are usually assigned with more than one behavior, as pre- 

iously explained. In fact, some of the samples are assigned with 

p to 11 behaviors. Figure 2 shows this point, where the most 

sual number of behaviors per filehash is in the range from 4 to 5 

or AMD and Drebin, and in the range from 5 to 8 for VirusShare

nd VirusTotal. Beyond the values for the typical number of mul- 

iple behaviors, it can be observed that VirusShare and VirusTo- 

al present a wider spectrum in terms of number of behaviors per 

ample. That is, the malware samples in VirusShare and VirusTo- 

al seem to be more complex than those contained in AMD and 

rebin. 
7

In the case of AMD, we obtain a total of 527 different tuples 

r groups of (more than 2) behaviors, this number being equal to 

54 when 5 behaviors per filehash is considered, and 117 in the 

ase of 4 behaviors per filehash. Please, compare such numbers of 

ultiple simultaneous behaviors observed with the 135 varieties 

f 71 malware families in the AMD dataset according to authors. 

hat is, a similar granularity in the number of total (complex) be- 

aviors is obtained through our proposal. Likewise, 328 different 

uples or groups of behaviors are obtained for Drebin, this number 

eing equal to 94, 89 and 50 when tuples of 5, 4 and 3 behav-

ors are considered, respectively. In the case of VirusShare, a total 

f 1912 different behaviors are observed, which are roughly dis- 

ributed as follows: 162 for 3 simultaneous behaviors, 288 for 4, 

82 for 5, 426 for 6, 311 for 7, and 183 in the case of 8 simulta-

eous behaviors. Regarding VirusTotal, a total of 1271 different be- 

aviors are observed, which are mainly distributed as follows: 102 

or 3 simultaneous behaviors, 240 for 4, 322 for 5, 276 for 6, 196 

or 7, and 76 for 8. A summary of the multi-behaviors observed in 

ach case is shown in Table 6 . 

Finally, Table 7 shows the most typical tuples observed with 2, 

, 4 and 5 behaviors. Due to the generic nature of pua, pup and 

iskware , these behaviors often appear in addition to the rest in 

able 5 to produce longer tuples. For example, the tuples < adware, 

ownload, drop, pua, pup, riskware, sms, trojan > and < adware, bank, 

ownload, drop, gray, lock, pua, pup, riskware, trojan > , with 8 and 

0 behaviors respectively, are also observed in the datasets. 
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Fig. 2. Distribution of simultaneous behaviors observed per filehash. 

Table 7 

Tuples observed per dataset. 

#Behaviors Tuples / Datasets 

2 < {adware, backdoor, sms}, trojan > / A,D,VS,VT 

< bank, {bot, spyware} > / A,VS 

< {bot, download, drop}, trojan > / VS 

< fraud, sms > / D 

3 < adware, backdoor, trojan > / A,D,VS 

< adware,{drop, smsv},trojan > / VS,VT 

< {backdoor, bank}, sms, trojan > / A,D,VS 

< download, drop, trojan > / VS,VT 

< {bot, drop}, sms, trojan > / VS,VT 

< fraud, sms, trojan > / D 

< lock, ransom, trojan > A,VS 

< sms, spyware, trojan > / D,VS 

4 < bank, bot, {sms, spyware}, trojan > / A,VS 

< bank, bot, {drop, sms}, trojan > / VT 

< download, drop, sms, trojan > / VS 

< lock, porn, ransom, trojan > / A,VT 

5 < adware, bank, bot, sms, trojan > / VT 

< backdoor, drop, rat, spyware, trojan > / VT 

5
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. Further discussion 

After verifying the multi-behavior hypothesis for malware sam- 

les in Section 3.1 , the analysis carried out afterwards for some 

ndroid malware datasets in Section 4 concludes as a main fact 

hat VirusShare and VirusTotal are the most complex datasets of 

ll the studied ones, both from the point of view of the volume 

f malware samples contained as well as from the perspective of 

he spectrum or typology of malicious behaviors observed. Instead, 

rebin contains the lowest quantity of malware samples as well 

s the lowest number of different malicious behaviors. This can be 

een as a natural consequence of the age of each dataset. 

The above conclusion is extracted thanks to the behavior-based 

ulti-labeling scheme introduced by authors. Some additional con- 

lusions regarding current labeling procedures for malware sam- 

les can be highlighted: 

• The classification process usually performed at present to la- 

bel malware samples assigns just one label per sample, which 

does not explicitly represent the general multi-behavior exhib- 

ited nowadays by malware. 
8 
• The classification provided by detection engines can be seen as 

contradictory regarding the typology concluded (if any!) for the 

samples analyzed. 

• The simple automatic multi-labeling procedure proposed here 

tries to bypass the previous limitations by complementing the 

labels provided by different engines to obtain a more global, 

multiple and realistic tag for each sample. In fact, the results 

provided are consistent with the variety of families and variants 

the malware samples analyzed belong to. 

In summary, it can be concluded that malware datasets should 

e improved regarding labeling and often variety. Our automatic 

ulti-labeling procedure can be useful with this purpose, thus al- 

owing to improve current assessment activities. 

An additional comment regarding the computational cost in- 

olved in the labeling process should also be remarked. The cost 

f the proposed classification methodology is so low both in time 

nd also regarding resource consumption, as it only consists on a 

earch demand to the VirusTotal’s website and a subsequent pro- 

essing to extract the multiples tags derived by the (73) engines 

onsulted. An estimation of the total classification time concludes 

 mean value of around 1.05 s/sample, where 0.37 s correspond to 

he consult to VirusTotal and 0.68 s to the subsequent tags pro- 

essing, by using a VM with Quad-Core Parrot OS running on a 

6GB i7Core-8565U laptop. Beyond these values, the labeling pro- 

ess (multiple or simple) is performed only once (at the beginning) 

er dataset, so that the cost involved is usually not a relevant is- 

ue. 

As a potential improvement of our labeling proposal, a smooth- 

ng process can be performed by fixing the minimum number of 

imes (either in absolute or in relative value) a given label must 

e generated by the consulted engines to accept it as a valid tag 

ithin the multi-label tuple to be assigned to the sample. For in- 

tance, it seems reasonable to remove those labels that appear 

nly once in the classification process. However, this is not a spe- 

ific goal of the labeling approach and, thus, the prune decision 

s relegated to the final user interested in utilizing the multi-label 

cheme. 

. Conclusion and future work 

In this work, we present an automatic multi-labeling methodol- 

gy to classify malware samples. The proposal is supported on the 

ypothesis that malware samples can present a complex, multi- 
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I  
ehavioral nature, which is first validated with some malware 

amples dissected in the literature. Such a multi-behavior is also 

oncluded for the analyzed samples by our multi-labeling ap- 

roach, which evidences the consistency, coherence and validity of 

he proposal. 

Once accepted the multi-behavioral nature of malware samples 

nd the coherence with the tuple of labels provided for them, 

ur multi-labeling tool is applied over four well-known Android 

alware datasets. The analysis shows that the malware datasets 

hould be improved in two principal aspects: 

1. Variety, as the behaviors exhibited by some datasets do not 

cover the current maliciousness spectrum. 

2. Labeling, since the tag/class assigned to a given sample does 

not explicitly represent its usual multiple behavior. 

According to the analysis and experimentation performed, two 

ain benefits should be remarked for our proposal: 

• Novelty, as, on the contrary to the (mono-)labeling approaches 

available in the literature, a multi-behavior related tag can be 

provided per sample. 

• Simplicity, as it relies on gathering the labels provided by pub- 

lic detection engines. 

As a direct consequence of the above, we conclude that the la- 

eling approach introduced is useful for security testing purposes, 

s it can help auditors to better adjust at a low cost scenarios and

est sets to assess specific security solutions. With this aim, the 

ool developed is publicly available at https://github.com/nesg-ugr/ 

ulti- Labeling- Malware . 

The labeling procedure introduced can be still improved, for 

nstance, by adapting the classes or terms defined in Table 4 to 

articular goals; possibly combining some of them, including new 

nes or removing others. Another option is to fix them through the 

nalysis of the labels provided the detection engines and clustering 

hem, so that some order is introduced in the global tags space. All 

f this, however, is postponed for future work. 
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