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Abstract

In predictive tasks, real-world datasets often present different degrees of imbalanced (i.e., long-tailed or skewed) dis-
tributions. While the majority (the head or the most frequent) classes have sufficient samples, the minority (the tail or
the less frequent or rare) classes can be under-represented by a rather limited number of samples. Data pre-processing
has been shown to be very effective in dealing with such problems. On one hand, data re-sampling is a common
approach to tackling class imbalance. On the other hand, dimension reduction, which reduces the feature space, is a
conventional technique for reducing noise and inconsistencies in a dataset. However, the possible synergy between
feature selection and data re-sampling for high-performance imbalance classification has rarely been investigated be-
fore. To address this issue, we carry out a comprehensive empirical study on the joint influence of feature selection and
re-sampling on two-class imbalance classification. Specifically, we study the performance of two opposite pipelines
for imbalance classification by applying feature selection before or after data re-sampling. We conduct a large number
of experiments, with a total of 9225 tests, on 52 publicly available datasets, using 9 feature selection methods, 6 re-
sampling approaches for class imbalance learning, and 3 well-known classification algorithms. Experimental results
show that there is no constant winner between the two pipelines; thus both of them should be considered to derive
the best performing model for imbalance classification. We find that the performance of an imbalance classification
model not only depends on the classifier adopted and the ratio between the number of majority and minority samples,
but also depends on the ratio between the number of samples and features. Overall, this study should provide new
reference value for researchers and practitioners in imbalance learning.
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1. Introduction

Class imbalance, a.k.a., class skew or long-
tailed distributions, refers to the case where a few
classes/categories have a significantly inadequate num-
ber of samples in comparison to others [1]. Imbalanced
datasets are present in a large number of domains, such
as banking fraud detection, medical diagnosis, text clas-
sification, software defect prediction. Its pervasiveness,
and its close relevance to many real-world applications,
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have attracted substantial research effort in the last two
decades [2].

In the literature, there are many techniques for com-
bating the class imbalance problem, including internal
approaches that tailor an algorithm to imbalanced data,
data re-sampling approaches [3], cost-sensitive learn-
ing, and ensemble learning [4, 5]. Interested readers
may refer to overviews on this topic in [4, 6, 7, 8, 9].

Feature selection/dimension reduction is often a very
effective technique for improving classification perfor-
mance. It also simplifies the classification model to be
built. Yet, inappropriate reduction in features may lead
to a loss in the discrimination power and the recognition
accuracy. Watanabe’s ugly duckling theorem [10] sup-
ports the need for a careful choice of the features, stating
that it is possible to make two arbitrary patterns similar
by encoding them with a sufficiently large number of
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redundant features. Overall, feature selection has been
an important research direction in machine learning and
has attracted a huge amount of research effort [11].

However, up to now, there are only a limited num-
ber of preliminary studies that merely explored the
feature selection before data re-sampling (FS+DS for
short) pipeline for improving the imbalance classifica-
tion performance; moreover, the number of experiments
is rather limited. For instance, [12, 13, 14] only used
simple random undersampling techniques, whereas [15]
just considered one oversampling method.

To derive the best imbalance classification model, the
community is still in need of a more in-depth and com-
prehensive empirical study to investigate the joint im-
pact of feature selection and re-sampling on imbalance
classification, in particular the alternative feature selec-
tion after data re-sampling (DS+FS) pipeline. To ad-
dress this issue, in this work, we provide a compre-
hensive empirical study on the joint influence of fea-
ture selection and data re-sampling on two-class imbal-
ance classification. We use 52 benchmark datasets with
imbalanced distributions, 9 feature selection methods,
6 re-sampling approaches for class imbalance learning,
and 3 representative classification algorithms.

We reveal through these extensive experiments that
the synergy between feature selection and data re-
sampling can yield significantly stronger models for im-
balance classification. Moreover, we find that there is no
constant winner between the two competing pipelines
(i.e., FS+DS v.s. DS+FS); thus both of them deserve
attention when building an imbalanced classifier. In the
following sections, we also provide a detailed analysis
on the influence of the baseline classifiers, the ratio be-
tween the number of majority and minority samples,
and on the ratio between the number of samples and
features on the performance of imbalance classification.

The key empirical findings we draw from this work
are as follows:

1. It is worthwhile to try both the feature selection be-
fore or after data re-sampling pipelines to achieve
the best imbalance classification performance; in
particular, the feature selection after the data re-
sampling pipeline (DS+FS) pipeline should not be
neglected as it was before.

2. When using decision tree as the base learner,
DS+FS outperforms FS+DS in terms of G-Mean
and F-score in more cases than not, especially
when oversampling techniques are used.

3. When using SVM as the base learner, there is no
clear winner between the two pipelines when over-
sampling methods are adopted; however, with un-

dersampling methods, FS+DS predominates over
DS+FS in most cases.

4. For imbalanced datasets with low samples-to-
feature ratios (SFR) but high imbalance ratios (IR),
the FS+DS pipeline has a comparative advantage
over the DS+FS pipeline. But for imbalanced
datasets with high SFR but relatively low IR, there
is no constant winner between them.

Besides, we also provide recommendations of the
Top-3 specific combinations of the feature selection and
data re-sampling methods that are the top performers for
every evaluation metric under each of the two pipelines.
Overall, these studies and findings provide new insights
and practical guidance for practitioners and researchers
when tackling class imbalance problems.

The rest of this paper is organized as follows: we
introduce the background and related work in the next
section, then describe the problem to be investigated in
this work in Section 3, which also introduces the spe-
cific methods for feature selection and class imbalance
learning used in this work. Section 4 presents the exper-
imental framework, and Section 5 reports and analyzes
the experimental results. Section 6 gives concluding re-
marks.

2. Related Work

In this section, we will first present the background
and directly related work of this paper. We will next
introduce the general advances in imbalance learning
in recent years, in which deep imbalance learning and
GAN-based data augmentation are two cutting-edge di-
rections.

For general reviews of imbalance learning, interested
readers may refer to [16, 4, 8, 9, 17], whilst reviews of
feature selection methods can be found in [11, 18].

2.1. Closely Related Work

In this subsection, we chronologically summarize re-
lated work which investigates the joint influence of fea-
ture selection and data re-sampling approaches on two-
class imbalance classification [12, 13, 14, 15].

In the context of protein function prediction from se-
quence, [12] compares the respective performance of
Support Vector Machine (SVM) and C4.5 when Ran-
dom Under-Sampling (RUS) [19] is applied after the
wrapper feature selection approach.

In [13], the authors use 9 datasets to study the influ-
ence of feature selection and undersampling on software
quality prediction. Their experimental results show
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that running feature selection on re-sampled data per-
forms better than selecting the features from the original
data. However, this work was developed for a very spe-
cific area; still, the authors only tested Random Under-
Sampling (RUS) [19] and a few filter feature selection
methods (i.e., χ2, Relief, Gain Ratio).

In [14], the authors study and propose an iterative
method for feature selection on imbalanced data. It first
uses Random Under-Sampling (RUS) technique to ob-
tain balanced data. It next applies a filter-based feature
selection technique on the re-sampled data and ranks all
the features according to their predictive capacity. How-
ever, this study is limited to the use of RUS only and
only one filter-based feature selection method. As the
authors admit, there should be future work considering
additional datasets from other domains as well as more
re-sampling techniques.

[15] examines the performance of various feature se-
lection methods and how they combat the class im-
balance problem. Besides using 7 filter feature selec-
tion methods (e.g., χ2, information gain, Pearson cor-
relation coefficient, signal-to-noise correlation coeffi-
cient), the authors also test the performance of one un-
dersampling technique and one oversampling method
(SMOTE [20, 21]). Their results show that the signal-
to-noise correlation coefficient and the feature assess-
ment by sliding thresholds are great candidates for fea-
ture selection on imbalanced data with small sample
size. However, the authors only test the feature selection
before re-sampling strategy for class imbalance learn-
ing. Although they find that this strategy does not yield
improved results, they admitted this direction needs fur-
ther investigation, since they only test a few combina-
tions of feature selection before re-sampling methods.

The authors in [22] study the impact of varying class
imbalance ratios (IR for short) on the accuracy of a clas-
sifier. Empirical study in [17] show that, imbalance ratio
is not the main determinant in class imbalance learning
problem. A higher IR will only further deteriorate the
classification accuracy, but other data complexities also
influence the classification performance.

It is worth noting that the all the above mentioned
works perform feature selection before re-sampling the
data (FS+DS). None of them has explored the counter-
part strategy, i.e., the feature selection after data selec-
tion pipeline (DS+FS). Furthermore, the experiments
carried out in the existing work only used a very lim-
ited number of datasets, feature selection methods, and
data re-sampling approaches. In view of the above lim-
itations, this work extends our previous conference pa-
per in [23], to provide a comprehensive and more in-
depth empirical study and insight into the joint impact

of feature selection and data re-sampling on imbalance
classification2.

2.2. Recent advances in imbalance learning

New oversampling techniques for imbalance
learning. MWMOTE [25] first identifies the border-
line (hard-to-learn) minority class samples located near
the majority samples, next generates synthetic samples
inside the minority clusters after applying clustering on
such borderline minority samples. In [26], the authors
propose an intuitive geometric space partition (GSE)
based method for imbalance classification. GSE con-
stantly uses a new hyper-plane classifier to cut the cur-
rent geometric data space into two partitions (halves),
then removes the partition (half) which only contains
majority samples. The basic idea of GSE is very sim-
ilar to AdaBoost; the main difference lies in that GSE
does not weight the samples but continuously eliminates
the partitions with purely majority samples as a whole.
In [27], the authors present MBS (model-based syn-
thetic sampling), which is an oversampling technique
for imbalance classification. By assuming the existence
of a relationship between features, for the minority in-
stances, they iteratively leave one feature out and train
a regression model on the values of the rest features
to predict the value of the reserved feature. The tu-
ples/records consisting of the predicted value for the re-
served feature as well as the randomly generated values
for the rest features will be the final synthetic samples
to be used in imbalance learning. In [28], the authors
propose imputation-based oversampling method for im-
balance learning. It first induces some random miss-
ing values (for some features) over the minority class
samples, then estimates the missing values by means of
missing data imputation techniques. The overall idea of
this work is similar to [27]. Finally, in [29], the authors
modify the basic SMOTE algorithm by using the ran-
dom difference between a selected base sample and one
of its natural neighbors to generate synthetic samples.

Deep imbalance learning. [30] addresses the prob-
lem of imbalanced data for the multi-label classification
problem in deep learning and introduces incremental
minority class discrimination learning by formulating
a class rectification loss regularization, which imposes
an additional batch-wise class balancing on top of the
cross-entropy loss to rectify model learning bias due to
the over-representation of the majority classes. In [31],
the authors provide a very comprehensive review of the

2The arXiv preprint version of this work is available at [24].
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imbalance problems in deep learning based object de-
tection and categorize them into four main types: class
imbalance, scale imbalance, spatial imbalance and ob-
jective imbalance.

GAN-based data augmentation for imbalance
learning. In recent years, Generative Adversarial Net-
works (GANs) [32] have been introduced into imbal-
ance learning. [33] proposes GAMO, which is an end-
to-end deep oversampling model for imbalance classi-
fication. It effectively integrates the sample generation
and classifier training together. When generating minor-
ity class instances, GAMO uses a class-specific instance
generation unit to reduce the computation complexity.
However, the performance of such a strategy may suffer
from the lack of minority class information. To address
this issue, the authors in [34] design a balancing gener-
ative adversarial network (BAGAN), which exploits all
classes to estimate the class distributions in the latent
space of the AutoEncoders.

GL-GAN [35] utilizes GAN based data augmentation
for two-class imbalance classification. It first adopts
AutoEncoders to embed the input samples into a new
latent space in which the inter-class distances of the
samples are maximized and the intra-class distances are
minimized. Next, it uses SMOTE to generate minority
samples in the new embedding space, then straightfor-
wardly leverages GAN to generate realistic data.

For reliability assessment of transmission gears, the
authors in [36] adopt a CGAN based model to gener-
ate instances with a distribution similar to the original
data and a heuristic approach to label the generated in-
stances through exploring the nearest distance between
generated instances and original class centers.

In [37], the authors propose using GAN to generate
a subset of majority samples that follow the same dis-
tribution as the original dataset. Next, they construct a
few balanced subsets, each of which containing all the
minority samples and an equal-size subset of GAN gen-
erated majority samples. Finally, upon each balanced
subset, they use deep metric learning to build a two-
class classification model. These models are then inte-
grated to handle multi-class imbalanced classifications.

3. Problem Definition

This work aims to study how the classification per-
formance is affected by the joint use of feature selec-
tion and data re-sampling methods for imbalance learn-
ing. To this end, we compare the performance ob-
tained by feature selection before the data re-sampling
pipeline with the opposite feature selection after data

re-sampling pipeline. These two pipelines are hereafter
referred to as FS+DS and DS+FS for short.

The main research questions that we will investigate
in this work are as follows:

1. Which pipeline, FS+DS or DS+FS, can achieve
the best performance for two-class imbalance clas-
sification, and under which conditions?

2. How does the classification performance vary
when using DS+FS and FS+DS on various
datasets with different degrees of skewness and dif-
ferent number of samples and features?

3. Although there is no constant winner between
the general FS+DS and DS+FS pipelines, for a
given classifier, which specific combinations of
feature selection and data re-sampling methods
have higher probability to become the top perform-
ers, thus should be recommended with priority?

The first two issues are “macro-level” research ques-
tions, which investigate and assess the overall compara-
tive advantages of the two pipelines in two-class imbal-
ance classification. The last issue is a “micro-level” re-
search question; it aims to provide practical suggestions
and guidelines for choosing the specific combinations of
feature selection and data re-sampling methods, which
have a higher probability of achieving the best imbal-
ance classification performance, given datasets with dif-
ferent characteristics, and using different classifiers.

Before studying the three problems raised above, we
first introduce the feature selection and data re-sampling
methods for class imbalance learning that are consid-
ered in this work.

3.1. Feature selection methods

In the literature, there exists a large variety of feature
selection approaches, which can be categorized into fil-
ter, wrapper, and embedded methods [11, 38]. In this
work, we will use 9 major feature selection approaches,
which are presented below.

3.1.1. Filter methods
Filter methods assess the relevance of features in the

data. They usually compute a feature relevance score,
and features with low scores are removed. The main ad-
vantages of filter methods are: they are independent of
the classification algorithms and can easily scale to very
high-dimensional datasets. Moreover, they are compu-
tationally efficient. But they also have drawbacks: they
ignore the interaction with the classifier, as the search in
the feature subset space is separated from the hypothe-
ses space; moreover, most techniques are univariate.
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The specific filter methods considered in this work
are information gain, χ2 statistic, Fisher feature selec-
tion, Gini Index and Student’s T-test. The first method,
referred to as Info for short, evaluates the importance
of an individual feature by measuring its correspond-
ing information gain with respect to the class. χ2 statis-
tic (ChiS for short) evaluates the weight of an attribute
by computing its chi-squared statistic value with respect
to the class. Fisher feature selection (Fish) computes a
score derived from the distances between data points in
different classes, divided by the distances between data
points of the same class. Gini Index (Gini) makes use
of a statistical phenomenon called the Lorentz curve to
quantify wealth/income inequality situations. Student’s
T-test (T-test) feature selection commonly uses Welch’s
T-test metric to measure a feature’s capability in dis-
tinguishing two classes. Interested readers may refer
to [39] for a more detailed descriptions of these filter
methods.

3.1.2. Wrapper methods

Wrapper methods embed the model hypotheses
within the feature subset search. After defining an
expand-and-search procedure for all the possible feature
subsets, various candidate subsets are generated and
evaluated using a specific classification algorithm, mak-
ing this approach specifically tailored to a given clas-
sification algorithm. Its apparent high computational
overhead motivated the design of non-complete search
methods [40], which can be divided into deterministic
and randomized search algorithms. The advantages of
wrapper approaches lie in the interaction between fea-
ture subset search and model selection and the ability
to take feature dependencies into account. Their main
problems are the higher risk of overfitting than filter ap-
proaches, and the relatively high computation cost.

The wrapper methods that we consider are Forward
feature selection (FWD) [41], Linear forward selection
(Linear) [42], and Ranked Search (RS) [43]. FWD fea-
ture selection first ranks each feature on the basis of its
relevance to the class label, then sequentially adds fea-
tures to an empty candidate set until the addition of new
features can not further improve the prediction perfor-
mance [41]. Linear forward selection (Linear) improves
the runtime FWD performance by limiting the attributes
in the subsequent forward selection process to the top-
ranked attributes [42]. In Rank Search (RS), subsets
of increasing size (the best attribute plus the next best
attribute) are evaluated and the best attribute set is de-
rived [43].

3.1.3. Embedded methods
Embedded methods incorporate feature selection as

part of the process of building a specific model. Their
objective is to produce a predictive model, in which the
features remained in the model are a byproduct of the
modelling process. Similar to wrappers, embedded ap-
proaches are specially tailored to a given learning algo-
rithm. The main advantage of such methods is that they
include the interaction with the classification model, but
their major limitation is the computational load, which
is less than wrapper methods though.

In our work, we considered the Sparse Multino-
mial Logistic Regression with Bayesian regularisation
(SBMLR), which realizes sparse feature selection by us-
ing a Laplace prior [44].

3.2. Re-sampling approaches for class imbalance
learning

In class imbalance learning, re-sampling (data selec-
tion) approaches can be divided into undersampling and
oversampling methods. Both types of approaches re-
size the training set to make the class distribution more
balanced so as to match the size of the other class. We
focus on two-class imbalance classification in this work.
Let N+ and N− denote the set of samples in the minor-
ity and majority classes, respectively. Undersampling
methods sample a subset N− from N−, with |N−| < |N−|,
such that |N−| ≈ |N+|. On the contrary, oversampling
approaches generate a set N+, with |N+| ≈ |N−|. N+ is
composed of all samples in N+ and the generated in-
stances. Both undersampling and oversampling have
their own drawbacks. The former may remove po-
tentially useful data, while the latter may increase the
likelihood of overfitting due to sample random replica-
tion [20, 45].

3.2.1. Undersampling
The undersampling methods considered in this work

are Random Under-Sampling (RUS) [19], Condensed
Nearest Neighbor decision rule (CNN) [46] and One-
Sided Selection (OSS) [45, 47].

Random Under-Sampling (RUS) balances class dis-
tribution through the random elimination of majority
class examples, until the desired class ratio between the
minority and majority classes is reached [19].

Condensed Nearest Neighbor decision rule (CNN)
successively discards instances (samples) that can be
correctly classified using a prediction model built upon
the current subset of instances [46].

One-sided Selection (OSS) detects and removes sam-
ples that are less reliable according to certain heuris-
tics [45, 47]. Samples are divided into four groups: (i)
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samples suffering from class-label noise, (ii) borderline
examples, which are close to the boundary between neg-
ative and positive regions, (iii) redundant samples, (iv)
safe samples that are worth being kept for classification.
Borderline and noisy cases are detected by Tomek links
[48], whereas redundant cases are defined as those not
in a consistent subset3 of the training set. OSS creates a
training set composed of safe samples from the majority
class and all the samples in the minority one.

3.2.2. Oversampling
The oversamplimg methods considered in this work

are SMOTE [20], SPIDER [49] and ADASYN [50].
A comprehensive review on the extensions/variants of
SMOTE can be found in [21].

SMOTE stands for Synthetic Minority Over-
Sampling Technique [20], which is an oversampling
approach for generating synthetic samples in the feature
space along the line segments joining pairs of minority
class nearest neighbors [20]. Depending on the number
of required samples to be generated, neighbors from the
k nearest neighbors are randomly chosen. The synthetic
samples are generated by: (i) computing the difference
between the feature vector under consideration and its
nearest neighbour, (ii) multiplying the difference by a
random number in [0, 1], (iii) adding this quantity to
the feature vector under consideration.

SPIDER [49] is the acronym of Selective Preprocess-
ing of Imbalanced Data. It oversamples instances of the
minority class that are misclassified, meanwhile filter-
ing difficult examples from the majority classes [49].

ADASYN [50] is the abbreviation of ADAptive SYN-
thetic sampling. It is an improvement upon SMOTE,
and the main idea is to use weighted distribution for dif-
ferent minority class examples according to their level
of difficulty in learning. In ADASYN, more synthetic
samples are generated for minority class examples that
are harder to learn than those that are easier to learn.

4. Experimental Setup

In this section, we first provide details about the
datasets chosen for the experiments (subsection 4.1),
next describe the algorithms selected for this study and
their configuration parameters (subsection 4.2). Then in
subsections 4.3 and 4.4, we present the evaluation met-
rics for imbalance classification and the statistical test
measures to be adopted, respectively.

3A subset C of the training set S is said to be a consistent subset
when the Nearest Neighbour rule using C correctly classifies samples
in S .

4.1. Datasets

In our experiments, we use 52 datasets belonging to
real-world problems which are publicly available in the
UCI and KEEL repositories [51, 52]. Table A.1 pro-
vides a summary of these datasets. It also reports the
imbalance ratio (IR) and the samples-to-features ratio
(SFR): the former is derived by |N+ |

|N− | , while the latter is

defined as |N
+ |+|N− |

m , where m is the original dimension-
ality of the dataset.

We use 5-fold stratified cross validation, considering
the situation that re-sampling of the subsets introduces
randomness.

These 52 datasets, together with the use of 3 differ-
ent classification algorithms, 9 feature selection meth-
ods, 6 re-sampling methods and with different orders in
the pipelines, resulting in a very large number of exper-
iments4.

4.2. Baseline classification algorithms

We adopt three well-established classification algo-
rithms belonging to different paradigms [53]: C4.5 al-
gorithm, which is a well-known decision tree based
classification algorithm [54], and SVM [55] as a ker-
nel machine, and Multi-Layer Perceptron (MLP), which
is an established artificial neural network for classi-
fication. We set the classifier parameters to the de-
fault values used in the Weka library [56] for the C4.5
and the MLP, while a Gaussian Radial Basis Function
is adopted for SVM using the LIBSVM implementa-
tion [55].

Although we acknowledge that the tuning of the pa-
rameters in the algorithm may lead to better results,
the No-Free-Lunch Theorems for Optimization tell us
that all configurations perform equally well when aver-
aged over all possible experiments [57]. Therefore, we
adopt the default parameter set, so that the only way a
method can outperform the other(s) relies on its fitness
to the dataset [58]. Our hypothesis is that the method
which wins on average on all the experiments, would
also win if a better setting is specified. Furthermore, in
a framework where the classifier is not tuned, the top-
performing methods tend to be the most robust, which
is also a desirable characteristic [59].

4We note that a small proportion of the experiments did not com-
plete, primarily due to the reasons of out-of-memory crashes or overly
long running time. The actual number of experiments is 9225. No-
tably, it took more than two months for these 9225 experiments to
accomplish, even with a powerful server.
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Table 1: Confusion matrix of a binary problem.

Actual positive Actual negative

Hypothesised positive True Positive (T P) False Positive (FP)
Hypothesised negative False Negative (FN) True Negative (T N)

Sum |N+| |N−|

4.3. Performance evaluation metrics for imbalance
learning

Confusion matrix is commonly used to evaluate the
performance of a classifier. According to the notation
shown in Table 1, the classification accuracy, defined as
Acc = (T P + T N)/(|N+| + |N−|), is the traditional eval-
uation measure for classification algorithms. However,
this metric tends to favour the majority class.

It is often necessary to measure the per-class predic-
tion accuracy/error. From Table 1, we compute two
independent metrics that separately reflects the perfor-
mance on the two classes, namely the true positive
rate or recall (T PR = T P

|N+ |
) and the true negative rate

(T NR = T N
|N− | ). They are independent of prior probabili-

ties and are robust when class distributions are different
in the training and testing sets.

Upon T PR and T NR, we can further compute the ge-
ometric mean of accuracies, F1 score and the index of
balanced accuracy, which are three performance metrics
widely used in the literature for imbalance learning.

The geometric mean of accuracies is defined as
G-Mean =

√
T PR · T NR. It increases when the accu-

racy of each class increases. It is also a non-linear mea-
sure since a change in one of the two parameters has
a different effect on G-Mean, depending on its magni-
tude; for instance, the smaller the T PR value, the larger
the G-Mean variation. It is worth noting that G-Mean is
closely related to the distance to the perfect classifica-
tion in the ROC space [60]; therefore, we do not report
the values of the area under the ROC curve.

F1 score, also known as F-measure, is defined as the
harmonic mean of precision (p = T P

T P+FP ) and recall, i.e.
F1 = 2

1/p+1/T PR .
The index of balanced accuracy (IBA) was introduced

in [61] and it is computed as IBA = (1 + α · (T PR −
T NR)) · T PR · T NR, with α set to 0.5 as suggested by
the authors (note that if α = 0, IBA turns into the square
of G-Mean).

The IBA metric quantifies a certain trade-off between
an unbiased measure of the overall accuracy and the in-
dex of how balanced the two class accuracies are. It
intends to favour classifiers with better results on the
minority class, which is the most important criteria in
imbalance learning.

4.4. Statistical tests

The extensive experimental tests result in such a huge
amount of classification results that separate compari-
son analysis is practically infeasible. Instead, we need
to use statistical analysis to find significant differences
among the results obtained by the different approaches
or pipelines. Moreover, according to the recommenda-
tions presented in [62, 63], we use non-parametric tests
since the assumptions that guarantee the reliability of
parametric tests (i.e., independence, normality and ho-
moscedasticity) may not be satisfied, making the statis-
tical analysis lose credibility.

Pairwise comparisons. We will apply the Wilcoxon
signed-rank test [64] which performs pairwise compar-
isons between the two pipelines and computes the dif-
ferences between their performance scores. The two
pipelines are ranked according to their absolute values
in ascending order, and average ranks are assigned in
cases of ties. Let R+ be the sum of ranks for the datasets
on which FS+DS outperforms DS+FS, and R− be the
sum of ranks for the opposite case (i.e., DS+FS outper-
forms FS+DS). If min(R+,R−) is less than or equal to
the value of the distribution of Wilcoxon for Nd degrees
of freedom5, the null hypothesis of equality of means
is rejected at the specified level of significance. We
set α = 0.1 not only based on the suggestions reported
in [65], but also due to the large number of datasets and
methods used in this work. To check whether two clas-
sification approaches are significantly different and the
degree of their difference, we also compute the p-value
associated with each comparison, which represents the
lowest level of significance of a hypothesis that results
in a rejection.

To summarize the results, we also compute the quan-
tity µ+ and µ−. The former denotes the number of times
where R+ outperforms R− at the given significance level,
while µ− represents the opposite. These two values will
be further normalized with respect to the number of
comparisons. It provides a synthetic index representing
the overall predominance of an approach with respect to
the other.

Heuristic measures for Top-K specific combina-
tions selections. Given a specified dataset and evalu-
ation metric, it is often necessary and appealing to have
the recommendations on the Top-K specific combina-
tions that are most promising in yielding the best im-
balance classification performance, which can substan-
tially reduce the workload in finding the best solution

5Nd stands for the number of datasets.
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to imbalanced data classification. To this end, we pro-
vide two heuristic measures for recommending the Top-
K specific combinations for imbalance classification.

In the experiments, there are 52 datasets, and it is
common that some specific combinations (between the
FS and DS methods) can only rank Top-K on some
of the datasets. Our heuristic measure is to count the
number of datasets (out of the 52 total datasets) that
each specific combination can achieve the Top-K per-
formance, in terms of a given evaluation metric (such
as TPR). This heuristic measure is hereafter referred to
as “Rank-Sum”. The heuristic idea behind Rank-Sum is
that the greater the Rank-Sum value for a specific com-
bination, the more frequently (likely) that this combina-
tion can become the Top-K performer on a new dataset.
In our experiments, we set K to 3, to limit the number
of choices.

Besides, we also introduce the “Group-SUM” mea-
sure to check the overall performance of all the Top-K
combinations (as a group). When using Group-SUM,
we try each of the Top-K combinations in the group,
then count the unique number of datasets where one
of these Top-K combinations can become the Top-K
method. We note that, in some cases, the Top-K com-
binations can be complementary, that is, only one of
them can rank the Top-K methods on a dataset, while
in other cases, they can be “redundant”, e.g., several
or all of them rank as the Top-K methods on a dataset.
Therefore, if Group-SUM is close to the total sum of
the Rank-Sum values of all the Top-K methods in the
group, it implies these Top-K methods are highly com-
plementary, which is more desirable.

Finally, Rank-Sum and Group-SUM are the two
heuristic measures we use for recommending the Top-
K specific combinations.

5. Results

Table 2, and Tables A.2 and A.3 in the appendix,
report the Wilcoxon test results for pairwise compar-
isons between FS+DS and DS+FS when different clas-
sification algorithms are adopted. Table 3, and Ta-
bles A.4, A.5 and A.6 in the appendix, present the Iman-
Davenport Test and Shaffer’s post-hoc test results for the
multiple comparisons among the specific combinations
in both pipelines.

5.1. Pairwise comparisons using Wilxcon Test
5.1.1. Statistical comparison results between the two

pipelines using Wilxcon Test
Figure 1 summarizes via spider plots the number of

times where the ranks of the Wilcoxon signed-rank test

of the classifiers trained with FS+DS are larger than
those obtained by DS+FS with the same classifier. In
these charts, the blue and the orange lines correspond to
FS+DS and DS+FS, respectively. The plot/diagram in
the upper left of the figure shows the radar plot attained
considering all the DS and FS methods. The second plot
in the first row reports what happens when only com-
bining the oversampling approaches with all the feature
selection methods. Similarly, the third plot in the same
row reports what happens when we combine undersam-
pling approaches with all the feature selection methods.

The second row of Figure 1 shows the spider plots
obtained when taking into account all the DS methods
combined with different feature selection methods. Fi-
nally, the next six charts report the spider plots com-
puted from the Cartesian product between the sets of
DS and FS methods. For instance, the subfigure named
as “only oversampling + only filters”, which is shown as
the first plot in the third row, summarizes the number of
times where the ranks of the Wilcoxon signed-rank test
of a classifier, trained on data preprocessed by an over-
sampling method followed by a filter feature selection
method (DS+FS), are larger than those obtained by the
same classifier but with the FS+DS pipeline (in specific,
the filter feature selection before oversampling method).

Visual inspections of Figure 1 show that FS+DS pro-
vides better results than DS+FS in most of the cases,
irrespective of the performance metrics. In the case of
G-Mean, F1 and IBA, preprocessing the training set
with the FS+DS pipeline provides better performance
than the DS+FS counterpart, since the blue lines in the
spider plots always run more external than the orange
ones. But the opposite situation occurs in terms of accu-
racy in three plots, which is expected, since it is known
that many re-sampling approaches improve the recog-
nition performance on the minority class but negatively
affect the accuracy of the majority to some extent [66].

Interestingly, the second and third plots in the first
row also show that oversampling methods mitigate the
decrease in accuracy with respect to undersampling, ir-
respective of the feature selection methods used. Fur-
thermore, the third and fourth rows show that FS+DS
outperforms DS+FS by a more significant extent when
using oversampling rather than undersampling.

Summary. Overall, there is no constant winner be-
tween the two pipelines. Thus, one should exhaustively
test all the possible combinations of DS and FS, to de-
rive the best imbalance classification model for a spe-
cific data/application.
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Table 2: Wilcoxon test for the comparison between FS+DS (R+) and DS+FS (R−), when the C4.5 classifier is used.

FS DS Accuracy (Acc) G-Mean (g) F1 IBA
R+ R- p-value R+ R- p-value R+ R- p-value R+ R- p-value

Info RUS 812 463 9.2e-02 578 748 4.3e-01 705 621 6.9e-01 457 869 5.3e-02
ChiS RUS 619 707 6.8e-01 636 690 8.0e-01 595 731 5.2e-01 525 801 2.0e-01
Fish RUS 804.5 470.5 1.1e-01 922 456 3.4e-02 960 418 1.4e-02 657 721 7.7e-01
Gini RUS 729.5 596.5 5.3e-01 572 754 3.9e-01 557 769 3.2e-01 590 736 4.9e-01
SBMLR RUS 602 479 5.0e-01 202 833 3.7e-04 222 813 8.5e-04 630 405 2.0e-01
Ttest RUS 475 386 5.6e-01 345 645 8.0e-02 404 586 2.9e-01 453 493 8.1e-01
RS RUS 599.5 675.5 7.1e-01 523 803 1.9e-01 517 809 1.7e-01 552 774 3.0e-01
Linear RUS 648 678 8.9e-01 635 743 6.2e-01 643 735 6.8e-01 560 818 2.4e-01
FWD RUS 842 484 9.3e-02 625 701 7.2e-01 776 499 1.8e-01 506 769 2.0e-01
Info CNN 676 549 5.3e-01 334 891 5.6e-03 367 858 1.5e-02 705 520 3.6e-01
ChiS CNN 650 526 5.2e-01 356 869 1.1e-02 384 841 2.3e-02 741 484 2.0e-01
Fish CNN 682 543 4.9e-01 294 931 1.5e-03 343 882 7.3e-03 769 456 1.2e-01
Gini CNN 625 600 9.0e-01 270 955 6.6e-04 278 947 8.8e-04 660 565 6.4e-01
SBMLR CNN 89 992 8.1e-07 659 244 9.5e-03 840 241 1.1e-03 631 359 1.1e-01
Ttest CNN 493 732 2.3e-01 262 819 2.3e-03 422 853 3.7e-02 683 398 1.2e-01
RS CNN 824 352 1.5e-02 807 369 2.5e-02 854 322 6.4e-03 621 555 7.4e-01
Linear CNN 825.5 302.5 5.7e-03 712 464 2.0e-01 778 398 5.1e-02 647 529 5.5e-01
FWD CNN 253 875 1.0e-03 708 468 2.2e-01 704 472 2.3e-01 641 535 5.9e-01
Info OSS 376 365 9.4e-01 268 552 5.6e-02 323 497 2.4e-01 506 314 2.0e-01
ChiS OSS 501.5 444.5 7.3e-01 278 712 1.1e-02 367 623 1.4e-01 518 472 7.9e-01
Fish OSS 448.5 454.5 9.7e-01 293 742 1.1e-02 361 674 7.7e-02 615 420 2.7e-01
Gini OSS 362 673 7.9e-02 301 827 5.4e-03 327 801 1.2e-02 698 430 1.6e-01
SBMLR OSS 227 98 8.3e-02 112 239 1.1e-01 134 217 2.9e-01 150 201 5.2e-01
Ttest OSS 355.5 310.5 7.2e-01 209 421 8.3e-02 241 389 2.3e-01 383 283 4.3e-01
RS OSS 611 565 8.1e-01 447 828 6.6e-02 501 774 1.9e-01 706 569 5.1e-01
Linear OSS 599 577 9.1e-01 542 683 4.8e-01 561 664 6.1e-01 692 533 4.3e-01
FWD OSS 456.5 173.5 2.0e-02 280 461 1.9e-01 329 412 5.5e-01 451 290 2.4e-01
Info SMOTE 625 650 9.0e-01 669 657 9.6e-01 708 618 6.7e-01 776 550 2.9e-01
ChiS SMOTE 633 745 6.1e-01 703 675 9.0e-01 688 690 9.9e-01 694 684 9.6e-01
Fish SMOTE 842 484 9.3e-02 864 462 6.0e-02 883 443 3.9e-02 658 668 9.6e-01
Gini SMOTE 795.5 582.5 3.3e-01 783 543 2.6e-01 789 537 2.4e-01 649 677 9.0e-01
SBMLR SMOTE 340 521 2.4e-01 358 422 6.6e-01 344 397 7.0e-01 323 418 4.9e-01
Ttest SMOTE 452 538 6.2e-01 635 355 1.0e-01 665 325 4.7e-02 616 287 4.0e-02
RS SMOTE 492 886 7.3e-02 320 1058 7.8e-04 407 971 1.0e-02 623 755 5.5e-01
Linear SMOTE 555 720 4.3e-01 504 822 1.4e-01 585.5 740.5 4.7e-01 637 638 1.0e+00
FWD SMOTE 765.5 612.5 4.9e-01 718 608 6.1e-01 828 498 1.2e-01 735 591 5.0e-01
Info SPIDER 290 340 6.8e-01 420 246 1.7e-01 375.5 254.5 3.2e-01 327 339 9.2e-01
ChiS SPIDER 254.5 375.5 3.2e-01 381 249 2.8e-01 360 270 4.6e-01 232 398 1.7e-01
Fish SPIDER 296.5 333.5 7.6e-01 351 315 7.8e-01 340 326 9.1e-01 296 370 5.6e-01
Gini SPIDER 270 291 8.5e-01 385.5 244.5 2.5e-01 378.5 251.5 3.0e-01 246.5 383.5 2.6e-01
SBMLR SPIDER 77.5 93.5 7.3e-01 59 94 4.1e-01 54 99 2.9e-01 64 89 5.5e-01
Ttest SPIDER 127.5 172.5 5.2e-01 153 198 5.7e-01 132 219 2.7e-01 254 97 4.6e-02
RS SPIDER 450 145 9.1e-03 485 218 4.4e-02 533 170 6.2e-03 340 363 8.6e-01
Linear SPIDER 339 222 3.0e-01 369 297 5.7e-01 414 252 2.0e-01 306 360 6.7e-01
FWD SPIDER 175.5 230.5 5.3e-01 158 307 1.3e-01 170 295 2.0e-01 252 213 6.9e-01
Info ADASYN 210 1168 1.3e-05 1172 206 1.1e-05 913 465 4.1e-02 1048 330 1.1e-03
ChiS ADASYN 285 1041 4.0e-04 1140 186 7.8e-06 904 422 2.4e-02 978 348 3.2e-03
Fish ADASYN 546 780 2.7e-01 1203 123 4.2e-07 1180 146 1.3e-06 860 466 6.5e-02
Gini ADASYN 356 1022 2.4e-03 1305 73 2.0e-08 1212 166 1.9e-06 766 612 4.8e-01
SBMLR ADASYN 187 1088 1.4e-05 834 441 5.8e-02 659 616 8.4e-01 1126 149 2.4e-06
Ttest ADASYN 437 739 1.2e-01 958 170 3.1e-05 921 207 1.6e-04 732 396 7.5e-02
RS ADASYN 266.5 1111.5 1.2e-04 975 403 9.2e-03 565 813 2.6e-01 1090 288 2.6e-04
Linear ADASYN 207.5 1118.5 2.0e-05 949 377 7.3e-03 492 834 1.1e-01 1055 271 2.4e-04
FWD ADASYN 276 1102 1.7e-04 882 496 7.9e-02 783 595 3.9e-01 599 779 4.1e-01
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Figure 1: Spider plot with values of µ+ (in blue) and µ− (in orange) for all the performance metrics; µ+ and µ− correspond to FS+DS and DS+FS,
respectively.
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5.1.2. Pairwise comparisons of the two pipelines when
using different classifiers

C4.5. When using the C4.5 decision tree as the
learner, experimental results in Table 2 show that, in
terms of G-Mean and F1, DS+FS outperforms FS+DS
in more cases than not. This result can be explained
by the intrinsic capacity of a decision tree in choosing
the relevant features during training. This trend is more
significant when using oversampling rather than under-
sampling, suggesting that providing more synthetic mi-
nority class samples is beneficial to the training of the
decision tree(s) for imbalance learning.

SVM. When the base classifier is SVM, as reported
in Table A.2 in the appendix, our results show that
FS+DS outperforms DS+FS when using the undersam-
pling methods in more cases than not, in terms of Acc,
G-Mean and F1. But with the oversampling methods,
there is no clear winner between the two pipelines. It
is important to note that, in terms of the IBA metric,
there is no clear dominance relationship between the
two pipelines, either. This observation indicates that
SVM is less sensitive to oversampling and undersam-
pling. This is because SVM algorithm looks for the
support vectors inherently, which are (possibly) a small
set of samples determining the boundary in the feature
space induced by the given kernel satisfying an opti-
mization function and certain constraints. Oversam-
pling may introduce synthetic samples that will not alter
the set of support vectors, whilst undersampling may re-
move samples that will not become the support vectors.

MLP. In case of the MLP classification algorithm,
shown in Table A.3 in the appendix, we notice a pre-
dominance of FS+DS over DS+FS for all the perfor-
mance metrics. Contrary to the previous case, the
supremacy of FS+DS over DS+FS is more remark-
able in undersampling than oversampling. In terms of
G-Mean, F1, and IBA, we see that with undersampling
data selection methods, FS+DS is often better than the
DS+FS pipeline in most cases. The topology of the ar-
tificial neural network (MLP) structure is fixed, and the
elimination of features prior to data sampling process
simplifies the number of input neurons, leading to faster
convergence in learning. Moreover, a better feature se-
lection method should be able to find a better feature
representation (a subset of features) of the data, bring-
ing better convergence in learning.

Short summary. For MLP and SVM, with over-
sampling data re-sampling methods, the dominance be-
tween the two pipelines is uncertain; but with undersam-
pling, the FS+DS pipeline often outperforms DS+FS.
However, for the decision tree classifier, DS+FS usu-

ally outperforms FS+DS, especially with oversampling
methods. Therefore, the conclusions concerning the
performance of the two pipelines using different clas-
sification algorithms (decision tree classifier v.s. MLP
or SVM) can be quite different, even contrary.

5.1.3. Insights into the influence of IR and SFR on the
two pipelines

We also investigate how the results vary with the
imbalance ratio (IR) and the samples-to-features ratio
(SFR). As mentioned before, IR is the ratio between
the cardinality of the majority and the minority class,
whereas SFR is the ratio between the number of sam-
ples and the number of features. For each of these two
factors/ratios, the experimental datasets were divided in
three groups: the first contains those falling below the
33th percentile, the second includes those between the
34th and the 66th percentile, and the third consists of
those falling above the 66th percentile. The values of
the 33th and the 66th percentile for IR are 6.01 and 9.18;
but for SFR, the values are 37.3 and 115.09, indicating
that SFR may have a significant influence on the perfor-
mance of the pipelines.

Figure 2 offers a visual presentation of the predomi-
nance of FS+DS over DS+FS for different pairs of IR
and SFR, with different metrics considered. The pre-
dominance is measured in terms of µ+ (µ−) which calcu-
lates the number of times where R+ outperforms (under-
performs) R− at the given significance level. On these
grounds, given one of the three possible values of the
percentile for both IR and SFR, the ball plots in the fig-
ure visualize the rate of predominance of FS+DS w.r.t.
DS+FS. Positive values, colored in blue, denote that the
former outperforms the latter, whereas negative values,
colored in orange, have the opposite meaning. The re-
sults show that FS+DS outperforms DS+FS in general,
in terms of the G-Mean, F1, and IBA. But in terms
of Acc, we observe the predominance of DS+FS over
FS+DS.

While these observations hold on datasets with high
imbalance ratios, for datasets with large value of the
SFR but small value of IR (see the upper left part of the
plots), we notice that there is no predominance between
the two pipelines. Such datasets are characterized by
high SFRs and low IRs (the number of training samples
is significantly larger than the number of features, while
the ratio between the number of samples of majority and
minority classes is not very large). Similar observations
also hold for datasets with medium SFR and IR values,
as seen from the central bubble in each plot of Figure 2.

Summary. For datasets with high SFR but relatively
low IR ratios, the FS+DS and DS+FS pipelines return
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Figure 2: Visual analysis of the predominance of FS+DS w.r.t. DS+FS for different pairs of IR and SFR, for each metric considered.

low or zero values of µ+ and µ− and it is hard to tell
which pipeline is better. But for datasets with low SFR
but high IR ratios, the FS+DS pipeline has a compara-
tive advantage over the DS+FS pipeline. However, once
again, there is no constant winner between them.

5.2. Detailed multiple comparisons among the specific
combinations in the two pipelines using Iman-
Davenport Test

Above, we have investigated the overall performance
of the two general pipelines. In this section, we will
look for specific combinations between the FS and
DS methods to recommend the Top-K methods for a
new dataset/application with skewed distributions. We
clarify that by “pipleline”, we denote the two general
frameworks of putting feature selection before and af-
ter data re-sampling for imbalance classification, while

by “specific combination”, we denote a specified pair
of FS and DS methods, e.g., the combination of “Lin-
ear+SMOTE” using the C4.5 classifier. But for each
specific combination, we should still take the two gen-
eral pipelines in two considerations. For instance,
the specific combination of Linear (FS) and SMOTE
(DS) results in two specific methods, which are Lin-
ear+SMOTE and SMOTE+Linear.

The results reported so far are computed considering
all the base classifiers tested and all the data sampling
methods and feature selection approaches. In the fol-
lowing, we will focus on the specific results for each
pair/combination of the data sampling and feature se-
lection methods: for each pair of combination, we run
multiple comparisons by using the Iman-Davenport test
and the Shaffer’s post-hoc test. This enables us to figure
out which combinations are significantly better/worse
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among the n × n comparisons, and it could help re-
searchers and practitioners with their choices of algo-
rithms when facing imbalanced datasets. We use the
IBA metric since it is a metric that quantifies a trade-off

between an unbiased measure of overall accuracy and
an index of how balanced the per-class accuracies are.

The results for each classifier are presented in Ta-
bles 3, A.4, and A.5 and A.6, which are vertically di-
vided into three percentile groups of imbalance ratios.
The tables are also horizontally split into two parts: the
left part reports the results with the oversampling meth-
ods, whilst the right part shows the results with the
undersampling data selection methods. We also take
imbalance ratio and the types of feature selection ap-
proaches into consideration. Each section of the tables
contains three columns: the first column reports the spe-
cific combination/pair which achieves at least one com-
parison where its un-adjusted p-value is smaller than
the un-adjusted p-value given by the Shaffer’s proce-
dure, i.e., Shaffer’s post-hoc test rejects such hypothe-
ses. The second column reports the average values of
the ranks obtained by applying the Iman-Davenport test
(the smaller the rank, the better the specific combina-
tion/pair in the n × n comparisons). Finally, the third
column counts for each feature selection type, the num-
ber of pairwise comparisons in the Shaffer’s post-hoc
test where the considered combination/pair has an unad-
justed p-value smaller than Shaffer’s procedure p-value:
the larger this number, the more times (the larger pro-
portions) the specific combination/pair wins against the
others.

Table 3 reveals that, if a dataset has an imbalance ra-
tio lower than 6, and if one needs to use a filter to se-
lect the features and perform oversampling, the method
that often provides the best performance is first applying
χ2 feature selection, next using the SMOTE oversam-
pling method. Moreover, for both C4.5 and MLP clas-
sifiers, as can be observed from Table 3, and Table A.5
and A.6 in the appendix, SMOTE and RUS seem to be
two ideal oversampling and undersampling methods, re-
spectively; but different feature selection methods still
need to be tested to find the best combination between
DS and FS. We note that, when the columns in each sec-
tion of the tables are empty, this means that we do not
observe any outperforming method (e.g., the wrapper
and oversampling combination for datasets having IR
percentile between 34 and 66 using the MLP). In this
case, our results suggest that researchers should exten-
sively compare all the possible combinations between
the FS and DS methods through exhaustive experiments
to determine which specific combination is the best for
imbalance classification.

Overall, such specific inspections and statistical anal-
ysis should give practitioners and researchers new ref-
erence value when tackling class imbalance.

5.3. Recommending the Top-K specific methods for im-
balance classification using Rank-Sum

It is usually tempting for researchers and practition-
ers to have practical suggestions and guidelines about
the specific top performing combinations for imbalance
classification on their particular data. In this context,
we make a heuristic but intuitive analysis on the top-
3 best performing combinations between the FS and DS
methods, using the heuristic measures we introduced for
Top-K specific combination selection in subsection 4.4.

For each specific combination between the FS and DS
methods (e.g., “Linear+SMOTE” with the C4.5 classi-
fier), and under every different evaluation metric (e.g.,
G-Mean), we calculate its Rank-S um, where we count
the number of datasets where this combination ranks
among the top-3 best performers. Then, for this met-
ric, we select the group of the top-3 specific combina-
tions in terms of Rank-S um (i.e. “Linear+SMOTE”,
“RS+SMOTE”, and “Linear+RUS”), then calculate
their Group-S um. Note that, to facilitate the compar-
ison of top performers under both pipelines, we still
put the feature selection methods before the data re-
sampling methods in the DS+FS pipeline.

C4.5. Figure 3 presents the top-3 specific combi-
nations between the DS and FS methods that achieve
the highest “Rank-Sum” values, using the C4.5 classi-
fication algorithm and under the FS+DS pipeline. For
the IBA, G-Mean and F1 measures, “Linear+SMOTE”
(in which the feature selection method is Linear,
and the data re-sampling method is SMOTE) and
“RS+SMOTE” are constantly among the top-3 combi-
nations that yield the best Rank-S um values. Interest-
ingly, this pattern still holds under the DS+FS pipeline
using the same classifier, as depicted in Figure 4. There-
fore, they can be recommended to the practitioners to try
with priority. In addition, we see that Linear+SPIDER
is constantly the best performer in terms of Acc, under
both the FS+DS and DS+FS pipelines. But in terms
of TPR, the top-3 specific combinations under the two
pipelines are totally different. We also notice that, the
top-3 performers rank among the best performers only
on half or less of the 52 datasets. Even if all the top-
3 methods are tried, their Group-S um value indicates
that, in union, they rank among the top-3 in less than
75% of the total datasets.

SVM. Shown in Figures 5 and 6, we see that, with
SVM and under the G-Mean and F1 metrics, the rela-
tive advantages of the top-3 combinations are not very
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Table 3: Results of the Iman-Davenport test and the Shaffer’s post-hoc test described in subsection 4.4 when the C4.5 classifier is used as the base
learner. The tests are applied to classification results computed in terms of IBA. The first column “method” in each section denotes the name of a
specific combination of the FS+DS or DS+FS pipeline, e.g., “ChiS+SMOTE”. The second column “Rank” reports the average ranks of the specific
combination when using the Iman-Davenport Test. The smaller the rank, the better the pipeline in the n × n comparisons in the Iman-Davenport
Test. The third column “#p” calculates the number of pairwise comparisons in the Shaffer’s Post-hoc Test where the corresponding pipeline has
an unadjusted p-value smaller than Shaffer’s procedure p-value. The larger this #p value, the more times that the specific combination (e.g.,
“ChiS+SMOTE”) wins against the others.

FS
DS Oversampling Undersampling

Method Rank #p Method Rank #p

0-
33

th
IR

Pe
rc

en
til

e Filter

ChiS+SMOTE 6.2353 6 RUS+Gini 6.1765 7
Info+SMOTE 6.5882 6 Info+RUS 6.5882 6
Gini+ADASYN 7.4706 5 RUS+Info 6.5882 6
Fish+ADASYN 7.9412 5 RUS+ChiS 6.7059 5
ChiS+ADASYN 8.2941 4 Fish+RUS 6.8824 5
Info+ADASYN 8.4706 4 Gini+RUS 7.5 2
SMOTE+ChiS 8.7059 3 ChiS+RUS 7.5588 1
Fish+SMOTE 8.7647 3 RUS+Fish 8 1
Gini+SMOTE 8.7941 3
SMOTE+Info 9.2059 1
SMOTE+Gini 10.2647 1

Wrapper

SMOTE+RS 3.6765 4 RS+RUS 3.5294 6
SMOTE+Linear 3.9118 4 RUS+RS 3.6176 6
Linear+SMOTE 5.1765 2 RUS+Linear 3.6176 6
RS+SMOTE 5.7059 2 Linear+RUS 4.4706 5
Linear+ADASYN 6.0294 2
RS+ADASYN 6.1765 2

34
th

-6
6t

h
IR

Pe
rc

en
til

e

Filter

SMOTE+ChiS 6.3235 6 ChiS+RUS 5.5882 5
SMOTE+Info 6.5588 4 Fish+RUS 5.7647 5
Info+SMOTE 7.2353 4 RUS+Gini 5.8529 5
ChiS+SMOTE 7.4412 3 RUS+Info 6.1765 5
Info+ADASYN 8.5882 1 Gini+RUS 6.2941 5

RUS+ChiS 6.4706 5
Info+RUS 7 5
RUS+Fish 7.4118 5

Wrapper

SMOTE+RS 2.7941 9 Linear+RUS 2.8235 8
SMOTE+Linear 2.7941 9 RUS+Linear 3 8
Linear+SMOTE 3.6471 5 RUS+RS 3.2353 8
RS+SMOTE 4.4706 2 RS+RUS 3.7353 8

67
th

-1
00

th
IR

Pe
rc

en
til

e

Filter

SMOTE+ChiS 6.1944 3 RUS+Info 4.75 12
Info+SMOTE 6.8611 3 RUS+ChiS 4.8333 12
SMOTE+Info 7.2222 3 RUS+Gini 6.3889 7
SMOTE+Gini 7.5556 3 Info+RUS 6.4167 7
ChiS+SMOTE 7.6667 3 Fish+RUS 6.6111 7
Gini+SMOTE 8.1389 2 ChiS+RUS 7.1667 6
Fish+SMOTE 9.9722 2 RUS+Fish 8.3889 1
Gini+ADASYN 10.1111 1 Gini+RUS 8.4167 1

Wrapper

Linear+SMOTE 2.9444 5 Linear+RUS 2.5556 6
SMOTE+RS 3.8333 4 RUS+RS 3.4167 6
SMOTE+Linear 3.8889 3 RUS+Linear 3.5556 6
RS+SMOTE 4.6667 3 RS+RUS 3.8333 6
Linear+ADASYN 7.0833 2
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Group-S um
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Figure 3: Rank-Sum results for the Top-3 specific combinations under the FS+DS pipeline, using the C4.5 classifier
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Figure 4: Rank-Sum results for the Top-3 specific combinations under the DS+FS pipeline, using the C4.5 classifier
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Figure 5: Rank-Sum results for the Top-3 specific combinations under the FS+DS pipeline, using the SVM classifier
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Figure 6: Rank-Sum results for the Top-3 specific combinations under the DS+FS pipeline, using the SVM classifier

outstanding. Nevertheless, we can still find that RUS
seems to be the best data re-sampling method in the two
pipelines under all of the IBA, G-Mean and T PR met-
rics. Overall, it depends on the specific pipeline and
evaluation metrics to select the corresponding top per-
forming combinations.

Besides the Rank-Sum values, we also report the ab-
solute cross-dataset averaged accuracy value for each of
the top-3 combinations. That is, for each specific com-
bination, we compute the averaged evaluation value of
this method across all the 52 datasets. Shown in Fig-
ures 7 and 8, we use box plots to demonstrate the cross-
dataset average accuracy value of the top-3 performers
when using the C4.5 classifier. This way, one can intu-
itively check the general performance of each specific
combination under different evaluation metrics. Simi-
larly, in Figures 9 and 10, we also present the cross-
dataset average accuracy values for SVM. It is clear that,
in terms of the G-Mean metric and with SVM, the top-
3 performers under the DS+FS pipeline slightly outper-
form their counterparts under the FS+DS pipeline.

With the absolute cross-dataset average evaluation
values, it is also possible to roughly compare the overall

performance of different combinations across different
classifiers. For instance, shown in Figures 8 and 10,
in terms of IBA and G-Mean, the top-3 combinations
under C4.5 and the DS+FS pipeline, and the top-3 com-
binations under SVM and the same pipeline, yielded re-
markably better performance than the others.

MLP. For MLP under the FS+DS pipeline, the pat-
terns are quite different from C4.5 and SVM. From Fig-
ure 11, we observe that, in terms of G-Mean, the best
performer is Linear+ADASYN, while in terms of IBA,
the best method is FWD+RUS. But for the other combi-
nations, it seems that the influence of data re-sampling
on the performance is insignificant, and what matters
is the feature selection method. For instance, in terms
of IBA, the best feature selection method is constantly
FWD; in terms of G-Mean, except the top-1 combi-
nation (Linear+ADASYN), FWD is also the best fea-
ture selection method for the rest top-performing meth-
ods/combinations. Still, in terms of F1, Info is con-
stantly the best feature selection method for all the
top performers. Therefore, for MLP under the FS+DS
pipeline, one can resort to a two-stage method for effi-
ciently deriving the best combination. In the first stage,
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Figure 7: Box plots for the cross-datasets averaged value of each metric, for the Top-3 specific combinations using C4.5 and FS+DS pipeline
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Figure 8: Box plots for the cross-datasets averaged value of each metric, for the Top-3 specific combinations using C4.5 and DS+FS pipeline
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Figure 9: Box plots for the cross-datasets averaged value of each metric, for the Top-3 specific combinations using SVM and FS+DS pipeline
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Figure 10: Box plots for the cross-datasets averaged value of each metric, for the Top-3 specific combinations using SVM and DS+FS pipeline
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Figure 11: Box plots for the cross-datasets averaged value of each metric, for the Top-3 specific combinations using MLP and FS+DS pipeline
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Figure 12: Box plots for the cross-datasets averaged value of each metric, for the Top-3 specific combinations using MLP and DS+FS pipeline
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one can find which feature selection methods yield the
best performance for a given evaluation metric. In the
second stage, one only needs to combine the selected
feature selection method(s) with different re-sampling
methods. This way, the computation cost can be sub-
stantially reduced. But the above patterns do not hold
for MLP with the DS+FS pipeline. From Figure 12, we
see that Chis+OSS is generally the winner in terms of
G-Mean, TPR and F1, since it obtains the best cross-
dataset averaged value for each of these three met-
rics. But IBA under the same DS+FS pipeline, the best
combination is RS+RUS, and RUS is the best data re-
sampling method for all the top-3 combinations.

Discussions. Comparing results from the statistical
Iman-Davenport Tests in subsection 5.2 and the heuris-
tic Top-K measures based on Rank-SUM in this sub-
section, we can check whether the findings or conclu-
sions from these two different measures are generally
consistent or not. When comparing Table 2 and Fig-
ures 3 and 4, we see that for IBA under the C4.5 clas-
sifier, the specific combinations of SMOTE+RS and
SMOTE+Linear under the DS+FS pipeline, and Lin-
ear+RUS and Linear+RUS under the FS+DS pipeline,
are consistently among the top-3 best performers for
both the statistical Iman-Davenport Tests and the heuris-
tic Top-K measures. For SVM, the top performers
using these two different measures are partially con-
sistent. For instance, the specific combinations of
ChiS+RUS and Ttest+RUS under the FS+DS pipeline
are among the top-3 performers for both measures.
Similar observations also hold for MLP. For instance,
RUS+RS and RUS+Linear under the DS+FS pipeline,
and FWD+RUS and FWD+CNN under the FS+DS
pipeline, are among the top performers for both mea-
sures.

Overall, Iman-Davenport Test is a stronger statisti-
cal measure, but it might yield too many candidates as
top performers; it also needs to check both the Rank
value and the #p value. The ideal case is to have a
small Rank value but a large #p value; however, it
will be extremely hard to pick the specific combinations
when they present large Rank value but low #p value.
The Top-K measure based on Rank-SUM is heuristic
yet straightforward, it recommends the top-3 combina-
tions/methods for each metric, based on the number of
datasets that a method ranks among the top-3 best per-
formers. Therefore, the joint use of these two measures
may provide more reliable results. For instance, one can
only pick the specific combinations that are the top per-
formers for both measures.

6. Concluding Remarks

This work carried out an extensive empirical study to
investigate the performance of the feature selection be-
fore/after data re-sampling pipelines for improving two-
class imbalance learning. From this study, we can draw
the following conclusions:

1. To derive the best performing imbalance classifi-
cation model, both the feature selection before and
after data re-sampling pipelines should be consid-
ered; in particular, the feature selection after data
re-sampling pipeline deserves significantly more
attention from the community, because it was com-
monly overlooked before.

2. When using the decision tree as base learner,
DS+FS outperforms FS+DS in more cases than
not, in terms of G-Mean and F1, and this pattern is
more evident when using oversampling methods.

3. When the base classifier is SVM, with under-
sampling methods, FS+DS outperforms DS+FS
in general. However, when using oversampling
methods, there is no clear winner between the two
pipelines. We argue that a preliminary identifica-
tion of most salient descriptors helps the kernel im-
prove the linear separation between classes; thus,
the learner derived is less sensitive to oversampling
and undersampling.

4. Besides the base learners, imbalance ratio of the
datasets and samples-to-feature ratio also have a
great influence on the performance of the two
pipelines. On datasets with high imbalance ratios,
FS+DS outperforms DS+FS in general in terms of
the G-Mean, F1, and IBA. But for datasets with a
large value of the SFR but a small value of IR, there
is no predominance between the two pipelines.
Similar considerations also hold for datasets with
medium SFR and IR values.

In general, we have seen that the choice of the two
pipelines depends on the specific dataset, the combi-
nations of feature selection and data re-sampling algo-
rithms, as well as the adopted classification algorithms.
We have also provided heuristic yet practical guidance
for selecting the Top-K specific combinations for each
of the evaluation metrics and the two pipelines.

Overall, this study provides new empirical findings
on how to derive the best imbalance classification model
under different configurations of pipelines, and differ-
ent combinations of feature selection and re-sampling
methods. We suggest the readers to consider both
pipelines when looking for the best imbalance classi-
fication model.
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Appendix A.

Table A.1: Summary of the used datasets. IR and SFR denote the imbalance ratio and the samples-to-features ratio, respectively.

Dataset # instances # features Prior minority class (%) IR SFR

BioCells 489 64 20.45 3.89 7.64
cleveland 173 13 7.51 12.31 13.31
ecoli-0-1-4-7 vs 2-3-5-6 336 7 8.63 10.59 48.00
ecoli-0-1-4-7 vs 5-6 332 6 7.53 12.28 55.33
ecoli-0-2-6-7 vs 3-5 224 7 9.82 9.18 32.00
ecoli-0-3-4-6 vs 5 205 7 9.76 9.25 29.29
ecoli-0-3-4-7 vs 5-6 257 7 9.73 9.28 36.71
ecoli-0-6-7 vs 5 220 6 9.09 10.00 36.67
ecoli1 336 7 22.92 3.36 48.00
ecoli2 336 7 15.48 5.46 48.00
ecoli3 336 7 10.42 8.60 48.00
ecoli4 336 7 5.95 15.80 48.00
german 1000 38 30.00 2.33 26.32
glass-0-1-2-3 vs 4-5-6 214 9 23.83 3.20 23.78
glass-0-1-6 vs 2 336 9 11.01 8.08 37.33
glass-0-1-6 vs 5 336 9 11.01 8.08 37.33
glass0 214 9 32.71 2.06 23.78
glass2 336 9 11.01 8.08 37.33
glass4 336 9 9.82 9.18 37.33
glass5 336 9 8.63 10.59 37.33
glass6 214 9 13.55 6.38 23.78
haberman 306 3 26.47 2.78 102.00
Insurance Company 9822 85 5.97 15.76 115.55
led7digit 443 7 8.35 10.97 63.29
newthyroid 215 5 16.28 5.14 43.00
optdigit class0-1vs 2-9 5620 64 10.16 8.84 87.81
optdigit class0-2vs 3-9 5620 64 20.07 3.98 87.81
optdigit class0-3vs 4-9 5620 64 30.25 2.31 87.81
pageblocks 472 10 5.93 15.86 47.20
pima 768 8 34.90 1.87 96.00
segment 2308 19 14.26 6.02 121.47
semeion class1-2vs 3-9 1593 256 20.15 3.96 6.22
semeion class1-3vs 4-9 1593 256 30.13 2.32 6.22
semeion class1vs 2-9 1593 256 10.17 8.83 6.22
vehicle 846 18 25.77 2.88 47.00
vowel0 1829 13 11.65 7.59 140.69
waveform no noise class0vs 1-2 5000 21 66.86 0.50 238.10
waveform no noise class2vs 0-1 5000 21 33.92 1.95 238.10
waveform yes noise class2vs 0-1 5000 40 33.10 2.02 125.00
winequality-red-4 1599 11 3.31 29.17 145.36
yeast-0-2-5-6 vs 3-7-8-9 1004 8 9.86 9.14 125.50
yeast-0-2-5-7-9 vs 3-6-8 1004 8 9.86 9.14 125.50
yeast-0-3-5-9 vs 7-8 506 8 9.88 9.12 63.25
yeast-0-5-6-7-9 vs 4 1829 13 11.81 7.47 140.69
yeast-1-2-8-9 vs 7 1829 13 8.58 10.65 140.69
yeast-1-4-5-8 vs 7 1829 13 10.22 8.78 140.69
yeast-1 vs 7 1829 13 11.86 7.43 140.69
yeast-2 vs 4 1829 13 13.01 6.68 140.69
yeast-2 vs 8 1829 13 13.07 6.65 140.69
yeast4 1829 13 9.51 9.51 140.69
yeast5 1829 13 9.13 9.95 140.69
yeast6 1829 13 8.64 10.58 140.69
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Table A.2: Wilcoxon test for the comparison between FS+DS (R+) and DS+FS (R−), when the SVM classifier is used.

FS DS Accuracy (Acc) G-Mean (g) F1 IBA
R+ R- p-value R+ R- p-value R+ R- p-value R+ R- p-value

Info RUS 1185 141 9.9e-07 1156 222 2.1e-05 1217 161 1.5e-06 644 734 6.8e-01
ChiS RUS 1148 178 5.5e-06 1083 243 8.3e-05 1172 154 1.8e-06 518 757 2.5e-01
Fish RUS 1137.5 188.5 8.7e-06 1136 190 9.3e-06 1146 180 6.0e-06 679 647 8.8e-01
Gini RUS 1141 185 7.4e-06 1114 264 1.1e-04 1175 203 9.6e-06 552 826 2.1e-01
SBMLR RUS 1136.5 189.5 9.1e-06 930 345 4.7e-03 994 281 5.8e-04 626 649 9.1e-01
Ttest RUS 1007 218 8.7e-05 1201 125 4.6e-07 1173 153 1.7e-06 791 484 1.4e-01
RS RUS 635 640 9.8e-01 663 663 1.0e+00 700 626 7.3e-01 668 607 7.7e-01
Linear RUS 633.5 641.5 9.7e-01 530 796 2.1e-01 621 705 6.9e-01 440 886 3.7e-02
FWD RUS 1215 163 1.7e-06 1288 90 4.9e-08 1315 63 1.2e-08 817 561 2.4e-01
Info CNN 1053 222 6.0e-05 1036 239 1.2e-04 1126 149 2.4e-06 432 843 4.7e-02
ChiS CNN 1032 243 1.4e-04 1020 255 2.2e-04 1118 157 3.5e-06 445 830 6.3e-02
Fish CNN 893.5 331.5 5.2e-03 912 363 8.1e-03 982 293 8.8e-04 488 737 2.2e-01
Gini CNN 965 310 1.6e-03 882 343 7.3e-03 958 267 5.9e-04 525 750 2.8e-01
SBMLR CNN 443 685 2.0e-01 678 312 3.3e-02 787 294 7.1e-03 631 450 3.2e-01
Ttest CNN 925.5 202.5 1.3e-04 925 401 1.4e-02 1002 324 1.5e-03 419 856 3.5e-02
RS CNN 916 165 4.1e-05 958 123 5.1e-06 964 117 3.7e-06 457 624 3.6e-01
Linear CNN 946 182 5.3e-05 916 165 4.1e-05 951 130 7.3e-06 426 655 2.1e-01
FWD CNN 975.5 350.5 3.4e-03 963 363 4.9e-03 1034 292 5.1e-04 385 941 9.2e-03
Info OSS 596 580 9.3e-01 541 635 6.3e-01 610 566 8.2e-01 575 601 8.9e-01
ChiS OSS 591.5 633.5 8.3e-01 486 642 4.1e-01 516 612 6.1e-01 575 506 7.1e-01
Fish OSS 381.5 746.5 5.3e-02 368 808 2.4e-02 364 812 2.2e-02 655 521 4.9e-01
Gini OSS 514.5 760.5 2.4e-01 485 740 2.0e-01 509.5 715.5 3.1e-01 695 530 4.1e-01
SBMLR OSS 436.5 466.5 8.5e-01 263 683 1.1e-02 279 667 1.9e-02 456 490 8.4e-01
Ttest OSS 332.5 795.5 1.4e-02 479 697 2.6e-01 379 797 3.2e-02 648 528 5.4e-01
RS OSS 603.5 524.5 6.8e-01 608 568 8.4e-01 640 536 5.9e-01 563 613 8.0e-01
Linear OSS 433 602 3.4e-01 559 617 7.7e-01 469 707 2.2e-01 620 508 5.5e-01
FWD OSS 560 568 9.7e-01 531 645 5.6e-01 629 547 6.7e-01 594 582 9.5e-01
Info SMOTE 800 328 1.3e-02 755 421 8.7e-02 742 434 1.1e-01 543 585 8.2e-01
ChiS SMOTE 840.5 335.5 9.6e-03 652 524 5.1e-01 677 451 2.3e-01 409 719 1.0e-01
Fish SMOTE 802 374 2.8e-02 813 363 2.1e-02 789 387 3.9e-02 554 574 9.2e-01
Gini SMOTE 829.5 346.5 1.3e-02 813 363 2.1e-02 789 387 3.9e-02 515 613 6.0e-01
SBMLR SMOTE 684 351 6.0e-02 521 514 9.7e-01 560 475 6.3e-01 453 582 4.7e-01
Ttest SMOTE 779.5 445.5 9.7e-02 735 490 2.2e-01 665 560 6.0e-01 567 658 6.5e-01
RS SMOTE 427 749 9.9e-02 654 522 5.0e-01 655 521 4.9e-01 706 422 1.3e-01
Linear SMOTE 322 759 1.7e-02 620 556 7.4e-01 580 596 9.3e-01 647 434 2.4e-01
FWD SMOTE 869.5 306.5 3.9e-03 938 238 3.3e-04 939 237 3.2e-04 563 565 9.9e-01
Info SPIDER 222 306 4.3e-01 279 351 5.6e-01 280 350 5.7e-01 302 293 9.4e-01
ChiS SPIDER 227.5 402.5 1.5e-01 288 378 4.8e-01 247 419 1.8e-01 327 339 9.2e-01
Fish SPIDER 216.5 524.5 2.6e-02 271 470 1.5e-01 213 528 2.2e-02 441 300 3.1e-01
Gini SPIDER 353 467 4.4e-01 427.5 475.5 7.6e-01 363 540 2.7e-01 397 464 6.6e-01
SBMLR SPIDER 353.5 466.5 4.5e-01 328 533 1.8e-01 349 512 2.9e-01 412 449 8.1e-01
Ttest SPIDER 257 409 2.3e-01 252 378 3.0e-01 246 384 2.6e-01 312 318 9.6e-01
RS SPIDER 307.5 322.5 9.0e-01 288 342 6.6e-01 291 304 9.1e-01 193 402 7.4e-02
Linear SPIDER 241 287 6.7e-01 240 321 4.7e-01 244 284 7.1e-01 138 358 3.1e-02
FWD SPIDER 365.5 300.5 6.1e-01 406.5 296.5 4.1e-01 340.5 362.5 8.7e-01 375 328 7.2e-01
Info ADASYN 866 512 1.1e-01 1310 68 1.6e-08 1199 179 3.4e-06 789 589 3.6e-01
ChiS ADASYN 937 441 2.4e-02 1327 51 6.2e-09 1255 123 2.5e-07 712 666 8.3e-01
Fish ADASYN 1052 326 9.5e-04 1290 88 4.4e-08 1287 91 5.2e-08 549 829 2.0e-01
Gini ADASYN 1036 290 4.7e-04 1341 37 2.9e-09 1323 55 7.8e-09 443 935 2.5e-02
SBMLR ADASYN 346 980 3.0e-03 1081 245 8.9e-05 1095 283 2.2e-04 949 377 7.3e-03
Ttest ADASYN 1107 219 3.2e-05 1222 53 1.7e-08 1231 44 1.0e-08 450 876 4.6e-02
RS ADASYN 399 927 1.3e-02 1071 255 1.3e-04 791 535 2.3e-01 963 363 4.9e-03
Linear ADASYN 419 856 3.5e-02 1067 259 1.5e-04 801 525 2.0e-01 1005 321 1.3e-03
FWD ADASYN 822 556 2.3e-01 1041 285 4.0e-04 1014 312 1.0e-03 559 767 3.3e-01
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Table A.3: Wilcoxon test for the comparison between FS+DS (R+) and DS+FS (R−), when the MLP classifier is used.

FS DS Accuracy (Acc) G-Mean (g) F1 IBA
R+ R- p-value R+ R- p-value R+ R- p-value R+ R- p-value

Info RUS 856 225 5.7e-04 767 361 3.2e-02 828 300 5.2e-03 469 659 3.1e-01
ChiS RUS 819 216 6.7e-04 786 342 1.9e-02 857 271 1.9e-03 454 674 2.4e-01
Fish RUS 816 312 7.7e-03 936 240 3.6e-04 927 249 5.1e-04 562 614 7.9e-01
Gini RUS 989 236 1.8e-04 994 231 1.5e-04 921 255 6.4e-04 492 733 2.3e-01
SBMLR RUS 1289 37 4.4e-09 1008 267 3.5e-04 1120 155 3.2e-06 494 781 1.7e-01
Ttest RUS 832 249 1.4e-03 1074 102 6.2e-07 1032 144 5.3e-06 662 466 3.0e-01
RS RUS 445 830 6.3e-02 671 604 7.5e-01 551 724 4.0e-01 552 723 4.1e-01
Linear RUS 410 766 6.8e-02 631 545 6.6e-01 497 679 3.5e-01 672 504 3.9e-01
FWD RUS 1213 113 2.5e-07 1215 163 1.7e-06 1274 104 1.0e-07 587 791 3.5e-01
Info CNN 843 535 1.6e-01 1377 1 3.7e-10 1366 12 7.0e-10 932 446 2.7e-02
ChiS CNN 843 535 1.6e-01 1372 6 5.0e-10 1355 23 1.3e-09 895 483 6.1e-02
Fish CNN 793 585 3.4e-01 1348 30 2.0e-09 1302 76 2.4e-08 989 389 6.3e-03
Gini CNN 880 498 8.2e-02 1326 0 5.1e-10 1303 23 2.0e-09 903 423 2.4e-02
SBMLR CNN 842 433 4.8e-02 1064 112 1.0e-06 1042 134 3.2e-06 555 621 7.4e-01
Ttest CNN 945 381 8.2e-03 1215 10 2.1e-09 1178 47 1.9e-08 929 296 1.6e-03
RS CNN 917 461 3.8e-02 1378 0 3.5e-10 1378 0 3.5e-10 784 594 3.9e-01
Linear CNN 892 486 6.5e-02 1378 0 3.5e-10 1378 0 3.5e-10 862 516 1.2e-01
FWD CNN 964 414 1.2e-02 1353 25 1.5e-09 1347 31 2.1e-09 725 653 7.4e-01
Info OSS 167 1058 9.4e-06 985 240 2.1e-04 626 599 8.9e-01 930 295 1.6e-03
ChiS OSS 129.5 1095.5 1.6e-06 994 281 5.8e-04 728 547 3.8e-01 938 337 3.7e-03
Fish OSS 164.5 1110.5 5.0e-06 1106 220 3.3e-05 734 592 5.1e-01 1004 322 1.4e-03
Gini OSS 127 1148 8.3e-07 1038 187 2.3e-05 627 598 8.9e-01 943 282 1.0e-03
SBMLR OSS 341.5 786.5 1.9e-02 749 379 5.0e-02 697 431 1.6e-01 720 408 9.9e-02
Ttest OSS 158 970 1.7e-05 841 335 9.5e-03 399 777 5.3e-02 921 255 6.4e-04
RS OSS 230 1045 8.4e-05 1219 107 1.9e-07 769 557 3.2e-01 1001 325 1.5e-03
Linear OSS 216 960 1.4e-04 1116 109 5.5e-07 722 503 2.8e-01 982 243 2.4e-04
FWD OSS 255 1123 7.7e-05 1012 366 3.3e-03 647 731 7.0e-01 969 409 1.1e-02
Info SMOTE 602 574 8.9e-01 830 445 6.3e-02 680 595 6.8e-01 483 742 2.0e-01
ChiS SMOTE 671 604 7.5e-01 880 395 1.9e-02 702 573 5.3e-01 442 833 5.9e-02
Fish SMOTE 656.5 618.5 8.5e-01 984 291 8.2e-04 745 530 3.0e-01 589 686 6.4e-01
Gini SMOTE 599 577 9.1e-01 952 273 7.3e-04 656 569 6.7e-01 500 725 2.6e-01
SBMLR SMOTE 786 390 4.2e-02 736 489 2.2e-01 686 539 4.6e-01 445 780 9.6e-02
Ttest SMOTE 677 548 5.2e-01 835 390 2.7e-02 649 576 7.2e-01 689 536 4.5e-01
RS SMOTE 313 1013 1.0e-03 617 709 6.7e-01 372 954 6.4e-03 690 636 8.0e-01
Linear SMOTE 326 949 2.6e-03 678 597 7.0e-01 389 886 1.6e-02 746 529 2.9e-01
FWD SMOTE 831.5 546.5 1.9e-01 1034 344 1.7e-03 928 450 3.0e-02 549 829 2.0e-01
Info SPIDER 73 1055 2.0e-07 1085 91 3.4e-07 574 602 8.9e-01 912 264 8.9e-04
ChiS SPIDER 94 1131 2.5e-07 1135 90 2.0e-07 662 563 6.2e-01 887 338 6.3e-03
Fish SPIDER 81 1047 3.2e-07 1088 88 2.9e-07 625 551 7.0e-01 919 257 6.9e-04
Gini SPIDER 59 1166 3.7e-08 1126 99 3.3e-07 568 657 6.6e-01 965 260 4.5e-04
SBMLR SPIDER 142 893 2.3e-05 818 263 2.4e-03 670 411 1.6e-01 674 407 1.4e-01
Ttest SPIDER 68 1060 1.5e-07 998 130 4.4e-06 457 671 2.6e-01 909 219 2.6e-04
RS SPIDER 167 1058 9.4e-06 1192 33 8.2e-09 756 469 1.5e-01 972 253 3.5e-04
Linear SPIDER 155 926 2.5e-05 1103 25 1.2e-08 741 387 6.1e-02 939 189 7.2e-05
FWD SPIDER 77 1249 4.0e-08 1212 166 1.9e-06 687 691 9.9e-01 1047 331 1.1e-03
Info ADASYN 1097 281 2.0e-04 1345 33 2.3e-09 1351 27 1.7e-09 584 794 3.4e-01
ChiS ADASYN 1130 248 5.9e-05 1338 40 3.4e-09 1348 30 2.0e-09 486 892 6.5e-02
Fish ADASYN 1124 254 7.4e-05 1369 9 5.9e-10 1375 3 4.2e-10 532 846 1.5e-01
Gini ADASYN 1145 233 3.3e-05 1365 13 7.4e-10 1370 8 5.6e-10 415 963 1.3e-02
SBMLR ADASYN 1174 152 1.7e-06 942 384 8.9e-03 1044 282 3.6e-04 440 886 3.7e-02
Ttest ADASYN 1227 151 9.6e-07 1321 57 8.6e-09 1348 30 2.0e-09 649 729 7.2e-01
RS ADASYN 837 541 1.8e-01 1324 54 7.3e-09 1311 67 1.5e-08 675 703 9.0e-01
Linear ADASYN 837 541 1.8e-01 1326 52 6.6e-09 1297 81 3.1e-08 749 629 5.8e-01
FWD ADASYN 1031 295 5.6e-04 1309 69 1.6e-08 1309 69 1.6e-08 632 746 6.0e-01
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Table A.4: Results of the Iman-Davenport test and the Shaffer’s post-hoc test described in subsection 4.4 when the SVM classifier is used as the
base learner. The tests are applied to classification results computed in terms of IBA. The notations for “method”, “Rank” and “#p” are the same
as Table 3. And the explanation and meaning of the empty columns are the same as Table A.5.

FS
DS Oversampling Undersampling

Method Rank #p Method Rank #p

0-
33

th
IR

Pe
rc

en
til

e Filter

Gini+ADASYN 8.7647 2 Info+RUS 4.9118 10
ChiS+RUS 5.5 10
Fish+RUS 5.8529 10
Gini+RUS 6.0588 8
Ttest+RUS 8.4412 3

Wrapper

FWD+RUS 3.4118 6
RUS+Linear 3.7941 5
RUS+RS 4.0882 4
RS+RUS 4.2059 4
Linear+RUS 4.9706 3
FWD+OSS 7.6176 1

34
th

-6
6t

h
IR

Pe
rc

en
til

e

Filter

Info+SMOTE 8.8824 1 Info+RUS 6.7941 5
ChiS+RUS 7.6471 2

Wrapper

RS+RUS 4.9118 2

67
th

-1
00

th
IR

Pe
rc

en
til

e

Filter

Fish+SMOTE 10.5833 1 Fish+RUS 4.4444 11
Fish+ADASYN 10.8056 1 Ttest+RUS 4.6111 11

Info+RUS 5.4167 11
Gini+RUS 5.5556 11
ChiS+RUS 6.0833 10

Wrapper

FWD+RUS 3.2778 6
RS+RUS 4.0556 6
RUS+Linear 4.7778 4
RUS+RS 4.8056 4
Linear+RUS 5.1944 3
OSS+FWD 8.0294 1
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Table A.5: Results of the Iman-Davenport test and the Shaffer’s post-hoc test described in subsection 4.4 when the MLP classifier is used as the
base learner. The tests are applied to classification results computed in terms of IBA. The notations for “Method”, “Rank” and “#p” are the same
as Table 3. Note that, when the columns in each section of the tables are empty, this means that we do not observe any outperforming method (e.g.,
the wrapper and oversampling combination for datasets having IR percentile between 0 and 33 using the MLP), that is, their statistical difference
is insignificant at all. In such cases, our results suggest that researchers to exhaustively compare each possible combination in the two pipelines to
determine which one is the best.(Continues to Table A.6)

FS
DS Oversampling Undersampling

Method Rank #p Method Rank #p

0-
33

th
IR

Pe
rc

en
til

e

Filter

Fish+SMOTE 9.1176 5 Fish+RUS 8.1765 5
Fish+SPIDER 9.1176 5 Fish+CNN 8.1765 5
Fish+ADASYN 9.1176 5 Fish+OSS 8.1765 5
ChiS+SMOTE 10.2647 4 ChiS+RUS 9.7941 4
ChiS+SPIDER 10.2647 4 ChiS+CNN 9.7941 4
ChiS+ADASYN 10.2647 4 ChiS+OSS 9.7941 4
Gini+SMOTE 10.7647 3 Gini+RUS 10.0588 4
Gini+SPIDER 10.7647 3 Gini+CNN 10.0588 4
Gini+ADASYN 10.7647 3 Gini+OSS 10.0588 4
Info+SMOTE 11.1765 3 Info+RUS 10.4412 4
Info+SPIDER 11.1765 3 Info+CNN 10.4412 4
Info+ADASYN 11.1765 3 Info+OSS 10.4412 4
SMOTE+ChiS 11.6471 3 Ttest+RUS 11.4412 2
Ttest+SMOTE 11.8235 1 Ttest+CNN 11.4412 2
Ttest+SPIDER 11.8235 1 Ttest+OSS 11.4412 2
Ttest+ADASYN 11.8235 1
SMOTE+Info 12.1765 1

Wrapper

FWD+SMOTE 5.5294 2 FWD+RUS 5.0588 4
FWD+SPIDER 5.5294 2 FWD+CNN 5.0588 4
FWD+ADASYN 5.5294 2 FWD+OSS 5.0588 4

Linear+RUS 5.9118 3
Linear+CNN 5.9118 3
Linear+OSS 5.9118 3
RUS+RS 6.6765 3
RUS+Linear 7.0294 3
RS+RUS 8.2059 1
RS+CNN 8.2059 1
RS+OSS 8.2059 1
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Table A.6: Results of the Iman-Davenport test and the Shaffer’s post-hoc test described in subsection 4.4 when the MLP classifier is used as the
base learner. (Continuation of Table A.5, showing the 34-66th and 67th-100th IR Percentiles)

FS
DS Oversampling Undersampling

Method Rank #p Method Rank #p

34
th

-6
6t

h
IR

Pe
rc

en
til

e

Filter

ChiS+SMOTE 10.4706 4 Ttest+RUS 10.6471 3
ChiS+SPIDER 10.4706 4 Ttest+CNN 10.6471 3
ChiS+ADASYN 10.4706 4 Ttest+OSS 10.6471 3
SMOTE+Info 10.6471 4 ChiS+RUS 10.9412 2
Ttest+SMOTE 10.6471 4 ChiS+CNN 10.9412 2
Ttest+SPIDER 10.6471 4 ChiS+OSS 10.9412 2
Ttest+ADASYN 10.6471 4 Gini+RUS 11.5588 2

Gini+CNN 11.5588 2
Gini+OSS 11.5588 2
RUS+ChiS 11.9706 2
RUS+Info 12.2059 1

Wrapper

RUS+RS 5.2059 4
RUS+Linear 5.2059 4
RS+RUS 5.9412 3
RS+CNN 5.9412 3
RS+OSS 5.9412 3
Linear+RUS 7.6765 2
Linear+CNN 7.6765 2
Linear+OSS 7.6765 2
FWD+RUS 7.8235 2
FWD+CNN 7.8235 2
FWD+OSS 7.8235 2

67
th

-1
00

th
IR

Pe
rc

en
til

e

Filter

Fish+SMOTE 8.75 4 Fish+RUS 8.8611 5
Fish+SPIDER 8.75 4 Fish+CNN 8.8611 5
Fish+ADASYN 8.75 4 Fish+OSS 8.8611 5
ChiS+SMOTE 9.5278 3 ChiS+RUS 9.1389 5
ChiS+SPIDER 9.5278 3 ChiS+CNN 9.1389 5
ChiS+ADASYN 9.5278 3 ChiS+OSS 9.1389 5
Gini+SMOTE 10.3611 1 Gini+RUS 9.6667 5
Gini+SPIDER 10.3611 1 Gini+CNN 9.6667 5
Gini+ADASYN 10.3611 1 Gini+OSS 9.6667 5

Info+RUS 9.9444 5
Info+CNN 9.9444 5
Info+OSS 9.9444 5

Wrapper

SMOTE+RS 5.8611 3 Linear+RUS 5.75 3
Linear+SMOTE 6.3889 3 Linear+CNN 5.75 3
Linear+SPIDER 6.3889 3 Linear+OSS 5.75 3
Linear+ADASYN 6.3889 3 FWD+RUS 6 3
SMOTE+Linear 6.4167 3 FWD+CNN 6 3
FWD+SMOTE 6.4444 3 FWD+OSS 6 3
FWD+SPIDER 6.4444 3 RS+RUS 7.3056 2
FWD+ADASYN 6.4444 3 RS+CNN 7.3056 2

RS+OSS 7.3056 2
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