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TWO VARIABLE FREUD ORTHOGONAL POLYNOMIALS AND

MATRIX PAINLEVÉ-TYPE DIFFERENCE EQUATIONS

CLEONICE F. BRACCIALI, GLALCO S. COSTA, TERESA E. PÉREZ

Abstract. We study bivariate orthogonal polynomials associated with Freud
weight functions depending on real parameters. We analyse relations be-
tween the matrix coefficients of the three term relations for the orthonormal
polynomials as well as the coefficients of the structure relations satisfied by
these bivariate semiclassical orthogonal polynomials, also a matrix differential-
difference equation for the bivariate orthogonal polynomials is deduced. The
extension of the Painlevé equation for the coefficients of the three term re-
lations to the bivariate case and a two dimensional version of the Langmuir
lattice are obtained.

1. Introduction

The study of orthogonal polynomials with respect to the generalized weight func-
tion |x|ρ exp(−|x|m), ρ > −1, m > 0, began with Géza Freud, see for example [14].
We refer to [12] for a interesting historic summary about the studies of generalized
Freud polynomials.

A symmetric Freud weight function in one variable is usually given by

wt(x) = e−x4+tx2

,

for x ∈ R, and t ∈ R is consider as a time parameter. The corresponding moments
exist and depend on t as

µk(t) =

∫ +∞

−∞

xke−x4+tx2

dx, k = 0, 1, . . . .

Therefore, the sequence of orthonormal polynomials with respect to wt(x) is a
sequence of polynomials on the variable x whose coefficients depend on t, that we
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denote {pn(x, t)}n>0, and satisfies the three term recurrence relation in the form

x pn(x, t) = an(t)pn+1(x, t) + an−1(t)pn−1(x, t), n > 0,

with p−1(x, t) = 0 and p0(x, t) = µ0(t)
−1/2.

It is well known that the coefficients an(t) satisfy the difference equation

4 a2n(t)[a
2
n+1(t) + a2n(t) + a2n−1(t)]− 2 t a2n(t) = n+ 1, n > 0, (1.1)

where a20(t) = µ2(t)/µ0(t) and a−1(t) = 0 (see, for instance, [3, 20, 21, 27]).
Also well known is the fact that the difference equation (1.1) coincides with the

discrete Painlevé equation dPI

xn(xn+1 + xn + xn−1)− δ xn = αn+ β + (−1)n γ,

with xn = a2n(t), α = β = 1/4, γ = 0, δ = t/2. See more about relations between
orthogonal polynomials and Painlevé equations in [27] and the references therein.

If we consider the sequence of monic orthogonal polynomials associated with
wt(x), {qn(x, t)}n>0, again a sequence of polynomials in the variable x and whose
coefficients depend on t, it satisfies

x qn(x, t) = qn+1(x, t) + βn(t)qn−1(x, t), n > 0,

with q−1(x, t) = 0, q0(x, t) = 1 and βn(t) = a2n−1(t). The coefficients βn(t) satisfy
the Langmuir lattice (or Volterra lattice)

β̇n(t) = βn(t)[βn+1(t)− βn−1(t)], n > 0, (1.2)

where, as usual, β̇n(t) =
d

dt
βn(t), see [24].

Consequently, the Langmuir lattice in terms of an(t) is

ȧn(t) =
an(t)

2
[a2n+1(t)− a2n−1(t)], n > 1.

The connection between the coefficients of the three term recurrence relation for
orthogonal polynomials in one variable and Painlevé equations ([27]), Langmuir or
Toda lattices ([24]) is very well known. A fundamental paper regarding discrete
Painlevé I and Laguerre-Freud equations is [21]. The motivation of this manuscript
is to analyse extensions of the equation dPI, showing that the matrix coefficients
of three term relations of two variable Freud orthogonal polynomials satisfy some
matrix difference equations, that we call matrix Painlevé-type difference equations,
and also to present two dimensional version of the Langmuir lattices. There are
previous papers dealing with the extension of such systems to the matrix realm.
In [9, 15] the matrix extension of dPI was first derived using the Riemann-Hilbert
problem for the theory of matrix orthogonal polynomials. This has been extended
further to alt-dPI, dPII and dPIV, see [4, 5, 6, 10]. Matrix Painlevé systems have
been also studied in [7, 8]. Confinement of singularities is a very interesting property
for non-linear discrete system derived within orthogonal polynomial theory ([23,
25]), for its application for matrix dPI see [11].

As it is well known, the study of bivariate orthogonal polynomials is not devel-
oped as deeply as in the univariate case. The first difficulty lies in the fact that
there is no unique orthogonal system, due to the fact that several orderings of the
bivariate monomials are possible. Therefore, it is necessary to fix an order on the
monomials, to choose a representation for the polynomials and develop the theory.
In this paper, we use the vector representation for polynomials in two variables
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introduced in [18], [19], and developed in [28]. There, the graded lexicographical
order is used, and the representation of the polynomials as vectors whose entries
are independent polynomials of the same total degree is introduced. However, the
size of these vectors and the corresponding coefficient matrices of the formulas are
increasing with the degree, on the contrary to the non-matrix case, where the size
is constant.

In [26], the vector representation for general families of bivariate orthogonal
polynomials is not used, but main properties as three term relations for the or-
thogonal polynomials appear in a non-matrix formulation. Despite to the fact that
the vector-matrix representation apparently adding more complexity to the prob-
lem, the vector representation of the families of orthogonal polynomials and the
vector-matrix formulation of the three term relations, that first appeared in [19],
has proven to be a very powerful tool when formulating results in the bivariate en-
vironment, simplifying the notations. Now, the involved coefficients are, in general,
rectangular matrices of increasing size. Nevertheless, the vector-matrix notation
must be interpreted as a compact form to express properties that could be write in
another form, as, for instance, in [26].

The aim of this paper is to investigate the symmetric bivariate Freud weight
function given by

W (x, y) = e−q(x,y), (x, y) ∈ R2,

where

q(x, y) = a4,0 x
4 + a2,2 x

2 y2 + a0,4 y
4 + a2,0 x

2 + a0,2 y
2

and ai,j are real parameters. We analyse the bivariate orthonormal polynomials
with respect to W (x, y) by using, as the main tool, the vector representation for
the families of orthogonal polynomials. In this environment, we can formulate the
main properties in a vector-matrix form, deducing and writing the properties in a
friendly form extending the results in one variable to the bivariate case.

We extend the difference equation (1.1) for the matrix coefficients of the three
term relations for these polynomials when a2,0 = a0,2 = −t, getting matrix Painlevé-
type difference equations for the respective coefficients. We also present 2D Lang-
muir lattices for the matrix coefficients of the three term relations satisfied by the
orthogonal polynomial systems associated with W (x, y), where a2,0 = a0,2 = −t,
t ∈ R. Furthermore, matrix differential-difference equations are provided for the
orthogonal polynomial systems.

This paper is structured as follows. In Section 2 we recall the basic results about
bivariate polynomials in vector-matrix representation that we need along the paper.

In Section 3 we present the Freud inner product associated with the bivariate
Freud weight function that is considered in this work. The three term relations sat-
isfied by the bivariate orthonormal polynomials and the involved matrix coefficients
are given. The structure relations as well as a differential-difference equation sat-
isfied by the orthonormal polynomials system are also presented. These structure
relations are related to the matrix Pearson-type equation satisfied by the bivariate
Freud weight function.

In Section 4, relations for the coefficients of the three term relations and for the
coefficients of the structure relations for orthonormal polynomials are presented.
We also give non-linear four term relations for the coefficients of the three term
relations for orthonormal polynomials.
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In Section 5 we present the main results, that are the matrix Painlevé-type dif-
ference equations for the coefficients of the three term relations of the orthonormal
polynomial system. They are extensions for two variables for the difference equation
(1.1), see Theorem 5.1.

Furthermore, considering the Freud weight function W (x, y) = e−q(x,y), with
q(x, y) = a4,0x

4 + a2,2x
2y2 + a0,4y

4 − t(x2 + y2), depending on the real parameter
t, 2D Langmuir lattices for the coefficients of the three term relations are given in
Section 6.

2. Basic tools

We start introducing the basic definitions and main tools that we will need along
the paper. We refer mainly [13].

Let us consider the linear space of real polynomials in two variables x and y

Π = span〈xh yk : h, k > 0〉,

and we define the linear space

Πn = span〈xh yk : h+ k 6 n〉,

of finite dimension (n+ 1)(n+ 2)/2. Observe that ∪n>0Πn = Π.
As usual, a two variable polynomial of (total) degree n, i.e., p(x, y) ∈ Πn, is

given by

p(x, y) =
∑

h+k6n

ch,k x
h yk, ch,k ∈ R.

Now we define the vector representation for bivariate polynomials introduced in
[18], [19], and developed in [28], by using the graded lexicographical order. Notice
that the size of the vectors is increasing with the degree.

Definition 2.1. A polynomial system (PS) is a sequence of vectors of polynomials

{Pn}n>0 of increasing size (n+ 1)

Pn = (Pn,0(x, y), Pn,1(x, y), . . . , Pn,n(x, y))
T ,

such that every bivariate polynomial Pn,i(x, y) has exactly degree n and the set

{Pn,0(x, y), Pn,1(x, y), . . ., Pn,n(x, y)} is linearly independent.

Observe that {Pm}nm=0 contains a basis of Πn, and, by extension, we will say
that {Pm}nm=0 is a basis of Πn.

The simplest PS is the so-called canonical basis {Xn}n>0, defined as

Xn = (xn, xn−1 y, xn−2 y2, . . . , x yn−1, yn)T .

Following [13], observe that

xXn = x



















xn

xn−1 y
xn−2 y2

...
x yn−1

yn



















=



















xn+1

xn y
xn−1 y2

...
x2 yn−1

x yn



















= Ln,1 Xn+1, (2.1)
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for n > 0, analogously, yXn = Ln,2Xn+1, where Ln,1 and Ln,2 are (n+1)× (n+2)
matrices given by

Ln,1 =







1 © 0
. . .

...
© 1 0






and Ln,2 =







0 1 ©
...

. . .

0 © 1






, (2.2)

where the symbol © represents a triangle of zero elements of adequate size. This
notation will be used along this work. Observe that Ln,i are full rank matrices,
such that Ln,iL

T
n,i = In+1.

We can write

∂xXn = ∂x



















xn

xn−1 y
xn−2 y2

...
x yn−1

yn



















=



















nxn−1

(n− 1)xn−2 y
(n− 2)xn−3 y2

...
yn−1

0



















= LT
n−1,1Nn,1 Xn−1, (2.3)

moreover, ∂y Xn = LT
n−1,2Nn,2Xn−1, where

Nn,1 =











n ©
n− 1

. . .

© 1











and Nn,2 =











1 ©
2

. . .

© n











. (2.4)

Let {Pn}n>0 be a PS. There exist matrices of constants Gn
k of respective sizes

(n+ 1)× (k + 1) such that every vector polynomial Pn can be express in terms of
the canonical basis

Pn = Gn Xn +Gn
n−1 Xn−1 +Gn

n−2 Xn−2 + · · ·+Gn
1 X1 +Gn

0 X0,

where Gn is a (n+1) non-singular matrix, because the independence of the entries
of Pn and Xn. We use the convention Gn

m = 0, for m > n and m < 0.

3. Bivariate Freud weight functions

We work with a bivariate Freud weight function in the form

W (x, y) = e−q(x,y), (x, y) ∈ R2, (3.1)

where

q(x, y) = a4,0 x
4 + a2,2 x

2 y2 + a0,4 y
4 + a2,0 x

2 + a0,2 y
2, (3.2)

is a bivariate polynomial of degree 4, such that the coefficients a4,0, a2,2, a0,4 > 0,
and a2,0, a0,2 ∈ R, with a4,0 + a2,2 > 0 and a2,2 + a0,4 > 0.

Observe that q(−x,−y) = q(x, y), for (x, y) ∈ R2, that is, q(x, y) is an even
function, and, as consequence, W (−x,−y) = W (x, y). Following [13, p. 76], the
bivariate Freud weight function W (x, y) is centrally symmetric.

We define the bivariate Freud moment functional as

〈u, f〉 =

+∞x

−∞

f(x, y)W (x, y) dx dy,
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and its associated moments as

µn,m = 〈u, xn ym〉 =

+∞x

−∞

xn ymW (x, y) dx dy < +∞,

for n,m = 0, 1, 2, . . .. Since u is centrally symmetric, then, for n+m odd, we get

µn,m = 〈u, xn ym〉 = 0.

Furthermore, since the special shape of the weight function, the moments such that
n or m is odd are zero, that is,

µn,m = 0, for n or m odd.

Thus, we will consider the inner product

(f, g) := 〈u, f g〉 =

+∞x

−∞

f(x, y) g(x, y)W (x, y) dx dy. (3.3)

3.1. Orthonormal Polynomial Systems. Let {Pn}n>0 be a polynomial system
satisfying

(Pn,P
T
n ) = 〈u,Pn P

T
n 〉 = In+1,

(Pn,P
T
m) = 〈u,Pn P

T
m〉 = 0,

where 0 is the zero matrix of adequate size. We say that {Pn}n>0 is an orthonormal

polynomial system associated with the Freud inner product (3.3).
Since the inner product (3.3) is centrally symmetric, every vector of polynomials

Pn reduces to

Pn = Gn Xn +Gn
n−2 Xn−2 +Gn

n−4 Xn−4 + · · · , (3.4)

that is, Pn contains only even powers if n is even, or odd powers in the case of n
odd. The matrices Gn

k are of order (n + 1) × (k + 1) and Gn is a matrix of order
(n+ 1)× (n+ 1).

3.2. Three term relations. Since W (x, y) is an even function, the three term
relations for the orthonormal polynomial system {Pn}n>0 takes the form ([13, p.
77]),

xPn = An,1 Pn+1 +AT
n−1,1 Pn−1,

y Pn = An,2 Pn+1 +AT
n−1,2 Pn−1,

(3.5)

for n > 0, where P−1 = 0, P0 = µ
−1/2
0,0 , and An,i, for i = 1, 2, are full rank

(n+ 1)× (n+ 2) matrices. Observe that the 2(n+ 1)× (n+ 2) joint matrix

An =

(

An,1

An,2

)

(3.6)

is also a full rank matrix.
Computing directly, we get the initial terms

A0,1 =

(
√

µ2,0

µ0,0
, 0

)

, A0,2 =

(

0,

√

µ0,2

µ0,0

)

,
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since P1 = (µ
−1/2
2,0 x, µ

−1/2
0,2 y)T . In this way, the leading coefficient matrices of P0

and P1 are respectively given by

G0 = µ
−1/2
0,0 , G1 =

(

µ
−1/2
2,0 0

0 µ
−1/2
0,2

)

.

3.3. Pearson matrix equation for the Freud weight function. A direct com-
putation on W (x, y), given by (3.1) and (3.2), shows that

∂xW (x, y) = −(4 a4,0 x
3 + 2 a2,2 x y

2 + 2 a2,0 x)W (x, y),

∂yW (x, y) = −(2 a2,2 x
2 y + 4 a0,4 y

3 + 2 a0,2 y)W (x, y).
(3.7)

Given M1,M2, matrices of polynomials of the same order, the divergence oper-
ator for the join matrix is defined by

div

(

M1

M2

)

= ∂xM1 + ∂yM2,

hence, we can state that the weight function (3.1) satisfies the bivariate Pearson
equation

div(ΦW (x, y)) = ΨT W (x, y),

where

Φ =

(

1 0
0 1

)

, Ψ =

(

ψ1

ψ2

)

,

ψ1 = ψ1(x, y) = −(4 a4,0 x
3 + 2 a2,2 x y

2 + 2 a2,0 x),

ψ2 = ψ1(x, y) = −(2 a2,2 x
2 y + 4 a0,4 y

3 + 2 a0,2 y).

Observe that degψ1 = degψ2 = 3.

3.4. Structure relation and difference-differential equation. Now using the
fact that the weight function (3.1) is centrally symmetric, and the Pearson equations
(3.7) for the weight function, we know that the orthonormal polynomial system,
{Pn}n>0, (see [1]), satisfies the following structure relations

∂x Pn = Bn,1 Pn−1 + Cn,1 Pn−3,

∂y Pn = Bn,2 Pn−1 + Cn,2 Pn−3,
(3.8)

for n > 1, where P−2 = P−1 = 0, Bn,i, Cn,i are matrices of respective sizes (n+1)×n
and (n+ 1)× (n− 2), and C1,i = C2,i = 0, for i = 1, 2.

Following [2], since the Freud weight function (3.1) is semiclassical, there exists
a second order partial differential functional

F = ∂xx + ∂yy + ψ1 ∂x + ψ2 ∂y

such that

F Pn = Λn
n+2 Pn+2 + Λn

n Pn + Λn
n−2 Pn−2, (3.9)

for n > 1, where

Λn
n+2 = −[Bn,1C

T
n+2,1 +Bn,2 C

T
n+2,2],

Λn
n = −[Bn,1B

T
n,1 + Cn,1C

T
n,1 +Bn,2B

T
n,2 + Cn,2C

T
n,2],

Λn
n−2 = −[Cn,1B

T
n−2,1 + Cn,2B

T
n−2,2] = (Λn−2

n )T ,
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that is, the orthonormal polynomial system {Pn}n>0 satisfies the matrix partial-
differential-difference equation (3.9).

4. Results involving the matrix coefficients

In this section we show several relations between the matrix coefficients of the
three term relations for orthonormal polynomials (3.5), the matrix coefficients of
the structure relations (3.8) and the matrices involved in the explicit expressions
of the vector polynomials (3.4).

We start by defining two useful matrices and establishing their relations with
the Pearson-type equation for the weight function (3.7).

Let us define (n+1)× (n+1) upper and lower triangular matrices, that involve
the coefficients of the weight function (3.1),

Kn,1 =



















4a4,0 0 2a2,2 ©

4a4,0 0
. . .

. . .
. . . 2a2,2
. . . 0

© 4a4,0



















(4.1)

and

Kn,2 =

















4a0,4 ©
0 4a0,4

2a2,2 0
. . .

. . .
. . .

. . .

© 2a2,2 0 4a4,0

















. (4.2)

Then, one can easily see that the matricesKn,i and Ln,i defined in (2.2), for i = 1, 2,
are related as

Ln,1 Ln+1,1Kn+2,1 =4 a4,0Ln,1 Ln+1,1 + 2 a2,2Ln,2Ln+1,2,

Ln,2 Ln+1,2Kn+2,2 =4 a0,4Ln,2 Ln+1,2 + 2 a2,2Ln,1Ln+1,1.
(4.3)

Using the relations (4.3) and the Pearson matrix equation (3.7), we can prove
the following result.

Proposition 4.1. The following hold

ψ1(x, y)Xn−1 = −Ln−1,1Ln,1 Ln+1,1Kn+2,1 Xn+2 − 2a2,0Ln−1,1Xn,

ψ2(x, y)Xn−1 = −Ln−1,2Ln,2 Ln+1,2Kn+2,2 Xn+2 − 2a0,2Ln−1,2Xn.
(4.4)

4.1. Explicit expressions. Next result brings explicit expressions for the matrix
coefficients An,i, i = 1, 2, of the three term relations (3.5), and for the matrix
coefficients Bn,i and Cn,i, i = 1, 2, defined on the structure relations (3.8), in terms
of the matrices Gn, Ln,i, Nn,i, and Kn,i, for i = 1, 2, defined by (3.4), (2.2), (2.4),
and (4.1)–(4.2), respectively.

Proposition 4.2. For the matrix coefficients An,i, Bn,i and Cn,i, i = 1, 2, of

the three term relations (3.5) and the structure relations (3.8), respectively, the

following properties hold
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i)

An,i = Gn Ln,iG
−1
n+1, n > 0. (4.5)

ii)

Bn,i = Gn L
T
n−1,iNn,iG

−1
n−1, n > 1. (4.6)

iii)

CT
n,i = Gn−3 Ln−3,i Ln−2,i Ln−1,iKn,iG

−1
n , n > 3, (4.7)

where the matrices Gn, Ln,i, Nn,i, and Kn,i, for i = 1, 2, are defined by (3.4),
(2.2), (2.4), and (4.1)-(4.2), respectively.

Moreover, the right pseudo inverse matrix of An,i is

A−1
n,i = Gn+1 L

T
n,iG

−1
n , i = 1, 2. (4.8)

Proof. i) Substituting the explicit expression of Pn (3.4) on the three term relation
(3.5) we have

x
[

Gn Xn +Gn
n−2Xn−2 + · · ·

]

=An,1

[

Gn+1Xn+1 +Gn+1
n−1Xn−1 + · · ·

]

(4.9)

+AT
n−1,1

[

Gn−1 Xn−1 +Gn−1
n−3 Xn−3 + · · ·

]

and analogue to the three term relation for the second variable. Using (2.1), and
adjusting leading coefficients, we have

Gn Ln,i = An,iGn+1, i = 1, 2,

and (4.5) holds.
The pseudo inverse for An,i by the right side (4.8) follows immediately.

ii) In the same way, substituting (3.4) on (3.8) for i = 1, we get

∂x

[

Gn Xn +Gn
n−2Xn−2 + · · ·

]

=Bn,1

[

Gn−1Xn−1 +Gn−1
n−3Xn−3 + · · ·

]

(4.10)

+ Cn,1

[

Gn−3 Xn−3 +Gn−3
n−5Xn−5 + · · ·

]

.

Next, applying (2.3), and adjusting leading coefficients we obtain

Gn L
T
n−1,1Nn,1 = Bn,1Gn−1.

Doing analogue for i = 2 we get (4.6).

iii) Multiplying the structure relation (3.8) for i = 1 by PT
n−3, and applying the

inner product (3.3), we get

〈u, ∂x[Pn]P
T
n−3〉 =Bn,1〈u,Pn−1 P

T
n−3〉+ Cn,1〈u,Pn−3 P

T
n−3〉,

that is, Cn,1 = 〈u, ∂x[Pn]P
T
n−3〉. Then,

Cn,1 = 〈u, ∂x[PnP
T
n−3]〉 − 〈u,Pn∂x[P

T
n−3]〉 = 〈u, ∂x[PnP

T
n−3]〉,

because the orthogonality. Integrating Cn,1 by parts on the variable x, taking into
account the behaviour of the weight function on R2, i.e., for F (x, y) ∈ Π, the value
of F (x, y)W (x, y) goes to zero when the variables x and y diverges positive or
negatively, and using the first Pearson equation for the weight function (3.7), we
deduce

Cn,1 =

+∞x

−∞

∂x[Pn P
T
n−3]W (x, y) dx dy = −

+∞x

−∞

Pn P
T
n−3 ∂xW (x, y) dx dy
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= −

+∞x

−∞

Pn P
T
n−3 ψ1(x, y)W (x, y) dx dy.

Using the explicit expression (3.4) of Pn−3 and relations (4.4) of Proposition 4.1,
we deduce that Pn−3ψ1(x, y) is a (n− 2)× 1 vector polynomial of degree n. Hence,

Cn,1 =

+∞x

−∞

PnP
T
n W (x, y) dx dy (G−1

n )T KT
n,1 L

T
n−1,1L

T
n−2,1L

T
n−3,1G

T
n−3,

and (4.7) holds for i = 1. Similar calculation can be done for i = 2. �

Next result gives relations involving the matrix coefficients An,i, Bn,i Cn,i, for
i = 1, 2, by themselves.

Proposition 4.3. The matrix coefficients An,i, Bn,i and Cn,i, i = 1, 2, of the three

term relations (3.5) and of the structure relations (3.8), respectively, are related as

follow

i)

Bn,i = A−1
n−1,iGn−1Nn,iG

−1
n−1, n > 1. (4.11)

ii)

CT
n,i = An−3,iAn−2,iAn−1,iGnKn,iG

−1
n , n > 3. (4.12)

iii)

Cn,i = Gn
n−2G

−1
n−2Bn−2,i −Bn,iG

n−1
n−3G

−1
n−3, n > 3, (4.13)

where the matrices Gn
n−k, Ln,i, Nn,i, and Kn,i, for i = 1, 2, are defined by (3.4),

(2.2), (2.4), and (4.1)-(4.2), respectively.
Moreover, the following relations hold

An,iG
n+1
n−2k+1 +AT

n−1,iG
n−2
n−2k+1 = Gn

n−2kLn−2k,i (4.14)

and

Bn,iG
n−1
n−2k−1 + Cn,iG

n−3
n−2k−1 = Gn

n−2kL
T
n−2k−1,iNn−2k,i, (4.15)

for k = 0, 1, . . . , ⌊n/2⌋.

Proof. (4.11) is deduced using the explicit expression of A−1
n−1,i in (4.6), and (4.12)

using the relation (4.5) in (4.7).
The expression (4.14) is deduced adjusting the coefficients of Xn−1,Xn−3, . . . in

(4.9), and (4.15) is obtained in the same way in (4.10).
Finally, using k = 1 in (4.15), we get

Cn,iGn−3 = Gn
n−2L

T
n−3,iNn−2,i −Bn,iG

n−1
n−3.

Since Bn−2,iGn−3 = Gn−2L
T
n−3,iNn−2,i, we can write

Cn,iGn−3 = Gn
n−2G

−1
n−2Gn−2L

T
n−3,iNn−2,i −Bn,iG

n−1
n−3

= Gn
n−2G

−1
n−2Bn−2,iGn−3 −Bn,iG

n−1
n−3

hence, we get (4.13). �

We remark that, for the general case, equations (4.14) and (4.15) can be found
in [22].
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4.2. Non-linear four term relations for the coefficients of the three term

relations. We now show non-linear four term relations for the matrix coefficients
of the three term relations An,i, i = 1, 2. We must remark that the results given in
this subsection hold for every centrally symmetric weight function, since structure
relations have not been used.

Proposition 4.4. The matrix coefficients of the three term relations for orthonor-

mal polynomials, An,i, n > 0 and i, j = 1, 2, satisfy

An,iA
T
n,j+A

T
n−1,iAn−1,j = Gn

n−2G
−1
n−2An−2,iAn−1,j−An,iAn+1,jG

n+2
n G−1

n , (4.16)

where the matrices Gn
n−k are defined in (3.4).

Proof. First we compute 〈u, x2PnP
T
n 〉 using the three term relation (3.5) and the

orthogonality. Hence,

〈u, x2PnP
T
n 〉 = 〈u, [An,1 Pn+1 +AT

n−1,1 Pn−1][P
T
n+1A

T
n,1 + PT

n−1An−1,1]〉

= An,1 A
T
n,1 +AT

n−1,1An−1,1.

Since the entries of the sequence of vectors {Pn}n>0 form a basis for the space
Π, then x2Pn can be written as

x2Pn = Fn
n+2,1Pn+2 + Fn

n,1Pn + Fn
n−2,1Pn−2 + · · · , (4.17)

where Fn
j,1 are real matrices of order (n+1)× (j+1). On the one hand, using (3.4),

we get

x2Pn = Fn
n+2,1[Gn+2 Xn+2 +Gn+2

n Xn +Gn+2
n−2 Xn−2 + · · · ]

+ Fn
n,1[Gn Xn +Gn

n−2 Xn−2 +Gn
n−4 Xn−4 + · · · ] (4.18)

+ Fn
n−2,1[Gn−2 Xn−2 +Gn−2

n−4 Xn−4 +Gn−2
n−6 Xn−6 + · · · ] + · · · .

On the other hand, we can write x2Pn as

x2Pn = x2[Gn Xn +Gn
n−2 Xn−2 +Gn

n−4 Xn−4 + · · · ]

= GnLn,1Ln+1,1Xn+2 +Gn
n−2Ln−2,1Ln−1,1Xn + · · · . (4.19)

Adjusting the coefficients of the terms of Xn+2 and Xn on (4.18) and (4.19), we get

Fn
n+2,1Gn+2 = GnLn,1Ln+1,1,

Fn
n+2,1G

n+2
n + Fn

n,1Gn = Gn
n−2Ln−2,1Ln−1,1.

Therefore Fn
n+2,1 = GnLn,1Ln+1,1G

−1
n+2 , and

Fn
n,1 = Gn

n−2Ln−2,1Ln−1,1G
−1
n −GnLn,1Ln+1,1G

−1
n+2G

n+2
n G−1

n

= Gn
n−2G

−1
n−2Gn−2Ln−2,1Ln−1,1G

−1
n −GnLn,1Ln+1,1G

−1
n+2G

n+2
n G−1

n .

From (4.5), Gn−2Ln−2,1Ln−1,1G
−1
n = An−2,1An−1,1, we obtain

Fn
n,1 = Gn

n−2G
−1
n−2An−2,1An−1,1 −An,1An+1,1G

n+2
n G−1

n . (4.20)

Finally, since 〈u, x2PnP
T
n 〉 = Fn

n,1〈u,PnP
T
n 〉 = Fn

n,1, then, for n > 0,

An,1A
T
n,1 +AT

n−1,1An−1,1 = Gn
n−2G

−1
n−2An−2,1An−1,1 −An,1An+1,1G

n+2
n G−1

n .

Similar reasoning using y2Pn, x yPn and y xPn gives the results. �
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Let us consider the joint matrix An, given by (3.6), of order 2(n+ 1)× (n+ 2),
and the joint matrix of order (n+ 1)× 2(n+ 2), denoted by Ān, and defined by

Ān =
(

An,1, An,2

)

.

Remember that the Kronecker product of A = [aij ], matrix of order m× n, and
B = [bij ], matrix of order p× q, denoted by A⊗B, is defined as the following block
matrix

A⊗B =







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






,

of order mp× nq, see also [17, p. 243].
A direct use of the definition of Kronecker product and equations (4.16) yields

the following result.

Corollary 4.5. The sequences of the joint matrices An and Ān satisfy

AnA
T
n + ĀT

n−1Ān−1 = (I2 ⊗Gn
n−2G

−1
n−2)An−2Ān−1 −AnĀn+1(I2 ⊗Gn+2

n G−1
n ).

We observe that the matrices Fn+2
n,i , Fn

n,i and F
n−2
n,i , for i = 1, 2 given in (4.17)

satisfy another interesting relation.

Corollary 4.6. Let Fn
m,i be the matrix coefficients defined in (4.17), for n > 2,

i = 1, 2 and 0 6 m 6 n+ 2. Then

Fn
n,i = Gn

n−2G
−1
n−2(F

n
n−2,i)

T − Fn
n+2,iG

n+2
n G−1

n .

Proof. For simplicity here we denote the variable x by x1 and the variable y by x2,
then using the three term relations (3.5), for i = 1, 2,

x2iPn = An,iAn+1,iPn+2 + (An,iA
T
n,i + AT

n−1,iAn−1,i)Pn +AT
n−1,iA

T
n−2,iPn−2.

Comparing this expression with (4.17), we obtain

Fn
n+2,i = An,iAn+1,i,

Fn
n,i = An,iA

T
n,i +AT

n−1,1An−1,i,

Fn
n−2,i = AT

n−1,iA
T
n−2,i.

(4.21)

Hence, from (4.20), and (4.21), we have

Fn
n,i = Gn

n−2G
−1
n−2F

n−2
n,i − Fn

n+2,iG
n+2
n G−1

n , n > 2.

Observing that Fn−2
n,i = (Fn

n−2,i)
T , n > 2, we finally get the result. �

5. Matrix Painlevé-type difference equations

In this section we obtain non-linear three term relations for the matrix coeffi-
cients, An,i, i = 1, 2, of the three term relations for orthonormal polynomials, (3.5),
extending the well known relation (1.1), namely

4 a2n (a
2
n+1 + a2n + a2n−1)− 2 t a2n = n+ 1,

extensively studied ([3], [20], [21], [27], among others) to the bivariate case. We
have to taking account the non-commutativity of the product of matrices.

We know that in bivariate case the matrix coefficients An,i, for i = 1, 2, of the
three term relations (3.5), of order (n+1)×(n+2), take the place of the coefficients
an of the univariate case. We can now prove the following result.
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Theorem 5.1 (Matrix Painlevé-type difference equations). For n > 0, the follow-

ing relations, for the matrix coefficients An,i, i = 1, 2, of the three term relations

(3.5), hold

4 a4,0An,1

[

(An+1,1A
T
n+1,1)A

T
n,1 +AT

n,1(An,1A
T
n,1 +AT

n−1,1An−1,1)
]

+ 2 a2,2An,1

[

(An+1,2A
T
n+1,1)A

T
n,2 +AT

n,2(An,1A
T
n,2 +AT

n−1,1An−1,2)
]

+ 2 a2,0An,1A
T
n,1 = GnNn+1,1G

−1
n

and

4 a0,4An,2

[

(An+1,2A
T
n+1,2)A

T
n,2 +AT

n,2(An,2A
T
n,2 +AT

n−1,2An−1,2)
]

+ 2 a2,2An,2

[

(An+1,1A
T
n+1,2)A

T
n,1 +AT

n,1(An,2A
T
n,1 +AT

n−1,2An−1,1)
]

+ 2 a0,2An,2A
T
n,2 = GnNn+1,2G

−1
n ,

where a4,0, a2,2, a0,4, a2,0, a0,2 are the coefficients of the bivariate Freud weight func-

tion (3.1)-(3.2).

Proof. By using (3.7), we know that

〈∂xu,Pn+1P
T
n 〉 = 〈ψ1u,Pn+1P

T
n 〉.

The left-hand term is given by

〈∂xu,Pn+1P
t
n〉 =− 〈u, ∂x[Pn+1P

T
n ]〉 = −〈u, ∂x[Pn+1]P

T
n 〉 − 〈u,Pn+1∂x[P

T
n ]〉

=− 〈u, ∂x[Pn+1]P
T
n 〉 = −Bn+1,1,

by using the structure relation (3.8).
To compute the right-hand term, we apply successively the three term relations.

Observe that

x2Pn+1 =An+1,1An+2,1Pn+3 + [An+1,1A
T
n+1,1 +AT

n,1An,1]Pn+1 +AT
n,1A

T
n−1,1Pn−1,

x3Pn+1 =An+1,1An+2,1An+3,1Pn+4

+ [An+1,1An+2,1A
T
n+2,1 +An+1,1A

T
n+1,1An+1,1 +AT

n,1An,1An+1,1]Pn+2

+ [An+1,1A
T
n+1,1A

T
n,1 +AT

n,1An,1A
T
n,1 +AT

n,1A
T
n−1,1An−1,1]Pn

+AT
n,1A

T
n−1,1A

T
n−2,1Pn−2,

(i) Using xPn+1 = An+1,1Pn+2 +AT
n,1Pn, we have

〈u, xPn+1P
T
n 〉 = 〈u, [An+1,1Pn+2 +AT

n,1Pn]P
T
n 〉 = AT

n,1.

(ii) Moreover,

〈u, x3Pn+1P
T
n 〉 = An+1,1A

T
n+1,1A

T
n,1 +AT

n,1An,1A
T
n,1 +AT

n,1A
T
n−1,1An−1,1.

(iii) Analogously, using xy2 = yxy,

〈u, xy2Pn+1P
T
n 〉 = An+1,2A

T
n+1,1A

T
n,2 +AT

n,2An,1A
T
n,2 +AT

n,2A
T
n−1,1An−1,2.

Observe that

〈ψ1u,Pn+1P
T
n 〉 = 〈u, ψ1Pn+1P

T
n 〉

=− 4a4,0〈u, x
3Pn+1P

T
n 〉 − 2a2,2〈u, xy

2Pn+1P
T
n 〉 − 2a2,0〈u, xPn+1P

T
n 〉

=− 4a4,0[An+1,1A
T
n+1,1A

T
n,1 +AT

n,1An,1A
T
n,1 +AT

n,1A
T
n−1,1An−1,1]

− 2a2,2[An+1,2A
T
n+1,1A

T
n,2 +AT

n,2An,1A
T
n,2 +AT

n,2A
T
n−1,1An−1,2]
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− 2a2,0A
T
n,1.

Therefore,

4a4,0
[

(An+1,1A
T
n+1,1)A

T
n,1 +AT

n,1(An,1A
T
n,1 +AT

n−1,1An−1,1)
]

+ 2a2,2
[

(An+1,2A
T
n+1,1)A

T
n,2 +AT

n,2(An,1A
T
n,2 +AT

n−1,1An−1,2)
]

+ 2a2,0A
T
n,1 = Bn+1,1.

Since Bn+1,1 = A−1
n,1GnNn+1G

−1
n , we multiply all the equation by An,i by the left-

hand side, and the result follows for i = 1. Analogous calculation can be done for
i = 2. �

For a4,0 = a0,4 = 1, a2,2 = 0, and a2,0 = a0,2 = −t, expressions in Theorem 5.1
read as

4An,i

[

(An+1,iA
T
n+1,i)A

T
n,i+ AT

n,i(An,iA
T
n,i +AT

n−1,iAn−1,i)
]

− 2 t An,iA
T
n,i

= GnNn+1,iG
−1
n ,

for i = 1, 2. We can say that above expressions extend the well known Freud
equation (1.1) for the univariate case, since here the matrix coefficients An,i, i = 1, 2,
take the same roles as the coefficients an, obey the same product and difference
relations, and matrices GnNn+1,iG

−1
n extend the independent term n+ 1.

In the univariate case, equation (1.1) is a non-linear recurrence that could de-
termine, if no zeros occur, the consecutive recursion coefficients. However, in the
bivariate case, matrix Painlevé-type difference equations are not recurrence rela-
tions for the matrix coefficients An,i. The matrices An,i are full rank matrices
invertible only by the right hand side, and this fact prevent to use the relation as a
recurrence relation to compute An+1,i. This fact is the same as happens with the
three term relations (3.5), they are not recurrence relations ([13, p. 73]).

Even though the dimension of the matrix coefficients An,i grows linearly with
respect to the index n, the matrix representation of the orthogonal polynomials
yields interesting matrix difference equations and in the same formal model as
the discrete Painlevé equation dPI. The use of the vector-matrix representation
has allowed us to construct an extension of equation (1.1) that reads in a similar
way. Theorem 5.1 could be proved without matrix formulation as in [26], but the
expressions would have read in a very cumbersome way.

6. 2D Langmuir lattices

The aim of this section is to deduce formal 2D Langmuir lattices associated with
a Freud weight function in two variables. As in the previous sections, our results
involve matrices of increasing size and can be read as extensions of the univariate
Langmuir lattices.

We assume that the coefficients of the polynomial q(x, y) in (3.2) satisfies a2,0 =
a0,2 = −t, with t ∈ R, then the weight function is given by

Wt(x, y) = e−(a4,0x
4+a2,2x

2y2+a0,4y
4)+t(x2+y2), (x, y) ∈ R2.

We consider the inner product

(f, g)t := 〈ut, f g〉 =

+∞x

−∞

f(x, y) g(x, y)Wt(x, y) dx dy (6.1)
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that depends on a time parameter t. As usual, we denote the derivative of f(t)

with respect to t by ḟ =
d

dt
f(t).

As the univariate case, to deduce Langmuir lattices we will need a bivariate monic
polynomial system {Qn(x, y, t)}n>0 ≡ {Qn(t)}n>0 orthogonal with respect to the
inner product (6.1) and depending on t. HereQn(t) is a vector of monic polynomials
on the variables (x, y) such that its coefficients depend on the parameter t. For
n > 0, we say that Qn(t) is monic if the matrix Gn(t) in its explicit expression (3.4)
is the identity matrix In+1. In this case,

(Qn(t),Qn(t)
T ) = 〈u,Qn(t)Qn(t)

T 〉 = Hn(t),

(Qn(t),Qm(t)T ) = 〈u,Qn(t)Qm(t)T 〉 = 0,

where Hn = Hn(t) is a (n + 1) symmetric and positive definite matrix depending
on t and again 0 is the zero matrix of adequate size.

The coefficients of the three term relations for {Qn(t)}n>0 also depends on t.
Since the inner product (6.1) is centrally symmetric, the three term relations take
the form

xQn(t) = Ln,1Qn+1(t) + En,1(t)Qn−1(t),

yQn(t) = Ln,2Qn+1(t) + En,2(t)Qn−1(t),
(6.2)

for n > 0, where Q−1(t) = 0, Q0(t) = 1, and for i = 1, 2, the matrices Ln,i were
defined in (2.2) and En,i(t) are matrices of order (n+1)×n, (see [13, p. 70]). The
matrices En,i(t) also satisfy

En,i(t)Hn−1(t) = Hn(t)L
T
n−1,i, i = 1, 2. (6.3)

Next, we find the following relation between Ḣn(t) and Hn(t).

Lemma 6.1. For n > 0,

Ḣn(t) = Vn+1(t)Hn(t),

where

Vn+1(t) = Ln,1En+1,1(t) + Ln,2En+1,2(t) + En,1(t)Ln−1,1 + En,2(t)Ln−1,2. (6.4)

Proof. Since Ẇt(x, y) = (x2 + y2)Wt(x, y), we can write

Ḣn(t) =

+∞x

−∞

Q̇n(t)Q
T
n (t)Wt(x, y) dx dy +

+∞x

−∞

Qn(t) Q̇
T
n (t)Wt(x, y) dx dy

+

+∞x

−∞

Qn(t)Q
T
n (t) (x

2 + y2)Wt(x, y) dx dy.

Notice that deg Q̇n(t) < n, hence, using the orthogonality, and the three term
relations (6.2), we get the result. �

Now, we define the matrices

En(t) = En,1(t) + En,2(t), n > 1. (6.5)

We can prove that the matrices En(t) satisfy a two dimension version of the Lang-
muir lattice.
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Theorem 6.2. The matrices En(t) satisfy the 2D Langmuir lattice

Ėn(t) = Vn+1(t)En(t)−En(t)Vn(t), n > 1, (6.6)

where Vn(t) is given in (6.4).

Proof. From (6.3) we can write Ḣn(t)L
T
n−1,i = Ėn,i(t)Hn−1(t)+En,i(t)Ḣn−1(t), for

i = 1, 2, hence

Ḣn(t)[L
T
n−1,1 + LT

n−1,2] = [Ėn,1(t) + Ėn,2(t)]Hn−1(t) + [En,1(t) + En,2(t)]Ḣn−1(t).

Using Lemma 6.1 and definition (6.5), we get

Vn+1(t)Hn(t)[L
T
n−1,1 + LT

n−1,2] = Ėn(t)Hn−1(t) +En(t)Vn(t)Hn−1(t),

hence, using (6.3),

Ėn(t)Hn−1(t) = Vn+1(t)[En,1(t) + En,2(t)]Hn−1(t)−En(t)Vn(t)Hn−1(t).

Since Hn−1(t) is a non-singular matrix, we obtain the result. �

Relation (6.6) can be seen as a formal type of 2D Langmuir lattice for the
matrix coefficients of the three term relation for the monic orthogonal polynomials.
The coefficient matrices En(t) play the same role as the coefficients βn(t) of the
univariate case (1.2).

Now, we return to orthonormal polynomial systems. Since Hn(t) is symmetric
and positive definite, there exists another symmetric and positive definite matrix

H
1/2
n (t), the so-called square root of the matrixHn(t) [16, p. 440] such that Hn(t) =

H
1/2
n (t)H

1/2
n (t). Let us define the polynomial system {Pn(t)}n>0 by means of

Pn(t) = H−1/2
n (t)Qn(t), n > 0.

Since

(Pn(t),Pn(t)
T ) = (H−1/2

n (t)Qn(t),Qn(t)
TH−1/2

n (t)) = In+1,

(Pn(t),Pm(t)T ) = (H−1/2
n (t)Qn(t),Qm(t)TH−1/2

m (t)) = 0,

then {Pn(t)}n>0 is an orthonormal polynomial system with respect to (6.1), and
satisfy the three term relations (3.5), where the matrices An,i = An,i(t) also depend
on t, for n > 0.

The matrices involved in the respective three term relations (3.5) and (6.2) are
related by

An,i(t) = H1/2
n (t)ET

n+1,i(t)H
−1/2
n+1 (t).

Then,

AT
n (t) = H

−1/2
n+1 (t)En+1(t)H

1/2
n (t), n > 0, (6.7)

where An(t) = An,1(t) + An,2(t). Deriving (6.7) with respect to t, and omitting
the parameter t for simplicity, we get

Ȧ
T

n = Ḣ
−1/2
n+1 En+1H

1/2
n +H

−1/2
n+1 Ėn+1H

1/2
n +H

−1/2
n+1 En+1Ḣ

1/2
n .

Let us analyse term by term. From (6.6) and (6.7), we obtain

H
−1/2
n+1 Ėn+1H

1/2
n = H

−1/2
n+1 [Vn+2En+1 −En+1Vn+1]H

1/2
n

= H
−1/2
n+1 Vn+2H

1/2
n+1A

T
n −AT

nH
−1/2
n Vn+1H

1/2
n . (6.8)
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Using the definition of Vn+1 and (6.7), we have

H−1/2
n Vn+1H

1/2
n = An,1A

T
n,1 +An,2A

T
n,2 +AT

n−1,1An−1,1 +AT
n−1,2An−1,2.

Substituting this relation in (6.8) we get

H
−1/2
n+1 Ėn+1H

1/2
n =[An+1,1A

T
n+1,1 +An+1,2A

T
n+1,2 +AT

n,1An,1 +AT
n,2An,2]A

T
n

−AT
n [An,1A

T
n,1 +An,2A

T
n,2 +AT

n−1,1An−1,1 +AT
n−1,2An−1,2].

Therefore,

Ȧ
T

n =[An+1,1A
T
n+1,1 +An+1,2A

T
n+1,2 +AT

n,1An,1 +AT
n,2An,2]A

T
n

−AT
n [An,1A

T
n,1 +An,2A

T
n,2 +AT

n−1,1An−1,1 +AT
n−1,2An−1,2]

+ Ḣ
−1/2
n+1 En+1H

1/2
n +H

−1/2
n+1 En+1Ḣ

1/2
n .

From (6.7), we get En+1H
1/2
n = H

1/2
n+1A

T
n and H

−1/2
n En+1 = AT

nH
−1/2
n . Even,

H
−1/2
n Ḣ

1/2
n = −Ḣ

−1/2
n H

1/2
n , and then

Ȧ
T

n =[An+1,1A
T
n+1,1 +An+1,2A

T
n+1,2]A

T
n −AT

n [A
T
n−1,1An−1,1 +AT

n−1,2An−1,2]

+ [AT
n,1An,1 +AT

n,2An,2 + Ḣ
−1/2
n+1 H

1/2
n+1]A

T
n (6.9)

−AT
n [An,1A

T
n,1 +An,2A

T
n,2 − Ḣ−1/2

n H1/2
n ].

Relation (6.9) can be seen as a formal type of 2D Langmuir lattice for the
matrix coefficients of the three term relation of the orthonormal centrally symmetric
polynomials.
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polynomials. Appl. Math. Comput. 325 (2018), pp. 340–357.
[23] T. Mase, R. Willox, A. Ramani, and B. Grammaticos, Singularity confinement as an inte-

grability criterion. J. Phys. A. 52(20) (2019), 205201.
[24] F. Peherstorfer, On Toda lattices and orthogonal polynomials, J. Comput. Appl. Math., 133

(2001), pp. 519–534.
[25] A. Ramani, B. Grammaticos, and J. Hietarinta, Discrete versions of the Painlevé equations.
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