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TWO VARIABLE FREUD ORTHOGONAL POLYNOMIALS AND
MATRIX PAINLEVE-TYPE DIFFERENCE EQUATIONS

CLEONICE F. BRACCIALI, GLALCO S. COSTA, TERESA E. PEREZ

ABSTRACT. We study bivariate orthogonal polynomials associated with Freud
weight functions depending on real parameters. We analyse relations be-
tween the matrix coefficients of the three term relations for the orthonormal
polynomials as well as the coefficients of the structure relations satisfied by
these bivariate semiclassical orthogonal polynomials, also a matrix differential-
difference equation for the bivariate orthogonal polynomials is deduced. The
extension of the Painlevé equation for the coefficients of the three term re-
lations to the bivariate case and a two dimensional version of the Langmuir
lattice are obtained.

1. INTRODUCTION

The study of orthogonal polynomials with respect to the generalized weight func-
tion |z|? exp(—|z|™), p > —1, m > 0, began with Géza Freud, see for example [14].
We refer to [12] for a interesting historic summary about the studies of generalized
Freud polynomials.

A symmetric Freud weight function in one variable is usually given by

wy (:E) _ 67m4+t12 ,

for x € R, and ¢t € R is consider as a time parameter. The corresponding moments
exist and depend on t as

oo k—attta?
,uk(t):/ e T e, k=0,1,....

— 00
Therefore, the sequence of orthonormal polynomials with respect to we(z) is a
sequence of polynomials on the variable x whose coefficients depend on ¢, that we

Date: August 23, 2022.

2010 Mathematics Subject Classification. Primary: 42C05; 33C50.

Key words and phrases. Bivariate orthogonal polynomials, Freud orthogonal polynomials,
Three term relations, Matrix Painlevé-type difference equations.

[C. F. Bracciali] Departamento de Matemética, IBILCE, UNESP - Universidade Estadual
Paulista, 15054-000, Sao José do Rio Preto, SP, Brazil. E-mail: cleonice.bracciali@Qunesp.br.

[G. S. Costa] Departamento de Matematica, Instituto de Ciéncias Tecnolégicas e Exatas -
ICTE, Universidade Federal do Tridngulo Mineiro - UFTM, 38025-180, Uberaba, M@G, Brazil.
E-mail: glalco.costa@uftm.edu.br.

[T. E. Pérez] Instituto de Mateméticas IMAG & Departamento de Matemética Aplicada,
Facultad de Ciencias. Universidad de Granada. 18071. Granada, Spain. E-mail: tperezQugr.es.

This work was supported through the Brazilian Federal Agency for Support and Evaluation
of Graduate Education (CAPES), in the scope of the Program CAPES-PrInt, process number
88887.310463/2018-00, International Cooperation Project number 88887.575407/2020-00.

Third author (TEP) thanks FEDER/Junta de Andalucia A-FQM-246-UGR20; PGC2018-
094932-B-100 supported by MCIN/AEI 10.13039/501100011033 and FEDER funds, and IMAG-
Maria de Maeztu grant CEX2020-001105-M.

1


http://arxiv.org/abs/2208.10361v1

2 C. F. BRACCIALIL G. S. COSTA, T. E. PEREZ

denote {p,(z,t)}n>0, and satisfies the three term recurrence relation in the form
TP (@,t) = an(t)Pnt1 (2, 1) + an—1(t)pn-1(z,t), n =0,
with p_y(2,t) = 0 and po(z,t) = po(t) /2.
It is well known that the coefficients a,,(t) satisfy the difference equation
dap(t)ani1 () +an(t) + a5 1 (D] = 2tan(t) =n+1, n=0, (1.1)

where a3(t) = p2(t)/po(t) and a_1(t) = 0 (see, for instance, [3, 20, 21], 27]).

Also well known is the fact that the difference equation (ILI]) coincides with the
discrete Painlevé equation dPI

xn(xn—i-l + Tn + xn—l) - 51;71 =an+ ﬁ + (_1)””77

with x, = a2(t),a = 8 = 1/4,7 = 0,8 = t/2. See more about relations between
orthogonal polynomials and Painlevé equations in [27] and the references therein.

If we consider the sequence of monic orthogonal polynomials associated with
wi(x), {qn(x,t)}n>0, again a sequence of polynomials in the variable x and whose
coefficients depend on t, it satisfies

an(mut) :Qn—i-l(xat)+Bn(t)Qn—l($ut)a n =0,

with ¢_1(z,t) = 0, qo(x,t) = 1 and B, (t) = a2_;(t). The coefficients j3,,(t) satisfy
the Langmuir lattice (or Volterra lattice)

Bu(t) = Ba()[Bas1(t) = Bua(B)], 1 =0, (1.2)

: d
where, as usual, (3, (t) = Eﬂ"(t)’ see [24].
Consequently, the Langmuir lattice in terms of ay(¢) is

in(t) = an2(f)

[an, 1 (t) —ap ()], n>1.

The connection between the coeflicients of the three term recurrence relation for
orthogonal polynomials in one variable and Painlevé equations ([27]), Langmuir or
Toda lattices ([24]) is very well known. A fundamental paper regarding discrete
Painlevé I and Laguerre-Freud equations is [21]. The motivation of this manuscript
is to analyse extensions of the equation dPI, showing that the matrix coeflicients
of three term relations of two variable Freud orthogonal polynomials satisfy some
matrix difference equations, that we call matrix Painlevé-type difference equations,
and also to present two dimensional version of the Langmuir lattices. There are
previous papers dealing with the extension of such systems to the matrix realm.
In [9 I5] the matrix extension of dPI was first derived using the Riemann-Hilbert
problem for the theory of matrix orthogonal polynomials. This has been extended
further to alt-dPI, dPII and dPIV, see [4, B} [6 10]. Matrix Painlevé systems have
been also studied in [7[8]. Confinement of singularities is a very interesting property
for non-linear discrete system derived within orthogonal polynomial theory (23]
[25]), for its application for matrix dPI see [I1].

As it is well known, the study of bivariate orthogonal polynomials is not devel-
oped as deeply as in the univariate case. The first difficulty lies in the fact that
there is no unique orthogonal system, due to the fact that several orderings of the
bivariate monomials are possible. Therefore, it is necessary to fix an order on the
monomials, to choose a representation for the polynomials and develop the theory.
In this paper, we use the vector representation for polynomials in two variables
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introduced in [18], [19], and developed in [28]. There, the graded lexicographical
order is used, and the representation of the polynomials as vectors whose entries
are independent polynomials of the same total degree is introduced. However, the
size of these vectors and the corresponding coefficient matrices of the formulas are
increasing with the degree, on the contrary to the non-matrix case, where the size
is constant.

In [26], the vector representation for general families of bivariate orthogonal
polynomials is not used, but main properties as three term relations for the or-
thogonal polynomials appear in a non-matrix formulation. Despite to the fact that
the vector-matrix representation apparently adding more complexity to the prob-
lem, the vector representation of the families of orthogonal polynomials and the
vector-matrix formulation of the three term relations, that first appeared in [19],
has proven to be a very powerful tool when formulating results in the bivariate en-
vironment, simplifying the notations. Now, the involved coefficients are, in general,
rectangular matrices of increasing size. Nevertheless, the vector-matrix notation
must be interpreted as a compact form to express properties that could be write in
another form, as, for instance, in [20].

The aim of this paper is to investigate the symmetric bivariate Freud weight
function given by

W(z,y) =e Y (2,y) € R?,
where
q(x,y) = as ot + a2,2 2 y? + Q0,4 yt+ a2,0 z? + ao,2 y?

and a; ; are real parameters. We analyse the bivariate orthonormal polynomials
with respect to W(z,y) by using, as the main tool, the vector representation for
the families of orthogonal polynomials. In this environment, we can formulate the
main properties in a vector-matrix form, deducing and writing the properties in a
friendly form extending the results in one variable to the bivariate case.

We extend the difference equation (II]) for the matrix coefficients of the three
term relations for these polynomials when as o = ap 2 = —t, getting matrix Painlevé-
type difference equations for the respective coefficients. We also present 2D Lang-
muir lattices for the matrix coefficients of the three term relations satisfied by the
orthogonal polynomial systems associated with W (x,y), where aso = ap,2 = —t,
t € R. Furthermore, matrix differential-difference equations are provided for the
orthogonal polynomial systems.

This paper is structured as follows. In Section 2] we recall the basic results about
bivariate polynomials in vector-matrix representation that we need along the paper.

In Section [B] we present the Freud inner product associated with the bivariate
Freud weight function that is considered in this work. The three term relations sat-
isfied by the bivariate orthonormal polynomials and the involved matrix coefficients
are given. The structure relations as well as a differential-difference equation sat-
isfied by the orthonormal polynomials system are also presented. These structure
relations are related to the matrix Pearson-type equation satisfied by the bivariate
Freud weight function.

In Section @], relations for the coefficients of the three term relations and for the
coefficients of the structure relations for orthonormal polynomials are presented.
We also give non-linear four term relations for the coefficients of the three term
relations for orthonormal polynomials.
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In Section B we present the main results, that are the matrix Painlevé-type dif-
ference equations for the coefficients of the three term relations of the orthonormal
polynomial system. They are extensions for two variables for the difference equation
(T1), see Theorem [E11

Furthermore, considering the Freud weight function W(z,y) = e~ 4®¥)  with
q(z,y) = as02* + az22%y? + ap ay* — t(z* + y?), depending on the real parameter
t, 2D Langmuir lattices for the coefficients of the three term relations are given in
Section

2. BASIC TOOLS

We start introducing the basic definitions and main tools that we will need along
the paper. We refer mainly [13].
Let us consider the linear space of real polynomials in two variables x and y

I = span(z" y* : h, k > 0),
and we define the linear space
I, = span{z" y* : h +k < n),

of finite dimension (n + 1)(n + 2)/2. Observe that Uy,>oIl, = II.
As usual, a two variable polynomial of (total) degree n, i.e., p(x,y) € II,, is
given by
p(x,y) = Z chray*, ek €R.
h+k<n

Now we define the vector representation for bivariate polynomials introduced in
[18], [19], and developed in [28], by using the graded lexicographical order. Notice
that the size of the vectors is increasing with the degree.

Definition 2.1. A polynomial system (PS) is a sequence of vectors of polynomials
{Pn}n>0 of increasing size (n + 1)

]P)n = (Pnﬁo(xvy)a Pﬂ,l(xa y)v R} P’n«ﬂl(xvy))Tv

such that every bivariate polynomial P, ;(x,y) has exactly degree n and the set
{Pno(z,y), Pui(z,y), ..., Pon(z,y)} is linearly independent.

Observe that {P,,},_, contains a basis of II,, and, by extension, we will say
that {P,,,}7_, is a basis of II,,.
The simplest PS is the so-called canonical basis {X,,}n>0, defined as

X" = (‘Inv ‘In71 ya In72 y27 R Iynila yn)T
Following [13], observe that

" wn—i—l

xn—l Yy " Yy

xn—2 y2 wn—l y2

X, =2 . = ) = Lpj Xy, (2.1)

xy;z—l 22 y.n—l

y" zy"
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for n > 0, analogously, y X,, = Ly, 2 X,,11, where L, 1 and L, 5 are (n+ 1) x (n+2)
matrices given by

1 O10 0] 1 O
Lni= ; and L, o= : , (2.2)

O 110 010 1
where the symbol ) represents a triangle of zero elements of adequate size. This
notation will be used along this work. Observe that L,, ; are full rank matrices,

such that LnﬁiLZi =TI,
We can write

z" na" 1
"y (n—1)a" 2y
xn—2 y2 (n _ 2) xn—3 y2
890 Xn = 81 : = : = szl,l le anl, (23)
xynfl ynfl
y’ﬂ

n O 1 O

Np1= . and N, o= . . (2.4)
0 1 o on

Let {P,,}n>0 be a PS. There exist matrices of constants G} of respective sizes

(n+1) x (k4 1) such that every vector polynomial P, can be express in terms of
the canonical basis

Pp=GnXp+G' 1 Xpo1 + G o Xpg+- 4GP Xy + G Xy,

where Gy, is a (n + 1) non-singular matrix, because the independence of the entries
of P, and X,,. We use the convention G]}, = 0, for m > n and m < 0.

3. BIVARIATE FREUD WEIGHT FUNCTIONS
We work with a bivariate Freud weight function in the form
W(z,y) = e @) (z,y) € R? (3.1)
where
q(z,y) = asox* +ag2 2 y* + apay’ + az02” + a0 2y”, (3.2)
is a bivariate polynomial of degree 4, such that the coefficients a4 0, a22,a04 = 0,
and a2,0,00,2 € R, with ag,0 + agz2 > 0 and a2,2 + g4 > 0.
Observe that ¢(—z, —y) = q(x,y), for (z,y) € R?, that is, q(z,y) is an even
function, and, as consequence, W (—xz, —y) = W(z,y). Following [I3| p. 76], the

bivariate Freud weight function W (x,y) is centrally symmetric.
We define the bivariate Freud moment functional as

1) = [] 1) W) ey,



6 C. F. BRACCIALIL G. S. COSTA, T. E. PEREZ

and its associated moments as
fnm = (u, 2" y™ jj y" Wz, y)dzdy < 400,

for n,m =0,1,2,.... Since u is centrally symmetric, then, for n + m odd, we get
tnm = (w2 y™) = 0.

Furthermore, since the special shape of the weight function, the moments such that
n or m is odd are zero, that is,

tn,m =0, for n or m odd.

Thus, we will consider the inner product
(f.9) = jj J(@,y) gla,y) Wz, y) da dy. (3:3)

3.1. Orthonormal Polynomial Systems. Let {P,},>0 be a polynomial system
satisfying

(PWPZ) = (u, P, PZ> = In+1,

(]P)na P%) = <u7 Py, Pz) =
where 0 is the zero matrix of adequate size. We say that {P,,}n>0 is an orthonormal
polynomial system associated with the Freud inner product ([B3]).

Since the inner product (33) is centrally symmetric, every vector of polynomials
P,, reduces to

P,=G, X, +G) X, o+ G _ Xy u+---, (3.4)

that is, PP, contains only even powers if n is even, or odd powers in the case of n
odd. The matrices G} are of order (n + 1) x (k + 1) and G, is a matrix of order
(n+1) x (n+1).

3.2. Three term relations. Since W(z,y) is an even function, the three term
relations for the orthonormal polynomial system {P,},>0 takes the form ([I3} p.
7)),

P, = An,l Pn-{-l + AZ-L] Pn—lu

(3.5)
Y ]P)n = An,2 PnJrl + A£7172 Pnfla

for n > 0, where P_; = 0, Py = M(Ié/z, and A, ;, for ¢ = 1,2, are full rank
(n+1) x (n+ 2) matrices. Observe that the 2(n+ 1) X (n + 2) joint matrix

- An,l
A, = ( Ao ) (3.6)
is also a full rank matrix.

Computing directly, we get the initial terms

AO,l = < w70> ) A0,2 = <07 @> )
\/ 40,0 V' 10,0
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since P; = (u;é/2x, u&;/Qy)T. In this way, the leading coefficient matrices of Py

and Py are respectively given by
—1/2
—1/2 I 0
Go = /14070/ ) G, = 2,0 -1/2 | -
0 Ho,2

3.3. Pearson matrix equation for the Freud weight function. A direct com-
putation on W (z,y), given by [B1]) and ([B.2), shows that

0 W (x,y) = —(4daag > +2 ag,2 zy? +2 ag,ox) W(z,y),
(3.7)
oW (z,y) = —(2az22”y +4aoay® +2a02y) W(z,y).

Given M;, M5, matrices of polynomials of the same order, the divergence oper-

ator for the join matrix is defined by

. M
div ( M; > = 0, My + 0y Mo,

hence, we can state that the weight function ([BJ) satisfies the bivariate Pearson
equation
div(® W (z,y)) = 9" W(z,y),

_(t 0 _ (v
=) =)

1 =Y1(x,y) = —(daqso x4+ 2a272xy2 +2a20x),
Yo =P1(z,y) = —(2a222°y +4aoay® +2a029).
Observe that deg iy = dega = 3.

where

3.4. Structure relation and difference-differential equation. Now using the
fact that the weight function ([B1]) is centrally symmetric, and the Pearson equations
B0 for the weight function, we know that the orthonormal polynomial system,
{Pn}n>0, (see [1]), satisfies the following structure relations

am ]P)n = Bn,l ]Pn—l + Cn,l Pn—3u
(3.8)
ay ]P)n = Bn,Q ]P)nfl + Cn,2 Pn73;

forn > 1, where P_y =P_4 =0, B, 4, C,,; are matrices of respective sizes (n+1)xn
and (n+1) x (n—2),and C;; = Cy; =0, for i = 1, 2.

Following [2], since the Freud weight function (B)) is semiclassical, there exists
a second order partial differential functional

]—":811+8yy+1/)181+w28y

such that
FP, =A) o Prpo +ANP, + A o Pyo, (3.9)

for n > 1, where
AZ+2 = _[Bn,l Cr:f+2,1 + Bn,2 Cr:f+2,2]=
AL = —[BnaBl 1 + ConCly 4+ BraBl o + Cn2Coh o],
Ay o= —[Cn,lB}Lz,l + Cn,2B;iz,2] = (AT,
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that is, the orthonormal polynomial system {P,},>0 satisfies the matrix partial-
differential-difference equation ([B.9)).

4. RESULTS INVOLVING THE MATRIX COEFFICIENTS

In this section we show several relations between the matrix coefficients of the
three term relations for orthonormal polynomials (3], the matrix coefficients of
the structure relations (B8] and the matrices involved in the explicit expressions
of the vector polynomials ([B4]).

We start by defining two useful matrices and establishing their relations with
the Pearson-type equation for the weight function ([B.7).

Let us define (n+1) X (n+ 1) upper and lower triangular matrices, that involve
the coefficients of the weight function (BI),

das0 0 2a22 O
40,470 0
Kn,l = 2(]/272 (41)
O day o
and
4&014 O
0 4&014
ng = 2@2)2 0 . (42)
O 2(1272 0 4(1470

Then, one can easily see that the matrices K, ; and L,, ; defined in [2.2]), for i = 1, 2,
are related as

LniLpy11 Knyo1 =4a40Ln1 Lyy11+2a22 Ly 2Ly 2, 43)
4.3
LpoLpy12Kyq090=4a04Ln2Llyi12+2a22Ly1 Ly
Using the relations ([£3)) and the Pearson matrix equation ([B.7), we can prove
the following result.

Proposition 4.1. The following hold
(2, y) X1 = —Lp—1,1 Lnj Lnyi1,1 Kng21 Xpyo — 2a2,0Ln—11X5,

4.4
o(z,y) X1 = —Lp—12Ln9 Lni1,2 Knyo2Xpgo — 2a02Ln—1,2X,. (44)

4.1. Explicit expressions. Next result brings explicit expressions for the matrix
coefficients A,, ;, i = 1,2, of the three term relations ([B.5), and for the matrix
coefficients B, ; and C,, ;, ¢ = 1,2, defined on the structure relations ([3.8)), in terms
of the matrices Gy, Ly iy Np i, and Ky, ;, for i = 1,2, defined by (B4), 22), 29),
and (@I)-@2), respectively.

Proposition 4.2. For the matriz coefficients A, ;, Bn,; and Cy,;, i = 1,2, of
the three term relations B and the structure relations [B.8]), respectively, the
following properties hold
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i)

Ani=GnLniG Ly, n=0. (4.5)

i)
Bni=GnL) | ;NoiGly, n>1 (4.6)

i)
Cff,i =Gn3ln3ilnoil,1:K,;G,*, n>3, (4.7)

where the matrices Gy, Ly, Ny, and Kp i, for i = 1,2, are defined by (B4,
22), @4), and (EI)-E2), respectively.

Moreover, the right pseudo inverse matriz of A, ; is
AL =G LT, G i=1,2. (4.8)
Proof. 1) Substituting the explicit expression of P, (8.4 on the three term relation

B3) we have
2|Ga X + Gl sz 4| = Ana [Guri Ko + G Xoma 4] (49)

+AT 1 {Gn—l Xn-1 + G AKX 3 + - }

and analogue to the three term relation for the second variable. Using (21]), and
adjusting leading coeflicients, we have

Gn Ln,i = An,i Gn+1, 1 =1,2,

and (@A) holds.
The pseudo inverse for A, ; by the right side (L)) follows immediately.

ii) In the same way, substituting (3.4]) on [B.8) for i = 1, we get
0 [G X+ Gl o2+ -] = Bua [GuoaXa1 + GiTiX s+ (410)
+Ch1 |:an3 Xp-3+ G 3K, 5+ ] .
Next, applying ([Z3)), and adjusting leading coefficients we obtain
Gn LZ?M Npi=Bni1Gn-i.
Doing analogue for i = 2 we get (£.0).

iii) Multiplying the structure relation @.8) for i = 1 by PZ_, and applying the
inner product [B3)), we get

(u,0; [PH]PZ—3> =Bna (u, P, 1 IED12;—3> +Cha <u, Pr—s ]P)Z—3>7
that is, Cp 1 = (u, 0,[P,]PL_5). Then,
Cna1= <u,(91[]P’n]P’£_3]> —(u, ]P)naw[PZ—BD = (u, aw[PnP£—3]>v

because the orthogonality. Integrating C), ;1 by parts on the variable z, taking into
account the behaviour of the weight function on R, i.e., for F(z,y) € II, the value
of F(z,y)W(x,y) goes to zero when the variables z and y diverges positive or
negatively, and using the first Pearson equation for the weight function B), we
deduce

Cpi = ﬁoam[z@n PT )W (2, y)dedy = — ﬁopn PT .0, W(z,y)drdy
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+oo
=~ JJ Bu Bl s vala.y) W y) dudy.

Using the explicit expression (34) of P,,_3 and relations (4] of Proposition ET]
we deduce that P, 311 (z,y) is a (n — 2) x 1 vector polynomial of degree n. Hence,

—+oo
Cni= JI PHPZ W(x,y) dz dy (Gﬁl)T Kr:f,l szl,l szzg L£73,1 Gf,g,
and (A1) holds for ¢ = 1. Similar calculation can be done for i = 2. O
Next result gives relations involving the matrix coefficients A,, ;, By, Cy i, for

i = 1,2, by themselves.

Proposition 4.3. The matriz coefficients Ay, ;, By i and Cy,;, @ = 1,2, of the three
term relations (B8] and of the structure relations [B.8), respectively, are related as
follow

i)

Bni=At ;Gua Ny Gty m> 1 (4.11)

ii)
O =An3iAn ;A 1:Gn Kn:i G, n>3. (4.12)

iif)
Coi=G" G oBy 0 — BpiGr 3Gt n>3, (4.13)

where the matrices Gt _,., Lpi, Ny, and K, ;, for i = 1,2, are defined by B.4),
22), @4), and @I)-(E2), respectively.

Moreover, the following relations hold

An,iGzt;kH + AZ&JGZ:%CH = Gy_opLn—2k, (4.14)
and
Bn,iGz:ék_l + On,iGZ:gk_l = szszgfzkaianﬂc,iv (415)

for k=0,1,...,|n/2].

Proof. ([@11l) is deduced using the explicit expression of A;il,i in (44), and [@I12)
using the relation (@A) in (7).

The expression [I4) is deduced adjusting the coefficients of X,,_1,X,,_3,... in

(#3), and ([II0) is obtained in the same way in ([I0).
Finally, using k = 1 in ([@I3), we get
CriGps =G LT o Ny o;— By, Gl 3.

n—3,t

Since By, _2,Gp_3 = G LT Np_2,4, we can write

n—3,t
Cr.iGrg = G _,G 1 ,Gy oLY 4 N, _5;— B, ,G""}
n,ibn—3 = Gn_ob, _obn_ol,_3;Nn—2; n,ily, 3
n —1 n—1
=G _9G, " 9Bn—2,iGn-3 — BniGy 3
hence, we get (Z13). O

We remark that, for the general case, equations [@I4)) and ([@I3) can be found
in [22].
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4.2. Non-linear four term relations for the coefficients of the three term
relations. We now show non-linear four term relations for the matrix coefficients
of the three term relations A, ;,7 = 1,2. We must remark that the results given in
this subsection hold for every centrally symmetric weight function, since structure
relations have not been used.

Proposition 4.4. The matrix coefficients of the three term relations for orthonor-
mal polynomials, Ay, ;, n >0 and i,j = 1,2, satisfy
An AL AL A =G oG An s i An = A i Ang ;GG (4.16)

n—1,2

where the matrices GI_,. are defined in ([34)).

Proof. First we compute (u,z?P,,PL) using the three term relation (33) and the
orthogonality. Hence,

(u, PPy) = (u, [An1 Pryr + AZ—I,I Pnfl][Pzﬂ Az,l + Py A1)
= Ana A+ AL Ape

Since the entries of the sequence of vectors {P,,},>¢ form a basis for the space
I1, then 2°P,, can be written as

Pp = Fp o Pryo + FPPr+ F oy P o+, (4.17)

where F/'; are real matrices of order (n+1) x (j+1). On the one hand, using (3.4,
we get

Py = F g1 [Gri2Xngo + GRP? X, + G5 X0 + -]
+F G Xn + Gy X o + Gy Xya -] (4.18)
+ 1 [GrnaXn o+ G X s+ G e X g+ o]+
On the other hand, we can write 22P,, as
x2]P>n = x2[Gn Xp+Gn Xy o+ Gn X g+ -]
= Gnln1Lni11 X012+ Gl oLy 21l 11X, + -+ (4.19)
Adjusting the coefficients of the terms of X,, 2 and X, on (I]) and [@I9), we get
Frio1Gry2 = Gnlp1Llnia,
E o GutP2 4+ F G =G yLn 21l 1.
Therefore I 5 | = GnLn,an+1,1G;lL2 , and
W =G oLy 91l 121G = GuLy 1 L1 G L GRP?GL!
=G 3G Gaoln 21 Ly 111G, — GuLnLny11G, 1 ,Gr Gt
From @35), Gy—2Ln—21Ln-11G,' = Ap_21A,-1,1, we obtain
Fr,= G?172G1:12An—2,114n—1,1 — Ap 1A GG (4.20)

Finally, since (u, z*P,PL) = F', (u,P,P]) = F}, then, for n >0,

n,l»

T T —1 2 ~v—1
An 1AL+ Ay A1 =G oGl An 91 An 11 — Ap 1 An1 1 GG

Similar reasoning using y°P,, z yP,, and y zP,, gives the results. O
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Let us consider the joint matrix A,,, given by (B.0), of order 2(n + 1) x (n +2),
and the joint matrix of order (n + 1) x 2(n + 2), denoted by A,,, and defined by

An - ( An,lu An,2 )

Remember that the Kronecker product of A = [a;;], matrix of order m x n, and
B = [b;;], matrix of order p x ¢, denoted by A® B, is defined as the following block

matrix
ail B SN alnB

amiB ... amnB
of order mp x nq, see also [I7, p. 243].

A direct use of the definition of Kronecker product and equations (EI0) yields
the following result.

Corollary 4.5. The sequences of the joint matrices A, and A, satisfy
A AT L AT A, = (L@ GT 3G ) A 2 A, 1 — AgAn (I @ GRT2G).
We observe that the matrices F™12 F", and F";?, for i = 1,2 given in ([@IT7)

n,g T n, n,g
satisfy another interesting relation.
Corollary 4.6. Let Fy, ; be the matriz cocfficients defined in @IT), for n > 2,
i=1,2and 0 < m<n+2. Then

=G Gl (F)

T 2~v—1
n—2 n72,i) - F:+2,iGZ+ Gn .
Proof. For simplicity here we denote the variable x by x1 and the variable y by s,

then using the three term relations [B.3)), for i = 1,2,
I?]P)n - An,iAn+1,iPn+2 + (An,lAZJ + AT Anfl,i)Pn + Azfl AT Pn72-

n—1,2 a4 tn—2.1

Comparing this expression with (£I7), we obtain

F:+2yi - An,iAnJrl,iv
T T
F:zl,z = An,iAnﬁi + An71,1An—1,i7 (4.21)
n _ AT T
n—2,0 An—l,iAn—2,i'

Hence, from [@20), and [@2T]), we have

n mn —1 n—2 n n+2,v—1
Fn,i - Gn72Gn—2Fn,i - Fn+2,iGn Gn y N 2 2.

Observing that F:;Q = (FV

n—2,i)T

, n =2, we finally get the result. O

5. MATRIX PAINLEVE-TYPE DIFFERENCE EQUATIONS

In this section we obtain non-linear three term relations for the matrix coeffi-
cients, A, i, ¢ = 1,2, of the three term relations for orthonormal polynomials, (33,
extending the well known relation (I]), namely

4a} (a2, +ai+ar_y)—2tal =n+1,
extensively studied ([3], [20], [2I], [27], among others) to the bivariate case. We
have to taking account the non-commutativity of the product of matrices.

We know that in bivariate case the matrix coefficients A,, ;, for i = 1,2, of the
three term relations [B.3]), of order (n+1) x (n+2), take the place of the coefficients
ay,, of the univariate case. We can now prove the following result.
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Theorem 5.1 (Matrix Painlevé-type difference equations). For n > 0, the follow-
ing relations, for the matriz coefficients A, ;, i = 1,2, of the three term relations

B3, hold
4aao Ap [(Ans11 AL ) AR + AL (An i AL L+ ARy 1 A1)
+2az2 Ana [(Ansr,245411)An e + Ap o (Ana Ap + AL 1 An_i )]
+2a20An1 Aﬁl =GpN,11.1G;?
and
404 An2 [(Ant1245 1 2) AL o + A o(An oAl o + AL 1 5 A0 15)]
+2a22 Anz [(Ansr1 AL 2) AT + Ap 1 (An2 AT+ An_ 1 5 A0 11)]
+2a02An,2 AZ)Q =G Npt12G 1,
where a4, a2,2, 00,4, 42,0, ao,2 are the coefficients of the bivariate Freud weight func-
tion (31)-B2).
Proof. By using (871), we know that
(0pu, P, 1 PLY = (p1u, P, 1 PL).
The left-hand term is given by
(O, Prsa PL) = — (0, 05 [P PR]) = —(0, 02 [Prsa [Py) — (0, Pry 100 [P ])
=— (0,0:[Pn1]P}) = —Bnt11,

by using the structure relation (33).
To compute the right-hand term, we apply successively the three term relations.
Observe that

2Pt =Ani11 Ant21Pris + [Anp1 1 Al + A A i Prgs + AL AL Py,
Ppi1 =Ani11 40412140131 Pota
F[Ans11An21 AT o+ Ans1 1 Anpy 1 Anin + AT 1 An 1 Ang1 1P
+ [An+1,1A£+1,1A£,1 + Af,lAn,lAf,l + Az,lAz—l,lAnfl,l]Pn
+ Af,lAffl,lAﬂuPnfz,
(i) Using aPp41 = Apt11Pryo + AZJIE”", we have
(0, 2Py 1PR) = (U, [Apy1,1Pot2 + AL Pa]PL) = A7 5.
(ii) Moreover,
(0, 2°Pn i1 Py) = An+1,1AZ+1,1AZ,1 + AZJAn,lAZ,l + Az,lAzfl,lAn—l,L
(iii) Analogously, using xy? = yzy,
(0, 2y PraPry) = A 2 A1 1 Ao + AL A A 5 + AT AL 1 A1,
Observe that
(1w, P 1 P = (u, 91 Pa PY)
= —daso(u, 2°Py 1 PL) — 2a0 2 (0, 2y* Py 1 PL) — 2a5,0(u, 2P, 1 PL)
= 4a4,0[An+1,1AZ+1,1AZ,1 + Az,lAn,lAZ,l + Az,lAgleAn—l,l]
- 2a2,2[An+1,2A£+1,1A£,2 + Az,zAn,lAZQ + Az,zAZ—l,lAn—lz]
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— 2&210142)1.
Therefore,
day [(An+1,1A£+1,1)A£,1 + Az,l(An,lAZ,l + AZ—I,IAnle)]
+ 2a2,2 [(An+1,2A§+1,1)A£,2 + AZ,Q(An,lAZ,z + AZ&,lAn—l,?)}
=+ 2a270A£71 = Bn+1)1.

Since Bp41,1 = A;)llGnNnHG;l, we multiply all the equation by A, ; by the left-
hand side, and the result follows for i = 1. Analogous calculation can be done for
i=2. O

For asp = apa =1, az,2 = 0, and ag,0 = ap,2 = —t, expressions in Theorem [5.1]
read as

4An,i [(An+1,iAZ+1,i)A§,i+ Az,i(An,iAZ,i + Azfl,iAn—l,i)] - 2tAn,i Ag,i
= GnNnJrl,iG;l,

for i+ = 1,2. We can say that above expressions extend the well known Freud
equation (LI)) for the univariate case, since here the matrix coefficients A,, ;,7 = 1,2,
take the same roles as the coefficients a,, obey the same product and difference
relations, and matrices GnNnJrLiG;l extend the independent term n + 1.

In the univariate case, equation (L] is a non-linear recurrence that could de-
termine, if no zeros occur, the consecutive recursion coefficients. However, in the
bivariate case, matrix Painlevé-type difference equations are not recurrence rela-
tions for the matrix coefficients A, ;. The matrices A, ; are full rank matrices
invertible only by the right hand side, and this fact prevent to use the relation as a
recurrence relation to compute A,11,;. This fact is the same as happens with the
three term relations ([B.5]), they are not recurrence relations ([I3] p. 73]).

Even though the dimension of the matrix coefficients A,, ; grows linearly with
respect to the index m, the matrix representation of the orthogonal polynomials
yields interesting matrix difference equations and in the same formal model as
the discrete Painlevé equation dPI. The use of the vector-matrix representation
has allowed us to construct an extension of equation ([LI)) that reads in a similar
way. Theorem [B.1] could be proved without matrix formulation as in [26], but the
expressions would have read in a very cumbersome way.

6. 2D LANGMUIR LATTICES

The aim of this section is to deduce formal 2D Langmuir lattices associated with
a Freud weight function in two variables. As in the previous sections, our results
involve matrices of increasing size and can be read as extensions of the univariate
Langmuir lattices.

We assume that the coefficients of the polynomial ¢(z,y) in (3.2)) satisfies ag,o =
ap,2 = —t, with ¢ € R, then the weight function is given by

4 2,2 4 2 2
Wt(ﬂ%y) — ¢ (aa,08"Faz 22y  +ao,ay") (2 4y )7 (I,y) c R2,

We consider the inner product

+oo
(£.9)e = (s, f g = [[ F(a.y) 9w y) Wi, y) d dy (6.1)
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that depends on a time parameter ¢. As usual, we denote the derivative of f(t)
. d
with respect to ¢t by f = Ef(t)

As the univariate case, to deduce Langmuir lattices we will need a bivariate monic
polynomial system {Q(z,y,t)}n>0 = {Qn(t)}n>0 orthogonal with respect to the
inner product (6] and depending on ¢t. Here Q,,(¢) is a vector of monic polynomials
on the variables (z,y) such that its coefficients depend on the parameter t. For
n > 0, we say that Q,,(¢) is monic if the matrix G,,(¢) in its explicit expression (4]
is the identity matrix I,,41. In this case,

(@), Qu(H)T) = (0, Qu(t) Qu(1)T) = Hy (1),
(Qn(t),Qm(®)T) = (0, Q,(t) Qu(t)") =0,

where H,, = H,(t) is a (n 4+ 1) symmetric and positive definite matrix depending
on t and again 0 is the zero matrix of adequate size.

The coefficients of the three term relations for {Q,(¢)},>0 also depends on t.
Since the inner product (6.1J) is centrally symmetric, the three term relations take
the form

€ Qﬂ(t) = Ln,l@n+1 (t) + En,l (t)Qn—l(t)u
Y Qn(t) — Ln,2@n+1 (t) + En,2(t)(@n—l(t)u

for n > 0, where Q_1(¢) = 0, Qo(t) = 1, and for ¢ = 1,2, the matrices L, ; were
defined in (2.2) and E,, ;(t) are matrices of order (n+1) x n, (see [13| p. 70]). The
matrices E, ;(t) also satisfy

(6.2)

Eni(t)H, 1 (t) = H,(t)LE i=1,2. (6.3)

n—1,7»

Next, we find the following relation between H,,(t) and H,(t).

Lemma 6.1. Forn >0,
Hn(t) = Vg () Hn (1),
where

Vat1(t) = Ln1Eny11(t) + Lo 2Ent12(t) + Eni(t) L1+ En2(t)Ln_12. (6.4)

Proof. Since Wy(z,y) = (22 + y*)W,(z,y), we can write

+o0 +oo
Ho(t) = [[ Qu(®) QF () Wi, y) dwdy + [ Qult) QL(E) Wil y) do dy

+oo
+ [ @ut) QL) (2% + ) Wi, y) de dy.

Notice that deg Qn(t) < n, hence, using the orthogonality, and the three term
relations (G2), we get the result. O

Now, we define the matrices
En(t) = En)l(t) + En)g(t), n>1. (65)

We can prove that the matrices E,, () satisfy a two dimension version of the Lang-
muir lattice.
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Theorem 6.2. The matrices E,(t) satisfy the 2D Langmuir lattice
En(t) =Var1(O)EW(t) — E,(t)Va(t), n=>1, (6.6)
where V,,(t) is given in (6.

Proof. From (6.3) we can write H,, (t)LT
1= 1,2, hence

Hy(D)[Ly_11 + Ly_1] = [Baa(t) + En2(0)] Hu—1(8) + (B (8) + Ep 2 (8)] Hoo1 (1),
Using Lemma [6.1] and definition (6.3), we get
Vit () Ha (L7 _y 1 + L1 2] = En(t) Hyo1 () + En (6) Va (8) Ho1 (8),
hence, using ([G.3)),
By () Ho-1(8) = Va1 ([ B (8) + Bn 2 (O] Hy-1 (1) = En (Vi () Hu—1 (1),

Since H,,_1(t) is a non-singular matrix, we obtain the result. O

= En,i(t)Hn—l (t) +En,i (t)Hn_l (t), for

n—1,:

Relation (G.6]) can be seen as a formal type of 2D Langmuir lattice for the
matrix coefficients of the three term relation for the monic orthogonal polynomials.
The coefficient matrices E, (t) play the same role as the coefficients 3, (t) of the
univariate case (L2).

Now, we return to orthonormal polynomial systems. Since H,(t) is symmetric
and positive definite, there exists another symmetric and positive definite matrix
o2 (t), the so-called square root of the matrix H, (t) [I6l, p. 440] such that H, (t) =
2 (t) 2 (t). Let us define the polynomial system {P,(¢)},>0 by means of

Pu(t) = H,2(8) Qu(t), n>0.
Since
(P (1), Pu(t)T) = (H, 2 (0)Qu(8), Qu(t)" H, V2 (#)) = Lo,
(Pu(t), Pra(0)T) = (H, V2 (O)Qu (1), Qu(t) H, /(1) = 0,
then {P,(¢)}n>0 is an orthonormal polynomial system with respect to (G.), and
satisfy the three term relations ([3.5]), where the matrices A,, ; = A,, ;(¢) also depend
on t, for n > 0.

The matrices involved in the respective three term relations (B.5) and ([G.2]) are
related by

A i(t) = HY 2 (OB, (0H, 77 (1),
Then,
AT() = B P OB (OHY (1), n >0, (6.7)
where A, (t) = Ap1(t) + Ay 2(t). Deriving (67) with respect to ¢, and omitting
the parameter ¢ for simplicity, we get

Ay = B, PBy HY? + Hy B HY? + H, B HY

Let us analyse term by term. From (6.6) and (6.7), we obtain

H, By HY? = H, P Vai2Eng1 — Byt Vot JH?

= H Voo HY AT — ATHTV2V, 0 HY? (68)
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Using the definition of V,,4; and (6.7]), we have
H V2PV Hy? = Ant AT+ Anp Al + AT 1 An—1a + Al 0 A0
Substituting this relation in (68) we get
Ho B HY? =[An1 0 AT+ Ans1 2 AT o + AT An sy + AT, Ay ] AT
- Az[An,lAZ,l + An,2A£,2 + AZ—l,lAn—l,l + AZ—l,zAn—lﬁ]-

Therefore,

T
A :[An+1,1A£+1,1 + An+1,2A£+1,2 + Az,lAn,l + A£,2An,2]AZ

n
- AZ[An,lAZ,l + An,ZAZ,z + qu,lAnfl,l + Agfl,zAnfl,Z]

S+ H B HY? + Hy B HY2.

From ([©1), we get En+1H71/2 = iflAZ and H{l/QEnH = A:Hglﬂ. Even,
H{l/QH,l/Q = —H;1/2H£/2 and then

- T
A, =[Ani1 1AL+ Anp1 AT AT — ATTAT | A0+ AT AL )]

+[AT Ay + AL Ao + Hy P HY AT (6.9)

— AL[An AT+ Anp AT — HVPHL).

Relation (G9]) can be seen as a formal type of 2D Langmuir lattice for the
matrix coefficients of the three term relation of the orthonormal centrally symmetric
polynomials.
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