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Abstract: Background: Current approaches to predicting intervention needs and mortality have
reached 65–85% accuracy, which falls below clinical decision-making requirements in patients with
acute pancreatitis (AP). We aimed to accurately predict therapeutic intervention needs and mortality
on admission, in AP patients, using machine learning (ML). Methods: Data were obtained from three
databases of patients admitted with AP: one retrospective (Chengdu) and two prospective (Liverpool
and Chengdu) databases. Intervention and mortality differences, as well as potential predictors, were
investigated. Univariate analysis was conducted, followed by a random forest ML algorithm used in
multivariate analysis, to identify predictors. The ML performance matrix was applied to evaluate
the model’s performance. Results: Three datasets of 2846 patients included 25 potential clinical
predictors in the univariate analysis. The top ten identified predictors were obtained by ML models,
for predicting interventions and mortality, from the training dataset. The prediction of interventions
includes death in non-intervention patients, validated with high accuracy (96%/98%), the area under
the receiver-operating-characteristic curve (0.90/0.98), and positive likelihood ratios (22.3/69.8),
respectively. The post-test probabilities in the test set were 55.4% and 71.6%, respectively, which
were considerably superior to existing prognostic scores. The ML model, for predicting mortality
in intervention patients, performed better or equally with prognostic scores. Conclusions: ML,
using admission clinical predictors, can accurately predict therapeutic interventions and mortality in
patients with AP.

Keywords: acute pancreatitis; machine learning; predictor; interventions; mortality

1. Introduction

Acute pancreatitis (AP) is one of the most common admission diagnoses relating to an
acute gastrointestinal pathology. Approximately 25% of patients with AP develop infected
pancreatic necrosis (IPN) and/or organ failure (OF), with mortality rates of 20–50% [1,2].
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While the outcome of patients with AP has improved over recent decades, AP incidence
and associated disability remain high [3], and specific drug therapies remain unavail-
able [4]. One of the challenges of therapeutic trials for AP is the inaccuracy in early severity
and complication prediction, resulting in heterogeneous treatment groups. A review of
current predictors of AP outcome [5] (including IPN, OF, and the need for intervention)
demonstrated that the accuracy of current systems ranges from 65% to 85%, implying a
misclassification error of 15–35%. This degree of inaccuracy in the prediction has clinical
and research practice consequences.

Improving the accuracy of early severity prediction is of paramount importance and
a matter of significant international effort. Various individual serum biomarkers have
been investigated. However, they have failed to improve the clinical utility of existing
simple and inexpensive scoring systems [6–10]. Combinations of markers and/or scoring
systems potentially add value but lack external and/or multicenter validation [11–14]. The
development and increasing accessibility of omics platforms have provided opportunities
for prognostication based on genetic [15], transcriptomic [16], proteomic [17–20], metabolic
profiling [21,22], and multi-platform omics analyses [23] Nevertheless, the application of
these platforms in AP remains in its infancy.

The premise of machine learning (ML) in disease prognostication is to incorporate
the wisdom embedded within decisions made by multiple clinicians, and the outcomes
of their patients, in order to inform the individualized patient treatment [24]. ML is a
broad field involving computer science and statistics, and broadly speaking, it involves
a machine-led selection of iterative computational models to progressively improve the
model’s performance in a specific task. The ability to handle vast datasets in an inherently
unbiased manner has led to the growing interest in, and use of, ML-based applications in
multiple areas of medicine [25–28]. This includes the use of ML in the diagnosis, prognosis,
and predicted treatment response in patients with gastrointestinal diseases, although the
lack of high-quality datasets continues to present a problem [29].

In AP, ML has been used to aid in the prediction of OF [30–32] and severity [33–35];
however, thus far, no study has accurately and timeously predicted the need for therapeutic
intervention [36]. The identification of high-risk patients who require specialist intervention
is critical, as these patients are, not only, at considerable risk of adverse disease outcomes
but timely management has considerable implications for the health-care system. This
includes the possible need to provide services that may not be available throughout the day,
or every day in the week, and the provision of services may mean a transfer to a different
hospital in some care settings.

Although there have been attempts to standardize the language surrounding indi-
cations for intervention in AP [37], there are numerous instances (e.g., ongoing OF or
other severe gastrointestinal symptoms, due to the mass effect of walled-off necrosis or
disconnected pancreatic duct syndrome) [38] that warrant intervention under the care of
an experienced pancreatologist. These can often be difficult to classify or use to provide
general guidance on the use of traditional methods.

Therefore, this study aimed to apply an ML algorithm to preoperatively predict the
need for intervention and mortality in patients admitted with AP.

2. Materials and Methods
2.1. Overview

Data on patients with AP were collected, retrospectively (single center, Chengdu) and
prospectively (two centers, Liverpool and Chengdu), and analyzed following the STROBE
guidelines for observational studies [39]. Confirmation that specific ethical approval was
not required was provided by the Institutional Review Board of West China Hospital of
Sichuan University (WCH/SCU), due to prior approval for the use of retrospective data.
Informed consent was obtained from patients admitted to Royal Liverpool University
Hospital (RLUH), and ethical approval was not required because anonymized data were
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used. Predictors and outcomes from both retrospective and prospective databases were
used to develop and test predictive models for intervention and mortality.

2.2. Cohorts and Data Collection

Eligible patients were identified from the Hospital Information System by using the
International Classification of Diseases, 10th edition, code K85. All patients were admitted
to WCH/SCU or RLUH, within 48 h of abdominal pain onset, with a diagnosis of AP,
as defined by the revised Atlanta classification [37]. Patients in the retrospective cohort
were admitted between 1 October 2009 and 30 September 2013. Patients in the prospective
cohorts were admitted between 1 September 2014 and 31 December 2015 (WCH/SCU) or
between 1 June 2010 and 30 June 2017 (RLUH). Data collection in both centers was based on
a predefined pro forma and coordinated by experienced researchers, with quality assurance
and control measures in place at every step of the study process.

2.3. Potential Predictors

Demographic variables (age, sex, comorbidities, abdominal pain onset time, and
etiology), available quantitative laboratory tests on admission common to all three cohorts
(white blood cell [WBC], neutrophils, lymphocytes, hematocrit, urea, creatinine, albumin,
and C-reactive protein [CRP]), and clinical severity scores on admission (sequential organ
failure assessment [SOFA] [40], systemic inflammatory response syndrome [SIRS] [41],
bedside index, for severity in acute pancreatitis [BISAP] [42], acute physiology, and chronic
health examination [APACHE] II [43], as well as modified computerized tomographic
severity index [MCTSI]) [44] were collected. Additional clinical variables, including pleural
effusion, local complications, OF, pancreatic, and extrapancreatic infection (bacteremia and
others) were also recorded (worst during hospitalization or before surgery), as were daily
assessments of type, onset, and duration of OF.

2.4. Definition of Groups

The patients were divided into conservative-treatment (no intervention) and invasive-
intervention (including pancreatic cyst percutaneous catheter drainage and necrosectomy)
groups for further analysis.

2.5. Statistical Analysis and Model Development

The chi-squared test was used to analyze categorical data, and the Kruskal–Wallis test
was used for ranked variables. The rank-sum test was used for skewed and continuous data.
Random forest (RF) ML [45] multivariate analysis was used to construct the algorithms and
resolve the impact of data imbalances on predictions (2714 cases in the non-intervention
group, more than 20 times of the 132 cases in the intervention group). RF can process
high-dimensional samples and does not require dimensionality reduction for datasets
with numerous variables. It is worth noting that RF is an ensemble method that utilizes
many classifiers to work together, and it has high accuracy and superiority on unbalanced
datasets. The mean decrease in the Gini value of each variable, indicating the importance of
the variable to the outcome, was obtained by the varImpPlot function using the R software.
We comprehensively evaluated the model’s performance, using the area under receiver-
operating-characteristic curve (AUC) analysis, and evaluated the post-test probabilities by
calculating the positive and negative likelihood ratios.

All the analytic processes were performed using R software (version 3.6.3).

2.5.1. Data Sources

Since there were three datasets in this study: (1) a retrospective cohort from WCH/SCU,
(2) a prospective cohort from WCH/SCU, (3) and a prospective cohort from RLUH, the
differences between various data collection times and populations might have had vary-
ing effects on outcomes. Therefore, the differences affecting the research outcomes were
analyzed. First, we used the three datasets, separately, to predict intervention needs and
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mortality. Thereafter, we aggregated the three datasets into a single dataset for the pre-
diction. We found that the results of modelling the three datasets separately, and those of
integrating them into one dataset, were similar. In addition, this study was a retrospec-
tive analysis of data collected in a previous period. Therefore, we consolidated the three
different data sources into a single dataset before analysis and modeling.

2.5.2. Univariate Analysis

The impact of each individual variable on “need for intervention” and “mortality” was
examined using univariate analysis. Where the resulting p-value was <0.10, the variable
was included in multivariable analysis.

2.5.3. Performance of the ML Algorithm

For multivariate analysis, an RF ML approach was used. Patients were divided into
three groups for modeling: (1) intervention and conservative management, (2) mortality
and survival among intervention patients, and (3) mortality and survival among conserva-
tively managed patients. The larger the mean decrease in the Gini value, the greater the
impact of the variable. We extracted the characteristics of the intervention and deceased
patients, compared with those of non-intervention and surviving patients, and evaluated
the model’s performance using evaluation indicators (accuracy, AUC, sensitivity, speci-
ficity, and likelihood ratio). Accuracy was evaluated based on the percentage of correct
predictions. To predict the performance of ML, accuracy was evaluated based on the
proportion of correct predictions in the total sample. As a rule of thumb, a test with a high
predictive value has a positive likelihood ratio >5, usually closer to 10, and occasionally
higher [46]. In all three groups, the total dataset was divided into training, validation, and
test datasets according to a specific ratio of 6:2:2. The training set was used to develop the
model, the validation set was used to adjust the parameters, and the test set was used to
obtain the final result, which was the average performance with 30 repetitions (Figure 1).
The hyperparameters of random forest include the number of trees (ntree), the number of
variables required to build a single tree (nvariable), and the minimum sample size of leaf
nodes (nodesize). Through parameter sensitivity analysis (Supplementary Table S1), the
final chosen hyperparameters were: ntree = 500, nvariable = 4, and nodesize = 1.

1 
 

     
Figure 1. The flow chart of this study.
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3. Results
3.1. Comparison of Characteristics between Intervention and Non-Intervention Patients with AP

A retrospective cohort of 2018 patients (WCH/SCU) and two prospective cohorts of
259 and 569 patients (WCH/SCU and RLUH, respectively) were included in the analysis.
The proportions of intervention and mortality (chi-squared test; p = 0.432 and p = 0.411,
respectively) were similar across all cohorts, indicating that any observed differences in the
number of interventions and/or mortality were unlikely to be due to inherent differences
in the source data.

The clinical characteristics of the 2846 patients are summarized in Table 1. The number
of patients requiring therapeutic intervention was 132 (4.6%), while 2714 (95.4%) were
managed conservatively. The most common etiologies (in order) were biliary, hypertriglyc-
eridemia, and alcohol consumption. The median age of all participants was 46 years
(interquartile range, 38–58 years), and 64.0% were men. There were no significant differ-
ences in age, sex, Charlson comorbidity index, or etiology between the two groups. The
time from pain to admission was 6 h longer in the intervention group (p < 0.05).

WBC, neutrophil, hematocrit, urea, creatinine, and CRP in the intervention group
were significantly higher than those in the non-intervention group, while albumin levels
were lower (all p < 0.05). The admission clinical scoring systems, including SOFA, BISAP,
SIRS, APACHE II, and worst MCTSI, were all higher among intervention patients, with the
ratio of severe cases being three times higher than that in the non-intervention group.

Patients requiring intervention exhibited significantly worse clinical outcomes: 98/132
(74.2%) developed acute peripancreatic fluid collection, and 84/132 (63.6%) developed
pancreatic and/or peripancreatic necrosis. Out of the 84 patients with necrosis, 81 were
confirmed to have infectious necrosis; 99/132 (75%), 42/132 (31.8%), and 29/132 (22%)
therapeutic-intervention patients developed persistent pulmonary, circulatory, and renal
failure, respectively, with the duration of all three types’ OF lasting longer than those
in the non-intervention group. Extrapancreatic infection was also more prevalent in the
intervention group, regardless of bacteremia or lung infection.

Table 1. Characteristics between intervention and non-intervention patients with AP.

Characteristic
Total

(n = 2846)
Intervention

(n = 132)
Non-Intervention

(n = 2714) p

Demographics

Age, year (M[Q]) 46 (38–58) 48 (39–62) 46 (38–57) 0.125
Male (%) 1822 (64.0) 88 (66.7) 1734 (63.9) 0.578

CCI (M[Q]) 0 (0–1) 0 (0–1) 0 (0–1) 0.260
Modified CCI, (M[Q]) 0 (0–1) 0 (0–2) 0 (0–1) 0.176

ASA (%) 0.005
I 2120 (74.5) 108 (81.8) 2012 (74.1)
II 573 (20.1) 13 (9.8) 560 (20.6)
III 153 (5.4) 11 (9.3) 142 (5.2)

From onset to admission, h (M[Q]) 18 (10–27) 24 (10–33) 18 (10–27) 0.001
Aetiology (%) 0.063

Biliary 1069 (37.6) 65 (49.2) 1004 (37.0)
Hypertriglyceridemia 805 (28.3) 33 (25.0) 772 (28.4)

Alcoholics 216 (7.6) 8 (6.1) 208 (7.7)
ERCP 20 (0.7) 0 (0.0) 20 (0.7)

Drug-induced 8 (0.3) 1 (0.8) 7 (0.3)
Others 728 (25.6) 25 (18.9) 703 (25.9)

Laboratory tests

WBC, 109/L (M[Q]) 12.9 (10.01–16.30) 14.3 (10.43–17.35) 12.87 (10–16.26) 0.011
Neutrophils, 109/L (M[Q]) 11.00 (8.10–14.34) 12.66 (9.17–15.61) 10.95 (8.05–14.28) 0.001
Lymphocyte, 109/L (M[Q]) 1.01 (0.70–1.49) 0.96 (0.62–1.53) 1.02 (0.70–1.49) 0.352

Hematocrit, % (M[Q]) 43 (39–46) 45 (40–49) 43 (39.3–46) 0.003
Urea, mmol/L (M[Q]) 5.00 (3.72–6.60) 6.36 (4.79–8.61) 4.92 (3.70–6.47) <0.001 *

Creatinine, µmmol/L (M[Q]) 74 (62–89) 87 (68–134) 73 (62–88) <0.001 *
Albumin, g/L (M[Q]) 42.0 (38.2–45.3) 37.3 (32.3–43.2) 42.1 (38.6–45.4) <0.001 *

CRP, mg/L (M[Q]) 28.7 (3.31–142) 158 (20–22) 26 (2.7–136) <0.001 *
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Table 1. Cont.

Characteristic
Total

(n = 2846)
Intervention

(n = 132)
Non-Intervention

(n = 2714) p

Clinical scoring systems

SOFA (M[Q]) 0 (0–2) 2 (0–3) 0 (0–1) <0.001 *
BISAP (M[Q]) 1 (0–2) 2 (1–2) 1 (0–2) <0.001 *
SIRS (M[Q]) 1 (1–2) 2 (1–3) 1 (1–2) <0.001 *

APACHE II (M[Q]) 4 (2–7) 7 (4–11) 4 (2–7) <0.001 *
RAC (%) <0.001 *

Mild 1373 (48.2) 4 (3.0) 1369 (50.4)
Moderately severe 888 (31.2) 29 (22.0) 859 (31.7)

Severe 585 (20.6) 99 (75.0) 486 (17.9)
Worst MCTSI (M[Q]) 2 (0–6) 8 (6–10) 2 (0–6) <0.001 *

From admission to worst MCTSI, day (M[Q]) 0 (0–2) 2 (1–9) 0 (0–1) <0.001 *

Clinical outcomes

Local complication
APFC (%) 1121 (39.4) 98 (74.2) 1023 (37.7) <0.001 *

Necrosis (%) 416 (14.6) 84 (63.6) 332 (12.2) <0.001 *
Single organ failure

Pulmonary failure (%) <0.001 *
TOF 417 (14.7) 8 (6.1) 409 (15.1)
POF 578 (20.3) 99 (75.0) 479 (17.6)

Onset of pulmonary failure, day (M[Q]) 0 (0–1) 1 (1–2) 0 (0–1) <0.001 *
Duration of pulmonary failure, day (M[Q]) 0 (0–1) 12.5 (1–24) 0 (0–1) <0.001 *

Circulatory failure (%) <0.001 *
TOF 42 (1.5) 9 (6.8) 33 (1.2)
POF 111 (3.9) 42 (31.8) 69 (2.5)

Onset of circulatory failure, day (M[Q]) 0 (0–0) 0 (0–3) 0 (0–0) <0.001 *
Duration of circulatory failure, day (M[Q]) 0 (0–0) 0 (0–3) 0 (0–0) <0.001 *

Renal failure (%) <0.001 *
TOF 57 (2.0) 15 (11.4) 42 (1.5)
POF 104 (3.7) 29 (22.0) 75 (2.8)

Onset of renal failure, day (M[Q]) 0 (0–0) 0 (0–1) 0 (0–0) <0.001 *
Duration of renal failure, day (M[Q]) 0 (0–0) 0 (0–1) 0 (0–0) <0.001 *

Pleural effusion (%) 268 (9.4) 15 (11.4) 253 (9.3) 0.528
IPN (%) 85 (3.0) 81 (61.4) 4 (0.1) <0.001 *

Extrapancreatic infection (%) <0.001 *
Bacteremia 75 (2.6) 24 (18.2) 51 (1.9)

Lung and others 147 (5.2) 31 (23.5) 116 (4.3)

AP, acute pancreatitis; CCI, Charlson comorbidity index; ASA, American society of anesthesiologists; ERCP,
endoscopic retrograde cholangiopancreatography; WBC, white blood cell count; CRP, C-reactive protein; SOFA,
sequential organ failure assessment; BISAP, bedside index of severity in acute pancreatitis; SIRS, systemic
inflammatory response syndrome; APACHE II, acute physiology and chronic health evaluation II; RAC, revised
Atlanta classification; MCTSI, modified computerized tomographic severity index; APFC, acute peripancreatic
fluid collection; IPN, infected pancreatic necrosis; TOF, transient organ failure; POF, persistent organ failure;
M[Q], median and inter-quartile range for quantitative data; (%), number and percentage for categorical variables;
* p < 0.05, indicates statistical significance.

The comparisons between death and survival among intervention patients, as well as
among non-intervention patients, are shown in Supplementary Table S2 and Supplementary
Table S3, respectively.

3.2. Important Features and Predictors for Intervention and Mortality

As shown in Table 2, important features (variables) associated with intervention
and death differed. Compared with that in non-intervention patients, the duration of
pulmonary failure was the most important factor in intervention patients. The remaining
nine important variables for intervention patients, ranging from heavy to light, were
neutrophils, albumin, lymphocytes, creatinine, age, hematocrit, onset of circulatory failure,
APACHE II, and duration of circulatory failure. OF characteristics were all important
variables for death among both intervention and non-intervention patients, especially for
the occurrence of circulatory and renal failure. Circulatory failure, onset of circulatory
failure, duration of circulatory failure, renal failure, duration of renal failure, duration
of pulmonary failure, and APACHE II were all important variables for death in both
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intervention and non-intervention groups. The difference was that urea and CRP were
important indicators of death in intervention patients, while creatine and WBC were
important indicators in non-intervention patients.

Table 2. Top 10 important features for intervention or mortality among the three groups.

Intervention Death in Intervention Death in Non-Intervention

Variable
Mean

Decrease
Gini

Variable
Mean

Decrease
Gini

Variable
Mean

Decrease
Gini

Duration of pulmonary failure 23.78 Duration of renal failure 2.54 Renal failure 10.99
Neutrophils 10.18 Duration of circulatory failure 2.52 Circulatory failure 10.00

Albumin 9.91 Onset of circulatory failure 2.35 Duration of circulatory failure 8.62
Lymphocytes 9.06 Circulatory failure 2.21 Onset of circulatory failure 7.70

Creatine 8.36 Renal failure 1.60 Duration of renal failure 6.37
Age 8.27 Creatinine 1.59 Onset of renal failure 5.46

Hematocrit 8.09 Duration of pulmonary failure 1.38 APACHE II 4.72
Onset of circulatory failure 7.95 Urea 1.19 Duration of pulmonary failure 4.45

APACHE II 6.70 APACHE II 1.19 Creatinine 4.09
Duration of circulatory failure 5.48 CRP 0.92 WBC 3.80

APACHE II, acute physiology and chronic health evaluation II; CRP, C-reactive protein; WBC, white blood
cell count.

Figure 2 shows the relationship between important variables (the top five) and the
outcome. The first column (a) displays the top features for intervention, the second column
(b) is for death in the intervention group, and the third column (c) is for death in the non-
intervention group. A scatter plot was used to show the relationship between categorical
variables and the outcome, and a box plot was used to show the relationship between
quantitative data and the outcome. Pulmonary failure persisted significantly longer in the
intervention groups than in the non-intervention groups, along with higher neutrophil and
creatinine levels and a lower albumin level, while the lymphocyte level was similar between
these two groups. The top five important features of death were all about circulatory and
renal failure. The difference between the intervention and non-intervention groups, among
deceased patients, was that the duration of renal and circulatory failure had an impact
on death in the intervention group, while the most important variables for death in the
non-intervention group were the rate of renal failure and circulatory failure.

3.3. Prediction and Diagnostic Performance for Intervention and Mortality

Regarding the prediction of intervention, the accuracy of ML-based intervention pre-
diction was 96%, thus indicating that predicting both the positive and negative categories
of the model was highly accurate. The model identified 74% (sensitivity) of patients requir-
ing intervention. Overall, the AUC was approximately 90%, and the positive likelihood
ratio was 22.3. The death in the intervention patients were 86% recognized (sensitivity),
the AUC reached 89%, and the positive likelihood ratio was 6.14. In terms of death in
non-intervention prediction, the ML-based model performed better, the AUC could reach
98%, and the positive likelihood ratio was 69.6 (Table 3). The performance of all three ML
models on the test dataset was consistent with the above-mentioned.
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Figure 2. The relationship between important variable (the top five) and outcome. The first column
(a1–a5) displays the top features for intervention, the second column (b1–b5) is for death in the
intervention group, and the third column (c1–c5) is for death in the non-intervention group.
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Table 3. Performance of prediction for the three groups.

Accuracy AUC Sensitivity Specificity Likelihood
Ratio (+)

Likelihood
Ratio (−)

Predicting Intervention in AP (n = 2846)
Validation (n = 569) 0.96 0.90 0.74 0.97 22.3 0.27

Test (n = 569) 0.97 0.91 0.76 0.97 25.5 0.35

Predicting Death in Intervention (n = 132)
Validation (n = 26) 0.84 0.89 0.74 0.86 6.14 0.30

Test (n = 26) 0.82 0.89 0.82 0.82 4.80 0.28

Predicting Death in Non-Intervention
(n = 2714)

Validation (n = 543) 0.98 0.98 0.76 0.99 69.6 0.25
Test (n = 543) 0.98 0.99 0.77 0.99 71.9 0.31

3.4. Comparison of the Models with Prognostic Scores

Furthermore, the predictive performance for intervention and mortality, in patients
with AP, from the test set was compared among ML models, SOFA, BISAP, SIRS, APACHE
II, and worst MCTSI by calculating the positive likelihood ratios and post-test probabilities.
In the test set, 4.64% of patients with AP required intervention. The existing prognostic
scores on admission showed minimal to small changes, with an increase in the likelihood
of intervention in patients with AP with extremely low sensitivities, while only the ML
model moderately increased the rate, with a positive likelihood ratio of 25.5 and post-
test probability of 55.4%. On predicting mortality in all intervention patients, the ML
model performed better, or equally, with prognostic scores. Interestingly, the ML model
significantly improved the likelihood ratio (71.9) in predicting mortality in non-intervention
patients, increasing the 3.39% pre-test probability to 71.6% (post-test probability), while the
worst MCTSI showed nearly no change. The details are presented in Table 4.

Table 4. Performance of prediction with ML models and clinical scoring systems in the test set.

Sensitivity Specificity Likelihood
Ratio (+)

Post-Test
Probability (%)

Intervention (4.64% pre-test probability)
ML model 0.76 0.97 25.5 55.4

SOFA 0.08 0.98 5.0 19.6
BISAP 0.08 0.98 4.3 17.3
SIRS 0.06 0.98 3.2 13.5

APACHE II 0.08 0.98 5.4 20.8
Worst MCTSI 0.13 0.99 12.7 38.2

Death in intervention (21.97% pre-test probability)
ML model 0.82 0.82 4.8 57.5

SOFA 0.69 0.78 3.7 51.0
BISAP 0.52 0.96 4.4 55.3
SIRS 0.44 0.84 2.3 39.3

APACHE II 0.69 0.92 6.4 64.3
Worst MCTSI 0.48 0.69 2.0 36.0

Death in non-intervention (3.39% pre-test probability)
ML model 0.77 0.99 71.9 71.6

SOFA 0.11 0.99 21.5 43.0
BISAP 0.14 0.99 32.5 53.3
SIRS 0.07 0.99 12.7 30.8

APACHE II 0.15 0.99 30.2 51.4
Worst MCTSI 0.03 0.96 1.0 3.4

ML, machine learning; SOFA, sequential organ failure assessment; BISAP, bedside index of severity in acute
pancreatitis; SIRS, systemic inflammatory response syndrome; APACHE II, acute physiology and chronic health
evaluation II; MCTSI, modified computerized tomographic severity index.
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4. Discussion

To the best of our knowledge, this is the first study to use ML to quantify AP in-
tervention indications and predictors of mortality on admission. Based on substantial
international AP data from two centers, we found the duration of pulmonary failure to
be an important indicator of intervention, followed by neutrophils and albumin, and OF
characteristics were important predictors of death, in patients with AP, by ML. Using our
models, we can predict whether patients with AP require intervention at an early stage of
hospitalization, thus providing an important reference for timely consideration of whether
to transfer to the intervention department or a higher-level hospital that can perform in-
tervention. Furthermore, a pre-judgment can also be made regarding death, especially in
those non-intervention patients with AP.

The use of big data to capture patient-level outcomes has increased exponentially over
the past 10 years, providing a strong foundation for continuing investigations on questions
more specific to surgery [47]. ML algorithms, based on big data from multiple sources,
are being developed to help deliver care, inform health policy, and reduce waste, since
various data sources can potentially yield a rich matched data set [48,49]. ML applications
can improve the accuracy of treatment protocols and health outcomes through algorithmic
processes [50]. While guidelines present evidence-based international consensus statements
on AP management, mainly through the collaboration of a panel of experts, new and more
instructive guidelines require more data to be implemented in this era of big data.

Clinicians worldwide seem to be following the same initial, guideline-based manage-
ment protocol to the greatest extent possible; nonetheless, surgeons hold different opinions
regarding multidisciplinary strategies for endoscopy, radiology, and interventions. Most
guidelines and related randomized controlled trials compared intervention methods [51–56]
or timing [57] of interventions but investigated indicators minimally. In addition, although
IPN is the intervention recommended by most AP treatment guides for necrotizing pan-
creatitis [38,58–60], it is often determined when the intervention approaches in clinical
practice. Clinical indicators for predicting interventions on admission, using real-world big
data, can balance clinical efficacy with cost effectiveness. To identify intervention patients
in the early stage of hospitalization, we intended to use the data obtained on admission, as
well as the worst preoperative imaging manifestations and OF characteristics, to identify
predictors of intervention.

A prediction model was ultimately established. The better the predictive performance,
the higher the accuracy of predicting whether a new patient with AP will be operated on
or die. There were no existing prognostic scores for intervention in patients with AP, as
our results demonstrated that the existing available AP-related prognostic systems showed
low predictive performance for intervention. Our results revealed that the AUC for the
prediction of intervention was not low, the intervention patient-recognition rate (sensitivity)
was 74%, and patients who did not require surgery had recognition rates (specificity)
exceeding 90%, suggesting that the model is useful for the initial screening of interventions
that do not require surgery. Patients with AP who do not require intervention are ruled out
first (because of high accuracy and specificity), and the remaining patients can be further
observed to determine whether intervention is warranted, thus saving medical resources.
Moreover, a positive likelihood ratio >5 indicated our model’s good predictive effect, while
other prognostic scores at the early stage of the disease almost lacked predictive value in
predicting interventions in patients with AP.

The predictive performance for mortality was better with an AUC > 95% and a
positive likelihood ratio > 10. This suggests that the model can be used to predict death
in both interventions, more so in non-intervention patients, and attention can be focused
on advancement. Regarding the top 10 variables important for death, whether the patient
is operated on or not, the important variable was organ function, differing greatly from
the variables important to intervention, and the other two studies predicted hospital
mortality in patients with AP (Supplementary Table S4). The Dutch Pancreatitis Study
Group concluded that infection, onset, and duration of OF were not associated with death
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in necrotizing pancreatitis [61], findings that are inconsistent with ours [62–64]. This may
be because of the single center and multicenter analyses differed in their results. Therefore,
we used a two-center study to further confirm that OF was more important than infection
as a predictor of death in AP, based extensive AP data.

Our study also has some limitations. Firstly, most of the data were collected on
admission; however, the condition of the patients with AP changed over time. To predict
surgery and death more accurately, more time-consuming variables or more frequent
data collection are required for predictive research. Secondly, if invasive intervention
was required, we usually performed selective percutaneous catheter drainage (pancreatic
necrosis less than 30%) or a retroperitoneal pancreatic necrosectomy approach (pancreatic
necrosis greater than 30%), but we did not perform percutaneous or endoscopic transgastric
drainage routinely [62]. Comparison between open and minimally invasive procedures
would modify the current model and require further analysis. Thirdly, the retrospective
collection of data may not contain all the features needed for current or future studies,
which makes it impossible to guarantee homogeneity between the local data and study
data in model reproduction. Therefore, more prospective data sources in multi-regional
and multi-center studies may strengthen the interpretation of model validation methods
and, consequently, establish general models that can be widely promoted.

5. Conclusions

ML models are potentially useful in predicting intervention and death, in patients
with AP, using clinical indicators on admission.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12040616/s1, Table S1. Parameter sensitivity analysis. Table S2.
Characteristics between died and survived intervention patients with AP. Table S3. Characteristics
between died and survived non-intervention patients with AP. Table S4. Characteristics of studies
predicted hospital mortality in patients with AP [65,66].
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