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Abstract

The increasingly large amount of proteomics data in the public domain enables, among

other applications, the combined analyses of datasets to create comparative protein expres-

sion maps covering different organisms and different biological conditions. Here we have

reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets,

respectively), to assess baseline protein abundance. Overall, the aggregated dataset con-

tained 23 individual datasets, including a total of 211 samples coming from 34 different tis-

sues across 14 organs, comprising 9 mouse and 3 rat strains, respectively.

In all cases, we studied the distribution of canonical proteins between the different

organs. The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715

(liver) in mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how pro-

tein abundances compared across different datasets and organs for both species. As a key

point we carried out a comparative analysis of protein expression between mouse, rat and

human tissues. We observed a high level of correlation of protein expression among ortho-

logs between all three species in brain, kidney, heart and liver samples, whereas the correla-

tion of protein expression was generally slightly lower between organs within the same

species. Protein expression results have been integrated into the resource Expression Atlas

for widespread dissemination.

Author summary

We have reanalysed 23 baseline mass spectrometry-based public proteomics datasets

stored in the PRIDE database. Overall, the aggregated dataset contained 211 samples,

coming from 34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains,

respectively. We analysed the distribution of protein expression across organs in both
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species. We also studied how protein abundances compared across different datasets and

organs for both species. Then we performed gene ontology and pathway enrichment anal-

yses to identify enriched biological processes and pathways across organs. We also carried

out a comparative analysis of baseline protein expression across mouse, rat and human

tissues, observing a high level of expression correlation among orthologs in all three spe-

cies, in brain, kidney, heart and liver samples. To disseminate these findings, we have inte-

grated the protein expression results into the resource Expression Atlas.

1. Introduction

High-throughput mass spectrometry (MS)-based proteomics approaches have matured signifi-

cantly in recent years, becoming an essential tool in biological research [1]. This has been the

consequence of very significant technical improvements in MS instrumentation, chromatogra-

phy, automation in sample preparation and computational analyses, among other areas. The

most used MS-based experimental approach is Data Dependent Acquisition (DDA) bottom-

up proteomics. Among the main quantitative proteomics DDA techniques, label-free inten-

sity-based approaches remain very popular, although labelled-approaches, especially those

techniques based on the isotopic labelling of peptides (MS2 labelling), such as iTRAQ (Isobaric

tag for relative and absolute quantitation) and TMT (Tandem Mass Tagging), are becoming

increasingly used as well.

Following the steps initiated by genomics and transcriptomics, open data practices in the

field have become embedded and commonplace in proteomics in recent years. In this context,

datasets are now commonly available in the public domain to support the claims published in

the corresponding manuscripts. The PRIDE database [2], located at the European Bioinfor-

matics Institute (EBI), is currently the largest resource worldwide for public proteomics data

deposition. PRIDE is also one of the founding members of the global ProteomeXchange con-

sortium [3], involving five other resources, namely PeptideAtlas, MassIVE, iProX, jPOST and

PanoramaPublic. ProteomeXchange has standardised data submission and dissemination of

public proteomics data worldwide.

As a consequence, there is an unprecedented availability of data in the public domain,

which is triggering multiple applications [4], including the joint reanalysis of datasets (so-

called meta-analysis studies) [5–7]. Indeed, public proteomics datasets can be systematically

reanalysed and integrated e.g., to confirm the results reported in the original publications,

potentially in a more robust manner since evidence can be strengthened if it is found consis-

tently across different datasets. Potentially, new insights different to the aims of the original

studies can also be obtained by reanalysing the datasets using different strategies, this includes

repurposing of public datasets [8], including for instance approaches such as proteogenomics

studies for genome annotation purposes [9–12].

In this context of reuse of public proteomics data, PRIDE has started to work on developing

data dissemination and integration pipelines into popular added-value resources at the EBI.

This is perceived as a more sustainable approach in the medium-long term than setting up

new independent bioinformatics resources. One of them is Expression Atlas [13], a resource

that has enabled over the years easy access to gene expression data across species, tissues, cells,

experimental conditions and diseases. Only recently, protein expression information coming

from reanalysed datasets has been integrated in the ‘bulk’ section of Expression Atlas. As a

result, proteomics expression data can be integrated with transcriptomics information, mostly

coming from RNA-Seq experiments. So far, we have performed two meta-analysis studies
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involving the reanalysis and integration of: (i) 11 public quantitative datasets coming from cell

lines and human tumour samples [13]; and (ii) 24 human baseline datasets coming from 31

different organs [14].

The next logical step is to perform an analogous study of baseline protein expression in two

of the main model organisms: Mus musculus and Rattus norvegicus. To date, there are only a

small number of bioinformatics resources providing access to reanalysed MS-based quantita-

tive proteomics datasets, and even fewer if one considers only mouse and rat data. In this con-

text, at the end of 2020, ProteomicsDB [15] released a first version of the mouse proteome,

based on the reanalysis of five label-free datasets. To the best of our knowledge, there is no

such public resource storing accurate MS-derived data for rat data yet. PaxDB is a resource

[16] that provides protein expression information coming from many species (including

mouse and rat) but the reported data relies on spectral counting, a technique that generally

does not provide the same level of accuracy than intensity-based label-free approaches. Addi-

tionally, although antibody-based human protein expression information is provided via the

Human Protein Atlas [17], their efforts are focused on human protein expression.

Here, we report the reanalysis and integration of 23 public mouse (14 datasets) and rat (9

datasets) label-free datasets, and the incorporation of the results into the resource Expression

Atlas as baseline studies. Additionally, we report a comparative analysis of protein expression

across mouse, rat and human (in this case using the results reported at [14] using the same

methodology).

2. Results

2.1. Baseline proteomics datasets

Overall, we quantified protein expression from 34 healthy tissues in 14 organs coming from 23

datasets. The analyses covered a total of 1,173 MS runs from 211 samples that were annotated

as healthy/control/non-treated samples, thus representing baseline protein expression. Non-

control/disease samples associated with these datasets were also reanalysed but are not dis-

cussed here. Normalised protein abundances values (as ppb, parts per billion, see Methods for

calculation) from both control/healthy/non-treated and disease/treated tissue samples are

available to view as heatmaps in Expression Atlas. The protein abundances along with sample

annotations, sample quality assessment summary and experimental parameter inputs for Max-

Quant can be downloaded from Expression Atlas as text files. A summary of the data selection

and reanalysis protocols is shown in Fig 1. The total number of peptides and proteins identi-

fied in these datasets are shown in Table 1.

2.2. Protein coverage across organs and datasets

One of our main aims was to study protein expression across various organs. To enable a sim-

pler comparison [14] we first grouped 34 different tissues into 14 distinct organs, as discussed

in ‘Methods’. We defined ‘tissue’ as a distinct functional or structural region within an ‘organ’.

We estimated the number of ‘canonical proteins’ identified across organs by first mapping all

members of each protein group to their respective parent genes. We defined the parent gene as

equivalent to the UniProt ‘canonical protein’ and we will denote the term ‘protein abundance’

to mean ‘canonical protein abundance’ from here on in the manuscript.

2.2.1. Mouse proteome. A total of 21,274 protein groups were identified from mouse

datasets, among which 8,176 protein groups (38.4%) were uniquely present in only one organ

and 70 protein groups (0.3%) were ubiquitously observed (see the full list in S2 File). This does

not imply that these proteins are unique to these organs. Merely, this is the outcome consider-

ing the selected datasets. Mouse protein groups were mapped to 12,570 genes (canonical
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proteins) (S3 File). We detected the largest number of canonical proteins in samples coming

from liver (9,920, 78.9% of the total) and the lowest numbers in samples from tendon (273,

2.2%) and articular cartilage (1,519, 12.1%) (Fig 2A). In the case of tendon and articular carti-

lage, both experiments did not include sample fractionation in their sample preparation meth-

odology, which can also explain the lower number of detected proteins. The comparatively

even lower number of proteins identified in tendon could be attributed to the smallest sample

size (only one sample out of 114, 0.9%). Also, tendon is a relatively hypocellular tissue, which

has a low protein turnover rate. Dataset PXD000867, containing mouse liver samples, had

the highest number of canonical proteins detected (9,715, 77.3%), while the smallest number

of proteins was detected in dataset PXD004612 (tendon, 273, 2.2%), as highlighted above

(Fig 2C).

We studied the normalised protein abundance distribution in organs (Fig 2B) and found

that all organs, except tendon, had similar median abundances. However, one cannot attribute

further biological meaning to these observations, since by definition the method of normalisa-

tion fixes each sample to have the same “total abundance”, which then gets shared out amongst

all proteins. The normalised protein abundance distribution in datasets indicated a higher

than median abundances detected in datasets PXD004612 (tendon) and PXD003164 (testis)

(Fig 2D). A linear relationship was observed between the number of canonical proteins

detected in datasets and organs, when compared to the relative amount of their spectral data

(Fig 2E). We found a significant number of proteins uniquely detected in one organ (Fig 2F).

However, the list of concrete canonical proteins that were detected in just one organ should be

Fig 1. An overview of the study design and reanalysis pipeline. QA: Quality assessment.

https://doi.org/10.1371/journal.pcbi.1010174.g001
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Table 1. List of mouse and rat proteomics datasets that were reanalysed.

Expression

Atlas

accession

numbers

PRIDE

dataset

identifiers

Tissues Organs Species Strains Fractionation Number

of MS

runs

Number

of

samples

Number

of

protein

groups†

Number

of

peptides†

Number

of unique

peptides†

Number

of unique

genes

mapped†

E-PROT-7§ PXD000867

[18]

Liver Liver Mus
musculus

C57BL/6J Yes 24 4 12,792 246,738 167,725 9,715

E-PROT-

10§
PXD000288

[19]

Triceps muscles Triceps

Muscles

Mus
musculus

C57BL/6 Yes 36 3 10,870 189,553 126,670 6,421

E-PROT-16 PXD003155

[20]

Cerebellum,

Liver

Brain,

Liver

Mus
musculus

C57BL/6 No 24 12 4,508 59,696 45,728 3,797

E-PROT-74 PXD004612

[21]

Achilles and

Plantaris

tendon

Tendon Mus
musculus

C57BL/6 No 8 8 457 6,643 3,271 273

E-PROT-75 PXD005230

[22]

Hippocampus,

Cerebellum,

Cortex

Brain Mus
musculus

C57BL/

10J

Yes 72 36 7,663 63,479 41,683 6,037

E-PROT-76 PXD009909

[23]

Retina Eye Mus
musculus

ND4

Swiss

Webster

Yes 12 1 5,002 29,454 24,961 3,686

E-PROT-77 PXD012307

[24]

Lung Lung Mus
musculus

C57BL/6 No 32 2 6,809 106,391 73,950 5,795

E-PROT-78 PXD009639

[25]

Lens Eye Mus
musculus

CD1 Yes 10 1 4,519 20,779 18,006 3,064

E-PROT-79 PXD019394

[26]

Heart, Kidney,

Liver, Lung,

Brain, Spleen,

Testis, Pancreas

Heart,

Kidney,

Liver,

Lung,

Brain,

Spleen,

Testis,

Pancreas

Mus
musculus

Swiss-

Webster

Yes 96 8 9,853 141,506 105,701 8,185

E-PROT-81 PXD012636

[27]

Left atrium,

Left ventricle,

Right atrium,

Right ventricle

Heart Mus
musculus

C57BL/6 Yes 120 4 7,772 146,966 99,577 6,435

E-PROT-82 PXD019431

[28]

Articular

cartilage

Articular

cartilage

Mus
musculus

BALB\_c No 72 6 1,815 17,695 15,191 1,518

E-PROT-83 PXD022614

[29]

Brain Brain Mus
musculus

C57BL/

6J:Rj

C57BL/

6JRccHsd

Yes 120 6 6,645 97,443 69,884 5,673

E-PROT-84 PXD004496

[30]

Hippocampus Brain Mus
musculus

C57BL/6J Yes 204 17 4,192 37,363 30,100 3,424

E-PROT-85 PXD008736

[31]

Right atrium,

Sinus node

Heart Mus
musculus

C57BL/6J Yes 143 6 7,906 144,926 94,379 6,554

E-PROT-

86§
PXD012677

[32]

Amygdala Brain Rattus
norvegicus

Sprague

Dawley

No 3 3 1,872 15,326 12,367 1,382

E-PROT-

87§
PXD006692

[33]

Lung Lung Rattus
norvegicus

Sprague

Dawley

No 10 10 2,079 14,440 11,696 1,398

E-PROT-

88§
PXD016793

[34]

Liver Liver Rattus
norvegicus

Sprague

Dawley

No 8 8 4,787 57,998 46,411 3,743

E-PROT-

89§
PXD004364

[35]

Testis Testis Rattus
norvegicus

Sprague

Dawley

No 3 3 2,351 15,880 13,674 1,601

E-PROT-91 PXD001839

[36]

Left ventricle Heart Rattus
norvegicus

F344/BN No 12 12 1,345 10,310 8,804 925

E-PROT-

92§
PXD013543

[37]

Left ventricle Heart Rattus
norvegicus

Wistar No 8 8 1,858 17,303 13,622 1,340

(Continued)
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taken with caution since the list is subjected to inflated False Discovery Rate (FDR), due to the

accumulation of false positives when analysing the datasets separately.

Some of the organs (liver, heart and brain) were represented across multiple mouse studies

in the aggregated dataset. A pairwise comparison of protein abundances in these organs gener-

ally showed a good correlation in expression (heart: R2 values ranged from 0.54 to 0.83; brain:

R2 from 0.28 to 0.72; and liver: R2 from 0.59 to 0.74) (Figs A-C in S4 File).

2.2.2. Rat proteome. A total of 7,769 protein groups were identified across 8 different rat

organs among which 3,649 (46.9%) protein groups were unique to one specific organ while 13

(0.16%) protein groups were present among all organs (see full list in S2 File). The protein

groups were mapped to 7,116 genes (canonical proteins) (S3 File). The highest number of

canonical proteins (6,106, 85.1%) was found in rat kidney samples. The lowest number of

canonical proteins (101, 1.4%) was found in samples from tendon, as shown in Fig 3A. The

largest number of canonical proteins identified in kidney is likely because of the relatively

Table 1. (Continued)

Expression

Atlas

accession

numbers

PRIDE

dataset

identifiers

Tissues Organs Species Strains Fractionation Number

of MS

runs

Number

of

samples

Number

of

protein

groups†

Number

of

peptides†

Number

of unique

peptides†

Number

of unique

genes

mapped†

E-PROT-93 PXD016958

[38]

First segment of

proximal

tubule, second

segment of

proximal

tubule, third

segment of

proximal

tubule,

medullary thick

ascending limb,

cortical thick

ascending limb,

distal

convoluted

tubule,

connecting

tubule, cortical

collecting duct,

outer medullary

collecting duct,

inner

medullary

collecting duct

Kidney Rattus
norvegicus

Sprague

Dawley

Yes 132 32 7,846 103,886 83,662 6,130

E-PROT-94 PXD003375

[39]

Caudal and

rostral

segments of

spinal cord

Spinal

cord

Rattus
norvegicus

Wistar Yes 21 18 2,477 29,213 22,025 1,926

E-PROT-

95§
PXD015928

[40]

Tendon Tendon Rattus
norvegicus

Wistar No 3 3 199 1,253 1,063 101

TOTAL 23 datasets

(Mouse: 14,

Rat: 9)

34 tissues

(Mouse: 21,

Rat: 18)

14 organs

(Mouse:

12, Rat:

8)

1,173 MS

runs

(Mouse:

973, Rat:

200)

211

samples

(Mouse:

114, Rat:

97)

§Only normal/untreated samples within this dataset are reported in this study. However, results from both normal and disease samples are available in Expression Atlas
† Numbers after post-processing.

https://doi.org/10.1371/journal.pcbi.1010174.t001
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large number of samples (32 samples), when compared to other organs. However, it is interest-

ing to note that large numbers of canonical proteins were detected in liver samples, which rela-

tively had fewer number of samples, when compared to the total number of samples in heart

and spinal cord.

Fig 2. (A) Number of canonical proteins identified across different mouse organs. The number within the parenthesis indicates the number of samples. (B)

Range of normalised iBAQ protein abundances across different organs. The number within the parenthesis indicates the number of samples. (C) Canonical

proteins identified across different datasets. The number within the parenthesis indicate the number of unique tissues in the dataset. (D) Range of

normalised iBAQ protein abundances across different datasets. The number within parenthesis indicate the number of unique tissues in the dataset. (E)

Comparison of total spectral data with the number of canonical proteins identified in each dataset and organ. (F) Distribution of canonical proteins

identified across organs.

https://doi.org/10.1371/journal.pcbi.1010174.g002
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Datasets PXD016958 and PXD016793 consisted entirely of kidney (where fractionation was

performed) and liver (no fractionation) samples, respectively, and as mentioned above had the

largest number of canonical proteins identified (Fig 3C). The normalised protein abundances

were similar among the various organs and datasets (Fig 3B and 3D). We also observed a linear

relation between the number of canonical proteins identified and the MS spectra identified

(Fig 3E). As seen in the mouse datasets, we also observed a large number of proteins uniquely

Fig 3. (A) Number of canonical proteins identified across different rat organs. The number within the parenthesis indicates the number of samples. (B)

Range of normalised iBAQ protein abundances across different organs. The number within the parenthesis indicates the number of samples. (C) Canonical

proteins identified across different datasets. The number within the parenthesis indicate the number of unique tissues in the dataset. (D) Range of

normalised iBAQ protein abundances across different datasets. The number within parenthesis indicate the number of unique tissues in the dataset. (E)

Comparison of total spectral data with the number of canonical proteins identified in each dataset and organ. (F) Distribution of canonical proteins

identified across organs.

https://doi.org/10.1371/journal.pcbi.1010174.g003
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detected in one organ (Fig 3F). As highlighted above, the list of concrete canonical proteins

that were detected in just one organ should be taken with caution since the list is subjected to

inflated False Discovery Rate (FDR).

In the case of rat datasets, left ventricle heart samples were the only ones represented in

more than one study (PXD001839 and PXD013543) in the aggregated dataset. A pairwise com-

parison of protein abundances of heart between these two datasets was performed, showing a

strong correlation in protein expression (R2 = 0.9) (Fig D in S4 File).

2.3. Protein abundance comparison across organs

Next, we studied how protein abundances compared across different datasets and organs. The

presence of batch effects between datasets makes this type of comparisons challenging. To aid

comparison of protein abundances between datasets we transformed the normalised iBAQ

intensities into ranked bins as explained in ‘Methods’, i.e., proteins included in bin 5 are highly

abundant whereas proteins in bin 1 are expressed in the lowest abundances (among the

detected proteins).

2.3.1. Mouse proteome. We found that 1,086 (8.6%) proteins were found with their high-

est level of expression in at least 3 organs, with a median bin value greater than 4 (S3 File). On

the other end of the scale, 138 (1.1%) canonical proteins were found with their lowest expres-

sion in at least 3 organs, with a median bin value of less than 2. The bin transformed abun-

dances in all organs are provided in S3 File.

To compare protein expression across all organs, we calculated pairwise Pearson correla-

tion coefficients across 117 samples (Fig 4A). We observed some correlation in protein expres-

sion within brain (median R2 = 0.31) and a higher one in heart (median R2 = 0.67) samples.

We performed Principal Component Analysis (PCA) on all samples from mouse datasets for

testing the effectiveness of the bin transformation method in reducing batch effects. Fig 4B

shows the clustering of samples from various organs of mouse. We observed samples from the

same organ generally clustered together. For example, we observed that brain samples all clus-

tered together in one group, even though they come from different datasets, indicating decent

removal of batch effects (Fig 4C). However, we also observed that samples from other organs

such as liver did not cluster according to their organ types but clustered together within the

dataset they were part of, indicating some residual batch effects, which are hard to remove

completely.

In addition, we compared the protein abundances generated in this study with the data

available in the resource PaxDB generated using spectral counting across different mouse

organs. We observed generally a strong correlation of protein abundances calculated using

iBAQ from this study (fraction of total (FOT) normalised ppb) and spectral counting methods

(Fig E in S4 File). However, the expression of low abundant proteins seemed to be underesti-

mated in PaxDB when compared with our results, as shown by a S-shaped curve in the scatter-

plot in organs such as brain, heart, liver and lung. The ‘dynamic exclusion’ [41] setting used by

modern mass spectrometers prevents the instrument from fragmenting abundant peptides

multiple times when they are repeatedly observed in scans nearby in time. This has the effect

that spectral counting approaches will limit the dynamic range observed, as high abundant

proteins will be under sampled. This is a limitation when using spectral counting methods,

and these days spectral counting is not commonly used as a truly quantitative data type in

proteomics.

2.3.2. Rat proteome. Next, we studied the distribution of protein abundances across

organs in rat. On one hand, 311 (4.3%) proteins were found with their highest expression in at

least 3 organs with a median bin value greater than 4. On the other hand, 27 (0.37%) canonical
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Fig 4. (A) Heatmap of pairwise Pearson correlation coefficients across all mouse samples. The colour represents the correlation coefficient and was

calculated using the bin transformed iBAQ values. The samples were hierarchically clustered on columns and rows using Euclidean distances. (B) PCA of

all samples, using the binned protein abundances as input, coloured by the organ types. (C) PCA of all samples coloured by their respective dataset

identifiers. The numbers in parenthesis indicate the number of datasets for each organ. Binned values of canonical proteins quantified in at least 50% of the

samples were used to perform the PCA.

https://doi.org/10.1371/journal.pcbi.1010174.g004
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proteins were found with their lowest expression in at least 3 organs, with a median bin value

of less than 2. The bin transformed abundances in all organs are provided in S3 File.

Overall, the samples from rat datasets showed a better correlation in protein expression

(Fig 5A) than in the case of mouse. We observed generally a strong correlation of protein

expression within samples from liver (median Pearson’s correlation R2 = 0.85), lung (median

R2 = 0.71), spinal cord (median R2 = 0.65), heart (median R2 = 0.71) and brain (median R2 =

0.86). We also observed the clustering in the PCA of samples coming from the same organ (Fig

Fig 5. (A) Heatmap of pairwise Pearson correlation coefficients across all rat samples. The colour represents the correlation coefficient and was calculated

using the bin transformed iBAQ values. The samples were hierarchically clustered on columns and rows using Euclidean distances. (B) PCA of all samples

coloured by the organ types. (C) PCA of all samples coloured by their respective dataset identifiers. The numbers in parenthesis indicate the number of

datasets for each organ. Binned values of canonical proteins quantified in at least 50% of the samples were used to perform the PCA.

https://doi.org/10.1371/journal.pcbi.1010174.g005
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5B). Kidney, lung, spinal cord and heart samples all clustered together according to their

organ type. Fig 5C shows the samples based on the dataset they were part of. However, most

organ samples were part of individual datasets except in the case of samples from heart, which

came from two datasets (PXD001839 and PXD013543). Fig 5C shows that the heart samples

clustered into two nearby groups (bottom left two clusters on Fig 5B and 5C), wherein each

cluster included samples from a different dataset, indicating the presence of small batch

effects.

2.4. The organ elevated proteome and the over-representative biological

processes

Based on their expression, canonical proteins were classified into three different groups based

on their organ specificity: “mixed”, “group-enriched” and “organ-enriched” (see S5 File). We

considered over-expressed canonical proteins in each organ as those which were in “group-

enriched” and “organ-enriched”. The analysis showed that on average, 20.8% and 26.0% of the

total elevated canonical proteins were organ group-specific in mouse and rat, respectively (Fig

6). In addition, 4.3% and 14.2% were unique organ-enriched in mouse and rat, respectively.

The highest ratio of organ-enriched in mouse was found in liver (13.6%), whereas in rat, it was

found in kidney (39.8%).

We then performed a gene ontology (GO) enrichment analysis of those proteins that were

‘organ-enriched’ and ‘group-enriched’ using GO terms associated with biological processes.

We found 1,036 GO terms to be statistically significant in all organs, as seen in S6 File. The

most significant GO terms for each organ are shown in Table 2.

2.5. Protein abundances across orthologs in three species

In a previous study, we analysed 25 label-free proteomics datasets from healthy human sam-

ples to assess baseline protein abundances in 14 organs following the same analytical method-

ology [14]. We compared the expression of canonical proteins identified in all three species

(rat, mouse and human). Overall, 13,248 detected human genes (corresponding to the canoni-

cal proteins) were compared with 12,570 genes detected in mouse and 7,116 genes detected in

rat. The number of orthologous mappings (i.e., “one-to-one” mappings, see ‘Methods’)

between rat, mouse and human genes are listed in Table 3. We only considered one-to-one

mapped orthologues for the comparison of protein abundances.

Among human and mouse orthologues we observed relatively high levels of correlation of

protein abundances in brain (R2 = 0.61), heart (R2 = 0.65) and liver (R2 = 0.56) (Fig 7A).

Fig 6. Organ specificity of canonical proteins in (A) mouse and (B) rat.

https://doi.org/10.1371/journal.pcbi.1010174.g006
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Table 2. Analysis of the top three GO terms for each organ in mouse and rat using the elevated organ-specific and group-specific canonical proteins as described in

the ‘Methods’ section.

Organ Species GO ID Description adjusted p-value

Articular cartilage Mus musculus GO:0030198 Extracellular matrix organization 8.94�10−38

GO:0043062 Extracellular structure organization 8.94�10−38

GO:0045229 External encapsulating structure organization 8.94�10−38

Brain Mus musculus GO:0050804 Modulation of chemical synaptic transmission 7.03�10−65

GO:0099177 Regulation of trans-synaptic signalling 7.03�10−65

GO:0050808 Synapse organization 1.41�10−48

Heart Mus musculus GO:0060047 Heart contraction 7.10�10−11

GO:0008016 Regulation of heart contraction 4.43�10−10

GO:0060537 Muscle tissue development 6.16�10−10

Kidney Mus musculus GO:0015711 Organic anion transport 4.59�10−19

GO:0044282 Small molecule catabolic process 4.91�10−15

GO:0016054 Organic acid catabolic process 6.25�10−15

Eye Mus musculus GO:0007601 Visual perception 7.54�10−50

GO:0001654 Eye development 5.31�10−31

GO:0099504 Synaptic vesicle cycle 8.36�10−18

Liver Mus musculus GO:0016569 Covalent chromatin modification 6.26�10−10

GO:0016570 Histone modification 1.71�10−08

GO:0019369 Arachidonic acid metabolic process 1.71�10−08

Lung Mus musculus GO:0120031 Plasma membrane bounded cell projection assembly 3.61�10−14

GO:0030031 Cell projection assembly 3.61�10−14

GO:0044782 Cilium organization 9.83�10−14

Pancreas Mus musculus GO:0007586 Digestion 0.005

GO:0032328 Alanine transport 0.018

Spleen Mus musculus GO:0046649 Lymphocyte activation 4.12�10−22

GO:0050776 Regulation of immune response 2.00�10−20

GO:0045087 Innate immune response 2.23�10−20

Tendon Mus musculus GO:0003012 Muscle system process 1.46�10−25

GO:0050879 Multicellular organismal movement 3.14�10−19

GO:0050881 Musculoskeletal movement 1.46�10−25

Testis Mus musculus GO:0048232 Male gamete generation 8.75�10−49

GO:0003341 Cilium movement 3.04�10−38

GO:0044782 Cilium organization 6.78�10−37

Triceps muscles Mus musculus GO:0061061 Muscle structure development 1.56�10−14

GO:0055002 Striated muscle cell development 2.41�10−14

GO:0003009 Skeletal muscle contraction 3.53�10−14

Brain Rattus norvegicus GO:0099537 Trans-synaptic signalling 1.79�10−60

GO:0007268 Chemical synaptic transmission 1.79�10−60

GO:0098916 Anterograde trans-synaptic signalling 1.79�10−60

Heart Rattus norvegicus GO:0061061 Muscle structure development 2.94�10−17

GO:0003012 Muscle system process 6.30�10−16

GO:0055001 Muscle cell development 4.00�10−15

Kidney Rattus norvegicus GO:0006396 RNA processing 6.19�10−13

GO:0045944 positive regulation of transcription by RNA polymerase II 7.29�10−06

GO:0006260 DNA replication 1.74�10−05

(Continued)
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Human and rat orthologs showed also relatively high levels of correlation in brain (R2 = 0.62),

kidney (R2 = 0.53) and liver (R2 = 0.56), but almost no correlation in lung (R2 = 0.12) and testis

(R2 = 0.18) (Fig 7B). Between mouse and rat orthologs, the correlation of protein abundances

was higher in liver (R2 = 0.65), kidney (R2 = 0.54) and brain (R2 = 0.57) samples, when com-

pared to the samples coming from the rest of the organs (Fig 7C). Fig 7D shows an illustration

of some example comparisons of individual orthologs using binned protein abundances.

For the same corresponding subsets, we also investigated the correlation of protein expres-

sion between various organs within each organism. We observed that in general the correla-

tion of protein expression was slightly lower between organs within the same species, when

compared to a higher correlation, which was observed among orthologs (Figs F-H in S4 File).

The found lower correlation of protein expression between different organs was more appar-

ent in mouse and rat.

Among the orthologs expressed in all organs in all three species, 747 (12.3%) orthologs

were detected with a median bin expression value of more than 4, i.e., proteins that appear to

have conserved high expression in all organs and all tissues. Additionally, 13 (0.2%) orthologs

were found with a median bin expression value less than 2 in all organs, although, it is harder

to detect consistently proteins with low abundances across all organs. A full list of the binned

protein abundances of orthologs is available in S7 File. The illustration of all binned protein

abundances across the three species is shown in S8 File.

Since each sample contains potentially thousands of protein values this creates a high level

of dimensionality within the data. To reduce this, we used the non-linear dimension reduction

Table 2. (Continued)

Organ Species GO ID Description adjusted p-value

Liver Rattus norvegicus GO:0008202 Steroid metabolic process 2.74�10−10

GO:0016054 Organic acid catabolic process 1.61�10−09

GO:0032787 Monocarboxylic acid metabolic process 1.64�10−09

Lung Rattus norvegicus GO:0031589 Cell-substrate adhesion 7.62�10−08

GO:0009617 Response to bacterium 7.62�10−08

GO:0030036 Actin cytoskeleton organization 1.40�10−07

Spinal cord Rattus norvegicus GO:0061564 Axon development 4.26�10−18

GO:0099537 Trans-synaptic signalling 5.93�10−16

GO:0007268 Chemical synaptic transmission 5.93�10−16

Tendon Rattus norvegicus GO:0030199 Collagen fibril organization 1.23�10−13

GO:0061448 Connective tissue development 2.31�10−09

GO:0001501 Skeletal system development 3.39�10−09

Testis Rattus norvegicus GO:0019953 Sexual reproduction 3.98�10−24

GO:0051704 Multi-organism process 1.61�10−18

GO:0007018 Microtubule-based movement 4.00�10−12

https://doi.org/10.1371/journal.pcbi.1010174.t002

Table 3. Homologs identified in mouse and rat datasets when compared with the background list of genes (corresponding to canonical proteins) identified in

human datasets (Supplementary File 2 in [14]).

Species Identified genes Orthologs of human genes identified in [14] Percentage of genes with different mapping against identified human genes

one-to-one one-to-many many-to-many many-to-one not mapped

Mus musculus 12,570 10,601 80.4% 1.9% 0.56% 1.46% 15.7%

Rattus norvegicus 7,116 6,058 82.0% 2.2% 0.70% 0.25% 14.9%

https://doi.org/10.1371/journal.pcbi.1010174.t003
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algorithm, Uniform Manifold Approximation and Projection (UMAP) (see Section 4.7 in the

‘Methods’ section). The UMAP algorithm enables the reduction of multidimensional data to a

two-dimensional space upon which the relationship between each sample can be visualised.

Specifically, it enables the visualisation of the relationships of proteins across individual sam-

ples and organs. Should multiple samples be positioned near to each other, it allows for us to

predict that these samples shared similar properties (in this case, similar protein abundance

values). Consequently, by overlaying samples from various species UMAP representations can

be used to visualise the relationship of various orthologs across similar organs.

Using the UMAP algorithm, we were able to visualise the relationships between individual

organs regardless of the involved species (human, mouse, rat) and to identify similar genes

(corresponding to canonical proteins) within those organs. The overall view of all samples

labelled by their respective organ is shown as Fig 8A. We chose to use the biological system as

Fig 7. Comparison of protein abundances (in ppb) between one-to-one mapped orthologs of mouse, rat and human in various organs. (A) Pairwise

correlation using normalised protein abundances of human and mouse orthologues. (B) Human and rat orthologs. (C) Mouse and rat orthologs. (D) As an

example, the comparisons of binned protein expression of ten randomly sampled orthologs are shown. Data corresponding to all cases (as reported in panel

D) are available in S7 File and the corresponding illustration of binned values is available in S8 File. Orthologs in (D) are shown using their human gene

symbol.

https://doi.org/10.1371/journal.pcbi.1010174.g007
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the basis for the colouring scheme for each sample to reduce the overall complexity of the visu-

alisation, due the high number of organs included. By using this labelling scheme, we could

see that the clustering of each sample was deterministic. Each sample was positioned within a

clear region for the corresponding organs, despite the original layout being unaware of this

information. This indicates that not only do the samples within those organs share common

protein abundance values, but furthermore, that samples that come from the same organs

share similar protein expression (as three species are present).

Furthermore, in Fig 8B we show the representation of binned protein abundance values for

three example genes (SH3GL2, MYOZ2 and PYROXD2), providing information on the abun-

dance of them across different biological systems. These visualisations use the same layout

than within Fig 8A. In the example of SH3GL2, it can be seen that Fig 8B shows multiple values

that have been scored as bin 5. By referring to Fig 8A, we can see that those points correspond-

ing to highly abundant proteins, come from samples from the nervous system (in all three spe-

cies). Furthermore, using the same method, it can be seen that MYOZ2 is highly abundant in

the circulatory system, and that PYROXD2 is highly abundant in the urinary system. The

UMAP coordinates and our binned protein abundance data that is used in these plots to allow

for the generation of similar visualisations are provided in S9 File.

Fig 8. Visualisations generated using the UMAP algorithm to show the relationships between human, mouse, and rat samples. (A) Shows the

relationship of all samples, particularly showing strong relationship between biological systems. (B) Shows the protein abundancy of 3 example gene

orthologs (SH3GL2, MYOZ2 and PYROXD2), within each sample. Human baseline protein expression data was generated in [14].

https://doi.org/10.1371/journal.pcbi.1010174.g008
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2.6. Pathway enrichment analysis

Based on the ortholog protein expression analysis described above, we mapped canonical pro-

teins from mouse and rat to the corresponding ortholog human proteins, which were subse-

quently subjected to pathway-enrichment analysis using Reactome (Fig 9). After filtering out

the disease and statistically insignificant pathways, there were 2,990 pathways found in all the

organs of mouse and 2,162 pathways in all the organs of rat. In mouse samples, the largest

number of pathways (367) were found in articular cartilage, and the lowest number of path-

ways was found in liver (44). We also observed that Neuronal System-related pathways were

predominantly present in the brain and eye, which is consistent with expectations. In rat sam-

ples, brain included the largest number of pathways (387), while the lowest number of path-

ways was found in tendon, with 117.

3. Discussion

We have previously reported two meta-analysis studies involving the reanalysis and integra-

tion in Expression Atlas of public quantitative datasets coming from cell lines and human

tumour samples [13], and from human baseline tissues [14], respectively. In this study, we rea-

nalysed mouse and rat baseline proteomics datasets representing protein expression across 34

healthy tissues and 14 organs. We have used the same methodology as in the study involving

Fig 9. Pathway analysis performed using the canonical proteins, showing the statistically significant representative pathways (p-value< 0.05) in (A)

mouse and (B) rat organs.

https://doi.org/10.1371/journal.pcbi.1010174.g009
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baseline human tissues, which enabled a comparison of protein expression levels across the

three species. Our main overall aim was to provide a system-wide baseline protein expression

catalogue across various tissues and organs of mouse and rat and to offer a reference for future

related studies.

We analysed each dataset separately using the same software (MaxQuant) and the same

search protein sequence database. The disadvantage of this approach is that the FDR statistical

thresholds are applied at a dataset level and not to all datasets together as a whole. However, as

reported before [14], using a dataset per dataset analysis approach is in our view the only sus-

tainable manner to reanalyse and integrate quantitative proteomics datasets, at least at present.

The disadvantage of this approach is that the FDR statistical threshold are applied at a dataset

level and not to all datasets together as a whole, with the potential accumulation of false posi-

tives across datasets. However, it is important to highlight that the number of commonly

detected false positives is reduced in parallel with the increase in the number of common data-

sets where a given protein is detected. As also reported in previous studies, one of the major

bottlenecks was the curation of dataset metadata, consisting of mapping files to samples and

biological conditions. Very recently, the MAGE-TAB-Proteomics format has been developed

and formalised to enable the reporting of the experimental design in proteomics experience,

including the relationship between samples and raw files, which is recorded in the SDRF-Pro-

teomics section of the file [42]. Submission of the SDRF-Proteomics files to PRIDE is now sup-

ported. The more well-annotated datasets in the public domain, the easier these data reuse

activities will become.

The generated baseline protein expression data can be used with different purposes such as

the generation of protein co-expression networks and/or the inference of protein complexes.

For the latter application, expression data can be alone or for potentially refining predictions

obtained using different methods such as the recently developed AlphaFold-based protein

complexes predictions [43]. Mouse and rat are widely used species in the context of drug dis-

covery, the latter especially, to undertake regulatory pre-clinical safety studies. Therefore, it is

important to know quantitative protein expression distribution in these species in different tis-

sues [44] to assist in the selection of species for such studies and also for the interpretation of

the final results.

In addition to the analyses reported, it would have also been possible to perform correlation

studies between gene and protein expression information. However, we did not find any rele-

vant public datasets in the context of this manuscript where the same samples were analysed

by both techniques, which is the optimal way to perform these studies. Future directions in

analogous studies will involve: (i) additional baseline protein expression studies of other spe-

cies, including other model organisms or other species of economic importance; (ii) the inclu-

sion of differential proteomics datasets (e.g. using TMT and/or iTRAQ); and (iii) include

relevant proteomics expression data coming from the reanalysis of Data Independent Acquisi-

tion (DIA) datasets [45].

As mentioned above, we performed a comparative analysis of baseline protein expression

across human, mouse and rat. It was possible to perform this analysis for six common organs

(brain, heart, kidney, liver, lung and testis). Ortholog expression across species is useful to

infer protein function across experimentally studied proteins. This is particularly useful as evo-

lutionarily closely related species are likely to conserve protein function. We could not find in

the literature an analogous comparative study performed at the protein level. However, expres-

sion from closely related orthologs across tissues or organs has been compared at the transcrip-

tomics level, providing a complete picture of gene expression. In this context, many studies

have compared gene-expression in mouse, rat and human orthologues and found that ortholo-

gues had generally a highly correlated expression tissue distribution profile in baseline
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conditions [46–50]. Gene expression levels among orthologs were found to be highly similar

in muscle and heart tissues, liver and nervous system and less similar in epithelial cells, repro-

ductive systems, bone and endocrine organs [48]. Studies have also shown that variability of

gene expression between homologous tissues/organs in closely related species can be lower

than the variability between unrelated tissues within the same organism [46,47], in agreement

with the results reported here at the protein level. Additionally, we showed an initial analysis

of protein expression of orthologs across the three species using UMAP.

In conclusion we here present a meta-analysis study of public mouse and rat baseline prote-

omics datasets from PRIDE. We demonstrate its feasibility, perform a comparative analysis

across the three species and show the main current challenges. Finally, the data is made avail-

able via Expression Atlas. Whereas there are several analogous studies performed at the gene

expression level for mouse and rat tissues, to the best of our knowledge this is the first of this

kind at protein expression level.

4. Materials and methods

4.1. Datasets

As of May 2021, there were 2,060 mouse (Mus musculus) and 339 rat (Rattus norvegicus) MS

proteomics datasets publicly available in the PRIDE database (https://www.ebi.ac.uk/pride/).

Datasets were manually selected based on the selection criteria described previously [14].

Briefly, we selected datasets where baseline expression experiments were performed on (i)

label-free samples from tissues not enriched for post-translational modifications; (ii) Thermo

Fisher Scientific instruments such as LTQ Orbitrap, LTQ Orbitrap Elite, LTQ Orbitrap Velos,

LTQ Orbitrap XL ETD, LTQ-Orbitrap XL ETD, Orbitrap Fusion and Q-Exactive, since they

represent a large proportion of datasets in PRIDE and to avoid heterogeneity introduced by

data from other vendor instruments; (iii) had suitable sample metadata available in the original

publication or it was possible to obtain it by contacting the authors; and (iv) our previous expe-

rience in the team of some datasets deposited in PRIDE, which were discarded because they

were not considered to be useful. Overall, 14 mouse and 9 rat datasets were selected from all

mouse and rat datasets for further analysis. Table 1 lists the selected datasets. The 23 datasets

contained a total of 211 samples from 34 different tissues across 14 organs (meaning groups of

related tissues, more details below), comprising 9 different mouse and 3 rat strains,

respectively.

The sample and experimental metadata were manually curated using the information pro-

vided in the respective publications or by contacting the original authors/submitters. Annotare

[51] was used for annotating the metadata and stored using the Investigation Description For-

mat (IDF) and Sample-Data Relationship Format (SDRF) file formats [42], which are required

for integration in Expression Atlas. An overview of the experimental design including experi-

mental factors, protocols, publication information and contact information are present in the

IDF file, and the SDRF includes sample metadata describing the relationship between the vari-

ous sample characteristics and the data files contained in the dataset.

4.2. Proteomics raw data processing

All datasets were analysed with MaxQuant (version 1.6.3.4) [52,53] on a Linux high-perfor-

mance computing cluster for peptide/protein identification and protein quantification. Input

parameters for each dataset, such as MS1 and MS2 tolerances, digesting enzymes, fixed and

variable modifications, were set as described in their respective publications, with two missed

cleavage sites. The FDR at the PSM (peptide spectrum match) and protein levels were set to

1%. The MaxQuant parameters were otherwise set to default values: the maximum number of
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modifications per peptide was 5, the minimum peptide length was 7, the maximum peptide

mass was set to 4,600 Da, and for the matches between runs the minimum match time window

was set to 0.7 seconds and the minimum retention time alignment window was set to 20 sec-

onds. The MaxQuant parameter files are available for downloading from Expression Atlas.

The Mus musculus UniProt Reference proteome release-2021_04 (including isoforms, 63,656

sequences) and Rattus norvegicus UniProt Reference proteome release-2021_04 (including iso-

forms, 31,562 sequences) were used as the target sequence databases for mouse and rat data-

sets, respectively. The built-in contaminant database within MaxQuant was used and a decoy

database was generated by MaxQuant by reversing the input database sequences after the

respective enzymatic digestion. The datasets were run separately in multi-threaded mode.

4.3. Post-processing

The post-processing of results from MaxQuant is explained in detail in [14]. In brief, the pro-

tein groups labelled as potential contaminants, decoys and those with fewer than 2 PSMs were

removed. Protein intensities in each sample were normalised by scaling the iBAQ intensity val-

ues to the total amount of signal in each MS run and converted to parts per billion (ppb).

ppb iBAQi ¼
iBAQi=Pn

i¼1
iBAQi

� �

x 1; 000; 000; 000

The ‘majority protein identifiers’ within each protein group were mapped to their Ensembl

gene identifiers/annotations using the Bioconductor package ‘mygene’. For downstream anal-

ysis only protein groups whose isoforms mapped to a single unique Ensembl gene ID were

considered. Protein groups that mapped to more than one Ensembl gene ID are provided in

S1 File. The protein intensity values from different protein groups with the same Ensembl

gene ID were aggregated as median values. The parent genes to which the different protein

groups were mapped to are equivalent to ‘canonical proteins’ in UniProt (https://www.

uniprot.org/help/canonical_and_isoforms) and therefore the term protein abundance is used

to describe the protein abundance of the canonical protein throughout the manuscript.

4.4. Integration into expression atlas

The calculated canonical protein abundances (mapped to genes), together with the validated

SDRF files, summary files detailing the quality of post-processing and the input MaxQuant

parameter files (mqpar.xml) were integrated into Expression Atlas (https://www.ebi.ac.uk/gxa/

home) as proteomics baseline experiments (E-PROT identifiers are available in Table 1).

4.5. Protein abundance comparison across datasets

To compare protein abundances, the normalised protein abundances (in ppb) from each

group of tissues in a dataset were converted into ranked bins. In this study, ‘tissue’ is defined

as a distinct functional or structural region within an ‘organ’. For example, hippocampus, cere-

bellum and cortex are defined as ‘tissues’ that are part of the brain (organ) and similarly sinus

node, left atria, left ventricle, right atria, right ventricle are defined as ‘tissues’ in heart (organ).

Protein abundances were transformed into bins by first grouping MS runs from each tissue

within a dataset as a batch. The normalised protein abundances (ppb) for each MS run within

a batch were sorted from lowest to highest abundance and ranked into 5 bins. Proteins

whose ppb abundances are ranked in the lowest bin (bin 1) represent lowest abundance and

correspondingly proteins within bin 5 are of highest abundance in their respective tissue.

When merging tissues into organs, median bin values were used.
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Proteins that were detected in at least 50% of the samples were selected for PCA (Principal

Component Analysis) and was performed using R (The R Stats package) [54] using binned

abundance values. For generating heatmaps, a Pearson correlation coefficient for all samples

was calculated on pairwise complete observations of bin transformed values. Missing values

were marked as NA (not available). For each organ a median R2 was calculated from all pair-

wise R2 values of their respective samples. Samples were hierarchically clustered on columns

and rows using Euclidean distances. To compare the correlation in protein expression of

shared organs between datasets, the FOT normalised protein abundances (ppb) were aggre-

gated by calculating the median over samples. The regression line was computed using the ‘lin-

ear model’ (lm) method in R.

4.6. Comparison of protein abundances using iBAQ and spectral counting

data available in PaxDB

To compare protein abundances generated from iBAQ in this study and spectral counting

methods, protein abundance data from different mouse organs was obtained from PaxDB

(https://www.pax-db.org/) [16]. FOT normalised iBAQ abundances, as described above, were

compared with the spectral counting abundances for the matching mouse organs. Organs

from mouse labelled as ‘integrated’ in PaxDB were selected. It was not possible to perform this

comparison for rat organs since data in PaxDB for rat are available for either the ‘whole organ-

ism’ or for “cell types” only. Abundances were compared across mouse adipose tissue, brain,

heart, kidney, liver, lung, pancreas and spleen. The Ensembl ENSG gene ids were mapped to

ENSP protein ids in PaxDB using the ‘mygene’ bioconductor package in R.

4.7. UMAP analysis

To generate the UMAP visualisations we used the binned protein abundance values generated

in this study from rat and mouse, as well as the binned human protein abundance values from

[14]. First, we reduced this data to only contain the orthologs found in all three species. For

the purpose of only the initial visualisation layout, we filtered the data to include those proteins

present in 90% of samples. Once the initial layout was generated, we then used the full protein

abundance values to generate protein-specific visualisations. We use R v4.1.0 with the package

‘umap’ (Uniform Manifold Approximation and Projection in R) [55] v0.2.7.0 to generate the

UMAP visualisations.

4.8. Organ-specific expression profile analysis

For comparison across organs, the tissues were aggregated into organs and their median bin

values were considered. As described previously [14] the classification scheme done by Uhlén

et al. [17] was modified to classify the proteins into one of the three categories: (1) “Organ-

enriched”: present in one unique organ with bin values 2-fold higher than the mean bin value

across all organs; (2) “Group enriched”: present in at least 7 organs in mouse or in at least 4

organs in rat, with bin values 2-fold higher than the mean bin value across all organs; and (3)

“Mixed”: the remaining canonical proteins that are not part of the above two categories.

Enriched gene ontology (GO) terms analysis was carried out through over-representation

test described previously [14], it was combined with “Organ-enriched” and “Group enriched”

mapped gene lists for each organ. In addition, Reactome [56] pathway analysis was performed

using mapped gene lists and running pathway-topology and over-representation analysis, as

reported previously [14].
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4.9. Comparison of protein expression across species

The g:Orth Orthology search function in the g:Profiler suite of programs [57] was used for

translating gene identifiers between organisms. Since a custom list of gene identifiers could

not be used as the background search set, the mouse and rat genes were first mapped against

the background Ensembl database. The resulting list of mouse and rat genes mapped to

human orthologs were then filtered so that they only included parent gene identifiers of the

protein groups from mouse and rat organs identified in this study and the parent genes of

human organs described in our previous study (Supplementary File 2 in [14]), respectively.

The orthologs were grouped into various categories denoting the resulting mapping

between identifiers: “one-to-one”, “one-to-many”, “many-to-one”, “many-to-many”, and “no

mappings” between gene identifiers. Only “one-to-one” mapped ortholog identifiers were

used to compare protein intensities between mouse, rat and human organs. The

normalised ppb protein abundances of the one-to-one mapped orthologues in 6 organs (brain,

heart, kidney, liver, lung and testis), that were studied across all three organisms were used to

assess the pairwise correlation of protein abundances. The linear regression was calculated

using the linear fit ‘lm’ method in R.

Supporting information

S1 File. Protein groups from all datasets that are mapped to more than one Ensembl Gene

ID.

(XLSX)

S2 File. Median protein abundances (in ppb) for each protein group across various tissue

samples in each organ.

(XLSX)

S3 File. Median binned protein abundances across various tissue samples in each organ of

mouse and rat.

(XLSX)

S4 File. Supplementary figures (A) illustrating correlation of protein abundances in organs

represented in different datasets. (B) Correlation of protein abundances generated using iBAQ

and spectral counting methods in various mouse organs. (C) Correlation of protein expression

between organs within human, mouse and rat.

(PDF)

S5 File. Organ distribution of canonical proteins in mouse and rat.

(XLSX)

S6 File. Gene Ontology enrichment analysis of ‘organ-enriched’ and ‘group-enriched’ pro-

teins.

(XLSX)

S7 File. Binned protein abundances of one-to-one mapped orthologs across all organs

studied.

(XLSX)

S8 File. Figure illustrating binned protein abundances of all one-to-one mapped orthologs

across six common organs in mouse, rat and human.

(PDF)
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S9 File. UMAP co-ordinates and source data of UMAP analysis.

(XLSX)
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