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When do shape-changers swim upstream?
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Using multiple-scale analysis, Walker et al. (2022) obtain the long-time behaviour of
a shape-changing swimmer in Poiseuille flow. They show that the behaviour falls into
one of three categories: endless tumbling at increasing distance from the midline of the
flow; preserved initial behaviour of the swimmer; or convergence to upstream rheotaxis,
where the swimmer is situated at the midline of the flow. Furthermore, a single swimmer-
dependent constant is identified that determines which of the three behaviours is realised.
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1. Introduction

Understanding the behaviour of microswimmers in flow environments has a wide-range
of applications; from upstream contamination by bacteria in medical devices (Figueroa-
Morales et al. 2020), to the vertical migration of phytoplankton in turbulence (Lovecchio
et al. 2019). To predict how a micro-swimmer moves through a flow environment, we need
to track the swimmer’s orientation and position; these are coupled because changes in
orientation can depend on space if the flow field is non-uniform, and changes in position
occur due to swimming, which depends on orientation, as well as advection by the fluid.

Because of their small size, microswimmers typically live in the world of low Reynolds
number, where inertial effects can be neglected (Purcell 1977). In this Stokes flow limit,
the motion of spheroidal particles in simple shear was first described by Jeffery (1922),
and shown to be valid for all axi-symmetric particles by Bretherton (1962). These re-
sults have been used to study hydrodynamic phenomena in microswimmer suspensions
(e.g. Pedley & Kessler 1992). In general, for swimmer with orientation p, the change in
orientation is governed by

dfp=19><p+BP-E~(I—pp) (L.1)
a2
where € is the vorticity, E is the rate-of-strain tensor, and B is the Bretherton constant.
Microswimmers can display interesting dynamics that are distinct from passive colloids,
as highlighted by Zoettl & Stark (2013) who used a dynamical systems approach to iden-
tify that elongated swimmers in Poiseuille flow can undergo either tumbling or swinging
behaviour.

Microswimmers typically propel themselves through fluid environments by changing
their shape in a periodic manner, for example by the beating of long whip-like flagella,
or shorter cilia which cover the surface of the swimmer (Elgeti et al. 2015). Walker et al.
(2022) (WIMGD) take a minimal model to account for shape-changing; they use the
model of Jeffery, equation (1.1), but allow the Bretherton constant, B, and swimming
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speed to be an oscillatory function of time. WIMGD show that this simple model can
capture key long-time dynamics of swimmers, in particular they are able to identify a
single shape parameter which captures whether swimmers undergo rheotaxis, that is
stably orientate themselves to swim upstream.

2. Overview

Applying equation (1.1) to planar Poiseuille flow, Omori et al. (2021) introduced and
numerically analysed the following system of ordinary differential equations describing
the transverse coordinate y and swimmer orientation 6, with # = 0 corresponding to the
direction of flow and y = 0 the centreline:

dy

i wu(wt) sin b, (2.1)
do
i ~vy(1 — B(wt) cos 20). (2.2)

The shape-changing nature of the swimmers is captured here by allowing the swimming
speed, u, and Bretherton constant, B, to be oscillatory functions, where w > 1 is the high
frequency period of the oscillations. The parameter v is a fixed (positive) characteristic
shear rate of the flow.

In order to understand the observed dynamics, WIMGD define z(t) = y(t) /w'/? and,
inspired by Zoettl & Stark (2013), introduce a Hamiltonian-like quantity:

H(t) = ﬁzj +g(0), (2.3)
where g is a closed form analytic function that only depends on B, and ((-)) denotes the
average value over an oscillatory period.

WIMGD introduce fast and intermediate timescales: T = wt; 7 = w'/2¢, and implement
a multiple-scale analysis, formally defining z(t) = z(T, 7,t) and 6(t) = (T, 7,t), treating
each time variable as independent. At leading order, WIMGD find that the intermediate
timescale dynamics directly correspond to the dynamics for a fixed shape particle:

zor = (u) sin by, (2.4)
(907— = ’)/Z()(l — <B> COS 200) (25)

Over the intermediate timescale 7, this yields the result that the leading order expression
for the Hamiltonian-like quantity given by Hy(t) (equal to H(t) with z = zp and 6 = 6y)
is conserved. Now, on considering Hj as a fixed quantity, as identified by Zoettl & Stark
(2013) and illustrated in figure 1, two types of behaviours are observed: if Hy > ¢(0) the
swimmers tumble and there is monotonic evolution of 8y; else if Hy < ¢(0) the swimmers
exhibit swinging motion with 6y oscillating between two values. Also note in figure 1 the
existence of the unique equilibrium point (zq, 8p) = (0, 7) which corresponds to rheotaxis
and Hj taking its minimum value of g().

In order to examine the long-time dynamics of the swimmers, WIMGD examine the full
dynamics of H(t). Specifically, they introduce the function h(T,T,t) = Hor + H1, + Ho:
to represent the O(1) terms in the full derivative dH/dt. Averaging over a period in T
and then period in 7 yields the long-time evolution equation:

o vf(Ho)W, (2.6)

where W is a constant that can be calculated purely from the shape properties of the
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FIGURE 1. Phase portrait on the intermediate timescale, 7, showing contours of Hy. Solutions
in the shaded region where Hy > ¢(0) correspond to tumbling motion whereas trajectories
with Ho < ¢(0) exhibit swinging motion. The stationary point (z0,600) = (0,7) corresponds to
upstream swimming, i.e. rheotaxis, with Hy = g(). Taken from WIMGD.
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FIGURE 2. The value of H as computed from the full numerical solution (blue), equa-
tions (2.1-2.3) and approximate solution (black), equation (2.6), for three phase shifts
X € {47 /5, 7,67 /5} and parameters (a, 8,0, 1) = (1,0.5,0.32,0.3). Adapted from WIMGD.

swimmer. The quantity f(Hy) is shown to be negative for all Hy and so the sign of dgo

is determined by the constant W. Specifically the fixed point Hy = g(w) corresponding
to the rheotactic configuration (zg,80) = (0, ) is globally stable if W > 0 and unstable
if W <o.

WIMGD illustrate the asymptotic calculations with the specific example of u(T) =
a+ BsinT and B(T) = 6 + psin(T + ). In this case, if Sp > 0 then A € (0,7)
corresponds to W < 0 and tumbling, whereas A € (m,27) corresponds to W > 0 and
rheotaxis as illustrated in figure 2 which also demonstrates the good agreement between
the full solutions of the dynamical system with the asymptotic approximation.
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3. Future

The elegant analysis of WIMGD has the potential to be applied and extended to a wide
range of topical questions in the field of active biofluids, and there are open questions
to determine the range of applicability of the results. In particularly, WIMGD assumed
shape-changing can be be modelled through periodic oscillations in the Bretherton con-
stant (valid for axi-symmetric particles in steady Stokes flow) and swimming speed.
When considering individual micro-swimmers, the detailed mechanisms of propulsion,
for example gait, can affect the swimming speed as demonstrated theoretically and re-
cently experimentally by using dynamically-similar robotic models (Diaz et al. 2021).
Furthermore, swimmers can swim in chiral patterns when propulsive torque and propul-
sive force are not aligned, and the unsteady nature of Stokes flow and external fields
can also affect their swimming velocity and rotation rate (Maity & Burada 2022). The
role of external fields, such as gravity, light or chemical gradients is also incorporated
in recent work by Lauga et al. (2021) who identified a new instability in suspensions
of biased microswimmers. Because of the ability of swimmers to cross streamlines, their
dispersion is quite different to passive colloids, and current work aims to identify the
correct population-level transport models for micro-swimmers (Fung et al. 2022, e.g); in-
corporating the shape-changing effects of WIMGD would be an interesting development
in such population-level models.
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