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Abstract
The left atrium (LA) plays a vital role in maintaining normal cardiac function. LA volume and function have been utilised as 
important imaging biomarkers, with their prognostic value demonstrated in multiple cardiac conditions. More recently, there 
has been a sharp increase in the number of publications utilising LA strain by echocardiography and cardiac magnetic reso-
nance (CMR) imaging. However, little is known about its prognostic value or reproducibility as a technique. In this review, 
we aim to highlight the conventional and novel imaging techniques available for LA assessment, using echocardiography 
and CMR, their role as an imaging biomarker in cardiovascular disease, the reproducibility of the techniques and the current 
limitations to their clinical application. We identify a need for further standardisation of techniques, with establishment of 
‘normal’ cut-offs before routine clinical application can be made.
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Abbreviations
CMR	� Cardiovascular magnetic 

resonance
CoV	� Coefficient of variance
HF	� Heart failure
LA	� Left atrium
LAEF	� Left atrial emptying fraction
LAS/SR_bp	� Left atrial strain/strain rate at 

booster pump phase
LAS/SR_cd	� Left atrial strain/strain rate at 

conduit phase

LAS/SR_r	� Left atrial strain/strain rate at 
reservoir phase

LAV(max/min/pre-A)	� Left atrial volume (maximal/mini-
mal/pre-atrial contraction)

TTE	� Transthoracic echocardiography

Introduction

Traditionally left ventricular (LV) function has been the key 
imaging marker of prognosis in heart disease, and LV ejec-
tion fraction (EF) cut-off points have been used in heart fail-
ure (HF) guidelines to guide therapy[1, 2]. Left atrial (LA) 
volume has also been recognised for its association with 
adverse cardiovascular outcomes in the general population 
[3], in those at risk of developing cardiovascular disease [4] 
and in multiple cardiac conditions [5, 6]. LA volume indexed 
to body surface area forms an integral part of LV diastolic 
function assessment [7] and is an essential component for 
the diagnostic criteria for heart failure with preserve ejec-
tion fraction (HFpEF), previously referred to as diastolic 
heart failure [8–10]. LA function has also attracted consid-
erable attention as a cardiovascular imaging biomarker due 
to its prognostic importance [11–14] and because functional 
abnormalities often precede adverse LA structural remodel-
ling and overt clinical disease [9, 15–19].
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Currently, LA function is routinely evaluated using tra-
ditional 2D echocardiography derived volumetric measure-
ments [20]. 2D echocardiography however, underestimates 
LA volumes compared to cardiovascular magnetic resonance 
(CMR) imaging, which is the gold standard for volumetric 
quantification [21]. LA volumes and function can also be 
assessed using cardiac computed tomography (CT) [22, 23] 
however, it is a source of ionizing radiation exposure and 
is not routinely utilised in clinical practice, and will not be 
the focus of this article. LA deformation measurement is a 
relatively recent technique that tracks LA phasic function 
and allows early detection of subclinical cardiac dysfunction, 
even in those with normal LA size [19]. Such techniques 
could overcome the limitations of volumetric assessment, 
which relies on geometric assumptions and loading condi-
tions [24]. Moreover, LA strain may play an important role 
in classifying the degree of LV diastolic dysfunction [25], 
potentially eliminating the complexity in diastolic dysfunc-
tion assessment. The aim of this review is to highlight the 
current non-invasive imaging techniques available on echo-
cardiography and CMR for assessing LA function, and their 
prognostic utility.

Left atrial phasic function

LA function consists of 3 phases (Fig. 1): reservoir, con-
duit and booster pump phases, which are responsible for 
the transformation of the continuous pulmonary venous 
return flow into intermittent LV filling [26]. During ven-
tricular systole and isovolumetric relaxation, the LA acts as 

a ‘reservoir’ receiving blood flow from the pulmonary veins 
due to a decrease in filling pressure, leading to an increase in 
LA size. The conduit phase occurs during early diastole, and 
reflects passive emptying of the LA into the LV, governed 
by the transient LA to LV pressure gradient. Finally, booster 
pump (contraction), for those in sinus rhythm, occurs dur-
ing late diastole resulting in active LA emptying attributed 
to the Frank-Starling mechanism, afterload and myocardial 
contractility [27–29].

LA dysfunction

LA dysfunction has a marked influence on LV filling and 
cardiac output and is associated with the future development 
of HF [9]. LA reservoir function is governed by LA compli-
ance, but is influenced by atrial contraction and relaxation, 
and LV systolic shortening. Thus, a decrease in atrial com-
pliance and relaxation ability in the presence of LA stiffness 
causes LA reservoir dysfunction, whilst a reduction in the 
apical displacement of the mitral valve due to LV longitudi-
nal dysfunction reduces passive LA stretch [30, 31].

LA conduit dysfunction results from an impairment in 
the atrioventricular pressure gradient mainly caused by LV 
diastolic dysfunction, impaired LV relaxation and increased 
stiffness that diminishes passive filling. With conduit impair-
ment, the LA compensates by increasing booster pump func-
tion, which can be seen during the early stages of hyper-
tensive heart disease [32]. However, this compensation is 
typically absent in patients with HFpEF due to chronically 
elevated LV filling pressures [33].

Fig. 1   Left atrial function. Left 
atrial (LA) phasic function 
and the temporal relation-
ship between LA volume and 
electrocardiogram (ECG). 
Pre-A = pre atrial contraction, 
MV = mitral valve, LV = left 
ventricle. Red arrows represent 
blood flow, blue arrows repre-
sent myocardial deformation
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LA mechanical dysfunction precedes LA structural 
remodelling. Excessive increase in LA volume and pressure 
lead to histological changes such as an increase in the car-
diac myocyte length, which results in progressive dilatation 
of the atria, myocyte hypertrophy, and fibrosis [32, 34, 35]. 
Moreover, LA dilatation is associated with atrial fibrillation 
(AF) [36]. LA booster pump dysfunction occurs in the event 
of abnormal LA contractility, pre-atrial contraction volume 
(preload), or LV end-diastolic pressure (afterload), whilst 
AF results in the absence of the LA booster pump function 
[37].

LA functional assessment techniques

Volumetric assessment

LA phasic function can be assessed by quantifying LA vol-
ume (LAV) in three phases across the cardiac cycle: maxi-
mum (max), minimum (min) and pre-atrial (pre-a) contrac-
tion volumes (Supplemental Figure-1). Emptying fraction 
(EF) is calculated corresponding to the three LA phases: 
reservoir function (LA total EF = [(LAVmax – LAVmin)/
LAVmax] × 100%) and (LA expansion index =  = [(LAVmax 
– LAVmin)/LAVmin] × 100%) [38], conduit function (LA 
passive EF = [(LAVmax– LAVpre-A)/LAVmax] × 100%) 
and booster pump function (LA active EF = [(LAVpre-
A– LAVmin)/LAVpre-A] × 100%) [16].

LA volume is quantified on 2D-Transthoracic echocardi-
ography (TTE) by either the biplane area length or biplane 
modified Simpson’s discs method using 4- and 2-cham-
ber images [20] (Fig. 2A). Both these methods however 

underestimate LA volumes compared to CMR due to vari-
ation in the spherical shape of the LA [21]. LA volumes by 
3D-TTE (Fig. 2B) show better correlation with CMR than 
with 2D-TTE and exhibit tighter limits of agreement on 
Bland–Altman analysis, albeit only LAVmax showed limits 
of agreement within 10% [39]. On the contrary, a recent 
retrospective study including 56 patients in sinus rhythm 
showed only modest correlation and limits of agreement 
more than 10% for LAVmax and total EF when comparing 
3D-TTE with CMR [40]. However, fully automated software 
was used to quantify LA volume by 3D-TTE, which may in 
part explain the poorer agreement.

In addition to the biplane area length method, CMR 
allows LA quantification using the short-axis cine stack, 
overcoming geometric assumptions by tracing the LA 
endocardial borders from successive slices across the LA 
length based on Simpson’s method of discs (Fig. 2C and 
D). LAEF by short-axis method demonstrated superior 
test–retest reproducibility in comparison to the biplane area-
length method on CMR (CoV 4–19% and CoV 7.9–24% 
respectively), however, this study only included healthy vol-
unteers and a small sample size (n = 4) [41]. The same study 
demonstrated no significant difference in LA volumes and 
EF between the two methods using steady-state free pre-
cession (SSFP) cines. Similarly, the mean LA volume was 
not significantly different between the two methods using 
SSFP images and showed excellent correlation (r = 0.92; 
p < 0.001), with modest agreement (-0.6 ml bias and (+ 23.5, 
-24.7 ml) limits of agreement) in AF patients (n = 81) [42]. 
In another study using the gradient-echo sequence (True-
FISP), while LA volumes were significantly higher with 
the biplane area-length method, there was no significant 

Fig. 2   Imaging assessment 
of left atrial function. LA 
volumetric assessment using 
Transthoracic echocardiography 
(TTE) include biplane disk 
method (A) and 3D method(B), 
and using CMR include biplane 
area length method (C), and 
short axis stack method (D). LA 
deformation assessment using 
Speckle tracking echocardiog-
raphy (E), and feature tracking 
on CMR (F). An example of LA 
strain curve and the measure-
ments corresponding to LA 
phases (G). LAS_r = LA strain 
at reservoir, LAS_cd = LA 
strain at conduit, LAS_bp = LA 
strain at booster-pump phase
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difference in LAEF between the two methods in both sinus 
rhythm (n = 15) and AF (n = 18) subjects [43]. Thus, despite 
the superior reproducibility of the short-axis method, the 
area-length method allows a practical and less time-consum-
ing assessment of LA volume and function using routinely 
acquired 4- and 2-chamber SSFP cines, without the need for 
additional breath-holds for patients to acquire the short-axis 
cine stack.

LA deformation assessment

Non-invasive imaging modalities have assessed LA defor-
mation for initial diagnosis [25, 44–47], prognostic assess-
ment [48–51], and evaluation of treatment response across 
different disease states [52–55]. Cardiac deformation analy-
sis using strain and strain rate (SR) imaging allows early 
detection of pre-clinical cardiac disease.

Strain is an angle independent measurement that reflects 
the percentage of myocardial deformity (changing length) 
throughout the cardiac cycle. Strain is calculated as:

where ΔL is the change in myocardial length, and L0 is the 
original length of the myocardium.

SR is myocardial deformity over time (the speed of 
myocardial deformation) [56]. Although LA strain (LAS) 
is preload dependent, loading has less effect on LA strain 
than LA volume [24], while LA strain rate (LASR) is less 
load-dependent than strain [57]. Both TTE and CMR use 
post-processing image analysis software to assess LAS and 
LASR, using routinely acquired 2-chamber and 4-chamber 
cine images. LA endocardial borders are manually traced 
and propagated throughout the cardiac cycle using speckle 
tracking in TTE or feature tracking in CMR (Fig. 2E and F).

Speckle Tracking Echocardiography (STE)

Tissue Doppler imaging (TDI) is an image acquisition that 
is used traditionally to estimates strain in TTE. However, it 
depends on angle of insinuation and provides regional evalu-
ation of LA function [58, 59]. STE technique is a post-pro-
cessing algorithm that quantifies LA deformation by track-
ing the motion of speckles within the whole myocardium 
through the cardiac cycle, using standard 2D echocardiogra-
phy B-mode images [60](Fig. 2E). Strain and SR curves are 
generated after tracing the LA endocardium during systole 
and diastole. It is recommended to use non-foreshortened 
views of the LA in order to obtain adequate strain values, as 
well as the use of ventricular end-diastole as the time refer-
ence frame of zero strain [61].

The main limitation of STE is the need for high image 
quality and frame rates in order to obtain optimal endocardial 

ΔL∕L0

tracing, which can be challenging for the LA, as it is in the 
far-field, and windows are affected by patient characteristics 
such as obesity and airways disease. This phenomenon is 
particularly evident in obese individuals whereby 21% of 
the such patients were excluded from STE analysis due to 
inadequate image quality [62].

Feature tracking CMR

Feature tracking (FT) is a post-processing strain assessment 
technique that uses standard CMR cine images for strain 
analysis (Figs. 2F and G). The analysis is performed offline 
using dedicated software which provides a more practical 
way by allowing shorter scan times. The general principle of 
FT is similar to STE, where features within the myocardium 
are tracked through the cardiac cycle. Strain assessment by 
CMR has several advantages over TTE such as improved 
spatial resolution, high signal and contrast ratio (between 
blood pool and myocardium), unlimited windows and clearer 
myocardial definition, enabling optimal tracking. Further-
more, with adequate planning, there is less propensity for 
foreshortened images than TTE.

Similar strain curves are generated by both TTE and 
CMR techniques (Fig. 2G). LAS/LASR can be measured 
for the three LA phases [61]: reservoir function (LAS_r 
and LASR_r), conduit function (LAS_cd and LASR_cd) 
and contraction booster-pump ( LAS_bp and LASR_bp). 
LAS_cd can be calculated as: LAS_cd = LAS_r – LAS_bp.

Reference values in healthy adults

TTE

In a population study including 371 subjects, the normal 
values of LA function using TomTec 2D analysis were: 
total LAEF 68.5 ± 5.3, passive EF 43.0 ± 10.3 and active 
EF 43.1 ± 9.4, while the total LAEF using 3D-TTE is 
57.3 ± 4.9[63]. In a meta-analysis for normal LAS param-
eters by STE [64], 40 studies (2,542 patients) were included 
for reservoir strain, 14 studies (805 patients) for conduit and 
18 studies (1,005 patients) for contractile strain, with an age 
range of 25–68 years. Most of the studies (n = 34) used a GE 
echocardiography platform (EchoPac). The normal ranges 
were: 27.6% to 59.8% for reservoir, 15.7% to 33.4% for con-
duit and 14.0% to 25.0% for booster pump strain, without 
significant difference between men and women. Studies on 
LASR normal values are limited. One study including 329 
healthy adults reported the normal range of LASR at booster 
pump only, which was -2.11 ± 0.61 s−1 [65].
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CMR

Normal ranges for LAEF, LAS and LASR using CMR 
are shown in Table 1. With age, LA reservoir and con-
duit functions by volumetric assessment decrease, while 
booster pump function increases [66]. The LA appendage 
was included while the pulmonary veins were excluded 
from the analysis in most studies [67, 68]. Only one study 
focused on normal values of LA strain and strain rate by FT 
on 112 healthy volunteers, with a median age of 42 (IQR 
30–53) years (64). The study showed no significant differ-
ence between genders in all strain and strain rate parameters. 
LA contractile function increased significantly with age for 
both strain and strain rate, while the LA conduit function 
decreased.

Overall, LAEF values are lower on CMR compared to 
TTE, but LAS values seem to be closer together (Fig. 3). The 
variation in values caused by vendors and imaging modal-
ity however, raises important questions regarding the valid-
ity and generalisability of the technique. Reference ranges 
require further validation by studying larger cohorts, and 
considerations of the possible influence of field strength and 
vendors. LASR by STE and both LAS and LASR by FT-
CMR have no standardised reference ranges to date due to 
limited published literature on normal ranges and the vari-
ability mentioned above.

Prognostic value of volumetric LA function

The prognostic value of LA volume [3–6, 69, 70] and size 
[71] is well established in multiple cardiovascular condi-
tions. TTE studies have shown LA dysfunction, measured 
as a decrease in LAEF or LA function index (LAFi), to be 
an independent predictor of all-cause mortality or HF hos-
pitalization in coronary artery disease [11, 72], heart failure 
with reduced ejection fraction (HFrEF) [73, 74] and AF[75] 
(Table 2). LAFi is calculated as: (LA emptying fraction × left 
ventricular outflow tract velocity time integral)/LA end-sys-
tolic volume index.

LAEF by CMR was recognised as a subclinical cardiac 
biomarker, with a decrease in LA total EF being an inde-
pendent predictor of all-cause mortality and AF incidence 
in the general population [76, 77]. In addition, a decrease 
in LA active EF in patients with hypertension and no car-
diovascular symptoms showed a strong predictive value for 
adverse cardiac events including MI, HF hospitalization and 
death [78].

A recent observational study demonstrated that CMR-
derived LAEF using the biplane area length method was 
lower in patients with HFpEF compared to controls [12], and 
was associated with an increased risk of the composite end-
point of death and or HF hospitalization. Another study of 

664 patients with HF, irrespective of LVEF, showed increas-
ing LAEF to be independently associated with survival 
(HR for 10% change: 0.81, 95% CI: 0.73 –0.90), P ≤ 0.001), 
whereas, decreasing LAEF and increasing age predicted the 
incident AF [14].

Prognostic value of LA deformation

Speckle tracking echocardiography (STE)

LAS by STE shows a promising, non-invasive approach to 
predicting changes in LV filling pressure. Recent studies 
show that LAS at reservoir phase predicts elevated LV end-
diastolic pressure in patients with coronary artery disease 
[79] and patients with normal LVEF [45]. Another study 
that included 76 patients referred for left heart catheteriza-
tion demonstrated LA reservoir strain to be an independ-
ent predictor of LV filling pressure, with a cutoff value of 
LASr < 20% being optimal to detect elevated LV filling pres-
sure (area under the curve 0.76) [47].

The literature highlighted the prognostic utility of LA 
strain as a sensitive marker to assess subclinical cardiac 
dysfunction [19, 80]. A recent review concluded LA strain 
dysfunction might precede the impairment in LV deforma-
tion in valvular disease, as it was associated with a decrease 
in functional capacity, even when LV global longitudinal 
strain was preserved, and might have a role in guiding early 
intervention [81]. A prospective study on 312 subjects in 
sinus rhythm, with known cardiovascular diseases [82], 
showed that LA strain during the reservoir phase using STE 
independently predicts cardiovascular events including AF, 
HF and mortality with high diagnostic accuracy (cut-off for 
LASr < 19%, area under the curve 0.83). LA strain showed 
an ability to differentiate between HF categories, independ-
ent of LA volume and other diastolic function parameters 
[83]. HFpEF studies have also shown LA reservoir dysfunc-
tion by strain to be independently associated with adverse 
outcomes and HF hospitalization [84–86].

LAS_r has also been used in calculating a surrogate of 
LA stiffness (calculated as the ratio of E/e’ to LAS_r) [52, 
87, 88]. LA stiffness was a strong predictor of adverse out-
comes (death and HF hospitalization) in a study of 215 HF 
patients [87].

Feature tracking CMR

Studies assessing the prognostic value of LA strain by FT-
CMR are limited. In the Multi-Ethnic Study of Atheroscle-
rosis (MESA), LA dysfunction by FT preceded HF incidence 
in the asymptomatic general population, and LA reservoir 
strain was an independent predictor of HF[9]. The same 
study also concluded that LA reservoir strain independently 
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Table 1   The normal ranges for LA function parameters by CMR in population Studies

First Author, year 
(Ref. #)

Population
(Male, Female)

Age Scanner
(Image analysis 
software)

LA function param-
eter

Normal range
(Mean ± SD)

Comments

Hudsmith et al., 
2005 [67]

HV(n = 108)
(63 M, 45F)

38 ± 12 years
(range 21–68)

CMR 1.5 T
(Argus Siemens)

Volumetric (%):
Total EF

54 ± 12% Biplane area length 
method

LAA included and 
pulmonary veins 
excluded from the 
analysis

No significant dif-
ference between 
gender

Maceira et al., 2016 
[66]

HV(n = 120)
(60 M, 60F)

49 ± 17 years CMR 1.5 T
(3D-CMRTools, 

Cardiovascular 
Imaging Solu-
tions)

Volumetric (%):
Total EF
Passive EF
Active EF

59 ± 5.8%,
35 ± 6%
36 ± 6.8%

Data generated from 
3D-modelling

LAA included and 
pulmonary veins 
excluded

With age LA reser-
voir and conduit 
functions decreased 
while the booster 
pump function 
increased

Females had sig-
nificantly higher 
conduit function 
than males

Petersen et al., 2017 
[104]

HV(n = 795)
(363 M, 432F)

59 ± 7 years (range 
45–74)

CMR 1.5 T
(Cvi42, version 

5.1.1)

Volumetric (%):
Total EF

60 ± 7% Caucasian ethnicity 
only from the UK 
biobank

Biplane area length 
method

No significant dif-
ference between 
gender

Peng et al., 2018 
[105]

HV(n = 150)
(75 M, 75F)

43 ± 12 years CMR 1.5 T or 3.0 T
(Medis, Qmass and 

Qstrain)

Volumetric (%):
Total EF
Strain (%):
Reservoir Strain

58 ± 9%
32.8 ± 9.2

Two sites: bSSFP and 
BTFE sequences 
used respectively in 
each site

Volume by Biplane 
area length method

Strain 2- and 4-cham-
ber, excluding 
pulmonary veins 
and LAA

No significant dif-
ference between 
gender

Reservoir strain 
reduced signifi-
cantly with age
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bSSFP: Balanced Steady State Free Precession, BTFE: Balanced Turbo Field Echo, FT: feature tracking, HV: healthy volunteers, LAA: left atrial 
appendage, EF: emptying fraction, SR = strain rate

Table 1   (continued)

First Author, year 
(Ref. #)

Population
(Male, Female)

Age Scanner
(Image analysis 
software)

LA function param-
eter

Normal range
(Mean ± SD)

Comments

Truong et al., 2019 
[68]

HV(n = 112)
(45 M, 67F)

42 years (median)
IQR 30–53

CMR 1.5 T
2D-FT
(Cvi42, version 

5.3.4)

Volumetric (%):
Total EF
Passive EF
Active EF
Strain (%):
Reservoir Strain
Conduit Strain
Contractile Strain
Strain rate (s−1):
Reservoir SR
Conduit SR
Contractile SR

58.8 ± 3.7
39.2 ± 6.2
31.9 ± 6.1
39.13 ± 9.27
25.15 ± 8.34
13.99 ± 4.11
1.93 ± 0.54
-2.13 ± 0.69
-2.04 ± 0.61

Volumetric by biplane 
area length method, 
LAA and pulmo-
nary veins were 
excluded

No significant dif-
ference between 
genders

The LA contractile 
function increased 
significantly with 
age, while the LA 
conduit function 
decreased seen in 
both volumetric 
and deformation 
techniques

Doria de Vascon-
cellos et al. 2020 
[106]

HV (n = 228)
(91 M, 137F)

64.7 ± 8.1 CMR 1.5 T
(Multimodality 

feature track-
ing version 6.0, 
Toshiba)

Volumetric (%):
Total EF
Passive EF
Active EF
Strain (%):
Reservoir Strain
Contractile Strain
Strain rate (s−1):
Reservoir SR
Conduit SR
Contractile SR

59.5 ± 10.5
28.2 ± 8.7
44 ± 11.3
32.6 ± 14.2
19.2 ± 9.1
1.6 ± 0.8
-1.6 ± 0.9
-2.1 ± 1.0

From Multiethnic 
Study of Athero-
sclerosis

Volumetric by biplane 
area length method, 
LAA and pulmo-
nary veins were 
excluded

Images with poor 
tracking and/or 
foreshortened were 
excluded, no spe-
cific number stated

No conduit strain
No ethnicity com-

parison

Fig. 3   Normal values of LA 
phasic function by strain analy-
sis. Table illustrates normal 
ranges by TTE vs CMR for: 
LAS_r = LA strain at reser-
voir, LAS_cd = LA strain at 
conduit, LAS_bp = LA strain 
at booster-pump phase. Normal 
ranges from[64, 68, 105, 106]. 
The graph illustrates the change 
in LA strain during the cardiac 
cycle
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predicted AF incidence (HR 0.68, 95% CI, 0.48–0.96) [77]. 
This prognostic utility has also been demonstrated in hyper-
trophic cardiomyopathy, where impaired LA reservoir strain 
(< 18%) significantly increased the risk of mortality and HF 
development or progression [89].

CMR studies focusing on the prognostic value of LASR 
are limited. Only one retrospective study with a small sam-
ple size (n = 30) showed an association between LASR dur-
ing the conduit phase and the incidence of acute myocarditis, 
with a cut-off of -1.6 s1− showing 83% sensitivity and 80% 
specificity [90].

LA function as potential therapeutic target

LA function may be an important future therapeutic target 
and endpoint for clinical trials. A recent review summarised 
the mechanisms and the evaluation of LA remodelling [91], 
whilst another reported the relationship between LA remod-
elling and the development of AF and the therapeutic impli-
cations for LA remodelling reversal [92]. Studies have dem-
onstrated LA reverse remodelling post-intervention, which 
was defined as an improvement in LA function [55, 93–95].

TTE-TDI has been used to demonstrate an improvement 
in LA contractile function post-cardioversion in AF of both 
short (1–6 months) [93] and chronic duration [94]. Follow-
ing catheter ablation for AF, 63% of the patients demon-
strated a decrease in LAV max (> 15%), accompanied by 
an improvement in LA longitudinal lengthening and LA 
shortening using TDI [96]. Similar results were reported 
in HF patients who underwent cardiac resynchronization 
therapy [95]. 2D-STE has also been utilised to assess the 
LA response post-intervention: LA reservoir and booster 
strain improved post-transcatheter aortic valve implantation 
at 3-month follow-up [55].

LAS in guidelines

Despite the advantages of strain and SR, their clinical appli-
cation is limited due to measurement variability. This incon-
sistency is related to three main factors: imaging modality, 
software, and operator [60]. Thus, published recommenda-
tions and guidelines in disease diagnosis that include LAS 
are limited due to the need for technique validation. To our 
knowledge, only the European Association of Cardiovascu-
lar Imaging (EACVI) and the European Heart Rhythm Asso-
ciation (EHRA)Expert Consensus Document on the role of 
multi-modality imaging for the evaluation of patients with 
atrial fibrillation, comments that LA lateral wall strain can 
be reliably imaged and LA reservoir strain < 30% indicates 

significant alteration of LA reservoir function, which pre-
dicts poor outcome [97].

Inter‑modality agreement

Studies that directly compare TTE and CMR in the context 
of LA functional assessment are limited, with the major-
ity reporting correlation rather than agreement (Table 3). A 
study including 34 patients with permanent AF compared 
LA volumetric assessment using 2D-TTE with CMR [98]. 
The inter-modality correlation was moderate for volumes 
(r = 0.59 for LAmax and r = 0.59 for LAmin, P < 0.001), 
while poor for LAEF (r = 0.34, P < 0.05). However, the two 
scans were separated by 7 ± 4 days [98]. Another study in 
54 patients post-myocardial infarction showed good inter-
modality correlation (LAVmin r = 0.70, LAVmax r = 0.71) 
when scans were performed on the same day [21], though 
the volumes were still under-estimated by TTE. Using 
3D-TTE for LA volumetric assessment also underestimates 
LA volume compared to the biplane area length method by 
CMR [40]. Moreover, whilst TTE and CMR were conducted 
on the same day, the agreement between the two modalities 
was poor by Bland–Altman analysis: LAVmax: 19.7 (-42.0 
to 81.5) and LAEF: -1.6 (-28.0 to 24.9).

A recent study on 43 patients with clinically indicated 
CMR scan and 11 healthy volunteers, compared LAS param-
eters by CMR and TTE. The comparison included 4 different 
post-processing image analysis software [99]. Overall, mod-
est to excellent inter-modality correlation was seen, depend-
ing on which strain parameter was analysed (ICC > 0.71). 
Reservoir and booster strain values by STE (TomTec) were 
significantly higher than by FT-CMR (Medis), while con-
duit strain values were not significantly different. Moreo-
ver, reservoir strain had the lowest inter- and intra-observer 
variability for both modalities [99]. To our knowledge, no 
studies have evaluated inter-modality correlation for LASR.

Reproducibility of techniques

Most studies assessing reproducibility of an imaging tech-
nique focus on inter- and intra- observer variability (Sup-
plemental Table-1). Overall, LAS has lower inter- and intra-
observer variability than LASR, and reservoir and conduit 
function have lower variability than booster function. How-
ever, whilst important, observer variability does not address 
variations in image acquisition and day-to-day physiological 
variation. Test–retest reproducibility of an imaging tech-
nique is fundamental for its validity and its use in longitudi-
nal studies for monitoring disease progression or response 
to treatment. Studies evaluating the test–retest reproduc-
ibility of LA assessment have been limited and with small 
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sample sizes (n = 12–22) and mainly in healthy volunteers 
[40, 67, 100, 101] (Table 4). However, a recent study includ-
ing subjects with and without cardiovascular disease (n = 60) 
showed LAEF to have better test–retest reproducibility than 
LA strain, whilst reservoir strain accounted for the most 
reproducible strain parameter [102].

Limitations of LA strain applications 
in clinical practise

Whilst LA volumes are routinely used in clinical practice, 
LA volumetric assessment has some limitations in assessing 
subclinical cardiac dysfunction, due to their lower sensitivity 
in assessing subtle changes and their lack of representation 
of myocardial contractility, as they are load-dependent meas-
urements [103]. For LAS analysis, the anatomical character-
istics of the LA, such as the thin walls and the presence of 
the LA appendage and pulmonary veins, make it challeng-
ing to trace the LA endocardial borders. Also, there isn’t a 
universal and routinely available dedicated image analysis 
software for LA strain analysis, and more importantly, there 
is a need for standardization of techniques and establish-
ment of ‘normal’ cut-offs for the various parameters, before 
routine clinical application.

Conclusions

The LA plays a vital role in maintaining normal cardiac 
function. Accurate LA assessment is imperative in under-
standing the pathophysiology of cardiovascular disease. 
We have reviewed the conventional and novel imaging 
techniques available for its assessment. Whilst these are 
promising and provide important insights into disease pro-
gression and add prognostic value in many conditions, there 
are limitations in the accurate quantification of LA function. 
Comparing the test–retest reproducibility of LA function 
assessment techniques between modalities should ideally 
be performed in the same cohort, in order to establish the 
technique with the best discriminative ability for detecting 
clinically relevant changes with repeated measurements.
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