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ABSTRACT

Constant orbital period ephemerides of eclipsing binaries give the computed eclipse epochs (C). These

ephemerides based on the old data can not accurately predict the observed future eclipse epochs (O).

Predictability can be improved by removing linear or quadratic trends from the O-C data. Additional

companions in an eclipsing binary system cause light-time travel effects that are observed as strictly

periodic O-C changes. Recently, Hajdu et al. (2019) estimated that the probability for detecting the

periods of two new companions from the O-C data is only 0.00005. We apply the new Discrete Chi-

square Method (DCM) to 236 years of O-C data of the eclipsing binary Algol (β Persei). We detect

the tentative signals of at least five companion candidates having periods between 1.863 and 219.0

years. The weakest one of these five signals does not reveal a “new” companion candidate, because its

680.4±0.4 days signal period differs only 1.4σ from the well-known 679.85±0.04 days orbital period of

Algol C. We detect these same signals also from the first 226.2 years of data, and they give an excellent

prediction for the last 9.2 years of our data. The orbital planes of Algol C and the new companion

candidates are probably co-planar, because no changes have been observed in Algol’s eclipses. The

2.867 days orbital period has been constant since it was determined by Goodricke (1783).

Keywords: binaries: eclipsing — stars: individual (Algol, Bet Per) — methods: data analysis —

methods: numerical — methods: statistical

1. INTRODUCTION

The oldest preserved historical document of the dis-

covery of a variable star is the Ancient Egyptian pa-

pyrus Cairo 86637, where naked eye observations of Al-

gol’s eclipses have been recorded into the Calendar of

Lucky and Unlucky days (Porceddu et al. 2008; Jetsu

et al. 2013; Jetsu & Porceddu 2015; Porceddu et al.

2018). Montanari re-discovered its variability in the year

1669. Goodricke (1783) determined the orbital period

Porb = 2.d867 of this eclipsing binary (EB). The close

orbit eclipsing stars are Algol A (B8 V) and Algol B

(K2 IV). Curtiss (1908) discovered the 1.y863 wide orbit

third companion Algol C (K2 IV). Direct interferomet-

Corresponding author: Lauri Jetsu

lauri.jetsu@helsinki.fi

ric images of these three members have been obtained

(e.g. Zavala et al. 2010; Baron et al. 2012).

Periodic long-term changes occur in the observed (O)

minus the computed (C) primary eclipse epochs of EBs.

The most probable causes are a third body (e.g. Li et al.

2018), a magnetic activity cycle (e.g. Applegate 1992)

or an apsidal motion (e.g. Borkovits et al. 2005). Hajdu

et al. (2019) searched for third bodies in a large sam-

ple of 80 000 EBs. They detected 992 triple systems

from the O-C data, and only four candidates that may

have a fourth body. Their fourth body detection rate

was 4/80 000 = 0.00005. Recently, Jetsu (2020, here-

after Paper I) formulated the new Discrete Chi-Square

Method (DCM). He applied DCM to the O-C data of

XZ And, and detected the periods of a third and a fourth

body.

In Algol, the mass transfer from the less massive Al-

gol B (0.8m�) to the more massive Algol A (3.7m�)
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should cause a long-term Porb period increase (Kwee

1958), which should have been observed as quadratic

long-term O-C changes (Kiseleva et al. 1998). Long-

term Porb increase or quadratic O-C changes have not

been observed in Algol since its period was determined

238 years ago. However, its orbital period modulation

does cause negative and positive O-C changes. The

short-term low amplitude O-C changes follow 1.y863 or-

bital motion cycle of Algol C, while the high amplitude

O-C changes follow 30y and 200y quasi-periodic activity

cycles (Applegate 1992). The physical origin of period

changes is not fully understood, because Algol’s puzzling

O-C diagram contains unknown signals and trends (e.g.

Frieboes-Conde et al. 1970; Applegate 1992). We ap-

ply DCM to Algol’s O-C data, because this method can

detect many signals superimposed on unknown trends.

Kim et al. (2018) note that their TIDAK database

O-C ephemerides “cannot be used for the prediction

of future times of the primary or secondary minima.”

These ephemerides are determined by eliminating linear

or quadratic trends from the available O-C data (Kreiner

et al. 2001). They usually need to be re-determined

when new data are obtained. Although the O-C changes

caused by a third body are strictly periodic, the predic-

tions usually fail to separate aperiodic trends from pe-

riodic signals (e.g. Bours et al. 2014; Lohr et al. 2015;

Song et al. 2019). Furthermore, the detection rate of

third bodies from O-C data is extremely low (e.g. Ha-

jdu et al. 2019). Against this background, it is totally

unexpected that we can detect numerous periods in Al-

gol’s O-C data, as well as predict its O-C changes.

2. DATA

The epochs of the observed light curve minima give

the observed (O) values. We obtained the n = 2238

observed eclipse epochs of Algol from the 2018 ver-

sion of TIDAK database (Kim et al. 2018). These

eclipse epochs have been determined by hundreds of as-

tronomers during the past two centuries. The nights

when these eclipses could be observed were known be-

forehand. Every eclipse lasted eight hours. Both dim-

ming and brightening took four hours. The probability

for a negative or positive mid eclipse epoch error was

the same, because the eclipse light curve was symmet-

ric. It is therefore probable that the observational errors

follow a Gaussian distribution, the epoch values contain

no observational trends, and the observational errors are

not heteroskedastic. Naturally, the accuracy of these

data improves towards modern times, because the ob-

servational techniques have improved. We study only

the primary minimum epochs when the dimmer Algol B

eclipses the brighter Algol A. Therefore, we reject all

fourteen secondary minima, because they occur Porb/2

after the primary minima. We analyse only the remain-

ing n = 2224 primary minima between November 12th,

1782 and October 18th, 2018. These data are given

in Table A4 (∆T = 86171d = 236y). We obtain the

computed (C) epoch values from the TIDAK database

ephemeris

HJD 2445641.5135 + 2.86730431E. (1)

This ephemeris predicts that all Algol’s primary eclipses

occur at multiples HJD 2445641.5135 +E×Porb, where

Porb = 2.d86730431 is the orbital period of Algol and

E is an integer number. This constant orbital period

ephemeris “model” is quite accurate, because all O-C

values are between −0.d24 and +0.d15 during 236 years.

Out of all 2224 estimates, only 197 have an error es-

timate, and none of the 1236 first ones. However, this

does not mean that these values without error estimates

are unreliable or inconsistent. The error estimates are

available for only about 10% of data. These are all new

observations after the year 1921. The range of these

known errors is between 0.d0002 and 0.d013. The most

accurate TIDAK database O-C values have four deci-

mals. Since the errors are not known for over 90% of

observations, we use arbitrary errors σi = 0.d00010 for

all O-C values. These arbitrary numerical values do not

influence our results, because we use the same weight

wi = σ−2
i for every observation, and we compute the

DCM test statistic z from the sum of squared residuals

(Eq. 8). We will also show that a weighted DCM search,

where the O-C data accuracy improves towards modern

times, does not alter our results (Sect. 5.4).

We also analyse shorter subsamples of all data (Table

A5). In Sect. 5.2, we apply DCM to the first 226.2 years

of all data (First226y-data). This gives us a prediction

for the last 9.2 years of all data (Last9y-data). In Sect.

5.2, the same DCM procedures are also applied to the

first 185.5 years of all data (First185y-data), and the

last 50 years of all data (Last50y-data).

3. DCM-METHOD

The Discrete Chi-Square Method (DCM) notations for

the data are yi = y(ti)± σi, where ti are the observing

times and σi are the errors (i = 1, 2, ..., n). The time

span of data is ∆T = tn − t1. The mid point of data is

tmid = t1 + ∆T/2.

We analyse these data with DCM, which can detect

many signals superimposed on arbitrary trends. De-

tailed instructions for using the DCM python code were

given in the appendix of Paper I. In this current study,

we provide all necessary information for reproducing our
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DCM analysis of Algol data.1 DCM model is

g(t) = g(t,K1,K2,K3) = h(t) + p(t). (2)

It is a sum of periodic and aperiodic functions

h(t) =h(t,K1,K2) =

K1∑
i=1

hi(t) (3)

hi(t) =

K2∑
j=1

Bi,j cos (2πjfit) + Ci,j sin (2πjfit) (4)

p(t) =p(t,K3) =

K3∑
k=0

pk(t) (5)

pk(t) =Mk

[
2(t− tmid)

∆T

]k
. (6)

The periodic h(t) function is a sum of K1 harmonic hi(t)

signals having frequencies fi. The signal order is K2.

These signals are superimposed on the aperiodic K3 or-

der polynomial trend p(t).

In the original DCM version, the p(t) terms were

Mk[(2t)/∆T ]k (Paper I: Eq. 5), and the first time point

t1 was subtracted from all time points ti before mod-

elling. For odd and even k values, every Mk[(2t)/∆T ]k

term could only increase or decrease monotonically

during the whole ∆T interval, because the argument

(2t)/∆T was always positive. In our new formulation

(Eq. 6), the even k = 2, 4, ... terms Mk[2(t− tmid)/∆T ]k

can now both increase and decrease during the whole

∆T interval. This increases the flexibility of the model.

Furthermore, it is no longer necessary to subtract the

first observing time t1 before the modelling. Note that

the 2(t − tmid)/∆T argument equals −1 at t1, and

+1 at tn. Hence, the scale of polynomial Mk coeffi-

cients (Eq. 6) is comparable to the scale of trigono-

metric Bi,j and Ci,j coefficients (Eq. 4). This change

of p(t) trend terms from pk(t) = Mk[(2t)/∆T ]k to

pk(t) = Mk[2(t − tmid)/∆T ]k does not change the de-

tected signal periods in any of the analysed O-C sam-

ples.

Our abbreviation “modelK1,K2,K3” refers to a g(t)

model having orders K1, K2 and K3. The free parame-

ters are β̄ = [β1, β2, ..., βη] = [B1,1, C1,1, f1, ..., BK1,K2
,

CK1,K2 , fK1 , M0, ...,MK3 ], where η= K1 × (2K2 + 1) +

K3 + 1 is the number of free parameters. We divide

the free parameters β̄ into two groups β̄I and β̄II .

The first group of free parameters are the frequencies

β̄I = [f1, ..., fK1 ]. These frequencies make the g(t)

1 All necessary files for reproducing our results are published in
Zenodo database: doi 10.5281/zenodo.5082125

model non-linear, because all free parameters are not

eliminated from all partial derivatives ∂g/∂βi. If the

β̄I frequencies are fixed to constant known tested nu-

merical values, the model becomes linear, because all

partial derivatives ∂g/∂βi no longer contain any free

parameters. In this case, the solution for the remain-

ing second group of free parameters, β̄II = [B1,1C1,1, ...,

BK1,K2
, CK1,K2

, M0, ...,MK3
], is unambiguous. We re-

fer to this type of models and their free parameter so-

lutions, when we use the concepts “linear model” and

“unambiguous result”.

DCM model residuals are

εi = y(ti)− g(ti) = yi − gi. (7)

For every combination β̄I = [f1, f2, ..., fK1
] of tested fre-

quencies, we compute the DCM test statistic

z = z(f1, f2, ..., fK1) =
√
R/n (8)

from the sum of squared residuals R =
∑n
i=1 ε

2
i of a

non-weighted linear model least squares fit. We use this

non-weighted test statistic, because the errors for the

data are unknown.

The global periodogram minimum is at

zmin = z(f1,best, f2,best, ..., fK1,best), (9)

where f1,best, f2,best, ..., fK1,best are the frequencies of

the best DCM model for the data. Every scalar value

of this z periodogram is computed from K1 frequency

values. For example, the K1 = 2 periodogram could

be plotted like a map, where f1 and f2 are the coordi-

nates, and z = z(f1, f2) represents the height. However,

a graphical presentation for K1 ≥ 3 is impossible, be-

cause it requires more than three dimensions. In Paper I,

we solved this problem by presenting only the following

one-dimensional slices of the full periodograms

z1(f1) = z(f1, f2,best, ..., fK1,best)

z2(f2) = z(f1,best, f2, f3,best, ..., fK1,best)

z3(f3) = z(f1,best, f2,best, f3, f4,best, ..., fK1,best) (10)

z4(f4) = z(f1,best, f2,best, f3,best, f4, f5,best, fK1,best)

z5(f5) = z(f1,best, f2,best, f3,best, f4,best, f5, fK1,best)

z6(f6) = z(f1,best, f2,best, f3,best, f4,best, f5,best, f6).

In the above K1 = 2 map analogy, z1(f1) would repre-

sent the height at f1 coordinate when moving along the

constant line f2 = f2,best that crosses the global mini-

mum zmin.

DCM determines the following hi(t) signal parameters

Pi = 1/fi = Period

https://zenodo.org
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Ai = Peak to peak amplitude

ti,min,1 = Deeper primary minimum epoch

ti,min,2 = Secondary minimum epoch (if present)

ti,max,1 = Higher primary maximum epoch

ti,max,2 = Secondary maximum epoch (if present),

and the Mk parameters of the p(t) trend. For us, the

most interesting parameters are the signal periods Pi
and the signal amplitudes Ai, and the p(t) trend coeffi-

cient M1.

We determine the DCM model parameter errors with

the bootstrap procedure (Efron & Tibshirani 1986;

Efron & Tibshirani 1994). During each bootstrap round,

we select a random sample ε̄∗ from the residuals ε̄ of the

DCM model (Eq. 7). Each εi can be chosen as many

times as the random selection happens to favour it. This

gives the artificial bootstrap data sample

y∗i = gi + ε∗i .

DCM model for each ȳ∗ sample gives one estimate for

every model parameter. For each particular model pa-

rameter, its error estimate is the standard deviation of

all estimates obtained from all ȳ∗ bootstrap samples.

We have already used this same bootstrap procedure in

our TSPA- and CPS-methods (Jetsu & Pelt 1999; Lehti-

nen et al. 2011). Finally, we note that our bootstrap

procedure can not assess the bias in the yi input data,

which first contaminates the εi values, and then also the

ε?i and y?i values.

We use the Fisher-test to compare any pair g1(t) and

g2(t) of simple and complex models. Their number of

free parameters (η1 < η2), and their sums of squared

residuals (R1, R2) give the test statistic

FR =

(
R1

R2
− 1

)(
n− η2 − 1

η2 − η1

)
. (11)

Our null hypothesis is

H0: “The complex model g2(t) does not provide a

significantly better fit to the data than the simple

model g1(t).”

Under H0, the test statistic FR has an F distribution

with (ν1, ν2) degrees of freedom, where ν1 = η2−η1 and

ν2 = n−η2 (Draper & Smith 1998). The probability for

FR reaching values higher than F is called the critical

level QF = P (FR ≥ F ). We reject the H0 hypothesis,

if

QF < γF = 0.001, (12)

where γF is the pre-assigned significance level. It rep-

resents the probability of falsely rejecting H0 when it is

in fact true. The H0 rejection means that we rate the

complex g2(t) model better than the simple g1(t) model.

The QF critical level becomes smaller when FR in-

creases. In other words, the H0 hypothesis rejection

probability increases for larger FR values. The basic

idea of the Fisher-test is simple. The sum of complex

model residuals R2 decreases when the η2 number of

free parameters increases. When the complex model has

more η2 free parameters, the first (R1/R2 − 1) term in-

creases FR (Eq. 11), but at the same time the second

(n−η2−1)/(η2−η1) penalty term decreases FR. In con-

clusion, this second penalty term prevents overfitting.

The key ideas of DCM are

1. The non-linear DCM model g(t) of Eq. 2 becomes

linear when the frequencies f1, ..., fK1 are fixed to

their tested numerical values. These linear models

give unambiguous results.

2. DCM tests a dense grid of all possible frequency

combinations f1 > f2 > ... > fK1
. For ev-

ery frequency combination, the linear model least

squares fit gives the test statistic

z =
√
χ2/n if errors σi are known

z =
√
R/n if errors σi are unknown,

where χ2 =
∑n
i ε

2
i /σ

2
i , R =

∑n
i ε

2
i and εi = yi− gi

are the model residuals.

3. The f1 > f2 > ... > fK1
grid combination of the

best DCM model minimizes the z test statistic.

4. The bootstrap method gives the error estimates

for all model parameters.

5. All different K1, K2 and K3 order nested models

are compared using the Fisher-test, which reveals

the best one of all models (Draper & Smith 1998;

Allen 2004).

In short, DCM applies the following robust and well

tested statistical approaches: Linear least squares fits

(Idea 1), χ2 and R test statistic (Idea 2), Dense tested

frequency grids (Idea 3), Bootstrap utilizing residuals

(Idea 4) and Fisher-test comparison of nested models

(Idea 5).

The caveats of DCM are

1. DCM is designed for periodicity detection, but it

gives no direct significance estimates for these de-

tected periodicities. In this sense, DCM resem-

bles our former TSPA- and CPS-methods (Jetsu
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& Pelt 1999; Lehtinen et al. 2011). DCM utilizes

indirect Fisher-test significance estimates to iden-

tify the best model among all tested models, but

it gives no significance estimates for the detected

periodicities of this best model. We will later dis-

cuss our indirect significance estimates, especially

in connection with the look-elsewhere effect (Sect.

6.6).

2. The best frequency combination can be missed if

the tested grid is too sparse (Idea 3). However,

an adequately dense tested frequency grid elimi-

nates the possibility for this kind of an error. The

caveat is that denser grids require more computa-

tion time.

For example, all three signal z1, z2 and z3 peri-

odograms for the original data are continuous and

display no abrupt jumps, because the periodogram

values for all close tested frequencies correlate (see

Fig. A6). Since the frequencies of the minima of

all these periodograms are accurately determined,

there is no need to test an even denser grid (i.e.

more trials), because this would not alter the final

result of the non-linear iteration (Paper I: Eq. 18).

In other words, the detected period values would

no longer change, if we increased the number of

of tested frequencies (Paper I: nL and nS trials).

Since DCM gives no direct significance estimates

for the detected periods (Caveat 1), there is no

need to determine the number of independent tri-

als, like for example the number of independent

tested frequencies (e.g. Jetsu & Pelt 2000, their

Eq. A.1).

3. If the grid of each tested f1 > f2 > ... > fK1

frequency contains nf values, the total number of

tested frequency combinations is proportional to

∝ nK1

f . For example, it took about one month for

an ordinary PC to compute the four signal DCM

model4,2,1 search, and to analyse its twenty boot-

strap samples (Table A8, model M=4).

4. Some DCM models are unstable because they are

simply wrong models for the data. For example,

a wrong p(t) trend order K3, or a search for too

many K1 signals, can cause such instability. In

this paper, we denote such unstable models with

“Um”. We denote the two signatures of such un-

stable models with

“Ad” = Dispersing amplitudes = Amplitudes

and/or amplitude errors disperse.

“If” = Intersecting frequencies = At least two

model frequencies are too close to each other.

We give list all our symbols in Table A6. Both

of the above instabilities were defined in Pa-

per I (Sect. 4.3), where a typical example of the

wildly oscillating signals was also shown in Fig. 6

of Paper I.

DCM tests all reasonable alternative linear models for

the data, and determines the unambiguous results for the

best values of their free parameters. This brute numeri-

cal approach finds the best model among all alternative

models. DCM “works like winning a lottery by buying

all lottery tickets” (Paper I).

4. THIRD BODY O-C CHANGES

The light-time travel effect (LTTE) caused by a third

body is

(O− C) =
K√

(1−e2 cos2 ω)
× (13)[

1−e2

1+e cos ν(t)
sin (ν(t)+ω)+e sinω

]
=
a sin i

173.15
×[

1−e2

1+e cos ν(t)
sin (ν(t)+ω)+e sinω

]
where

K =
a sin i

√
1− e2 cos2 ω

173.15
(14)

(Irwin 1952). This relation gives EB orbit around the

common centre of mass of all three stars. The orbit pa-

rameters are the semimajor axis ([a] = AU), the orbital

plane inclination ([i] = rad), the eccentricity of orbit (e),

the longitude of periastron ([ω] = rad), the true anomaly

([ν] = rad) and the amplitude of light-time travel effect

K = A/2, (15)

which is half of the peak to peak amplitude A of the

observed O-C changes ([A] = d).

We compute the true anomaly from the Fourier ex-

pansion

ν(t) =M(t)+(2e− 1

4
e3) sin [M(t)] (16)

+
5

4
e2 sin [2M(t)]+

13

12
e3 sin [3M(t)]+O(e4),

where

M(t) =
2π(t− tp)

p
, (17)

is the mean anomaly (Mueller 1995; Roy 2005). The

other parameters are the EB orbit pericentre epoch
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([tp] = HJD), the third body orbital period ([p] = d)

and the omitted fourth order terms ([O(e4)] = rad).

If the orbit is circular (e = 0), the third body mass

m3 can be solved from the mass function

f(m3) =
m3 sin i3

(m1 +m2 +m3)2
=

[173.15(A/2)]3

p2
, (18)

where m1 and m2 are the masses of EB (Wolf et al. 1999;

Zasche & Wolf 2007; Manzoori 2016; Esmer et al. 2021).

The semi-major axis of the third body orbit is

a3 = a
(m1 +m2)

m3
, (19)

where a = 173.15(A/2)/ sin i.

For circular third body orbit, the suitable O-C curve

DCM model order is K2 = 1, the pure sinusoid (Eq. 13:

e = 0). For an eccentric e > 0 third body orbit, the

O-C curve is not a pure sinusoid, and the suitable DCM

model order is K2 = 2 (Hoffman et al. 2006).

5. RESULTS

Here, we present separately the DCM period search

results for all data (Sect. 5.1), First226y-data (Sect.

5.2) and First185y-data (Sect. 5.3). We also make some

additional experiments (Sect. 5.4).

5.1. All data

5.1.1. All data: Trend

In Table A7, the Fisher-test is used to compare the re-

sults for all data in twelve separate DCM period searches

between Pmin = 6000d and Pmax = 80000d. These mod-

els have one, two or three signals (K1 = 1, 2 or 3). The

third body orbits can be eccentric (K2 = 2 ≡ e > 0).

The alternative tested p(t) trends are K3 = 0, 1, 2 or

3. Table A7 contains many notations “–”, because it

makes no sense to compare the same pair of models

twice, nor to compare the model to itself. The total

number of compared pairs is (12× 11)/2. For example,

the Fisher-test comparison of the one signal M=1 and

M=2 models gives a large test statistic value F = 2821.

The critical level QF of this F value falls below the com-

putational2 accuracy of 10−16 (Table A7: QF<10−16).

This means that the linear K3 = 1 trend model1,2,1 is

absolutely certainly a better model than the constant

K3 = 0 trend model1,2,0. The upward arrow “↑” indi-

cates this result. Note that Table A7 contains numerous

“QF<10−16” cases, where the identification of the better

model is absolutely certain.

2 This is the computational QF estimate accuracy for f.cdf subrou-
tine in scipy.optimize python library,

All column M=10 arrows point upwards (↑), and all

line M=10 arrows point leftwards (←) in Table A7.

Hence, this stableM=10 model is better than all other

eleven alternative models. This best DCM model3,2,1
for all data is a sum of K1 = 3 signals having an or-

der K2 = 2, and a linear K3 = 1 trend. We use this

K3 = 1 linear trend in all analysis of original data. The

meaning of this linear trend is discussed later (Sect. 6.4,

Eq. 27). We will also show that all data contains only

three K2 = 2 order signals between 8000 and 80000 days

(Sect. 5.1.2).

Four of the twelve models are unstable “Um” (Table

A7: M= 3, 5, 8 and 9). There are three models, where

the detected period exceeds ∆T time span of data (Table

A7: M= 2, 3 and 7). They are denoted with the symbol

“Lp” = Leaking period = At least one detected

period exceeds ∆T time span of data.

5.1.2. All data: Eccentric orbits

In Table A7, we compared (12×11)/2 pairs of models

against each other. The better model in each pair was

identified with the Fisher test: the complex model above

“↑”, or the simple model on the left “←”.

The structure of our next Table A8 is more com-

plicated, because we squeeze all DCM eccentric orbit

search results for all data into this single table. We

search for periods between 8000 and 80000 days. The

left side of this table gives the detected periods and am-

plitudes. The right side gives the Fisher-test compari-

son results. For example, the one signal M=1 model

period and amplitude are P1 = 88183d ± 816d and

A1 = 0.d313 ± 0.d004. The next six “–” notations for

this M=1 model mean that it has no other periods P2,

P3 or P4, nor amplitudes A2, A3 or A4. Fisher-test

comparison between this one signal model1,2,1 (M=1)

and the two signal model2,2,1 (M=2) gives an ex-

treme test statistic value F = 183. The critical level

QF<10−16 confirms that M=2 model is certainly the

better one in this pair of models. Comparison of M=1

model toM=3 andM=4 models gives the same result.

For the next M=2, 3 and 4 models, the number of

detected periods and amplitudes increases one by one.

The number of Fisher-tests decreases one by one, be-

cause it is unnecessary to test the same pair of models

twice “–”, nor to compare any model to itself “–”.

The periods and amplitudes for one, two and three sig-

nal models are consistent (Table A8: M=1-3). When

we detect a new signal, we re-detect the same old ear-

lier signal periods and amplitudes for models having less

signals. The one signalM=1 model shows a leaking pe-

riod “Lp”, because the P1 = 88183d period exceeds the

∆T = 86171d time span of data. The two and the three
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signalM=2 andM=3 models are stable, but theM=4

model is not “Um”.

The one-dimensional z1(f1), z2(f2), z3(f3) and z4(f4)

periodogram slices (Eq. 10) of M=4 model are shown

in Fig. A4. The transparent diamonds denote locations

of the red z1(f1), the blue z2(f2) the green z3(f3) and

the yellow z4(f4) periodogram minima. These minima

are clearly separated.

The four signal M=4 model is unstable, because it

suffers from the amplitude dispersion “Ad” effect. The

periodograms of this model do not betray this effect

(Fig. A4), but the exceedingly high amplitude green

h3(t) and yellow h4(t) signals do (Fig. A5). The er-

rors of both A3 and A4 amplitudes are large. The

P4 = 55172d period is about two times longer than the

P3 = 26846d period. DCM exploits the anti-phase sum

of these two dispersing high amplitude signals for mod-

elling all data.

The stable three signalM=3 model is a better model

for all data than the failing unstable “Um” four signal

M=4 model. Fisher-test reveals with an absolute cer-

tainty of QF<10−16 that this three signal M=3 model

is also better than the M=1 model or the M=2 model

(Table A8: two times “↑” in Col 8).

ModelM=3 periodogram minima are also clearly sep-

arated (Fig. A6, lower panel). When all three peri-

odograms are plotted in the same scale, the two z1(f1)

and z2(f2) periodogram minima appear to be shallower

than the z3(f3) periodogram minimum, because the high

amplitude h3(t) signal dominates in this three signal

M=3 model (Fig. A6, upper panel). This 79999d pe-

riod h3(t) signal has a much bigger impact on the sum

of squared residuals R than the two lower amplitude

20358d period h1(t), and 24742d period h2(t) signals.

This three signalM=3 model is shown in Fig. A7. The

level of residuals, denoted by blue dots, is stable and

there are no trends. Each hj(ti) signal

yi,j = yi − [g(ti)− hj(ti)] (20)

is also shown separately (Fig. A8). The red h1(t) and

the blue h2(t) curves show two minima and two maxima,

but the green large amplitude h3(t) curve shows only one

minimum and one maximum.

It takes about one month for an ordinary PC to com-

pute the results for the four signal M=4 model, as well

as to analyse at least twenty bootstrap samples (Table

A8: model4,2,1). The computation of five signal model

would take several months. “Fortunately”, there is no

fourth or fifth signal between 8000 and 80000 days in all

data, because the M=4 model is unstable “Um”. The

three signal M=3 model is the best model for all data.

Therefore, we can search for additional periods shorter

than 8000 days from the M=3 model residuals.

Since the M=3 model residuals contain no trends,

we analyse them by using K3 = 0 models having a

constant p(t) level. The period search between 500d

and 8000d gives two new periods 680.d4 and 7290d

(Table A8, model M=6). In the three signal M=7

model, the periods P2 = 7124d and P3 = 7698d give

[P−1
2 − P−1

3 ]−1 = 95541d ± 13902d, which is equal to

the time span ∆T = 86171d of all data (Table A8:

M=7). In other words, the difference between the real

P2 = 7124d and the spurious P3 = 7698d period is one

round during ∆T . Our symbol for this type of spurious

periods is

“Sp” = Spurious period = Unreal periods caused

by data time span and real periodicity.

Therefore, we reject the M=7 model, and the best

model for residuals is the M=6 model. In this anal-

ysis of residuals, DCM again consistently re-detects the

same periods and amplitudes of earlier models having

less signals. Model M=6 periodograms, and the model

itself, are shown in Figs. A9 and A10. The two last

680.d4 and 7290d signals detected from the residuals are

shown in Fig. A11. As expected of a real O-C signal,

both curves have only one minimum and one maximum.

These two signals are 44.8 and 41.0 times weaker than

the strongest first detected 79999d signal.

For the original data, DCM detects simultaneously the

three signals signals and the trend of M=3 model. For

the residuals, the same applies to the two signals and the

trend of M=6 model. In this sense, DCM differs from

the “pre-whitening” technique, which requires that the

trend must be determined and removed before even one

signal at the time can be detected (e.g. Reinhold et al.
2013). This “pre-whitening’ technique, which applies

the Discrete Fourier Transform (DFT), was compared

to DCM in Paper I (Sect. 6).

We conclude that DCM detects five signals from all

data (n = 2224). The full model for all Algol’s O-C

data is the sum of theM=3 model for the original data,

and the M=6 model for the residuals (Table A8). Our

notation for this sum

model3,2,1 + model2,2,0

of two models in Table A8 is simply the “M=3+6

model”. This model is denoted with the green continu-

ous line in Figs. 1ab. Its standard deviation of residuals

is 0.d011. We also give a ten year prediction for Algol’s

O-C changes after our last observation on Oct 18th, 2018

(Fig. 1b).
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Figure 1. All data eccentric orbit analysis (Sect. 5.1.2). (a) Best five signal M=3+6 model, sum of three signal model M=3
for original data and two signal M=6 model for residuals (green continuous curve), is overplotted on all O-C data (red dots).
Residuals (blue dots) are offset to level -0.3 (horizontal line). Notice the tiny flickering caused by 127 rotations of Algol C
around Algol AB. Vertical dotted line marks last observation (Oct 18th, 2018), where prediction for next ten years begins. (b)
Past five years of data and residuals (red and blue circles). Residuals are offset to level +0.10 (horizontal line). Continuous and
dotted green lines denote M=3+6 model and its ±3σ error limits. Units are [t] = HJD and [O−C] = d.

5.1.3. All data: Circular orbits

In our appendix, we show that if an eccentric orbit O-

C curve has a period p, then this curve is a sum of two

circular orbit O-C curves having periods p and p/2. For

this reason, the DCM period search results obtained for

circular orbits in this section can be used to check the

eccentric orbit results presented earlier in Sect. 5.1.2,

and vice versa (Table A14).

For third body circular orbit, the correct DCM model

hi(t) signal order is K2 = 1 (Eq. 13: e = 0). We fix
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the p(t) trend to K3 = 1, and search for the correct K1

number of circular orbit sinusoidal signals in all data.

Two alternative approaches are tested. We will show

that both approaches give the same results.

In the first alternative approach, we search for one,

two, three and four sinusoidal circular orbit signals hav-

ing periods between 8000 and 80000 days in all data

(Table A9). The one signal M=1 model is stable. The

two, three and four signalM=2,M=3 andM=4 mod-

els are unstable “Um”, because they all suffer from dis-

persing amplitudes “Ad”. The largest periods (“Lp”)

in these three models exceed the all data time span

∆T = 86171d.

From the M=4 model residuals, we detect the fifth

sinusoidal signal period 10175d (Table A9: M=5). The

next M=6 model is unstable “Um”, and it is also re-

jected with the Fisher-test criterion (Eq. 12).

DCM detects signatures of five sinusoidal signals hav-

ing periods longer than 8000 days. Therefore, we search

for shorter periods from theM=5 model residuals. This

reveals three additional sinusoidal M=9 model signals

(Table A9). The next four signal model M=10 is re-

jected with the Fisher-test criterion (Eq. 12).

In our first alternative approach, the best circular or-

bit model is the M=4+5+9 model (Table A9).

Our typical number of tested periods is nL = 80 in

the long search, and nS = 40 in the short search. We

use these dense grids to eliminate the “trial factor” error

(Sect. 3: Caveat 2). Computation time is proportional

to ∝ nK1

L and ∝ nK1

S . For larger number of signals, these

dense tested grids of ours take a long time to compute.

For example, the computation of four signal model for

all data, and its twenty bootstrap samples, takes about

one month for an ordinary PC.

In the second alternative approach we also search for

circular orbit periods between 8000 and 80000 days.

However, we reduce the computation time dramatically

by testing only nL = 30 and nS = 8 frequencies. In this

case, an ordinary PC can perform the six signal DCM

search in about one week. Unlike in the first alterna-

tive approach, we do not need to search for the fifth

and sixth signal from the four signal model residuals.

We can perform the five and the six signal DCM search

directly to all original data. The four, five and six sig-

nal circular orbit model results for all original data are

given in Table A10. All M=1, 2 and 3 models suffer

from amplitude dispersion “Ad”, as well as from leak-

ing periods “Lp”, because their largest detected periods

exceed ∆T . Model M=3 also suffers from intersecting

frequencies “If”. We reject it with the Fisher-test cri-

terion (Eq. 12). The best circular orbit model for all

original data is the five sinusoidal signal M=2 model.

The M=2 model periodogram is shown in Fig. A12.

The periodogram minimum of the largest P5 = 120740d

period is real, because the violet z5(f5) curve in the

lower panel turns upwards at smaller tested frequencies

(i.e. periods larger than ∆T ). TheM=2 model itself is

shown in Fig. A13.

From model M=2 residuals, we find two periods

shorter than 8000 days (Table A10: M=5). We reject

model M=6, because the periods P1 = 7034d ± 148d

and P2 = 7478d± 82d give (P−1
1 −P−1

2 )−1 = 118469d±
46755d. Hence, the spurious “Sp” period P1 is connected

to the real period P2 and the time span ∆T = 86171d

of all data.

The second alternative approach best circular orbit

model is the M=2+5 model (Table A10).

We compare the results of our two alternative ap-

proach circular orbit DCM analyses in Table A13. All

results are consistent. The periods and amplitudes agree

within their error limits. We detect the same five longer

sinusoidal signal periods from the original data, and the

same two shorter period sinusoids from the residuals.

We get these consistent results even after dramatically

reducing the number of tested frequencies. Hence, these

two analyses not suffer from the “trial factor” effect

(Sect. 3: Caveat 2). The dispersing amplitudes “Ad”

or the leaking periods “Lp” do not either mislead this

analysis.

5.2. First226y-data

The eccentric orbit DCM search results for subsample

First226y-data are given in Table A11. The one signal

M=1 model and two signal M=2 model suffer from

leaking periods “Lp”. The stable three signal M=3

model is the best one for the original data, because the

four signal M=4 model is unstable “Um”.

For theM=3 model residuals, the best model isM=6

model. We reject model M=7, because the relation

[P−1
2 − P−1

3 ]−1 = 81963d ± 13594d reveals that the

third P3 = 7757d period is a spurious “Sp” period con-

nected to the real period P2 = 7078d and the time span

∆T = 82602d of data.

The best model for First226y-data is the M=3+6

model (Table A11). This model is shown in Fig. 2.

It gives an excellent prediction for the next nine years

of Last9y-data (Fig. 2b). The standard deviation of

prediction residuals is only 0.d0078 (n = 50). It is

smaller than the standard deviation 0.d011 of the pre-

dictive M=3+6 model residuals (n = 2174). However,

the larger errors of the older observations can explain

this contradiction. The main conclusion is that our nine

years prediction succeeds.

5.3. First185y-data
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Figure 2. First226y-data eccentric orbit analysis (Sect. 5.2). (a) Model M=3+6 (Table A11). Otherwise as in Fig. 1a. (b)
Prediction for Last9y-data. Otherwise as in Fig. 1b.

The eccentric orbit DCM search results for the short-

est subsample First185y-data are given in Table A12.

The one signalM=1 model is stable. The two and three

signalM=2 andM=3 models are unstable (Table A12:

“Um”). The best model for First185y-data is the stable

four signal M=4 model.

For theM=4 model residuals, the stableM=6 model

is the best one, because the M=7 model is unstable

“Um”.

The best M=4+6 model for First185y-data is shown

in Fig. 3. Our fifty years prediction succeeds only for

the first few years (Fig. 3b). However, this is no sur-

prise, because the time span of predictive data is only

∆T = 67680d = 185y. For this reason, the longest

and the strongest detected predictive signal period is

P4 = 62992d = 172y (Table A12: M=4). This high am-

plitude signal determines the long-term prediction trend

for Last50y-data. We have already shown that the cor-

rect period for this long-term trend would be 219y (Ta-



New companion candidates of Algol 11

ble A8: M=3, Table A11: M=3). The short 185y time

span of First185y-data prevents the detection this cor-

rect 219y period. The correct 219y signal trend turns

upwards slower than the wrong 172y signal trend. This

is the simple reason for the failure of our fifty years pre-

diction for First185y-data.

The Last50y-data prediction error for shows a pecu-

liarity that seems to defy the laws of statistics. First,

the ±3σ prediction error increases, as one would ex-

pect (Fig. 3b: green dotted lines). Surprisingly, this

prediction error then begins to decrease, and the pre-

diction becomes very accurate close to HJD 2450000.

After this, the prediction error begins to increase again.

This peculiarity certainly requires an explanation.

The reason of this peculiarity could already be inferred

from the black interference curve in Fig. A3 (lowest

right panel: P1 = 24771). The scatter of g(t) interfer-

ence curve is not the same at all phases. In this par-

ticular case, this scatter increases close to the maxima,

but it decreases close to the minima. The largest and

the smallest scatter coincides with the phases when the

first time derivative fulfills ġ(t) = 0.

However, the above mentioned effects in Fig. A3 are

caused by interference of only two signals, while the pe-

culiar error limit effect in Fig. 3 occurs in the M=4+6

model sum of six signals. We show this model for twenty

bootstrap samples in Fig. A14 (red dotted curves). The

scatter of these curves increases when the predictive

data ends at the dotted black vertical line. However,

all dotted red curves converge close to the vertical con-

tinuous black line at HJD 2450000. After this line, they

diverge again. Before this line, the data shows an in-

creasing trend, but the positive slope is decreasing (Fig.

3a: red circles). A suitable model would be ġ(t) > 0

and g̈(t) < 0. After this line, this slope is still positive,

but it is increasing. Now the suitable model would be

ġ(t) > 0 and g̈(t) > 0. This means that there is a turning

point ġ(t) = 0 close this HJD 2450000 epoch, where the

g̈(t) sign changes from negative to positive. The second

derivative sign change of any function forces this func-

tion to change its direction twice. This M=4+6 model

turning point forces the bootstrap model solutions to

converge. This simple effect explains why the predic-

tion error increases, decreases, and again increases (Fig.

3: green dotted lines).

Our turning point hypothesis would explain the gap

in O-C data close to HJD 2450000 (Fig. A14: verti-

cal continuous line). There are no such gaps in Algol’s

modern O-C data, not even during the two World Wars.

TIDAK database contains only four O-C values between

HJD 2448288 and HJD 2449988 (≡ 4.6 years). Even

today, one of these four is still marked “unpublished”

(1997, Drozdz: HJD 2449317.4171). Close to the above

mentioned turning point, the O-C data did no longer

support the well established expected long-term ġ(t) > 0

and g̈(t) < 0 trend. Perhaps for this reason, the contra-

dictory new data was not published at that time. Only

when the new ġ(t) > 0 and g̈(t) > 0 trend was securely

established, the continuous flow of supporting O-C ob-

servations began again.

We conclude that, except for the first few years, our

Last50y-data prediction fails. However, our turning

point epoch prediction HJD 2450000 is excellent.

5.4. Additional experiments

We divide all original data into two parts. Both halves

are too short for the detection of the long 219 years pe-

riod. This hampers their period analysis. In the first

low accuracy half, we detect only one signal of about

137 years. From the more accurate second half, we de-

tect four signals of 1.86 30.9, 39.7 and 103.3 years. The

shortest one is equal to the orbital period of Algol C.

We also test two alternatives, where the weights of

observations increase linearly. In two alternative experi-

ments, the weights are doubled or quadrupled during the

time span of all data. In both cases, the five strongest

signals detected from the weighted data are identical

to those detected from non-weighted data (Table A8,

M=3+6 model).

5.5. Signals identified in all data

The eccentric orbit analysis indicates that all data

contains five signals (Table A8, M=3+6). Here, we

argue that the correct number of signals may also be

six. We use bold letters p1, p2, p3, p4, p5 and p6 for

the periods of these signals (Table 1). This notation

helps the readers to separate these six periods from the

numerous other P1, P2, ..., P6, p, p1, p2, p3 and p′ periods.

We use the tentative names Algol C, Algol D, Algol E,

Algol F, Algol G and Algol H for the objects possibly

connected to these periods. The corresponding peak to

peak amplitudes are A1, A2, A3, A4, A5 and A6.

Our six signal argument relies on two tables. The first

table compares the eccentric and circular orbit analysis

periods for all data (Table A14). The second table com-

pares the periods detected in three different samples: All

data, First226y-data and First185y-data (Table A15).

In our Appendix, we apply DCM to simulated O-C

data (Eq. 13). We show that the following four different

effects are encountered when the O-C data contains one

period p, or two periods p1 and p2.

“Correct-p”: DCM detects the correct period p.

“Half-p”: DCM detects the spurious period p/2.
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Figure 3. First185y-data eccentric orbit analysis (Sect. 5.3). (a) Model M=4+6 (Table A12). Otherwise as in Fig. 1a. (b)
Prediction for Last50y-data. Otherwise as in Fig. 1b.

“Double-p”: DCM detects the spurious period 2p.

“Interference-p′”: DCM detects the spurious pe-

riod p′ caused by p1 and p2 interference (Eq. A7).

The “Half-p” and “Double-p” effects can mislead DCM

analysis of low eccentricity O-C curves, which resemble

pure sinusoids.

There is only one minimum and one maximum in the

real O-C curve caused by the LTTE of a single third

body. This third body can approach and recede only

once during one orbital period p. Hence, the O-C “p′

interference” curves having two minima and two maxima

can not be caused by one body alone, but they may

indicate the presence of more than one body.

In the next Sects. 5.5.1-5.5.5, we illustrate one p1,

p2, p3, p4, p5 and p6 signal at the time, how the above

mentioned four effects can explain all eccentric and all

circular orbit DCM period search results.

5.5.1. Signal p6 = 79999d = 219y.0
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The circular orbit signal period Pc,7 = 120740d ±
41002d differs about ±1σ from the eccentric orbit pe-

riod p6 = Pe,5 = 79999d ± 1216d (Table A14). Hence,

the circular and eccentric orbit analyses give the same

correct p6 period (“Correct-p” effect).

This p6 period is two times longer than the next cir-

cular orbit period Pc,6 = 42422d ± 640d (“Half-p” ef-

fect). The p6 = 219y signal curve shows only one min-

imum and one maximum (Fig. A8: lowest panel green

curves), because the two strongest circular orbit Pc,7 and

Pc,6 signals are “in phase”. These results confirm that

DCM succeeds in detecting the p and p/2 regularities

illustrated in Fig. A1 and Table A3.

DCM detects the p6 = 219y signal in all data and

First226y-data (Table A15). The too short First185y-

data time span prevents the detection of the p6 period.

Therefore, the largest detected P4 = 62992d ±2499d pe-

riod differs more than ±3σ from p6.

We use an amplitude estimate A6 = Ae,5 = 0.d287±
0.d005 for this p6 = 219y signal (Table A14).

5.5.2. Signals p5 = 24247d = 66.y4 and
p4 = 12294d = 33.y7

The connection between the eccentric orbit p5 =

Pe,4 = 24742d±141d signal and the circular orbit Pc,5 =

24747d±872d signal is definitely the “Correct-p” effect

(Table A14). The “Half-p” effect certainly connects this

p5 signal also to circular orbit Pc,4 = 12294d±109d sig-

nal.

However, two questions need to be answered. Why

does the p5 = 66y.4 signal show two minima and two

maxima (Fig. A8: mid-panel blue curves)? This is im-

possible for any single third body eccentric orbit. Why

are the Ac,5 and Ac,4 amplitudes of the two circular orbit

Pc,5 and Pc,4 signals practically equal (Table A14)?

The easiest answer to both questions would be that

the p5 = 66.y4 and p4 = 33.y7 signals represent two

separate independent signals, which are “off-phase”.

Their “Interference-p′” effect could induce the two un-

equal minima and two unequal maxima of the blue O-

C curve (Fig. A8), which resembles the black interfer-

ence curve in Fig. A3. In this case, the circular orbit

Pc,4 = 12294d±109d signal could represent a real fourth

independent p4 = 33.y7 signal.

The p5 = 66.y4 signal is detected in all data and

First226y-data (Table A15). This p5 signal is not de-

tected in the shortest First185y-data sample, but the

p4 = 33.y7 signal is. We conclude that the p5 = 66.y4

and p4 = 33.y7 signals are most probably two indepen-

dent real signals.

The amplitudes of the circular orbit Pc,5 and Pc,4

signals give our A5 = Ac,5 = 0.d018 ± 0.d002 and

A4 = Ac,4 = 0.d018 ± 0.d001 amplitude estimates for

the p5 and p4 signals (Table A14).

Here, we have shown that the eccentric orbit p5 =

66.y4 signal may arise from the “Interference-p′” effect of

two circular orbit p5 = 66.y4 and p4 = 33.y7 sinusoids.

Later, we will present an alternative explanation (Fig.

A15: Configurations 2 and 3).

5.5.3. Signal p3 = 10144d = 27.y8

None of the eccentric orbit periods is close to the cir-

cular orbit period Pc,3 = 10144d ± 30d = 27.y8 ± 0.y1

(Table A14). However, the “Double-p” effect certainly

connects this Pc,3 period to the eccentric orbit period

Pe,3 = 20358d ± 128d. This Pe,3 signal shows two max-

ima and two minima (Fig. A8: lower panel red curves).

These two equal maxima and two equal minima are sym-

metric. This kind of symmetry is detected in our simu-

lations of low eccentricity spurious double sinusoids (Ta-

ble A2: “Dp”≡”Double-p” effect). Therefore, the Pc,3
period probably represents a real signal p3 = 27.y8.

The eccentric orbit Pe,3 = 20358d signal is detected

in all data, First226y-data and First185y-data (Table

A15). This means that DCM detects the p3 ≈ Pe,3/2

signal in all these three different samples.

Our amplitude estimate for this p3 = 27.y8 signal is

A3 = Ac,3 = 0.d0097± 0.d0004 (Table A14).

In this section, we have shown that the eccentric or-

bit Pe,3 = 56.y0 signal probably represents the “double

wave” of the p3 = 27.y8 signal. We will later present an

alternative explanation (Fig. A15: Configuration 3).

5.5.4. Signal p2 = 7269d = 20.y0

The eccentric orbit p2 = Pe,2 = 7269d±29d signal and

the circular orbit Pc,2 = 7395d±37d signal are certainly

connected (Table A14: “Correct-p” effect).

Like any real third body O-C curve, this p2 = 20.y0
signal shows only one minimum and one maximum (Fig.

A11: lower panel blue curves). DCM detects this p2 =

20.y0 signal in all data and First226y-data (Table A15).

In shortest First185y-data sample, this p2 period may

be connected to its double period P3 = 15429d ± 222d

(Table A15: “Double-p” effect).

Our amplitude estimate for this p2 = 20.y0 signal is

A2 = Ae,2 = 0.d007± 0.d001 (Table A14).

5.5.5. Signal p1 = 680.4d = 1.y86

The eccentric orbit and circular orbit DCM searches

give the same p1 = 680.d4 ± 0.d4 = 1.y863 ± 0.y001

signal (Table A14: “Correct-p” effect).

DCM detects this p1 = 1.y863 signal from all three

samples (Table A15). Like any real O-C curve, this sig-

nal shows only one minimum and one maximum (Fig.

A11: higher panel red curves).
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We use A1 = Ae,1 = 0.d0064±0.d0007 (Table A14).

This signal is discussed later in greater detail (Sect. 6.3).

5.5.6. Two weakest signals

DCM detects indications of two additional weaker

signals Pc,2 = 2986d ± 39d (Table A13) and P2 =

3387d ± 17d (Table A15). They could be separate sig-

nals, because their ±3σ error limits do not overlap.

They are 0.80 and 0.45 weaker than the weakest de-

tected p1 = 1.y863 signal. We can not confirm whether

these two weakest signals are real or spurious.

6. DISCUSSION

Applegate (1992) mechanism can not explain the nu-

merous strictly periodic O-C signals of Algol, because

quasi-periodic activity cycles are never regular. Ap-

sidal motion follows only one period. LTTE of Al-

gol’s companion candidates could cause these numerous

strictly periodic cycles. Assuming circular orbits, we use

m1 = 3.7m� and m2 = 0.8m� (Zavala et al. 2010) to

compute the m3 mass and the a3 semi-major axis esti-

mates for these tentative companion candidates (Table

1). These approximate mass and semi-major axis esti-

mates are obtained by assuming that each candidate is

a ”third” component. The effects of other candidates

inside the orbit of the “third” component are ignored in

Eqs. 18 and 19.

6.1. Hierarchial structure

We call the eclipsing Algol A and Algol B pair the

central eclipsing binary (cEB). Algol C is called a wide

orbit star (WOS), as well as all other new tentative com-

panion candidates. We use the same hierarchial system

diagrams as Tokovinin (2021).

Our first hierarchial system diagram shows the circu-
lar orbit i = 90o inclination case of Table 1 (Fig. A15:

Configuration 1). The eight members in this configura-

tion are cEB and six WOSs. The orbital periods WOS

candidates are between 1.863 and 219.0 years. The most

massive (m3 = 2.50m�) companion candidate Algol H is

also the most distant one (a3 = 44.7AU). The four other

WOS candidates are low mass stars (0.23m� ≤ m3 ≤
0.43m�). The closest mi=90

3 = 1.16m� companion can-

didate has an orbital period p1 = 680.d4±0.d4, which is

close to the known orbital period Porb = 679.d85±0.d04

of Algol C (Zavala et al. 2010). We will discuss this

probable detection of Algol C later in Sect. 6.3.

Our second hierarchial system diagram shows one al-

ternative for Configuration 1 (Fig. A15: Configuration

2). The seven members are cEB and five WOSs. We

have already shown that the sum of “off-phase” sinu-

soidal p5 = 66.y4 and p4 ≈ p5/2 = 33.y7 signals can

cause the p5 = 66.y4 period double wave (Sect. 5.5.2).

However, a single p5 = 66.y4 long-period binary can

cause a similar effect, if the masses of its members are

unequal. These unequal masses could also explain the

two unequal maxima and minima of the blue O-C curve

in Fig. A8. The red lines in our Configuration 2 di-

agram show this hypothetical long-period p5 = 66.y4

binary having an orbital period p6 = 219.y0 around the

barycentre of the whole system (Fig. A15).

Our third hierarchial system diagram is a minor mod-

ification of Configuration 2 (Fig. A15: Configuration

3). The seven members are, again, cEB and five WOSs.

Now we take the five periods of M=3+6 model as

such. Signal 66.y4 is not separated into two signals

(Sect. 5.5.2). We use the full Pe,3 = 55.y8 signal pe-

riod, not the half of this period (Sect. 5.5.3). This

Pe,3 = 55.y8 signal could also represent a long-period

binary, where the masses of both components are ap-

proximately equal. In Configuration 3, the two long-

period p5 = 66.y4 and Pe,3 = 55.y8 binaries orbit each

other during p6 = 219.y0. This may be the most stable

one of our three configuration alternatives, because the

cEB and the remaining two inner orbit WOSs would

only weakly perturb the two hypothetical long-period

binaries, and vice versa. This type of quintuple binary

systems have been discovered (e.g. Zasche & Uhlař 2013,

their Fig. 2 of V994 Her).

6.2. Detectability

In binaries, the radial velocity observations can reveal

the presence of a third body, like in the discovery of Al-

gol C (Curtiss 1908). For nearby hierarchial systems,

combined astrometric orbit and radial velocity observa-

tions can be used to solve their detailed structure (e.g.

Tokovinin 2021). When Hajdu et al. (2019) searched for

WOSs from the O-C data of 80 000 EBs, they detected

992 systems having one WOS, but only four systems

possibly had two WOSs. Our DCM analysis of Algol’s

O-C data suggests the presence of five or six WOSs.

These O-C data can not reveal a lot about the structure

this hierarchial system, not even the exact number of

stars (Fig. A15: Configurations 1, 2 or 3). However,

we can give some ideas that may help in the detection

of Algol’s WOS candidates. Here, we assume that the

candidate orbits are circular and their orbital plane in-

clinations are i3 = 90o (Table 1). In this Configuration

1, the observed maximum and minimum radial velocities

of WOSs candidates are

vmax = v0 +
2πa3

p3
(21)

vmin = v0 −
2πa3

p3
, (22)
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Table 1. Third body circular orbits (Sect. 5.5). Periods (p1, ...p6) and amplitudes (A1, ...,A6) used to compute third mass m3

and semi-major axis a3 estimates (Eqs. 18 and 19). Inclination alternatives are i = 90o, 60o and 30o. Last column gives our
tentative object names. We emphasize that our approximate m3 and a3 estimates are based on four assumptions. (1) All six
signals are caused by LTTE of wide orbit candidates. (2) Correct hierarchial system alternative is Configuration 1 (Fig. A15). (3)
All orbits are circular. (4) Every candidate can be treated as a ”third body”. In other words, effects of other candidates inside
“third body” orbit can be ignored in Eqs. 18 and 19.

Periods Amplitudes mi=90
3 ai=90

3 mi=60
3 ai=60

3 mi=30
3 ai=30

3

[d] [y] [d] [m�] [AU] [m�] [AU] [m�] [AU] Name

p6 79999± 1216 219.0± 3.3 A6 0.287± 0.005 2.50± 0.02 44.7± 0.4 3.03± 0.03 42.6± 0.3 6.94± 0.08 32.2± 0.2 Algol H

p5 24246± 872 66.4± 2.4 A5 0.018± 0.002 0.27± 0.02 26.1± 0.5 0.31± 0.02 25.9± 0.5 0.56± 0.04 25.0± 0.5 Algol G

p4 12294± 109 33.7± 0.3 A4 0.018± 0.001 0.43± 0.03 16.19± 0.04 0.50± 0.04 16.06± 0.01 0.91± 0.07 15.2± 0.05 Algol F

p3 10145± 30 27.78± 0.08 A3 0.0097± 0.0004 0.26± 0.01 14.596± 0.002 0.30± 0.01 14.50± 0.01 0.54± 0.02 14.053± 0.005 Algol E

p2 7290± 29 19.96± 0.08 A2 0.007± 0.001 0.24± 0.03 11.72± 0.07 0.28± 0.04 11.67± 0.08 0.49± 0.07 11.34± 0.12 Algol D

p1 680.4± 0.4 1.863± 0.001 A1 0.0064± 0.0007 1.2± 0.1 2.14± 0.04 1.4± 0.2 2.09± 0.04 2.8± 0.4 1.82± 0.07 Algol C

where v0 = 4.0 km/s is Algol’s radial velocity (Wilson

1953).

The angular distance between Algol and its WOSs

changes constantly. We compute these angular distance

changes in Algol’s cEB frame of rest. At the O-C curve

minima and maxima, the largest distance changes are

∆amax(∆t) = 2a3 sin (π∆t/p3) (23)

during a time interval ∆t ≤ p3/2. For longer time inter-

vals, we use ∆t = p3/2 which gives ∆amax = 2a3. The

smallest

∆amin(∆t) = a3[1− cos (π∆t/p3)] (24)

distance changes coincide with the O-C curve mean

level. This relation holds for t0 ≤ p3. For longer time

intervals, we use ∆t = p3 which gives ∆amin = 2a3.

The proper motion of Algol is µ0 = 2.49 mas/y (van

Leeuwen 2007). The minimum and maximum proper

motion of each candidate is

µmin =µ0 − µc (25)

µmax =µ0 + µc, (26)

where µc = ∆amax(∆t = 1y) is the maximum proper

motion during one year. Note that µmin = 0 for every

candidate, because their µc > µ0.

We emphasize that our ∆amin and ∆amax estimates

refer to the candidate distance changes with respect to

cEB, while our µmin and µmax estimates refer to the

proper motion of all members in the sky.

All parameters of Eqs. 21-26 are given in Table A16.

The two estimates for ∆amin and ∆amax are computed

for observations spanning 5 or 20 years. This informa-

tion is useful for future searches of our Algol’s member

candidates.

In December 2020, the latest third Gaia data release

(DR3) confirmed no certain detections ±4” around Al-

gol, and only one certain ±40” detection. In their anal-

ysis of Gaia DR3 data, Torra et al. (2020) note that

“most problems come from the bright sources and the

strange image profiles.” They rejected 8159.3 million

bright sources, 158.0 million very bright sources and

4066.7 million odd window profiles. Algol is definitely

“too bright”. Its brightness profile is constantly chang-

ing due to the movement of the known members Algol A,

Algol B and Algol C, let alone due to the primary and

secondary eclipses. Therefore, Gaia could not have mea-

sured the positions and movements of the objects in our

Table A16.

Algol H candidate would be easiest to detect, because

its distance from the cEB is the largest. This most mas-

sive candidate is very probably also the brightest can-

didate. At the moment, its O-C curve is close to the

mean level (Fig. A8: left hand lowest panel green h3(t)

curve). Hence, Algol H would be close to its projected

maximum a3 = 1569 mas distance from cEB. The cEB

is receding from us because its O-C values are increasing

for the next fifty years. Currently, Algol H would be ap-

proaching us at its minimum radial velocity vmin = −2

km/s (Table A16). The distance changes between cEB

and Algol H would be small, only ∆amin = 4 or 64 mas

during the next 5 or 20 years.

Direct interferometric images have been obtained of

Algol A, Algol B and Algol C (e.g. Zavala et al. 2010;

Baron et al. 2012). If Algol B and Algol C really are less

massive than our distant Algol H candidate, why did

the earlier interferometric imaging not reveal the pres-

ence of this massive candidate? Firstly, this Algol H

candidate is about 20 times further away from the cEB

than Algol C, which means that the area of interfero-

metric imaging should have been about 20 × 20 = 400
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larger. Secondly, this Algol H candidate could be a long-

period binary, where both members are much less mas-

sive and much dimmer than a single 2.50m� star (Fig.

A15: Configurations 2 and 3). One or two members

of this long-period binary could be an evolved object,

like a white dwarf. Thirdly, Zavala et al. (2010) and

Baron et al. (2012) applied a three star model. Al-

gol H contribution to their modelled total flux would

have remained constant, because its position did not

change during their observations (Table A16). We con-

clude that using an over 400 times larger imaging area,

and a model of at least four stars, may lead to the inter-

ferometric detection of this distant Algol H candidate.

The detection of the other four less massive candidates

with this technique is much more challenging (Table 1:

i = 90o, 0.23m� ≤ m3 ≤ 0.43m�). However, the ∆amin

and ∆amax values of these less massive candidates show

that their movements are easier to detect even during

shorter periods of observations (Table A16).

Powell et al. (2021) studied the sextuple-eclipsing bi-

nary system TIC 168789840 with the speckle interfer-

ometry technique. They could resolve this hierarchial

system of three eclipsing binaries. Their estimate for

the outer period in this hierarchial system was about

2000 years. Algol is about twenty times closer to us

than TIC 168789840 (d ≈ 570pc). The orbital period

of our Algol H candidate is about 200 years. Hence,

it might be possible to detect Algol H with the speckle

interferometry.

6.3. Algol C detection

DCM detects the weakest p1 = 680.d4 ± 0.d4 sig-

nal in all three samples: all data, First226y-data and

First185y-data. This p1 signal is 44.8 times weaker

than the strongest p6 signal (Table 1). DCM detects

this weakest p1 signal although it is buried under the

interference of five stronger p2, p3, p4 p5 and p6 sig-

nals, and a linear p(t) trend. The period of this p1

signal differs only 1.4σ from the known orbital period

Porb = 679.d85 ± 0.d04 of Algol C (Zavala et al. 2010).

This indicates that all other five detected stronger sig-

nals are real periodicities, but it does not irrefutably

prove this idea. Our O-C data contains 127 rounds of

Algol C around Algol AB, and this orbit is known to be

stable (Zavala et al. 2010; Baron et al. 2012; Jetsu et al.

2013). Our lower limit for the mass of Algol C (Table 1:

i = 90o and 1.2m�) is smaller than the interferometric

estimates by Zavala et al. (2010, i = 83.o7 ± 0.o1 and

1.5± 0.1m�) and Baron et al. (2012, i = 83.o66± 0.o03

and 1.76± 0.15m�). This indicates that not even DCM

can retrieve the full amplitude of this weak Algol C sig-

nal when it is buried under five stronger signals and a

linear trend.

6.4. Stability

All detected signals are strictly periodic, because they

are also detected in the 9.2 years shorter subsample

First226y-data. Except for the p2 and p5 signals, the

other four signals are also detected in the fifty years

shorter subsample First185y-data. This apparent ab-

sence of these two p2 and p5 signals in First185y-

data could be explained by the “Half-p” and “Double-p”

effects (Table A15). However, strict periodicity alone

does not prove that Algol’s hierarchial system is stable.

The perturbations of WOS can cause periodic cEB

orbital plane changes (Soderhjelm 1975, Eq. 27). Such

long-term orbital plane changes with respect to the line

of sight may even stop the eclipses completely, or at

least reduce the depth of eclipses, like in the case of

AY Mus (Soderhjelm 1974). However, the cEB orbital

plane is stable for Ψ = 0o or 90o, where Ψ is the angle

between cEB and WOS orbital planes. This is the case

for Algol C, the only currently known WOS of Algol

(Baron et al. 2012, Ψ = 90.o20±0.o32). No changes have

been observed in the eclipses of Algol in modern times,

and these events were most probably also observed over

three thousand year ago (Jetsu et al. 2013). This is

possible only if all WOSs have Ψ = 0o or 90o. If the

orbital planes of all WOS are co-planar, then all WOSs

must have Ψ = 90o, because this is the known case for

Algol C. If all WOS orbit were not co-planar, this would

certainly reduce the stability of this system, and perhaps

also weaken or stop the observed eclipses.

The mass transfer from the less massive Algol B to

the more massive Algol A should increase the orbital

period (Kwee 1958, Eq. 5). The numerous published

mass transfer rate estimates range from 10−13m�yr−1

to 10−7m�yr−1 (Jetsu et al. 2013, Sect. 4). However,

no regular long-term period increase has been observed

since Goodricke (1783) discovered Algol’s periodicity.

All WOSs can also perturb the cEB by other physical

mechanisms, like the Kozai effect (Kozai 1962), or the

combination of Kozai cycle and tidal friction (Fabrycky

& Tremaine 2007). Against this background, our linear

K3 = 1 trend result for p(t) is surprising (Sect. 5.1.1).

For 236 years, Algol’s orbital period has been constant

Porb =

(
1

P0
− 2M1

∆T

)−1

= 2.d86732870, (27)

where P0 =2.d86730431 (Eq. 1) and M1 =0.1278 is p(t)

coefficient forM=3 model in Table A8. This causes the

linear O-C change of 0.d256 in Fig. A7 (upper panel:

dotted line). It also means that LTTE effects alone can
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explain all observed O-C changes. No additional effects,

like the quadratic K3 = 2 trend caused by mass transfer,

are needed to explain these O-C data.

In the future, long-term integrations may confirm the

dynamical stability of this system. Currently, even the

exact number of WOS candidates remains unknown, be-

cause three different hierachial system diagrams can ex-

plain the detected WOS periods (Fig. A15: Configura-

tions 1, 2 and 3). For any WOS period p3, the correct

m3, e3, a3, i3, ω3 and Ψ3 initial value combinations for

the long-term integrations are also unknown. Therefore,

our O-C data can not give an unambiguous solution for

this stability problem. Whether or not this system is

stable, we can determine the p3 periods that are ob-

served today.

6.5. Predictability

We admit that an unambiguous identification of all

individual signals from the interference sum of numer-

ous signals is not always possible. One example is the

p5 and p4 signal identification in Sect. 5.5.2. However,

this whole identification problem is irrelevant from the

predictability point of view. The sum of identified sig-

nals is equal to the sum of unidentified signals. Both

alternatives give the same prediction.

The linear and quadratic EB ephemerides can not pre-

dict the exact epochs of future eclipses (e.g. Kreiner

et al. 2001; Kim et al. 2018). For O-C changes caused

by a third body, these predictions also usually fail, like

in Bours et al. (2014, their Fig. 7), Lohr et al. (2015) or

Song et al. (e.g. 2019, their Fig. 1). Different O-C sub-

sets can give different periods, but this does not mean

that there is something wrong with the period search

methods themselves, like DCM. Our 9.2 years O-C pre-

diction for Algol is based on First226y-data (Fig. 2).

Strict periodicity can explain why this prediction suc-

ceeds. Predictability is impossible without strict peri-

odicity. This prediction would fail, if even one of our de-

tected signals were not strictly periodic, or if the K3 = 1

linear p(t) trend were wrong.

Our next fifty years prediction is based on First185y-

data. Except for the first few years, this long-term pre-

diction fails (Fig. 3). The reason for this failure is sim-

ple. The longest 172y period detected from First185y-

data is not correct. The short ∆T = 185 years time

span of this sample prevents the detection of the correct

signal period 219y. This correct signal can be detected

only from all data and First226y-data. Together with

the 0.d26 trend p(t), this highest 0.d29 amplitude dom-

inating 219y signal determines all long-term O-C pre-

dictions. The insignificant long-term trend contribution

of all other weaker signals is always less than ±0.d03,

because the sum of their amplitudes is 0.d06. Although

our fifty years prediction for the O-C level fails (Fig.

3), we get an excellent prediction for the turning point

epoch at HJD 2450000 (Fig. A14).

New O-C data after October 2018 can already be used

to test our prediction for the next ten years (Fig. 1b).

These predictions should improve in the future, when

all orbital period estimates become more accurate. Pre-

dictability should ultimately prove that all these signals

are orbital periods. At the moment, we can not prove

this. In the history of Astronomy, the seasons of the year

posed a similar problem. Their one year periodicity was

detected easily, but the reasons for it were understood

much later: the orbit of the Earth around the Sun, and

the tilted axis of Earth. However, it was possible to

predict the seasons without understanding their origin.

Our detected periods of Algol are certainly there, and

for some reason or another they can be used to predict.

6.6. Look-elsewhere effect

We test over thirty models having free parameters be-

tween η = 6 and 22 (Tables A7-A12). The total number

of free parameters is even higher when the model for

the original data is added to the model for the residu-

als. For example, the best M=3+6 model for all data

has η = 17 + 11 = 28 free parameters (Fig. 1). Our

search for the correct model over a vast parameter space

increases the probability for finding spurious apparently

significant signals. This is called the “look-elsewhere ef-

fect” (e.g. Miller 1981; Bayer & Seljak 2020). There

are statistical methods that can account for the “look-

elsewhere effect”, and give direct significance estimates

S for the periods of models having different degrees of

freedom (e.g. Bayer & Seljak 2020, their Eq. 3.12).

DCM applies Fisher-test to compare the significance

of all pairs of simple and complex models. Fisher-test

identifies the best model among all tested models (Eqs.

11 and 12). This approach does not account for the

“look-elsewhere effect”, because it gives no direct signif-

icance estimate S for the periodicities of this best model.

Nevertheless, we can present several arguments indicat-

ing that the “look-elsewhere effect” has no significant

impact on our results.

1. We apply the robust Fisher-test to compare any

complex model having more signals than any sim-

ple model. We use the pre-assigned significance

level γF = 0.001 to reject the simple model (Eq.

12). This prevents over-fitting, because the proba-

bility that this best model selection fails is always

smaller than one out of one thousand. In many

cases, the extreme QF<10−16 critical levels con-

firm that the complex model is absolutely certainly
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better than the simple model. This confirms that

the data contain more signals than those present in

the simple model. Our indirect QF significance es-

timates confirm the presence of additional complex

model periodicities, but they do not give us direct

S significance estimates for these periodicities. Re-

gardless of the “look-elsewhere effect”, Fisher-test

can confirm that the five signalM=3+6 model is

the best model for all data.

2. The z periodogram values of close tested frequen-

cies correlate and display no sudden jumps (see

Sect. 3: Caveat 2). At some tested frequency grid

density level, this means that the detected period

values no longer depend on the number of tested

periods (Paper I: nL and nS). These unambiguous

best period values are obtained from linear mod-

els. Increasing the number of tested periods does

not change the values of these detected periods.

Hence, the tested frequency grid density is not a

trial factor effect (“look-elsewhere effect”) that can

change the five period values of our best M=3+6

model.

3. For all O-C data, we use Fisher-test to compare

constant, linear, quadratic and cubic p(t) trends

for one, two and three signal models (Table A7).

The linear K3 = 1 trend is the best one. This

means that if the O-C data had been computed

with the period 2.d86732870 (Eq. 27), the best

trend would have been the constant K3 = 0 trend.

After exploring numerous trend and signal com-

bination alternatives in the vast free parameter

space, we arrive at this simplest alternative: no

trend at all in the O-C data! Although the “look-

elsewhere effect” is certainly present, DCM detects

this simplest trend alternative for our five signal

M=3+6 model.

4. Our M=3+6 model prediction is excellent (Fig.

2). This indicates that the “look-elsewhere ef-

fect”, or any other spurious effect, does not mis-

lead DCM periodicity detection.

6.7. Uncertainties

The time span of our data is “only” 236 years. Our

biggest uncertainty is therefore the longest detected 219

years periodicity. It has been claimed that the Discrete

Fourier Transform can sometimes detect clear signal pe-

riods slightly longer than the ∆T time span of data, “but

with poor resolution” (Horne & Baliunas 1986). The de-

tection of periods close to ∆T depends strongly on the

signal-to-noise ratio of the data. Such detections may

not always succeed in our case, because we detect the

172 years period from the shortest sample of 185 years.

This period is shorter than time span of this particular

sample. We do not detect this “old” 172 years period

from the longer samples of 226 and 236 years, but we

do detect the “new” 219 years period. New additional

O-C data may, or may not, confirm that this 219 years

period of ours is correct.

The direct discovery of Algol H would solve the above

problem for good. Eggen (1948) analysed Algol’s O-C

data. He arrived at an orbital period of 188.4 years for

this hypothetical distant companion. Irwin (1952) esti-

mated its orbital elements. We argue that this distant

Algol H candidate may be currently found about 1.6 arc

seconds away from the cEB, the eclipsing pair Algol A

and Algol B.

As for other uncertainties, we can not determine the

exact number of stars in this hierarchial system, but

this does not prevent us from presenting an excellent

9.2 year prediction based on the first 226 years of O-

C data (Fig. 2). We admit that our longer fifty years

prediction fails, because our 172 years period detected in

the shortest 185 year sample is wrong (Fig. 3). However,

our turning point in this same prediction would explain

the four years gap in the published O-C data around the

year 1995 (Fig. A14). It will be interesting to see how

well we can predict the future O-C data after October

2018 (Fig. 1b).

7. CONCLUSIONS

The ephemerides of eclipsing binaries can be improved

by removing linear or quadratic trends from the ob-

served (O) minus computed (C) eclipse epochs (e.g.

Kreiner et al. 2001; Kim et al. 2018). However, even

such improved ephemerides can not predict the exact

epochs of future eclipses. The light-time travel effect

of a third body causes strictly periodic predictable O-C

changes (Irwin 1952). The typical third and fourth body

detection rates from O-C data are low, only 992/80 000

and 4/80 000, respectively (Hajdu et al. 2019). Eclipse

epoch predictions based on linear or quadratic trends,

and light-time travel effects, usually fail because aperi-

odic trends mislead the detection of periodic signals (e.g.

Bours et al. 2014; Lohr et al. 2015; Song et al. 2019).

Considering this general background, it is unprece-

dented that our new Discrete Chi-square Method can

detect five strictly periodic signals from 236 years of Al-

gol’s O-C data (Fig. 1a). These tentative companion

candidate orbital periods are between 1.863 and 219.0

years. One of these periods is definitely not a surprise,

because our 680.4 ± 0.4 days period estimate for this

weakest detected signal differs only 1.4σ from the well-
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known 679.85±0.04 days orbital period of Algol C. From

our O-C data alone, we can not determine the exact

number of companions in Algol’s hierarchial system, or

the stability of this system.

From the shorter 226.2 years subsample, we detect

these same five above mentioned strictly periodic sig-

nals. They give an excellent prediction for the last 9.2

years of our O-C data (Fig. 2b). Although it is im-

possible to detect the longest 219 year period from our

shortest analysed subsample of 185 years, we can still

predict the O-C data turning point epoch in the year

1995 (Fig. 3b). This unexpected turning point event

could explain the odd publication gap in the otherwise

continuous modern O-C data of Algol.

We detect the linear O-C trend, which confirms that

Algol’s orbital period has not changed since it was dis-

covered by Goodricke (1783). The orbital planes of Al-

gol C and the new other wide orbit star candidates are

probably co-planar, because Algol’s eclipses were ob-

served already in Ancient Egypt (Jetsu et al. 2013; Jetsu

& Porceddu 2015; Porceddu et al. 2018).

In the bigger picture, the predictions for complex non-

linear models rarely succeed. We give a prediction for

the next decade of Algol’s O-C changes after October

18th, 2018 (Fig. 1b). These future O-C changes may

prove that the abstract Discrete Chi-square Method ap-

proach works for complex non-linear models, and that

Algol’s data merely allowed us to check this.
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Table A1. Cases I, II and III. Cols 1-5 give O-C curve period (p), peak to peak amplitude (A), pericentre epoch (tp),
eccentricity (e) and periastron longitude (ω) (Eqs. 13-17). Cols 6-7 give connected figures and tables.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

[d] [d] [HJD] Dimensionless [o] Fig. Table

Case I p = 45976 A = 0.0994 tp = 2373019.94 e = 0.05, 0.10, 0.20, 0.30 or 0.40 ω = 0, 45, 90, 135, 180, 225, 270 or 315 A1 A2, A3

Case II p1 = 12295 A1 = 0.0174 tp,1 = 2375140.04 e1 = 0 ω1 = 0 A2 -

p2 = 46159 A2 = 0.1024 tp,2 = 2372653.76 e2 = 0 ω2 = 0

Case III p1 = 12304 A1 = 0.0187 tp,1 = 2374760.75 e1 = 0 ω1 = 0 A3 -

p2 = 25274 A2 = 0.020 tp,2 = 2380427.13 e2 = 0 ω2 = 0

APPENDIX

A. DCM ANALYSIS OF SIMULATED O-C DATA

If the third body orbit is circular (e = 0), the suitable

DCM model order is K2 = 1, because the O-C curve

is a pure sinusoid (Eq. 13: e = 0). If the third body

orbit is not circular (e > 0), the O-C curve is not a pure

sinusoid. In this case, the suitable DCM model order for

these eccentric orbits is K2 = 2 (Hoffman et al. 2006).

Our notations for circular (e = 0) and eccentric (e > 0)

orbit O-C curves are

(O− C)e=0 (A1)

(O− C)e>0. (A2)

These (O− C)e>0 and (O− C)e=0 curves have the same

peak to peak amplitude A for any p, tp, e and ω combi-

nation (Eqs. 13 - 17). Our notation for their difference

curve is

(O− C)diff = (O− C)e>0 − (O− C)e=0 (A3)

having a peak to peak amplitude Adiff . The amplitude

ratio is

∆A = Adiff/A. (A4)

We also determine the phase differences

∆φmin = (t2nd.min − t1st.min)/p (A5)

∆φmax = (t2nd.max − t1st.max)/p, (A6)

of two first minimum (t1st.min,t2nd.min) and maximum

(t1st.max,t2nd.max) epochs of (O− C)diff curve.

We simulate three cases of artificial O-C data (Table

A1: Cases I, II and III). The simulated O-C values are

computed for the real data time points ti from Table

A4 (n = 2224). We add 0.d005 Gaussian random errors

to these simulated O-C values. DCM period search for

these simulated O-C data is performed between 8000

and 80000 days. We use the same period interval also

in our DCM analysis of real data (Sects. 5.1-5.4)

A.1. Case I: Simulated eccentric orbit data

In this section, we use p, A, tp, e and ω values of Case

I (Table A1). Our Fig. A1 shows all forty (O− C)e>0

and (O− C)e=0 curve pairs, as well as their (O− C)diff

difference curves. We study only cases e ≤ 0.4, because

our ν(t) Fourier expansion (Eq. 16) does not give the

exact quantitative ν(t) values for higher eccentricities.

However, our ν(t) estimates are sufficient for illustrat-

ing how eccentric orbit (O− C)e>0 curves deviate from

purely sinusoidal circular orbit (O− C)e=0 curves.

The ∆A, ∆φmin and ∆φmax values for forty eccentric

(O− C)e>0 curves are given above each panel of Fig.

A1. When eccentricity e increases, the amplitude ratio

∆A increases. At the same time, the (O− C)diff curve

symmetry decreases, because ∆φmin and ∆φmax values

deviate more from 0.5. Both of these effects confirm

that when eccentricity increases, the (O− C)e>0 curve

deviates more from the pure (O− C)e=0 sinusoid. One

symmetry remains: adding 180o to ω reverses the ∆φmin

and ∆φmax pair values.

A.1.1. Case I: Correct model analysis

In Case I, the correct one signal DCM model for sim-

ulated data has an order K2 = 2 ≡ e > 0 (model1,2,0).

The number of signals (K1 = 1) and the signal order

(K2 = 2) are both correct. The results for DCM search

with this correct model are given in Table A2. This ta-

ble has the same structure as Fig. A1. For example, the

results for combination e = 0.05 and ω = 0o are given

in the upper left corner of both Table A2 and Fig. A1.

DCM always detects the correct period p, because the

ratio P1/p is close to unity for all forty e and ω com-

binations. The amplitude ratio A1/A is close to unity

for lower eccentricities e ≤ 0.2. This ratio decreases for

higher eccentricities. Yet, even in these cases the am-

plitude ratio is A1/A ≥ 0.95. The inaccuracy of our
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Figure A1. Case I. Black lines show forty eccentric orbit O− Ce>0 curves (Eq. A2) having parameters specified in Table A1
(Case I). Red lines show respective circular orbit O− Ce=0 curves (Eq. A1). Blue lines denote difference curves (O− C)diff

(Eq. A3). Parameters ∆A, ∆φmin and ∆φmax (Eqs. A4-A6) are given above each panel. Blue and red circles denote first two
(O− C)diff curve minima and maxima. To save space, we show no quantitative xy-axis label values, and we offset (O− C)diff

curve below O− Ce>0 and O− Ce=0 curves. Units are [t] = HJD (x-axis) and [O−C] = d (y-axis).

ν(t) Fourier expansion (Eq. 16) may partly explain this

A1/A ratio decrease. DCM can certainly detect the cor-

rect simulated signal period p = 45976d and amplitude

A = 0.d0994. Our abbreviation for this correct p period

detection is

“Correct-p” effect.

For eccentricities close to e = 0, the (O−C)e>0 curves

for P1 = p and P1 = 2p periods are nearly identical. We

use the abbreviation “Dp” to highlight all P1 values for

lower eccentricities e ≤ 0.1 (Table A2). In these cases,

the spurious double period P1 = 2p detection is possi-

ble, if the grid of tested frequencies is too sparse. The

probability for detecting this spurious P1 = 2p period

would of course decrease, if our chosen simulated data

error 0.d005 were smaller. We call this spurious 2p pe-

riod detection

“Double-p” effect.

A.1.2. Case I: Wrong model analysis

Here, we analyse again the same one signal simulated

eccentric orbit (O− C)e>0 data of Case I, but our two

signal DCM model2,1,0 is wrong. The number of signals

(K1 = 2) and the signal order (K2 = 1) are both wrong.

In other words, we make the false assumption that the

one signal eccentric orbit (O− C)e>0 curve is a sum of

two circular orbit (O− C)e=0 curves. The results for

this wrong model analysis are given in Table A3. Note

that this table also has the same structure as Table A2

and Fig. A1.

The correct period P2 = p is always detected, because

the P2/p ratio is very close to unity for all forty e and

ω combinations. The period of weaker detected signal

is always P1 ≈ P2/2 ≈ p/2. Furthermore, the accuracy

of this approximation increases when e increases! Both

of the p and p/2 periods are certainly detected at larger

eccentricities e ≥ 0.2. The A2/A1 amplitude ratio of

these p and p/2 signals decreases for higher eccentrici-

ties. This happens at the expense of P2 signal, because

A2/A decreases about 10% when eccentricity increases
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Table A2. Case I: Correct model results. Simulated (O − C)e>0 data signal period is p = 45976d.
Signal peak to peak amplitude is A = 0.d0994. For different e and ω combinations, one signal DCM
model1,2,0 search detects periods P1 and peak to peak amplitudes A1. Abbreviation “Dp” denotes
Double-p effect cases, where spurious period P1 ∼ 2p may be detected, if tested frequency grid is too
sparse.

ω = 0o ω = 45o ω = 90o ω = 135o ω = 180o ω = 225o ω = 270o ω = 315o

e = 0.05 P1 45978 Dp 45933 Dp 45996 Dp 45968 Dp 46082 Dp 45946 Dp 45976 Dp 46001 Dp

A1 0.0995 0.0995 0.0996 0.0990 0.0990 0.0998 0.0993 0.0995

P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A1/A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

e = 0.10 P1 46016 Dp 45952 Dp 45874 Dp 45920 Dp 45997 Dp 45921 Dp 45943 Dp 45981 Dp

A1 0.0996 0.0995 0.0990 0.0986 0.0990 0.0994 0.0990 0.0991

P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A1/A 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

e = 0.20 P1 46004 46057 46058 45990 46020 46038 46093 45970

A1 0.0990 0.0984 0.0977 0.0985 0.0987 0.0983 0.0976 0.0984

P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A1/A 1.00 0.99 0.98 0.99 0.99 0.99 0.98 0.99

e = 0.30 P1 46074 46056 46004 45937 45980 46053 45959 46001

A1 0.0977 0.0964 0.0964 0.0975 0.0978 0.0968 0.0960 0.0981

P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A1/A 0.98 0.97 0.97 0.98 0.98 0.97 0.96 0.99

e = 0.40 P1 46084 46251 45930 45934 46079 46292 45929 45882

A1 0.0954 0.0939 0.0930 0.0960 0.0948 0.0932 0.0935 0.0960

P1/p 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00

A1/A 0.96 0.94 0.94 0.96 0.95 0.94 0.94 0.96

Figure A2. Case II: Interference of two circular orbit (O− C)e=0 curves. Red and blue curve periods are p1 = 12295d and
p1 = 46159d, respectively. Other parameters are given in Table A1. Black curve shows combined (O− C)1+2 effect having a
period P1 = 46122d. All curves are shown as a function of time (left-hand panels: t) and phase (right-hand panels: φ). Left-hand
panel units are [t] = HJD and [O−C] = d. Right-hand panel units are [φ] = dimensionless and [O−C] = d.

from e = 0.05 and 0.40. All these effects are also illus-

trated in Fig. A1.

For nearly circular orbits e ≤ 0.10, the A2/A1 signal

amplitude ratio is between 19 and 47. We use the abbre-

viation “Hp”’ to highlight the cases, where the detection

of weaker spurious p/2 period signal requires a denser

tested frequency grid (Table A2). Our abbreviation for

this spurious p/2 period detection is
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Table A3. Case I: Wrong model results. Simulated (O− C)e>0 signal period is p = 45976d. Signal

peak to peak amplitude is A = 0.d0994. For different e and ω combinations, two signal DCM model2,1,0
search detects signals having periods P1 and P2, and peak to peak amplitudes A1 and A2. Abbreviation
“Hp” highlights the Half-p effect cases, where detection of weaker P1 ∼ p/2 signal requires a denser
tested frequency grid.

ω = 0o ω = 45o ω = 90o ω = 135o ω = 180o ω = 225o ω = 270o ω = 315o

e = 0.05 P1 24823 Hp 23076 Hp 24924 Hp 24927 Hp 24793 Hp 23813 Hp 24554 Hp 24867 Hp

A1 0.0021 0.0025 0.0026 0.0021 0.0024 0.0024 0.0028 0.0021

P2 46032 46032 46018 45973 46003 46072 46055 45982

A2 0.0990 0.0994 0.0994 0.0991 0.0995 0.0990 0.0995 0.0994

P2/P1 1.85 1.99 1.85 1.84 1.85 1.93 1.88 1.85

A2/A1 47.1 39.8 38.2 47.2 41.4 41.2 35.5 47.3

P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A2/A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

e = 0.10 P1 24993 Hp 22788 23172 24840 Hp 25051 Hp 23170 24418 Hp 24900 Hp

A1 0.0044 0.0052 0.0048 0.0044 0.0044 0.0052 0.0051 0.0045

P2 46043 45996 45937 45998 46032 46025 46121 45993

A2 0.0988 0.0992 0.0992 0.0986 0.0993 0.0987 0.0987 0.0988

P2/P1 1.84 2.02 1.98 1.85 1.84 1.99 1.89 1.85

A2/A1 22.4 19.1 20.7 24.2 22.6 19.0 19.4 22.0

P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A2/A 0.99 1.00 1.00 0.99 1.00 0.99 0.99 0.99

e = 0.20 P1 23010 23029 22848 22899 23024 23044 22863 22879

A1 0.0098 0.0089 0.0092 0.0095 0.0096 0.0096 0.0097 0.0094

P2 45953 46029 45973 45955 46000 46074 45941 45962

A2 0.0974 0.0975 0.0981 0.0974 0.0973 0.0974 0.0978 0.0973

P2/P1 2.00 2.00 2.01 2.01 2.00 2.00 2.01 2.01

A2/A1 9.9 11.0 10.7 10.2 10.1 10.1 10.1 10.4

P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A2/A 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98

e = 0.30 P1 22977 23116 22833 22996 23098 23048 22806 23085

A1 0.0135 0.0135 0.0139 0.0139 0.0135 0.0134 0.0140 0.0141

P2 46069 46073 45987 46018 46060 46030 45942 45976

A2 0.0940 0.0944 0.0962 0.0949 0.0940 0.0947 0.0961 0.0949

P2/P1 2.00 1.99 2.01 2.00 1.99 2.00 2.01 1.99

A2/A1 7.0 7.0 6.9 6.8 7.0 7.1 6.9 6.7

P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A2/A 0.94 0.95 0.97 0.95 0.94 0.95 0.97 0.95

e = 0.40 P1 22998 23119 22916 22899 23068 23210 22909 22976

A1 0.0166 0.0166 0.0167 0.0178 0.0165 0.0164 0.0170 0.0174

P2 45997 46089 45978 45961 46054 46267 45983 45917

A2 0.0901 0.0909 0.0938 0.0922 0.0898 0.0904 0.0934 0.0920

P2/P1 2.00 1.99 2.01 2.01 2.00 1.99 2.01 2.00

A2/A1 5.4 5.5 5.6 5.2 5.4 5.5 5.5 5.3

P2/p 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00

A2/A 0.91 0.91 0.94 0.93 0.90 0.91 0.94 0.92

“Half-p” effect.

Some ω values can eliminate the symmetry of the

(O− C)e>0 curve even at these low e ≤ 0.10 eccen-

tricities, like the e = 0.10 and ω = 45o combination

(O− C)e>0 curve that shows no “Hp” effect.

It is important to realize that every real eccentric

orbit (O− C)e>0 curve can be presented as a sum of

purely sinusoidal circular orbit (O− C)e=0 curve and a

nearly sinusoidal (O− C)diff curve. The respective pe-

riods of these curves are p, p and ∼ p/2. All these three

curves are “in-phase”, and therefore the eccentric orbit

(O− C)e>0 sum curve has only one minimum and one

maximum.

A.2. Case II: Correct model analysis

In Case II, the simulated data contains a sum of two

sinusoidal circular orbit (O− C)e=0 signals having peri-

ods p1 = 12295d and p2 = 46159d (Fig. A2). The other

parameters can be found from Table A1 (Case II). The

higher amplitude p2 signal dominates over the lower am-

plitude p1 signal. These red and blue (O− C)e=0 curves,
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Figure A3. Case III: Interference of two circular orbit (O− C)e=0 curves. Red and blue curve periods are p1 = 12304d and
p2 = 25274d. Black curve shows combined (O− C)1+2 effect having a period P1 = 24771d. Otherwise, as in Fig. A2.

and their black (O− C)1+2 interference curve, are shown

in Fig. A2.

In this Case II, the correct circular orbit model is

DCM model2,1,0. This model has the correct number

of signals (K1 = 2) and the correct order (K2 = 1).

DCM detects the correct simulated P1 = 12286d ± 18d

and P2 = 46122d ± 57d signal periods, as well as the

correct amplitudes A1 = 0.d0170 ± 0.d0004 and A2 =

0.d1019± 0.d0003. In short, DCM succeeds in detecting

both simulated circular orbit (O-C)e=0 signals.

A.3. Case II: Wrong model analysis

Here, we analyse Case II simulated data using the

wrong eccentric orbit one signal DCM model1,2,0. Both

the number of signals (K1 = 1) and the model order

(K2 = 2) are wrong. We detect P1 = 46400d ± 81d

period signal having a peak to peak amplitude A1 =

0.d1015± 0.d0005. Since the p2 = 46159d period of the

stronger signal dominates in the black (O− C)1+2 in-

terference curve of Fig. A2, this detected P1 period is

close to, but slightly larger than, the p2 period. Our

DCM search result for P1 is confirmed by the distance

between the black (O− C)1+2 interference curve min-

ima, which is indeed longer than the distance between

the dominating blue (O− C)2 curve minima (Fig. A2).

A.4. Case III: Correct model analysis

In Case III, the simulated sinusoidal (O− C)e=0 sig-

nal periods are p1 = 12304d and p2 = 25274d (Fig.

A3). The signal amplitudes are nearly equal (Table A1:

Case II). The correct model for these simulated data

is the DCM model2,1,0, which searches for the sum of

two circular orbit (O− C)e=0 curves (K1 = 2,K2 = 1).

DCM detects the correct P1 = 12322d ± 20d and P2 =

25259d ± 89d signals, as well as the correct amplitudes

A1 = 0.d0190 ± 0.d0004 and A2 = 0.d020 ± 0.d0003.

Again, DCM succeeds in detecting both simulated cir-

cular orbit (O− C)e=0 signals.

A.5. Case III: Wrong model analysis

Finally, the same simulated Case III data is anal-

ysed by using the wrong eccentric DCM model1,2,0.

In other words, we search for only one eccentric orbit

(O− C)e>0 signal when the data contains two circular

orbit (O− C)e=0 signals. DCM detects a signal having

P1 = 24771d ± 34d and A1 = 0.d0319 ± 0.d0005. The

simulated p1 and p2 signals’ interference period is

p′ = k(p−1
1 − p

−1
2 )−1, (A7)

where k = ±1,±2, ... is the phase difference during p′.

In this particular case, k = 1 gives p′ = 23976d. This

black double wave (O− C)1+2 curve is shown in Fig. A3.

DCM detects this “correct” interference signal period p′,

which is repeated through out the whole data. We call

this spurious interference period p′ detection

“Interference-p′” effect.

The black p′ interference (O− C)1+2 curve shows two

minima and two maxima, because the red p1 period and

the blue p2 period sinusoids are “off-phase”(Fig. A3).

Therefore, this black (O− C)1+2 curve can not represent

a real eccentric orbit (O− C)e>0 curve.
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Table A4. O-C data. Only first
three of all n = 2224 values are
shown.

t y σy

[d] [d] [d]

2372238.35100 -0.17216 0.00010

2372284.23700 -0.16303 0.00010

2372301.39700 -0.20686 0.00010

Note—The arbitrary 0.d00010 errors
give the correct format for our data
file (file1), because dcm.py requires
that the third column of file1 contains
some numerical values for the errors.
Since these errors are unknown, we
use equal weights for all observations,
and the numerical values of these er-
rors are irrelevant (see Appendix of
Paper I: TestStat 6= 1).

Table A5. Samples. Number of observations (n), first observing time (t1), last
observing time (tn), time span (∆T ) and data file (file1)

n t1 tn ∆T

Sample - [HJD] [HJD] [d] [y] file1

All data 2224 2372238.351 2458409.7612 86171.4102 235.9 1hjdAlgol.dat

First226y-data 2174 2372238.351 2454839.9189 82601.5679 226.2 2hjdAlgol.dat

Last9y-data 50 2455063.566 2458409.7612 3346.1952 9.2 -

First185y-data 1731 2372238.351 2439918.358 67680.007 185.3 3hjdAlgol.dat

Last50y-data 493 2440144.8771 2458409.7612 18264.8841 50.0 -

Table A6. Abbreviations. These abbrevia-
tions are used in Tables A2 - A3 and Tables
A7-A14. Second column gives their mean-
ing. Third column gives section where this
meaning is defined.

Symbol Meaning Definition

“Um” Unstable model Sect. 3

“If” Intersecting frequencies Sect. 3

“Ad” Dispersing amplitudes Sect. 3

“Lp” Leaking period Sect. 5.1.1

“Sp” Spurious period Sect. 5.1.2

“Hp” Half-p effect Sect. A.1.1

“Dp” Double-p effect Sect. A.1.2
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Table A7. All data trend (Sect. 5.1.1): One, two and three signal (K1 = 1, 2 and 3) models (M) have eccentric third body orbits (K2 = 2 ≡ e > 0).
Trend orders K3 = 0, 1, 2 and 3 for p(t) are compared. Fisher-test is used to compare DCM search results between 8000 and 80000 days. Notations are
“↑ ” ≡ complex model above is better than left side simple model, and “←” ≡ left side simple model is better than complex model above. Parameters
are F = Fisher test statistic and QF = critical level. Control file is dcm.dat. Unstable models are denoted with “Um”. They have dispersing
amplitudes “Ad”, or intersecting frequencies “If”. Some models have leaking periods “Lp” larger than ∆T = 86171d. Best DCM model for all data
is linear trend K3 = 1 order model3,2,1.

Period analysis: All original data = 1hjdAlgol.dat

M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10 M=11 M=12

M Model model1,2,1 model1,2,2 model1,2,3 model2,2,0 model2,2,1 model2,2,2 model2,2,3 model3,2,0 model3,2,1 model3,2,2 model3,2,3 dcm.dat

1 model1,2,0 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R120S.dat

η= 6 F = 2821 F = 1542 F = 1154 F = 684 F = 815 F = 702 F = 623 F = 498 F = 503 F = 461 F = 427

R = 1.0678QF<10−16QF<10−16QF<10−16QF<10−16QF<10−16 QF<10−16 QF<10−16 QF<10−16 QF<10−16QF<10−16 QF<10−16

2 model1,2,1 - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R121S.dat

η= 7 - F = 116 F = 142 F = 67 F = 183 F = 154 F = 137 F = 106 F = 120 F = 109 F = 101

Lp R = 0.4698 - QF<10−16QF<10−16QF<10−16QF<10−16 QF<10−16 QF<10−16 QF<10−16 QF<10−16QF<10−16 QF<10−16

3 model1,2,2 - - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R122S.dat

Um η= 8 - - F = 161 F = 34 F = 190 F = 154 F = 134 F = 100 F = 115 F = 103 F = 95

Ad,LpR = 0.4468 - - QF<10−16QF<10−16QF<10−16 QF<10−16 QF<10−16 QF<10−16 QF<10−16QF<10−16 QF<10−16

4 model1,2,3 - - - ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R123S.dat

η= 9 - - - F = −7.4 F = 186 F = 142 F = 119 F = 85 F = 102 F = 90 F = 82

R = 0.4165 - - - QF = 1 QF<10−16 QF<10−16 QF<10−16 QF<10−16 QF<10−16QF<10−16 QF<10−16

5 model2,2,0 - - - - ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R220S.dat

Um η= 11 - - - - F = 629 F = 319 F = 222 F = 134 F = 148 F = 127 F = 112

Ad R = 0.4270 - - - - QF<10−16 QF<10−16 QF<10−16 QF<10−16 QF<10−16QF<10−16 QF<10−16

6 model2,2,1 - - - - - ← ↑ ↑ ↑ ↑ ↑ 1hjd13R221S.dat

η= 12 - - - - - F = 7.3 F = 15 F = 7.7 F = 41 F = 34 F = 30

R = 0.3324 - - - - QF = 0.0068QF =2.9× 10−7QF =3.4× 10−6QF<10−16QF<10−16 QF<10−16

7 model2,2,2 - - - - - - ↑ ↑ ↑ ↑ ↑ 1hjd13R222S.dat

η= 13 - - - - - - F = 23 F = 7.8 F = 49 F = 39 F = 34

Lp R = 0.3313 - - - - - QF =1.8× 10−6QF =3.3× 10−5QF<10−16QF<10−16 QF<10−16

8 model2,2,3 - - - - - - - ← ↑ ↑ ↑ 1hjd13R223S.dat

Um η= 14 - - - - - - - F = 0.34 F = 57 F = 43 F = 36

Ad R = 0.3279 - - - - - - - QF = 0.71 QF<10−16QF<10−16 QF<10−16

9 model3,2,0 - - - - - - - - ↑ ↑ ↑ 1hjd13R320S.dat

Um η= 16 - - - - - - - - F = 170 F = 86 F = 59

Ad,If R = 0.3277 - - - - - - - - QF<10−16QF<10−16 QF<10−16

10 model3,2,1 - - - - - - - - - ← ← 1hjd13R321S.dat

η= 17 - - - - - - - - - F = 0.72 F = 2.9

R = 0.3042 - - - - - - - - - QF = 0.39QF = 0.055

11 model3,2,2 - - - - - - - - - - ← 1hjd13R322S.dat

η= 18 - - - - - - - - - - F = 5.1

R = 0.3041 - - - - - - - - - - QF = 0.024

12 model3,2,3 - - - - - - - - - - - 1hjd13R323S.dat

η= 19 - - - - - - - - - - -

R = 0.3034 - - - - - - - - - - -
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Table A8. All data eccentric orbits (Sect. 5.1.2). Col 1. Model number M. Col 2. modelK1,K2,K3 , η= number of free
parameters and R = sum of squared residuals. Cols 3-6. Period analysis results: Detected periods P1, ..., P4 and amplitudes
A1, ..., A4. Cols 7-9. Fisher-test results. Col 10. Control file is dcm.dat. Model M=3+2 is the best one for all data.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10

Search between 8000 and 80000 days

Period analysis: All original data = 1hjdAlgol.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] P4& A4[d] model2,2,1 model3,2,1 model4,2,1 dcm.dat

1 model1,2,1 88183± 816 Lp - - - ↑ ↑ ↑ 1hjd14R121S.dat

η= 7 0.313± 0.004 - - - F = 183 F = 120 F = 90

Lp R = 0.4698 QF<10−16 QF<10−16 QF<10−16

2 model2,2,1 24984± 99 80087± 744 - - - ↑ ↑ 1hjd14R221S.dat

η= 12 0.0316± 0.0008 0.288± 0.004 - - - F = 41 F = 31

R = 0.3324 - QF<10−16 QF<10−16

3 model3,2,1 20358± 128 24742± 142 79999± 1216 - - - ↑ 1hjd14R321S.dat

η= 17 0.013± 0.001 0.029± 0.001 0.287± 0.005 - - - F = 19

R = 0.3042 - - QF<10−16

4 model4,2,1 14912± 165 20984± 232 26846± 250 55172± 528 - - - 1hjd14R421S.dat

Um η= 22 0.020± 0.004 0.039± 0.003 0.4± 0.6 Ad 0.5± 0.6 Ad - - -

Ad R = 0.2913 - - -

Search between 500 and 8000 days

Period analysis: Three signal residuals = 1hjd14R321SResiduals.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] model2,2,0 model3,2,0 dcm.dat

5 model1,2,0 680.3± 0.4 - - ↑ ↑ 1hjd58R120S.dat

η= 6 0.0062± 0.0006 - - F = 17 F = 12

R = 0.2950 QF<10−16 QF<10−16

6 model2,2,0 680.4± 0.4 7290± 29 - - ↑ 1hjd58R220S.dat

η= 11 0.0064± 0.0007 0.007± 0.001 - - F = 6.3

R = 0.2840 - - QF =8.1× 10−6

7 model3,2,0 680.1± 0.3 7124± 43 7698± 75 Sp - - 1hjd58R320S.dat

Um η= 16 0.0065± 0.0009 0.0066± 0.0007 0.005± 0.001 - -

Sp R = 0.2800 - -
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Table A9. All data circular orbits (Sect. 5.1.3: First alternative). Otherwise as in Table A8.

Search between 8000 and 80000 days

Period analysis: All original data = 1hjdAlgol.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] P4& A4[d] model2,1,1 model3,1,1 model4,1,1 dcm.dat

1 model1,1,1 59474± 255 - - - ↑ ↑ ↑ 1hjd14R111S.dat

η= 5 0.199± 0.001 - - - F = 863 F = 598 F = 503

R = 0.9998 QF<10−16 QF<10−16 QF<10−16

2 model2,1,1 45204± 350 145483± 13700 Lp - - - ↑ ↑ 1hjd14R211S.dat

Um η= 8 0.091± 0.003 0.8± 0.2 Ad - - - F = 154 F = 149

Ad,Lp R = 0.4610 - QF<10−16 QF<10−16

3 model3,1,1 12338± 55 45423± 424 145456± 15326 Lp - - - ↑ 1hjd14R311S.dat

Um η= 11 0.0177± 0.0006 0.094± 0.004 0.8± 0.2 Ad - - - F = 120

Ad,Lp R = 0.3814 - - QF<10−16

4 model4,1,1 12352± 58 24773± 562 42610± 556 145456± 16180 Lp - - - 1hjd14R411S.dat

Um η= 14 0.0188± 0.0006 0.018± 0.001 0.088± 0.004 0.9± 0.2 Ad - - -

Ad,Lp R = 0.3280 - - -

Search between 8000 and 80000 days

Period analysis: Four signal residuals = 1hjd14R411SResiduals.dat Fisher-test

M Model P1& A1[d] P2& A2[d] model2,1,0 dcm.dat

5 model1,1,0 10175± 83 - ← 1hjd56R110S.dat

η= 4 0.0087± 0.0005 - F = 2.6

R = 0.3072 QF = 0.047

6 model2,1,0 9248± 302 If 10175± 160 If - 1hjd56R210S.dat

Um η= 7 0.021± 0.002 0.009± 0.002 -

If R = 0.3061 -

Search between 500 and 8000 days

Period analysis: Five signal residuals = 1hjd56R110SResiduals.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] model2,1,0 model3,1,0 model4,1,0 dcm.dat

7 model1,1,0 680.5± 0.6 - - ↑ ↑ ↑ 1hjd710R110S.dat

η= 4 0.0056± 0.0006 - - F = 22 F = 14 F = 11

R = 0.2984 QF = 3.8× 10−14 QF = 2.2× 10−16 QF<10−16

8 model2,1,0 680.7± 0.3 7354± 61 - - ↑ ↑ 1hjd710R210S.dat

η= 7 0.0057± 0.0008 0.0056± 0.0008 - - F = 6.9 F = 5.9

R = 0.2897 - QF = 0.00012 QF = 3.6× 10−6

9 model3,1,0 680.7± 0.4 2986± 39 7360± 55 - - - ← 1hjd710R310S.dat

η= 10 0.0057± 0.0006 0.0031± 0.0008 0.0056± 0.0006 - - - F = 4.9

R = 0.2870 - - QF = 0.0021

10 model4,1,0 680.5± 0.5 3560± 21 6964± 113 7449± 58 - - - 1hjd710R410S.dat

η= 13 0.0057± 0.0006 0.0031± 0.0006 0.0036± 0.0009 0.0056± 0.0009 - - -

R = 0.2851 - - -
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Table A10. All data circular orbits (Sect. 5.1.3: Second alternative). Otherwise as in Table A8.

Search between 8000 and 80000 days

Period analysis: All original data = 1hjdAlgol.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] P4& A4[d] P5& A5[d] P6& A6[d] model5,1,1 model6,1,1 dcm.dat

1 model4,1,1 12377± 50 24633± 578 42318± 240 120817± 31482 Lp - - ↑ ↑ 1hjd16R411S.dat

Um η= 14 0.0188± 0.0008 0.018± 0.004 0.085± 0.004 0.6± 0.7 Ad - - F = 57 F = 31

Ad,Lp R = 0.3284 - - QF<10−16 QF<10−16

2 model5,1,1 10144± 30 12294± 109 24247± 872 42422± 640 120740± 41002 Lp - ← 1hjd16R511S.dat

Um η= 17 0.0097± 0.0004 0.018± 0.001 0.018± 0.002 0.08± 0.01 0.6± 0.5 Ad - F = 4.6

Ad,Lp R = 0.3047 - QF = 0.0032

3 model6,1,1 10778± 256 If 11219± 206 If 11368± 182 If 23475± 625 42617± 267 96213± 20664 Lp - 1hjd16R611S.dat

Um η= 20 0.08± 0.02 Ad 0.3± 0.1 Ad 0.28± 0.08 Ad 0.016± 0.001 0.078± 0.006 0.4± 0.2 Ad -

If,Ad,LpR = 0.3015 - -

Search between 500 and 8000 days

Period analysis: Five signal residuals = 1hjd16R511SResiduals.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] model2,1,0 model3,1,0 dcm.dat

4 model1,1,0 680.6± 0.4 - - ↑ ↑ 1hjd710R110L.dat

η= 4 0.0055± 0.0008 - - F = 26 F16

R = 0.2962 QF<10−16 QF<10−16

5 model2,1,0 680.7± 0.5 7395± 37 - - ↑ 1hjd710R210L.dat

η= 7 0.0057± 0.0009 0.0061± 0.0006 - - F = 6.2

R = 0.2861 - QF = 0.00032

6 model3,1,0 680.5± 0.5 7034± 148 If,Sp 7478± 82 If - - 1hjd710R310L.dat

Um η= 10 0.0056± 0.0008 0.003± 0.001 0.006± 0.001 - -

If,Sp R = 0.2837 - -
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Table A11. First226y-data eccentric orbits (Sect. 5.2). Otherwise as in Table A8.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10

Search between 8000 and 80000 days

Period analysis: All original data = 2hjdAlgol.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] P4& A4[d] model2,2,1 model3,2,1 model4,2,1 dcm.dat

1 model1,2,1 92489± 1016 Lp - - - ↑ ↑ ↑ 2hjd14R121S.dat

η= 7 0.320± 0.004 - - - F = 160 F = 104 F = 77

Lp R = 0.4443 QF<10−16 QF<10−16 QF<10−16

2 model2,2,1 26623± 107 84215± 1466 Lp - - - ↑ ↑ 2hjd14R221S.dat

η= 12 0.028± 0.001 0.300± 0.005 - - - F = 35 F = 26

Lp R = 0.3243 - QF<10−16 QF<10−16

3 model3,2,1 20592± 172 24870± 190 78589± 2004 - - - ↑ 2hjd14R321S.dat

η= 17 0.014± 0.002 0.030± 0.008 0.282± 0.007 - - - F = 17

R = 0.3000 - - QF = 2.2× 10−16

4 model4,2,1 14911± 125 20739± 242 26644± 99 53512± 806 - - - 2hjd14R421S.dat

Um η= 22 0.0206± 0.0004 0.0420± 0.0006 2.9± 1.6 Ad 3.0± 1.6 Ad - - -

Ad R = 0.2887 - - -

Search between 500 and 8000 days

Period analysis: Three signal residuals = 2hjd14R321SResiduals.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] model2,2,0 model3,2,0 dcm.dat

5 model1,2,0 680.1± 0.6 - - ↑ ↑ 2hjd58R120S.dat

η= 6 0.0061± 0.0006 - - F = 15 F = 11

R = 0.2914 QF = 1.5× 10−14 QF<10−16

6 model2,2,0 680.3± 0.3 7287± 40 - - ↑ 2hjd58R220S.dat

η= 11 0.0063± 0.0008 0.007± 0.001 - - F = 6.2

R = 0.2816 - - QF = 9.8× 10−6

7 model3,2,0 679.9± 0.4 7080± 46 7757± 87 Sp - - 2hjd58R320S.dat

Um η= 16 0.0066± 0.0006 0.006± 0.001 0.006± 0.001 - -

Sp R = 0.2775 - -
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Table A12. First185y-data eccentric orbits (Sect. 5.3). Otherwise as in Table A8.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10

Search between 8000 and 80000 days

Period analysis: All original data = 3hjdAlgol.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] P4& A4[d] model2,2,1 model3,2,1 model4,2,1 dcm.dat

1 model1,2,1 64454± 880 - - - ↑ ↑ ↑ 3hjd14R121S.dat

η= 7 0.258± 0.005 - - - F = 118 F = 69 F = 50

R = 0.3407 QF<10−16 QF<10−16 QF<10−16

2 model2,2,1 23477± 144 120755± 24037 Lp - - - ↑ ↑ 3hjd14R221S.dat

Um η= 12 0.031± 0.002 0.5± 0.9 Ad - - - F = 16 F = 12

Ad,Lp R = 0.2534 - QF = 5.6× 10−15 QF<10−16

3 model3,2,1 14197± 134 22873± 289 97561± 23777 Lp - - - ↑ 3hjd14R321S.dat

Um η= 17 0.010± 0.001 0.029± 0.002 0.3± 0.8 Ad - - - F = 7.9

Ad,Lp R = 0.2424 - - QF = 2.1× 10−7

4 model4,2,1 12370± 296 15429± 222 20037± 420 62992± 2499 - - - 3hjd14R421S.dat

η= 22 0.018± 0.002 0.008± 0.002 0.015± 0.002 0.25± 0.01 - - -

R = 0.2369 - - -

Search between 500 and 8000 days

Period analysis: Three signal residuals = 3hjd14R421SResiduals.dat Fisher-test

M Model P1& A1[d] P2& A2[d] P3& A3[d] model2,2,0 model3,2,0 dcm.dat

5 model1,2,0 679.7± 0.6 - - ↑ ↑ 3hjd58R120S.dat

η= 6 0.0072± 0.0009 - - F = 6.0 F = 5.8

R = 0.2286 QF = 1.8× 10−5 QF = 1.2× 10−8

6 model2,2,0 679.6± 0.4 3387± 17 - - ↑ 3hjd58R220S.dat

η= 11 0.0074± 0.0007 0.0051± 0.0008 - - F = 5.6

R = 0.2247 - - QF = 4.2× 10−5

7 model3,2,0 676± 1 If 678± 12 If 3387± 18 - - 3hjd58R320S.dat

Um η= 16 0.011± 0.002 0.016± 0.004 0.0053± 0.0008 - -

If R = 0.2211 - -

Table A13. All data: Comparison of circular orbit results. Cols 1-3. Periods and amplitudes of best model
M=4+5+9 from Table A9. Cols 4-6. Periods and amplitudes of best model M=2+6 from Table A10.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

Table A9: Circular e = 0 ≡ K2 = 1 Table A10: Circular e = 0 ≡ K2 = 1

Best model M=4+5+9 Best model M=2+5

[d] [d] [d] [d]

M=4 P4 = 145456± 16180 Lp A4 = 0.9± 0.2 Ad M=2 P5 = 120740± 41002 Lp A5 = 0.6± 0.5 Ad

M=4 P3 = 42610± 556 A3 = 0.088± 0.004 M=2 P4 = 42422± 640 A4 = 0.08± 0.01

M=4 P2 = 24773± 526 A2 = 0.018± 0.001 M=2 P3 = 24247± 872 A3 = 0.018± 0.002

M=4 P1 = 12352± 58 A1 = 0.0188± 0.0006 M=2 P2 = 12294± 109 A2 = 0.018± 0.002

M=5 P1 = 10175± 83 A1 = 0.0087± 0.0005 M=2 P1 = 10144± 30 A1 = 0.0097± 0.0004

M=9 P3 = 7360± 55 A1 = 0.0056± 0.0006 M=5 P3 = 7395± 37 A3 = 0.0061± 0.0006

M=9 P1 = 680.7± 0.4 A1 = 0.0056± 0.0006 M=5 P3 = 680.7± 0.5 A1 = 0.0057± 0.0009

M=9 P2 = 2986± 39 A2 = 0.0031± 0.0008



34 Jetsu

Table A14. All data: comparison of eccentric and circular orbit results. Cols 1-3. Eccentric orbit results (Table A8). Cols 4-6. Circular
orbit results (Table A10). Col 7. Connection between eccentric and circular orbit periods. Col 8. Effects are explained in Sect. 5.5.
Eccentric and circular orbit periods are denoted with subscripts “e” and “c”, respectively.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

Table A8: Eccentric e > 0 ≡ K2 = 2 Table A10: Circular e = 0 ≡ K2 = 1 Connection Effect

M=3 Pe,5 = 79999± 1216 Ae,5 = 0.287± 0.005 M=2 Pc,7 = 120740± 41002 Lp Ac,7 = 0.6± 0.5 Ad Pe,5 ≈ 1× Pc,7 Correct-p

M=2 Pc,6 = 42422± 640 Ac,6 = 0.08± 0.01 Pe,5 ≈ 2× Pc,6 Half-p

M=3 Pe,4 = 24742± 141 Ae,4 = 0.029± 0.001 M=2 Pc,5 = 24247± 872 Ac,5 = 0.018± 0.002 Pe,4 ≈ 1× Pc,5 Correct-p

M=2 Pc,4 = 12294± 109 Ac,4 = 0.018± 0.001 Pe,4 ≈ 2× Pc,4 Half-p

M=3 Pe,3 = 20358± 128 Ae,3 = 0.013± 0.001 M=2 Pc,3 = 10144± 91 Ac,3 = 0.0097± 0.0004 Pe,3 ≈ 2× Pc,3 Half-p

M=6 Pe,2 = 7269± 29 Ae,2 = 0.007± 0.001 M=5 Pc,2 = 7395± 37 Ac,2 = 0.0061± 0.0006 Pe,2 ≈ 1× Pc,2 Correct-p

M=6 Pe,1 = 680.4± 0.4 Ae,1 = 0.0064± 0.0007 M=5 Pc,1 = 680.7± 0.5 Ac,1 = 0.0057± 0.0009 Pe,1 ≈ 1× Pc,1 Correct-p

Table A15. Eccentric orbit results for three samples. Cols 1-3. All data eccentric orbit results (Table A8). Cols 4-6. First226y-data eccentric
orbit results (Table A11). Cols 7-9. First185y-data eccentric orbit results (Table A12). Col 10. First185y-data period effect explained in
Sect. 5.5.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col8 Col 9 Col 10

All data: ∆T = 86171d, n = 2224 First226y-data: ∆T = 82602d, n = 2174 First185y-data: ∆T = 67680d, n = 1731

Table A8 Table A11 Table A12

[d] [d] [d] [d] [d] [d] Effect

M=3 P3 = 79999± 1216 A3 = 0.287± 0.005 M=3 P3 = 78589± 2004 A3 = 0.282± 0.007 M=4 P4 = 62992± 2499 A4 = 0.25± 0.01 Correct-p

M=3 P2 = 24742± 142 A2 = 0.029± 0.001 M=3 P2 = 24870± 190 A2 = 0.030± 0.008 M=4 P1 = 12370± 296 A1 = 0.018± 0.002 Half-p

M=3 P1 = 20358± 128 A3 = 0.013± 0.001 M=3 P1 = 20592± 172 A1 = 0.014± 0.002 M=4 P2 = 20037± 420 A2 = 0.015± 0.002 Correct-p

M=6 P2 = 7290± 29 A2 = 0.007± 0.001 M=6 P2 = 7287± 40 A2 = 0.007± 0.001 M=4 P3 = 15429± 222 A3 = 0.008± 0.002 Double-p

M=6 P1 = 680.4± 0.4 A2 = 0.0064± 0.0007 M=6 P1 = 680.3± 0.3 A1 = 0.0063± 0.0008 M=6 P1 = 679.6± 0.4 A1 = 0.0074± 0.0007 Correct-p

M=6 P2 = 3387± 17 A2 = 0.0051± 0.0008

Table A16. Detection limits (Sect. 6.2). Col 1. Candidate. Cols 2-5. Mass, period and semi-major axis (m3, p3, a3).
Cols 6-7. Radial velocity limits during ∆t = p3 (Eqs. 21-22: vmin, vmax). Cols 8-11. Distance change limits during
∆t = 5y and ∆t = 20y (Eqs. 23-24: ∆amin, ∆amax). Col 12-13. Proper motion limits (Eqs. 25-26: µmin, µmax).

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10 Col 11 Col 12 Col 13

m3 p3 a3 a3 vmin vmax ∆amin ∆amax ∆amin ∆amax µmin µmax

Table 1 During ∆t = p3 During ∆t = 5y During ∆t = 20y During ∆t = 1y

Candidate [m�] [y] [AU] [mas] [km/s] [km/s] [mas] [mas] [mas] [mas] [mas/y] [mas/y]

Algol H 2.50 219.0 44.7 1569 -2 10 4 225 64 888 0 47

Algol G 0.27 66.4 26.1 911 -8 16 25 427 379 1479 0 89

Algol F 0.43 33.7 16.2 572 -10 18 61 515 739 1144 0 109

Algol E 0.26 27.8 14.6 510 -12 20 79 547 835 1020 0 118

Algol D 0.24 20.0 11.7 416 -14 22 123 591 832 832 0 133

Algol C 1.2 1.9 2.1 75 -30 38 151 151 151 151 0 153
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Figure A4. All data: Unstable four signal eccentric orbit model periodograms (Table A8: M=4). Upper and lower panels
show long and short search periodograms (Eq. 10). Their colours are red (z1(f1)), blue (z2(f2)), green (z3(f3)) and yellow
(z4(f4)). Open diamonds denote locations of best frequencies. Their corresponding periods are P1 = 14912d, P2 = 20984d,
P3 = 26846d and P4 = 55172d (Table A8: M=4). Units are frequencies [f1] =, ...,= [f4] = d−1 and periodogram slices
[z1(f1)] =, ...,= [z4(f4)] = d.
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Figure A5. All data: Unstable four signal eccentric orbit model (Table A8: M=4). (a) Data (black dots), model g(t)
(continuous black line) and p(t) trend (dotted black line). (b) Data minus p(t) trend (black dots), g(t) minus p(t) (black
line), g1(t) signal (red line), g2(t) signal (blue line), g3(t) signal (green line) and g4(t) signal (yellow line). Signal periods are
P1 = 14912d, P2 = 20984d, P3 = 26846d and P4 = 55172d. Residuals (blue dots) are offset to -0.15 (dotted blue line). Units
are [t] = d and [y] = d.
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Figure A6. All data: Stable three signal eccentric orbit periodograms (Table A8: M=3). Best periods are at P1 = 20358d,
P2 = 24742d and P3 = 79999d. Otherwise as in Fig. A4.
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Figure A7. All data: Stable three signal eccentric orbit model (Table A8: M=3). Signal periods are P1 = 20358d, P2 = 24742d

and P3 = 79999d. Otherwise as in Fig. A5.

Figure A8. All data: Three signals yi,j (Eq. 20) of stable eccentric orbit model (Table A8: M=3). Each signal is plotted
as a function of time (t) and phase (φ). Signal curve colours are as in Fig. A7. Signal periods are P1 = 20358d, P2 = 24742d

and P3 = 79999d. Left-hand panel units are [t] = d and [h1(t)] = [h3(t)] = [h3(t)] = d. Right-hand panel units are [φ] =
dimensionless and [h1(t)] = [h3(t)] = [h3(t)] = d.



40 Jetsu

Figure A9. Periodograms for residuals ofM=3 model of all data (Fig. A7, blue dots): Two signal model periodograms (Table
A8: M=6). Best periods are at P1 = 680.d4 and P2 = 7290d. Otherwise as in Fig. A4.
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Figure A10. Model for residuals of M=3 model for all data (Fig. A7, blue dots): Two signals have periods P1 = 680.d4 and
P2 = 7290d (Table A8, M=6 model). Otherwise as in Fig. A5.

Figure A11. Signals in residuals of M=3 model for all data (Fig. A7, blue dots): Two signals yi,j (Eq. 20) have periods
P1 = 680.d4 and P2 = 7290d (Table A8, M=6 model). Otherwise as in Fig. A8.
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Figure A12. All data: Five signal circular orbit model periodograms (Table A10: M=2). Best periods are at P1 = 10144d,
P2 = 12294d, P3 = 24247d, P4 = 42422d and P5 = 120740d. Otherwise as in Fig. A4.
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Figure A13. All data: Five signal circular orbit model (Table A10: M=2). Signal periods are P1 = 10144d, P2 = 12294d,
P3 = 24247d, P4 = 42422d and P5 = 120740d. Otherwise as in Fig. A5.
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Figure A14. First185y-data eccentric orbit analysis (Sect. 5.3). Green line denotes g(t) model M=4+6 (Fig. 3). Dotted red
lines show models for 20 bootstrap samples. Last50y-data prediction begins from dotted vertical line. Continuous vertical line
is data turning point in Fig. 3b. Units are [t] = HJD and [O−C] = d.

Figure A15. Alternative configurations. Configuration 1. Eight members are cEB and six WOSs on circular orbits (Table 1:
i = 90o). In next configurations, red lines highlight differences from this first configuration. Configuration 2. Seven members are
cEB and five WOSs. Red lines illustrate a long-period 66.y4 binary on a distant 219.y0 orbit. Configuration 3. Eight members
are cEB and six WOSs. Red lines illustarate two long-period 55.y8 and 66.y4 binaries on a distant 219.y0 orbit.


