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Abstract 

Genetic risk factors play important roles in the etiology of oral, dental, and craniofacial diseases. 

Identifying the relevant risk loci and understanding their molecular biology could highlight new 

prevention and management avenues. Our current understanding of oral health genomics 

suggests that dental caries and periodontitis are polygenic diseases, and very large sample sizes 

and informative phenotypic measures are required to discover signals and adequately map 

associations across the human genome. In this paper, we introduce the second wave of the Gene-

Lifestyle Interactions and Dental Endpoints consortium (GLIDE2) and discuss relevant data 

analytics challenges, opportunities, and applications. In this phase, the consortium comprises a 

diverse, multi-ethnic sample of over 700,000 participants from 21 studies contributing clinical 

data on dental caries experience and periodontitis. We outline the methodological challenges of 

combining data from heterogeneous populations, and the data reduction problem in resolving 

detailed clinical examination records into tractable phenotypes and describe a strategy that 

addresses this. Specifically, we propose a 3-tiered phenotyping approach aimed at leveraging 

both the large sample size in the consortium and the detailed clinical information available in 

some studies, wherein binary, severity-encompassing, and ‘precision’, data-driven clinical traits 

are employed. As an illustration of the use of data-driven traits across multiple cohorts, we 

present an application of dental caries experience data harmonization in 8 participating studies 

(N=55,143) using previously developed permanent dentition tooth surface-level dental caries 

pattern traits. We demonstrate that these clinical patterns are transferable across multiple cohorts, 

have similar relative contributions within each study, and thus are prime targets for genetic 

interrogation in the expanded and diverse multi-ethnic sample of GLIDE2. We anticipate that 

results from GLIDE2 will decisively advance the knowledge base of mechanisms at play in oral, 

dental, and craniofacial health and disease and further catalyze international collaboration, and 

data- and resource-sharing in genomics research. 
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Introduction 

Oral diseases, mainly dental caries and periodontitis, affect approximately 3.5 billion people and 

are a major global burden of disease (Watt et al. 2020; Wen et al. 2021). Behavioral risk factors 

and social determinants of health are arguably the strongest influences on the development of 

common forms of oral disease (Peres et al. 2019). While upstream action and policy 

interventions are necessary to address these persistent diseases and associated health inequities, 

there is also a need to advance our understanding of the fundamental disease biology, which may 

help identify prime opportunities for intervention. To make headway in better diagnosing, 

predicting, and managing dental caries and periodontitis, we need to comprehensively 

characterize their genomic basis. To achieve this, the oral, dental, and craniofacial research 

community needs to leverage big data for discovery and translational applications. International 

collaboration and a focus on increasing diversity and inclusion of under-represented populations 

(Popejoy and Fullerton 2016; Agler and Divaris 2020) are essential to make decisive advances in 

the genomics evidence base for oral and dental conditions. 

The last decade has seen considerable activity in genomic studies of dental caries and 

periodontitis (Divaris 2019) and several recent reviews provide comprehensive summaries of the 

genomics evidence-base to date (Nibali et al. 2019; Morelli et al. 2020). Despite these efforts, 

decisive advances in genomic discovery with practical implications have yet to be made in the 

oral health domain. Discovered genetic variants to date for dental caries explain less than 2% of 

the observed variance versus an estimated ~50% possibly explainable by genomics, and there are 

only a handful of consensus replicable loci for common oral diseases compared to hundreds for 

other common, complex diseases like type 2 diabetes (Kim et al. 2021). Moreover, the dental 

genomics literature mainly comprises reports from individual cohorts and participants of 

European ancestry. The Gene-Lifestyle Interactions in Dental Endpoints (GLIDE) consortium 

was the first global effort aimed at advancing the field of dental genomics via the formation of a 

broad international collaboration network (Shungin et al. 2015). The first wave of GLIDE 

involved approximately half a million adult participants from 12 cohorts, 8 countries, and 3 

continents, and led to the discovery of 47 novel loci for dental caries (Shungin et al. 2019). 

Successful examples of concerted international collaboration, data, and resource sharing, in other 

genomics research areas include the Global Lipids Genetics Consortium (GLGC; Graham et al. 

2021), Population Architecture using Genomics and Epidemiology (PAGE) Study (Shungin et al. 

2015), and Global Biobank (Zhou et al. 2021) among others. These consortia benefit from very 

large sample sizes numbering in the millions of participants. Naturally, the inclusion of very 

large numbers of study participants across many different underlying cohorts comes with 

unavoidable limitations, including logistical issues and scientific challenges (Stingone et al. 

2017). The key scientific challenges usually involve harmonization of traits and analyses across 

studies with differences in population and sample characteristics, phenotype measurement or 

definition, and other methodological variations across contributing studies (Bennett et al. 2011). 



Dental caries and periodontitis have unique properties which require additional careful 

consideration. Despite a vast diversity in clinical presentations, both diseases are defined at the 

individual level (ICD codes K02.xx and K05.xx) and can be initially described using binary 

‘case status’ definitions. This is a logical first step in phenotype selection and one that maximizes 

sample size across participating studies. However, there is considerable and arguably 

biologically informative variability within each dental caries or periodontitis case which is not 

captured by dichotomous classifications. Therefore, more refined, clinically, and biologically 

informed classifications are considered next, creating an unavoidable trade-off between clinical 

precision, interpretability, and power for genetic discovery (Agler et al. 2019a). For the purposes 

of a GWAS, a data reduction step is necessary to convert detailed clinical information to 

analyzable traits—this can be done either by convention (e.g., a DMFS index) or using data-

driven approaches. The question then becomes, whether the latter approach is suitable and 

translatable across diverse populations with different oral disease experience. An equally 

important source of heterogeneity is tooth loss, which is itself a possible endpoint of both dental 

caries and periodontitis, with variable contributions across the age spectrum (Haworth et al. 

2018) that needs to be thoughtfully accounted for in the measurement of oral disease experience. 

Consideration of multiple traits, weighing theoretical assumptions and incorporating empirical 

sensitivity analyses are all part of consortium GWAS. Rigor in these big data analyses is key, 

with each proposed phenotype, having its own strengths and limitations, serving a different 

purpose in the quest for genomics discovery. Binary “naïve” case status definitions will allow the 

maximum inclusion of cohorts and participants, offering gains in power; severity encompassing 

traits, available in fewer cohorts and participants will leverage the recorded cumulative disease 

experience in a quantitative manner to identify risk conferring variants; caries patterns, available 

for a subset of cohorts, will leverage biologically informed disease subtypes to identify genetic 

signals underlying them.  

In this paper, we introduce GLIDE2, the evolution and expansion of the oral/dental genomics 

GLIDE consortium. First, we outline our strategy and rationale for big data harmonization in the 

study of dental caries following a 3-tiered phenotyping approach. We discuss challenges, 

opportunities, methodological considerations, and trade-offs emanating from the variation in 

available clinical information in the diverse participating cohorts. Then, we present an 

application of clinical dental caries experience data harmonization in GLIDE2 using previously 

developed permanent dentition dental caries pattern traits that are replicable and transferable 

across multiple population-based cohorts. 

Methods 

The GLIDE consortium is an international collaborative effort investigating oral health 

genomics. Previous efforts undertaken by GLIDE have been reported in two recent publications 

that included up to 487,823 adults from 12 contributing studies (Shungin et al. 2019) and 19,003 

children from 9 contributing studies (Haworth et al. 2018). One key limitation of these studies is 



that the initial GLIDE efforts relied heavily on self-reported and proxy data for caries and 

periodontitis. For example, only 26,792 participants out of a total 487,823 contributed clinical 

dental examination data for caries experience (Shungin et al. 2019). The consortium’s expansion 

increases the diversity of participating cohorts. GLIDE2 comprises 21 studies, contributing 

upwards of 700,000 participants for different dental caries or periodontitis analyses. All 

participating cohorts received ethics approvals by their local authorities and all participants 

provided written informed consent. In this paper, we focus our presentation on data 

harmonization processes and applications related to dental caries (Table 1). 

Streamlining dental caries experience analyses on such a large scale, while a unique opportunity, 

can be daunting. First, variation exists in what has been measured and how in terms of caries 

experience (Appendix Supplemental Cohort summaries and Supplemental Methods). The 

overarching approach for phenotype harmonization in GLIDE2 is 3-tiered (Figure 1). We begin 

by considering a broad definition of disease versus health (i.e., 1 or more decayed, missing, filled 

teeth or surfaces, DMFT/DMFS>0) to allow for the inclusion of the maximum number of 

participants from all contributing studies. Second, we consider a ‘consensus’ quantitative 

measure of disease experience with demonstrated clinical relevance (i.e., DMFT/DMFS indices). 

Third, like previous genomics studies, we derive and plan to carry forward to GWAS data-driven 

‘precision’ dental traits. The latter are clinically and biologically informative patterns (i.e., 

clusters) of dental caries experience based on tooth surface-level data, according to the work of 

Shaffer and colleagues (2013a). These disease subtypes, e.g., pit-and-fissure caries experience 

versus smooth surface caries experience, likely reflect etiologic and biological differences 

(Shaffer et al. 2012a; Shaffer et al. 2012b; Agler et al. 2019b) and are promising data-driven 

endpoints for genetic studies (Haworth et al. 2020; Shaffer et al. 2013b), consistent with 

subtyping efforts undertaken for other common-complex diseases, including obesity (Field et al. 

2013) and Parkinson’s disease (van Rooden et al. 2011). With this 3-tiered approach, we seek to 

leverage the unique features of GLIDE2: the case status analysis will maximize the sample size 

and statistical power, whereas the DMFS/DMFT quantitative analysis of caries experience will 

leverage information contained in disease severity, which is available for most cohorts. Finally, 

we will capitalize on all available tooth surface-level information on caries experience to carry 

out GWAS of permanent dentition caries clusters, that arguably contain more biological 

information than crude ones. To allow for the latter, it is imperative to understand whether these 

data-driven caries clusters generalize across cohorts. 

In this study, we first examine demographic (i.e., age and sex) and clinical (caries experience and 

remaining natural teeth) characteristics of participants from 8 studies that contribute information 

to caries pattern explorations (Table 2). We anticipate that data from the remaining 13 studies 

will become available in the near future, although not all studies will contribute information on 

caries patterns—i.e., we expect that ~72,000 participants will be included in this analysis, and 

thus our current sample is ~76% of the maximum target sample for this caries experience 

phenotype. These 8 studies are SIMPLER (Titova et al. 2021), STR (Zagai et al. 2019), 



MDC/MOS (Brunkwall et al. 2021), VIKING, COHRA1/Dental SCORE (Polk et al. 2008), 

COHRA2/COHRA Smile (Neiswanger et al. 2015), Periogene North, Iowa Fluoride Study 

(Wang et al. 2012), and OFC1/OFC2 (Leslie et al. 2016). The ascertainment of caries experience 

is harmonized at the moderate caries lesion threshold (ICDAS≥3 or D2; Young et al. 2015), 

which is characterized by visible enable breakdown or signs of dentin demineralization. Teeth 

missing due to all causes are included in the calculation of the ‘M’ component of the DMFS 

index, thereby creating a “tooth morbidity” DMTFS index in GLIDE2, consistent with previous 

genomics investigations (Shungin et al. 2019; Morelli et al. 2020). Our previous investigations 

among twins (Haworth et al. 2020) have showed that relative contributions from genetic and 

environmental factors are relatively stable over time in adulthood—justifying the combination of 

standardized estimates emanating from cohorts of different ages in the planned meta-analyses. 

Detailed information about the participating cohorts, parent studies and populations, methods, 

and phenotype, and genotype data availability is presented in the appendix (Appendix Table 1).  

The caries experience clusters employed in this study were first introduced by Shaffer and 

colleagues (2013a) who used hierarchical clustering of tooth-surface level information from all 

permanent teeth excluding third molars to identify five clusters of tooth surfaces with distinct 

patterns of caries experience. The existence of these clusters was verified in the National Health 

and Nutrition Examination Survey (NHANES, 1999-2000) data (Shaffer et al. 2013a) and in the 

Swedish GLIDE2 cohorts. In this paper, we do not derive these clusters de novo, but rather we 

use the clusters definitions reported in Shaffer and colleagues (2013a) to “score” each 

participating study, by adding surface-level caries experience data into five pre-defined groups of 

tooth surfaces, e.g., pits and fissures on molars (Appendix Table 2). We represent these patterns 

of caries experience using color-coded odontograms, i.e., annotated representations of the 

permanent dentition and investigate between-cohort differences. Finally, we conduct power 

analyses, comparing GLIDE2 with the first wave of GLIDE with clinical data. Data 

management, analyses, and figure creation were done using SAS version 9.4 (SAS Institute Inc., 

Cary, NC). 

Results 

Twenty-one studies (Table 1) contributed dental caries experience data in GLIDE2, a combined 

sample size of over 700,000 participants. As expected, the maximum sample size is available for 

binary case status analyses. Most studies (18/21) have quantitative caries experience information 

in the form of the DMFT or DMFS index. Eleven studies are expected to contribute tooth 

surface-specific data on caries experience, allowing for the application of the third level of data-

driven caries clusters. Here, we present information for eight of these cohorts that, as of February 

2022, have contributed data from 55,143 adults (Table 2).  

Demographic differences were evident in the analytic sample, both in terms of sample size and 

age. For example, the mean age was 74 years among 19,052 individuals in SIMPLER versus 23 



years among 253 individuals in the IFS. COHRA2 is a female-only sample while the other 

studies contained both male and female participants. The prevalence of edentulism ranged from 

under 1% in the youngest samples (i.e., COHRA2 and IFS) to over 5% in COHRA1, and the 

average number of remaining natural teeth (excluding third molars) ranged between 23 and 26. 

Across the consortium, most participants had caries experience (DMFT/DMFS>0), however 

there was an appreciable number of participants who were caries-free based on the study’s case 

definition, i.e., 5.7% (n=3,112 of 55,143) in the 8 studies included here. Differences were also 

evident in quantitative measures of caries experience, with high mean DMFS indices (above 55) 

in SIMPLER, MDC/MOS, and VIKING, versus low mean DMFS (under 25) for COHRA2 and 

IFS.  

We found that within-cluster caries experience paralleled the overall caries experience within 

each study, as well as participants’ mean age. The relative contribution (i.e., ordered rank) of 

each cluster was remarkably consistent across studies, with posterior teeth (two clusters 

involving molars and premolars) contributing the highest, and lower incisors exhibiting the 

lowest caries experience (Table 2). As expected, overall and within-cluster caries experience 

was lower among younger compared to older samples (Figure 2). Nevertheless, tooth surfaces 

with the highest susceptibility (i.e., molar pits and fissures) were consistent across cohorts, 

regardless of background caries rate.  

Power estimates (Figure 3) demonstrate that GLIDE2 has greater statistical power than GLIDE 

to detect caries-associated genetic variants with small effect sizes. For caries severity, we 

estimate GLIDE2 will have 80% power to detect individual variants each explaining 0.008% 

(i.e., less than one-hundredth of a percent) of variation in caries experience.    

Discussion 

In this paper, we introduced GLIDE2, the second study proposed by our international oral/dental 

genomics consortium, with improved clinical phenotypes, larger sample size and greater 

diversity than previous studies. We discussed the key challenges of interrogating the genomics of 

dental, oral, and craniofacial diseases in an international consortium and considered options to 

harmonize phenotypic data. We outlined a three-tiered phenotyping approach, including naive 

binary disease definitions to maximize sample size, quantitative caries experience indices, and 

data-driven, precision phenotypes encoding dental caries experience within distinct permanent 

dentition tooth surface clusters. We demonstrated that despite the unavoidable heterogeneity in 

population demographics and caries experience, these data-driven patterns are generalizable 

across the examined study populations and thus can be carried forward to GWAS meta-analyses 

in a larger group of GLIDE2 participating studies. We posit that this is justifiable even in the 

common scenario where clinical examination protocols and conditions differ. These unmodeled 

sources of variation contribute to unavoidable trait heterogeneity between studies and may 

reduce power to detect true signals. However, as long as clinical data are valid measures of the 



oral disease or endpoint under analysis, these differences are unlikely confounders of genetic 

associations, i.e., they will not generate spurious ones. We demonstrate that, using the approach 

described above, GLIDE2 will have unprecedented statistical power to discover genetic risk loci 

with modest effects on oral diseases, an important feature given their polygenic genetic 

architectures. Even if some of the identified variants may explain small proportions of disease 

variance, they can have profound impacts on disease biology and offer targets for prevention and 

therapy, e.g., GWAS-identified in HMGCR and PCSK9 may explain little phenotypic variance 

(Lu et al., 2017) but are very important targets for cardiovascular disease prevention (Ference et 

al., 2016). 

A key element of GLIDE2 is increased diversity and inclusion of under-represented populations, 

with the representation of multi-ethnic populations and studies conducted in Africa, Asia, 

Europe, North and South America. However, clinical examination data from traditionally under-

represented areas are still limited. The OFC1/OFC2 studies that include the most diverse 

representation are based on intraoral photographs and thus indirect assessments of dental health 

at the tooth-level. Thus, there is still a need to encourage genomics studies of oral health and 

disease among populations and global regions that are currently under-represented. Inclusion of 

multi-ethnic population samples should improve our ability to fine-map association signals and 

enable the development of transferrable polygenic risk scores (Graham et al. 2021), especially 

due to the enhanced ability to detect even small-in-magnitude signals for dental caries 

experience, periodontitis, and tooth loss. We will not employ a discovery-replication design and 

all cohorts will contribute to the discovery of genetic signals—but we will use methods such as 

MAMBA (McGuire et al., 2021) that examine the distribution of genetic effects to identify 

variants which are potentially non-replicable and those with high posterior probability for 

replication. 

Despite the variation in dental disease experience inherent in an international consortium, the 

data presented in this paper show it is feasible to harmonize traits and enable a well-powered 

GWAS. While this paper has focused on dental caries experience, the challenges and possible 

solutions are similar for periodontitis. Obviously, the maximum sample size will be only 

available for relatively naive traits of dental caries and periodontitis, i.e., binary case definitions. 

Accounting for disease severity will likely offer advantages in statistical power for discovery 

while maintaining a sizable analytical sample. Leveraging caries clusters, as demonstrated in this 

paper, is an important addition to available analytic endpoints, especially if genetic variant 

effects differ across clusters. These data-driven clusters were found to be consistent in terms of 

relative contribution across cohorts. In a recent study among a large sample of up to 41,678 

Swedish twins, a similar but slightly different cluster solution was identified (Haworth et al. 

2020). Despite some expected variation that would emerge if each cohort re-derived their own 

data-driven cluster solution, we have found that the use of a ‘consensus’ 5-level solution results 

in appreciable homogeneity, while these clusters have been shown to be clinically, as well as 

biologically informative.  



The inherent heterogeneity in population ancestry in GLIDE2 is likely to influence results. While 

this could initially be seen as a limitation, we posit that it is a relative strength and an opportunity 

that can be leveraged analytically. In a multi-ethnic meta-analysis, highest power will be 

obtained for signals that are homogeneous across ancestral populations, while signals that are 

heterogeneous would be harder to discover. On the other hand, multi-ethnic samples could allow 

for better fine mapping of association signals in risk loci and help produce more informative and 

representative polygenic risk scores. The GWAS results can also form the substrate for a second 

tier of harmonization to further boost power by adjusting away differences in measurement 

between traits (Luningham et al. 2019), borrowing information across traits using multi-trait 

analysis of GWAS summary statistics. Additionally, we expect that GLIDE2 results will inform 

Mendelian Randomization studies and other explorations of shared biology between oral and 

systemic health traits. All these advanced post-GWAS strategies will rely on the well-conducted, 

carefully phenotyped, adequately powered, and informative ‘basic’ GLIDE2 GWAS. Geared 

towards transparency, reproducibility, and value creation for the community (Schwendicke et al. 

2022), GLIDE2 summary results will be publicly shared, like the publicly deposited first GLIDE 

study results (https://data.bris.ac.uk/data/).  

In conclusion, data-driven approaches are both suitable and necessary for the purposes of 

harmonization of oral health endpoints in large-scale, consortium-level applications such as 

GLIDE2. There are unavoidable trade-offs between detailed clinical measures and power for 

genetic discovery—to overcome those, we propose the utilization of multiple, complementary 

approaches for trait harmonization. We anticipate that results from GLIDE2 will advance the 

knowledge base of mechanisms at play in oral, dental, and craniofacial health and disease and 

further catalyze international collaboration, data- and resource-sharing in genomics research.  
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TABLES 

Table 1. Overview of the 21 cohorts contributing to the 3-tiered phenotyping approach for dental caries 

experience analysis in GLIDE2. 

Cohort Region N Caries traits available for GWAS 

   Prevalence Severity Patterns 

ARIC United States 5,527 ✓ ✓*  

CCDG: COHRA1/ Dental 

SCORE 
United States 1,810 ✓ ✓ ✓ 

CCDG: COHRA2/COHRA 

Smile 
United States 1,185 ✓ ✓ ✓ 

CCDG: OFC1/OFC2 

Africa, Asia, 

Europe, N. 

America, S. 

America 

4,967 ✓ ✓*†  

EstBB Estonia ~200,000 ✓   

FinnGen Finland ~390,000 ✓ ✓*  

Generation Scotland Scotland ~18,000 ✓   

Health 2000/2011 Finland 7,831 ✓ ✓*  

HUNT4 Norway 4,933 ✓ ✓ ✓ 

IFS United States 253 ✓ ✓ ✓ 

MDC/MOS Sweden 11,176 ✓ ✓ ✓ 

NFBC1966 Finland 1,483 ✓ ✓  

Parogene Finland 508 ✓ ✓*  

Periogene North Sweden 995 ✓ ✓ ✓ 

SHIP START Germany 3,362 ✓‡ ✓‡  

SHIP TREND Germany 944 ✓‡ ✓‡ ✓ 

SIMPLER Sweden 19,052 ✓ ✓ ✓ 

SOL United States 11,816 ✓ ✓ ✓ 

TWINGENE/STR Sweden 16,849 ✓ ✓ ✓ 

ToMMo Japan 5,360 ✓   

VIKING Sweden 3,823 ✓ ✓ ✓ 

Total  706,512 706,512 483,152 72,836 

*tooth-level (i.e., DMFT data) available only; †based on assessment of intra-oral photographs; ‡based on half-

mouth clinical examinations 

 



 

 

 

 

 

 

 

 

 

 

  

Table 2. Demographic and clinical characteristics of participants in 8 cohorts contributing to dental caries clusters 

harmonization.  

  Demographics Natural teeth 

Binary 

caries case 

status 

Quantitative caries 

experience  

Tooth surface-level caries clusters (Shaffer et al. 

2013a) 

Cohort N Age Women 

Edentu

lous N teeth DMTFS/T>0 DMTFT DMTFS 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

    

mean 

(SD) % % 

mean 

(SD) n (%) 

mean 

(SD) 

mean 

(SD) 

mean 

(SD) 

mean 

(SD) 

mean 

(SD) 

mean 

(SD) 

mean 

(SD) 

SIMPLER 19,052 
73.6 

(8.0) 
33.7 1.4 

23.2 

(6.3) 
17,416 (91.4) 

14.8 

(8.8) 

55.0 

(35.4) 

0.65 

(0.35) 

0.14 

(0.28) 

0.58 

(0.33) 

0.39 

(0.38) 

0.38 

(0.32) 

TWINGENE/ STR 16,849 
48.7 

(19.0) 
58.2 0.3 

26.0 

(3.9) 
15,893 (94.3) 

12.3 

(7.9) 

35.7 

(31.4) 

0.56 

(0.35) 

0.06 

(0.18) 

0.40 

(0.33) 

0.21 

(0.30) 

0.22 

(0.27) 

MDC/MOS 11,176 
67.9 

(17.9) 
63.4 0.9 

23.6 

(5.9) 
10,874 (97.3) 

17.8 

(7.5) 

62.9 

(34.2) 

0.74 

(0.31) 

0.17 

(0.28) 

0.65 

(0.32) 

0.45 

(0.38) 

0.46 

(0.33) 

VIKING 3,823 
63.8 

(8.0) 
63.4 0.9 

24.7 

(4.9) 
3,772 (98.7) 

17.3 

(7.8) 

55.9 

(31.7) 

0.73 

(0.31) 

0.13 

(0.23) 

0.60 

(0.31) 

0.38 

(0.34) 

0.37 

(0.30) 

CCDG: COHRA1/ 

Dental SCORE 
1,810 

43.8 

(15.7) 
64.6 5.1 

23.1 

(7.2) 
1,763 (97.4) 

13.7 

(7.3) 

44.1 

(34.3) 

0.73 

(0.28) 

0.10 

(0.25) 

0.46 

(0.34) 

0.29 

(0.37) 

0.26 

(0.31) 

CCDG: COHRA2/ 

COHRA Smile 
1,185 

32.4 

(6.2) 
100 0.7 

26.4 

(3.7) 
1,109 (93.6) 

8.7 

(6.4) 

22.7 

(23.7) 

0.53 

(0.33) 

0.03 

(0.12) 

0.24 

(0.46) 

0.13 

(0.25) 

0.11 

(0.20) 

Periogene North 995 
49.0 

(13.1) 
57.6 0 

25.6 

(3.8) 
951 (95.6) 

12.0 

(7.5) 

34.1 

(29.8) 

0.58 

(0.32) 

0.07 

(0.18) 

0.38 

(0.31) 

0.20 

(0.30) 

0.19 

(0.26) 

IFS 253 
22.7 

(1.8) 
56.5 0 

24.7 

(2.9) 
243 (96.0) 

4.0 

(3.3) 

7.1 

(8.9) 

0.23 

(0.24) 

0.01 

(0.04) 

0.05 

(0.09) 

0.03 

(0.09) 

0.05 

(0.12) 

Mean and standard deviation (SD) of caries experience is presented for each cluster, computed as the cluster-specific DMFS 

divided by the number of tooth surfaces in the cluster. 

The labeling of caries clusters corresponds to the nomenclature of Shaffer et al. (2013a) as follows: Cluster 1, molar pits & 

fissures; Cluster 2, lower anterior teeth; Cluster 3, molar smooth surfaces, premolar pits and proximal surfaces; Cluster 4, 

maxillary incisors; Cluster 5, maxillary canines and premolar smooth surfaces. A visual representation of surfaces 

contributing to these clusters is presented in Figure 2 and the exact derivation is presented in Appendix Table 2.  



FIGURE LEGENDS 

Figure 1. Illustration of the 3-level phenotyping definition strategy employed in GLIDE2 for 

dental caries experience analysis. The maximum sample size is achieved for the relatively naïve 

trait of binary caries case status (i.e., DMFT/DMFS>0). Second, we consider a quantitative 

measures of caries experience with demonstrated clinical relevance (i.e., DMFT/DMFS indices). 

Third, we employ data-driven tooth surface-level caries experience clusters that are available for 

a subset of participating studies. 

Figure 2. Caries experience (defined as the mean proportion of caries-affected surfaces within 

each cluster) differs among the five caries clusters in GLIDE2 with similar patterns across all 

GLIDE2 cohorts (a). Caries experience in these caries clusters increases with age in the GLIDE2 

cohorts (a), mirroring the overall increase in DMFS with age; (b) The size of markers is scaled to 

the number of participants in the participating studies. Regression lines and standard errors are 

estimated from inverse standard error-weighted linear meta-regression models. Cluster 

membership is illustrated on the odontogram (c) and colors in the legend refer to the cluster 

numbers given in Table 2. 

Figure 3. Power (y-axis) to detect genetic association in (A-C) the GLIDE2 consortium and (D-

E) the original GLIDE sample with available clinical data, for a range of effect sizes [odds ratio 

(OR) for caries prevalence, beta coefficient (i.e., per allele difference in units of trait standard 

deviation) for caries severity and patterns] across a spectrum of minor allele frequencies (x-axis).  


