
https://helda.helsinki.fi

Energy-Efficient Service Placement for Latency-Sensitive

Applications in Edge Computing

Premsankar, Gopika

2022-09-15

Premsankar , G & Ghaddar , B 2022 , ' Energy-Efficient Service Placement for

Latency-Sensitive Applications in Edge Computing ' , IEEE internet of things journal , vol. 9 ,

no. 18 , pp. 17926 - 17937 . https://doi.org/10.1109/JIOT.2022.3162581

http://hdl.handle.net/10138/349870

https://doi.org/10.1109/JIOT.2022.3162581

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

17926 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Energy-Efficient Service Placement for
Latency-Sensitive Applications

in Edge Computing
Gopika Premsankar and Bissan Ghaddar

Abstract—Edge computing is a promising solution to host arti-
ficial intelligence (AI) applications that enable real-time insights
on user-generated and device-generated data. This requires edge
computing resources (storage and compute) to be widely deployed
close to end devices. Such edge deployments require a large
amount of energy to run as edge resources are typically overpro-
visioned to flexibly meet the needs of time-varying user demand
with a low latency. Moreover, AI applications rely on deep neu-
ral network (DNN) models that are increasingly larger in size
to support high accuracy. These DNN models must be efficiently
stored and transferred, so as to minimize their energy consump-
tion. In this article, we model the problem of energy-efficient
placement of services (namely, DNN models) for AI applica-
tions as a multiperiod optimization problem. The formulation
jointly places services and schedules requests such that the overall
energy consumption is minimized and latency is low. We propose
a heuristic that efficiently solves the problem while taking into
account the impact of placing services across time periods. We
assess the quality of the proposed heuristic by comparing its
solution to a lower bound of the problem, obtained by formulat-
ing and solving a Lagrangian relaxation of the original problem.
Extensive simulations show that our proposed heuristic outper-
forms baseline approaches in achieving a low energy consumption
by packing services on a minimal number of edge nodes, while
at the same time keeping the average latency of served requests
below a configured threshold in nearly all time periods.

Index Terms—Deep neural network (DNN) model placement,
edge computing, optimization, service placement.

I. INTRODUCTION

EDGE computing allows applications to be hosted closer
to end users by bringing computing, storage, and

networking resources to the edge of the network [1]–[3]. Edge
computing has the added benefit of reducing the amount of
data that has to be sent to the cloud, which is beneficial
for Internet of Things (IoT) applications that process high-
bandwidth data in a privacy-preserving manner (e.g., live video

Manuscript received 30 November 2021; revised 15 February 2022;
accepted 17 March 2022. Date of publication 28 March 2022; date of current
version 7 September 2022. The work of Gopika Premsankar was supported in
part by the Academy of Finland under Grant 338854 and in part by the Postdoc
Pool Grant from the Finnish Cultural Foundation. The work of Bissan Ghaddar
was supported in part by the David G. Burgoyne Faculty Fellowship and
in part by the NSERC Discovery under Grant 2017-04185. (Corresponding
author: Gopika Premsankar.)

Gopika Premsankar is with the Department of Computer Science, University
of Helsinki, 00560 Helsinki, Finland (e-mail: gopika.premsankar@helsinki.fi).

Bissan Ghaddar is with Ivey Business School, Western University, London,
ON N6G 0N1, Canada (e-mail: bghaddar@ivey.ca).

Digital Object Identifier 10.1109/JIOT.2022.3162581

analytics) [4], [5]. Recently, IoT applications that rely on arti-
ficial intelligence (AI) to draw insights from data generated by
end-devices are increasingly being deployed on the edge [5],
[6]. Such applications rely on inference from deep neural
network (DNN) models on device-generated data. DNN mod-
els are hosted on the cloud today [7], [8], and are expected
to run on the edge to support real-time, privacy-preserving
and low-latency applications [2], [5]. This reduces the need
to run inference on resource-constrained, battery-powered IoT
devices while still meeting strict latency constraints [6].

Edge computing requires storage and compute resources
to be widely distributed close to the end devices generating
data. Edge resources must be always-on and overprovisioned
to support on-demand, flexible scaling of applications to meet
user demand [9], [10]. Such edge deployments require a large
amount of energy to run, and contribute to the already-high
energy consumption of the cloud today [11]. A recent study
has shown that the overall utilization of edge computing infras-
tructure is lower than cloud data centers [12], implying that
edge servers are even more overprovisioned than in the cloud.
Moreover, the AI applications targeted to run on the edge
increasingly rely on computationally expensive and large DNN
models [8]. As mobile network operators deploy edge-based
AI applications, the energy consumption of running DNN
inference increases the operating expenditure of network oper-
ators [13]. Thus, there is an urgent need to design solutions that
intelligently manage resources for DNN inference, i.e., how
DNN models are stored, transferred, and run [8], to minimize
energy consumption.

This article considers the optimal placement of services, i.e.,
DNN models, and scheduling of requests for AI applications
on edge nodes (ENs) such that the energy consumed by ENs is
minimized and the latency experienced by end devices is low.
The problem is challenging as a solution that minimizes con-
sumed energy must consolidate workloads by placing services
on a few ENs. However, the latency of serving requests from
end devices must remain low despite the lower number of
available ENs. Previous research has either minimized the
latency experienced by users [14], [15] or considered fixed
energy budgets for ENs [16]. Next, edge workloads have
predictable patterns [12], which may be used to decide a
placement strategy for future time periods [17]. However, the
optimal placement of services in ENs over multiple time peri-
ods is challenging to solve efficiently. This is because loading
a service on an EN at the beginning of a time slot incurs in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3463-6077
https://orcid.org/0000-0003-4695-200X

PREMSANKAR AND GHADDAR: ENERGY-EFFICIENT SERVICE PLACEMENT 17927

an overhead (e.g., due to the cost of downloading data over
the network or loading data in memory); thus, energy-efficient
placement decisions in a particular time period are dependent
on whether the service is already present on a particular EN.
Solving for the optimal placement of services in each time slot
individually may result in a suboptimal solution over multiple
time periods [17] unless the dependencies between time slots
are captured in the formulation of the optimization problem.

The contributions of our work are threefold. First, we pro-
pose a novel multiperiod optimization problem that places
services (DNN models) on ENs such that energy consumed
is minimized while at the same time ensuring requests are
served on average within a certain latency. The formulation
decides both a placement plan for the DNN models and frac-
tion of requests to be assigned to each EN for future time
periods. It takes into account the effect of loading DNN models
across multiple time periods, the limited capacity of ENs, and
requirements to replicate services on multiple ENs. Second,
we propose a heuristic that efficiently solves the problem in a
step-by-step manner by taking into account the models placed
in the previous time period. Third, we utilize a Lagrangian
relaxation to exploit the structure of the multiperiod problem
and decompose the problem into individual time periods. By
solving the Lagrangian relaxation iteratively, we obtain a lower
bound on the original multiperiod problem. This lower bound
provides quality guarantees on our proposed heuristic. Finally,
we evaluate our solution in several network instances as well
as with real traces from a cloud provider. Our solution outper-
forms baseline approaches across different network instances
in achieving a low energy consumption by packing services
on minimal number of ENs, while at the same time keeping
the average latency of served requests below the configured
threshold in nearly all time periods. The solutions are on
average within 1.9% of the lower bound obtained with the
Lagrangian relaxation; this indicates a high-quality solution
for the heuristic.

The remainder of this article is organized as follows.
Section II reviews the state of the art. Section III presents
the optimization problem, the Lagrangian relaxation of the
multiperiod model, and the heuristic to solve the original
problem. Section IV evaluates the proposed heuristic against
baseline approaches. Finally, Section V provides concluding
remarks.

II. RELATED WORK

Placement of Services in Edge Computing: The placement
of services in edge computing has been studied from various
perspectives including increasing user throughput, reducing
delay, or reducing energy consumed by end devices [10], [14]–
[19]. We discuss the most relevant work next. Gao et al. [14]
optimized the service placement in ENs such that the total
delay experienced by users is minimized, given the mobil-
ity patterns of users. They propose an iterative framework
that decomposes the problem into individual mixed-integer
programming subproblems that are then solved using a com-
mercial optimization solver. Sun et al. [15] optimized the
placement of services considering the mobility of users, and

aim to minimize user-experienced delay while constraining the
energy consumed by each end-device. They propose a solution
based on Lyapunov optimization and multiarmed bandit frame-
work. However, they do not consider the energy consumption
of ENs, and focus on energy-efficiency of end-devices. In
contrast, our work aims to minimize the energy consumed
by ENs, while constraining the average latency experienced
by end users. Badri et al. [16] aimed to place applications
on ENs based on the mobility patterns of end users. They
identify the energy consumption of ENs as an important fac-
tor in placement decisions. Accordingly, they formulate an
optimization problem that includes a fixed energy budget
for ENs in the constraints. In contrast, we aim to minimize
the total energy consumed by all ENs. The literature described
above focuses on user-centric metrics, which, thus, require
considering mobility patterns of users. In contrast, we focus
on application-specific latency metrics as typically defined by
cloud (or edge) provider service-level objectives [10], [20].
Farhadi et al. [17] considered the service placement and
scheduling of requests to the ENs with the objective of max-
imizing the number of served requests in each time slot. The
formulation does not consider the energy costs or latency expe-
rienced by users. The authors develop a two-stage approach
to solve the placement and scheduling problem in each time
slot, but leave the multiperiod formulation to future work.
In contrast, our formulation considers the impact of placed
services over multiple time periods, and aims to keep the
average latency of requests below application-specific thresh-
olds. Poularakis et al. [21] aimed to place services and route
requests to maximize the number of requests served by ENs
(i.e., equivalently minimize the number of requests sent to the
cloud) while meeting resource utilization constraints at ENs.
Their formulation does not consider the impact on latency. The
problem of maximizing the number of requests is a variation
of the knapsack problem, where items have to be placed into
knapsacks (bins) of fixed capacity. In contrast, our formula-
tion aims to minimize the number of running ENs, and is a
variation of the bin packing problem [22]. Nguyen et al. [10]
proposed an application provider-centric optimization problem
for placing individual services on ENs. Their objective is
to minimize the total cost of the application provider for
deploying a single application. However, this does not include
the energy costs of running applications on the EN. In con-
trast, we aim to consolidate load on the running ENs to
minimize the number of ENs that run multiple applications.
Recently, reinforcement learning (RL)-based approaches have
been proposed to place services and to schedule requests.
Sami et al. [23] proposed a deep RL approach to place
services on ENs with the objective of minimizing the num-
ber of ENs, number of services that are not placed, number of
requests that are not served, and the distances between ENs
and users. However, their work does not consider the schedul-
ing of requests to ENs once the services are placed, and
the cost of the solution fluctuates from the optimal in a few
cases. Hao et al. [24] proposed a deep RL-based approach
to service placement and workload scheduling such that
latency of service requests is minimized. However, they do
not consider the energy consumed by ENs. The RL-based

17928 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Fig. 1. System model.

approaches aim to place services and schedule requests in
a single time period and in an online manner, whereas we
focus on optimizing the placement across multiple time peri-
ods assuming that the demand can be predicted ahead of
time.

Energy-Efficient Data Centers: The consolidation of work-
loads [e.g., running virtual machines (VMs)] to minimize the
energy consumed by cloud data centers has been studied exten-
sively [25], [26]. Dai et al. [27] proposed an optimization
problem to minimize the total energy consumed by servers
running VMs. Each VM must be assigned to only one server
and VMs assigned to a server must not exceed the capacity
constraints. The authors propose two greedy approximation
algorithms to solve the problem. Zhou et al. [26] surveyed sev-
eral state-of-the-art algorithms to consolidate and migrate VMs
on cloud servers to minimize energy consumption. They pro-
pose a modified version of the best-fit-descending algorithm
for bin packing. The VMs are long-running applications that
span multiple time periods. The surveyed articles do not con-
sider the scheduling of requests to shared VMs nor the latency
of serving requests to users. Thus, the existing solutions can-
not be directly applied to the energy-efficient placement of
services on ENs.

III. ENERGY-EFFICIENT PLACEMENT

OF SERVICES IN EDGE NODES

The target scenario (Fig. 1) comprises an edge (or cloud)
service provider that has deployed a set of ENs to provide
computational resources (e.g., GPUs) for DNN inference. The
DNN models are pretrained and can be run either in the
cloud or on an EN. End devices are connected to the nearest
base station, and devices generate requests for DNN infer-
ence. The ENs are located close to end devices, and thus,
are able to run inference and return the output with very
low latency. The cloud provides computational resources for
DNN inference, albeit, with a higher network latency. Edge
service providers define a service-level objective that speci-
fies the average latency for obtaining a response from a DNN
model [8], [20]. To ensure that ENs can serve requests within
this time limit, the appropriate DNN model(s) must be loaded
in their memory and ready to serve any incoming requests.
However, loading DNN models in memory increases the idle

power of GPUs and can result in significant wasted energy
when the number of incoming requests is low [28]. To this
end, this article proposes an optimization problem that deter-
mines a placement plan that describes the DNN models that
must be loaded at ENs during future time periods based on
known demand patterns. Such a plan ensures that an edge ser-
vice provider can meet the strict latency requirements of tasks
while at the same time minimizing the energy consumed by
the edge infrastructure.

A. System Model

Let J denote the set of ENs, and S denote the set of pre-
trained DNN models. Each EN is assumed to be equipped
with a single GPU. Given the (predicted or average) demand
in each future time slot t, the objective is to determine an
optimal placement of DNN models in each EN such that
energy is minimized and stringent latency constraints are met.
The duration of each time slot t is equal to � seconds and
there are T time slots in total. Several DNN models can be
served on a single EN, and models can be cached in GPU
memory to reduce expensive load operations and minimize
latency [20]. Accordingly, decision variable xs,j,t indicates
whether the DNN model s is loaded on EN j in time slot
t. End devices submit their DNN inference requests through
a set of base stations I, and the demand (di,s,t) for infer-
ence exhibit variation over time [29]. For instance, vehicular
applications may show different diurnal patterns than those for
health-monitoring applications. Also, there may be regional
variations due to the location of the actual base stations. The
requests from each base station can be assigned to an EN j or
to the cloud. Accordingly, N denotes the set of all compute
nodes, including both the ENs in J (j ∈ {1, 2, 3, . . . , |J |})
and the cloud ({0}). The latency between the base stations
and each compute node is represented by ti,n, and is obtained
as an average based on regular measurements. Variable wi,s,n,t

indicates the fraction of total requests from base station i for
model s that are assigned to compute node n in time slot t. This
variable is known as a shadow scheduling variable; although
this does not necessarily need to be used for actual schedul-
ing, it is crucial to evaluate the placement of models in the
compute nodes [17]. Finally, edge service providers define a
target latency threshold (Ls) for each model s to indicate that
the requests for this model must be served on average within
Ls milliseconds.

B. Optimization Problem

We now present our service placement optimization problem
called SPO. Table I summarizes the notation used in SPO.
The objective is to minimize the energy consumed by
the ENs while at the same time ensuring that the requests
for each model s are served within the target latency thresh-
olds (Ls). ENs are equipped with GPUs that are not energy-
proportional, i.e., they consume a large portion of energy
even if not serving any demand [28]. Thus, significant savings
should be possible by switching off under-utilized GPUs and
consolidating the inference tasks on a few ENs. Accordingly,

PREMSANKAR AND GHADDAR: ENERGY-EFFICIENT SERVICE PLACEMENT 17929

TABLE I
SUMMARY OF NOTATION IN THE OPTIMIZATION PROBLEM

a higher cost (fj) is set to switch on an EN, and an opera-
tional cost (gj) captures the increase in energy consumed as
more demand is assigned to it. However, to avoid solutions
where all requests are assigned to the cloud, it is also nec-
essary to include a cost for scheduling requests to the cloud,
denoted by hs. This represents the additional overhead in send-
ing requests to the cloud. Next, there is a cost ps associated
with exceeding the average expected latency for each model
(γs,t). Finally, there are energy costs associated with loading
the model in GPU memory, as well as downloading the model
for the first time at EN j. These costs are denoted by cl and cd,
respectively, where cl represents the cost for loading a model
in an EN’s memory [20], [28], whereas cd represents the cost
associated with downloading the model at the beginning of a
time slot, denoted by ONs,j,t. Note that cd is typically higher
than cl as it includes the overhead involved in transferring the
model’s weights from memory to GPU [20] and downloading
the model weights from a different EN or the cloud. On the
other hand, there is no extra cost with loading the model in the
cloud as all DNN models are assumed to exist in the cloud.
Finally, there is no cost associated with removing a model

from EN j. Thus, the final objective function is as follows:

min
∑

t

∑

j

fjzj,t +
∑

t

∑

j

∑

i

∑

s

gj · vsdi,s,twi,s,j,t

Cj

+
∑

t

∑

i

∑

s

hswi,s,0,t +
∑

t

∑

s

psγs,t

+
∑

t

∑

s

∑

j

clxs,j,t +
∑

t

∑

s

∑

j

cdONs,j,t. (1)

The constraints are as follows.
1) Loading Constraint: Binary variable ONsj represents

whether model s is loaded for the first time on EN j in
time slot t, i.e., when the model was not already loaded
in the previous time slot (xs,j,t−1)

− xs,j,t−1 + xs,j,t − ONs,j,t ≤ 0 ∀j ∈ J , s, t. (2)

2) Scheduling Constraints: The demand for model s can
be assigned to EN j only if the model is loaded, where
M1 = |I|

∑

i

wi,s,j,t ≤ M1xs,j,t ∀j ∈ J , s, t. (3)

Next, all incoming requests must be scheduled to an EN
or to the cloud

∑

j

wi,s,j,tdi,s,t + wi,s,0,tdi,s,t = di,s,t ∀i, s, t. (4)

3) An EN j is required to be on in time slot t if any model
s is loaded on it, where M2 = |S|

∑

s

xs,j,t ≤ M2zj,t ∀j ∈ J , t. (5)

4) Capacity Constraints: The requests being served by EN j
cannot exceed its compute or memory capacity. The
computational requirements of DNN inference are char-
acterized by giga operations per input byte [30], [31];
accordingly, vs indicates the number of giga operations
required per incoming request. Parameter Cj denotes the
maximum number of giga operations per second that a
GPU can support. The capacity is restricted to 70% of
the total available compute, as is common in data cen-
ter servers, where the utilization should never exceed
70% [32]

∑

s

vs

∑

i

di,s,twi,s,j,t ≤ 0.7Cj ∀j ∈ J , t. (6)

Next, the memory required to load a DNN model and
serve the scheduled requests cannot exceed the memory
capacity of EN j (denoted by Memj). Here, we con-
sider the memory required for loading the model [20]
and limit the memory allocated to loaded models to
70% (7). The input data may be potentially large for
certain image or video-based applications that require
inference to be run on high-resolution data. Thus, the
total memory, including that required to load the input
data in user requests, is restricted to 95% of the total
memory capacity (8)

∑

s

msxs,j,t ≤ 0.7 Memj ∀j ∈ J , t (7)

17930 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

∑

s

msxs,j,t +
∑

i
∑

s wi,s,j,tdi,s,tks

�

≤ 0.95 Memj ∀j ∈ J , t. (8)

5) Latency Constraint: The requests for each model s must
be served on average within a certain threshold, Ls, in
each time slot t. First, to quantify the impact of load-
ing the model on average latency [20], variable δi,s,j,t

is introduced to represent the fraction of requests that
are served by model s on EN j in time slot t if the
model is loaded in that particular time slot. In particu-
lar, δi,s,j,t represents the product of ONs,j,t and wi,s,j,t,
i.e., the product of a binary and continuous variable.
Accordingly, δi,s,j,t is linearized through

δi,s,j,t ≤ wi,s,j,t ∀j ∈ J , i, s, t (9)

δi,s,j,t ≤ ONs,j,t ∀j ∈ J , i, s, t (10)

δi,s,j,t ≥ wi,s,j,t − (
1 − ONs,j,t

) ∀j ∈ J , i, s, t (11)

δi,s,j,t ≥ 0 ∀j ∈ J , i, s, t. (12)

The average latency for model s includes the time
required to load the memory weights on EN j and the
time required to send the requests from BS i to EN j
or compute node 0 (representing the cloud), where ti,n
represents the latency between the BS i and the compute
node n. The parameter γs,t represents the slack variable,
that is, penalized in the objective function (i.e., if the
latency threshold Ls is exceeded)

∑
i
∑

j δi,s,j,tdi,s,tls

�
∑

i di,s,t
+

∑
i ti,0wi,s,0,tdi,s,t∑

i di,s,t

+
∑

i
∑

j ti,jwi,s,j,tdi,s,t∑
i di,s,t

≤ Ls + γs,t ∀s, t. (13)

6) Resilience Constraint: Each application must be hosted
on at least Rs ENs for resilience. This is required so
that edge service providers can provide reliable services
even if an EN fails [10].

∑

j

xs,j,t ≥ Rs ∀s, t. (14)

7) Constraints on Variables: Finally, the following con-
straints specify valid ranges for the variables:

γs,t ≥ 0 ∀s, t (15)

0 ≤ wi,s,n,t ≤ 1 ∀i, s, n, t (16)

xs,j,t ∈ {0, 1} ∀j ∈ J , s, t (17)

ONs,j,t ∈ {0, 1} ∀j ∈ J , s, t (18)

zj,t ∈ {0, 1} ∀j ∈ J , t. (19)

The single-period version of SPO is related to the well-
known bin packing problem [22] and distributed caching
problem [33], [34] with additional constraints. The objective
of a general bin packing problem is to pack items of dif-
ferent volumes into a minimum number of capacitated bins.
In addition, our formulation aims to meet the service latency
thresholds when assigning items to bins. Moreover, certain
items must be packed on Rs or more bins. On the other hand,

the objective of the distributed caching problem is to mini-
mize storage costs and access latencies. Both sets of problems
are known to be NP-complete [22], [33]. Our formulation also
incorporates the effect of placing DNN models across multiple
time periods; specifically, the items placed in each time period
also depend on the items placed in the previous time period
(2). However, linking the time periods increases the difficulty
of the problem. In the next section, we exploit the structure of
the problem by utilizing a Lagrangian relaxation to decompose
the problem and obtain a lower bound.

C. Lagrangian Relaxation

Lagrangian relaxation is a well-known relaxation method
to obtain a bound on difficult optimization problems [35]. It
has been widely used in vehicle routing [36], water pump
scheduling [37], and more recently in orchestration of services
in edge networks [38]. In our formulation, constraint (2) links
the time periods and complicates the problem. Relaxing this
constraint decomposes the original problem into smaller prob-
lems that can be solved individually. Accordingly, we apply a
Lagrangian relaxation to constraint (2) with multiplier μ, to
obtain the following the subproblem ZLR(μ):

min
∑

t

∑

j

fjzj,t +
∑

t

∑

j

∑

i

∑

s

gj · vsdi,s,twi,s,j,t

Cj

+
∑

t

∑

i

∑

s

hswi,s,0,t +
∑

t

∑

s

psγs,t

+
∑

s

∑

j

∑

t

clxs,j,t +
∑

s

∑

j

∑

t

cdONs,j,t

+
∑

s

∑

j

∑

t

μs,j,t
(−xs,j,t−1 + xs,j,t − ONs,j,t

)
(20)

s.t. (3)−(19)

μs,j,t ≥ 0. (21)

The terms in the objective function can be rearranged to group
the variables based on the time period t. For example, if there
are three time periods, the terms related to the Lagrangian
multiplier μ are as follows:

∑

s,j

μs,j,1
(−xs,j,0 + xs,j,1 − ONs,j,1

)

+μs,j,2
(−xs,j,1 + xs,j,2 − ONs,j,2

)

+ μs,j,3
(−xs,j,2 + xs,j,3 − ONs,j,3

)
.

By gathering terms according to the time period t, we obtain
∑

s,j

−μs,j,1xs,j,0 + xs,j,1
(
μs,j,1 − μs,j,2

) − μs,j,1ONs,j,1

+ xs,j,2
(
μs,j,2 − μs,j,3

) − μs,j,2ONs,j,2 + xs,j,3μs,j,3

− μs,j,3ONs,j,3.

Since no DNN models are placed initially, the first term
containing xs,j,0 can be removed, and the remaining terms are
grouped by time slot t. Accordingly, in the general case, the
problem ZLR(μ) can be decomposed into T subproblems for
each time period t, represented as Zt(μ) where Zt(μ) is defined

PREMSANKAR AND GHADDAR: ENERGY-EFFICIENT SERVICE PLACEMENT 17931

as follows:

min
∑

j

fjzj,t +
∑

j

∑

i

∑

s

gj · vsdi,s,twi,s,j,t

Cj

+
∑

i

∑

s

hswi,s,0,t +
∑

s

psγs,t

+
∑

s

∑

j

(
cl − μs,j,t+1 + μs,j,t

)
xs,j,t

+
∑

s

∑

j

(
cd − μs,j,t

)
ONs,j,t

s.t. (3)−(19).

Each subproblem Zt(μ) can be solved independently as the
time periods are no longer linked. The solution of each sub-
problem is a vector [zh

j,t, xh
s,j,t, wh

i,s,j,t, ONh
s,j,t, wh

i,s,0,t, γ
h
s,t]h∈Ht ,

where Ht is the set of indices of the feasible solutions. The
objective function of Zt(μ) can be rewritten as

min
h∈Ht

∑

j

fjz
h
j,t +

∑

j

∑

i

∑

s

gj · vsdi,s,twh
i,s,j,t

Cj

+
∑

i

∑

s

hsw
h
i,s,0,t +

∑

s

psγ
h
s,t

+
∑

s

∑

j

(
cl − μs,j,t+1 + μs,j,t

)
xs,j,t

+
∑

s

∑

j

(
cd − μs,j,t

)
ONs,j,t. (22)

∑
t Zt(μ) gives a lower bound on the optimal objective func-

tion of the original problem, for a given set of values for μ.
The Lagrangian bound is the best lower bound, that is, given
by the following problem:

max
μ

∑

t

Zt(μ)

= max
μ

∑

t

min
h∈Ht

⎛

⎝
∑

j

fjz
h
j,t +

∑

j

∑

i

∑

s

gj · vsdi,s,twh
i,s,j,t

Cj

+
∑

i

∑

s

hsw
h
i,s,0,t +

∑

s

psγ
h
s,t

+
∑

s

∑

j

(
cl − μs,j,t+1 + μs,j,t

)
xh

s,j,t

+
∑

s

∑

j

(
cd + μs,j,t

)
ONh

s,j,t

⎞

⎠.

Before defining the Lagrangian master problem ZMP, we set
θt as follows:

θt := min
h∈Ht

⎛

⎝
∑

j

fjz
h
j,t +

∑

j

∑

i

∑

s

gj · vsdi,s,twh
i,s,j,t

Cj

+
∑

i

∑

s

hsw
h
i,s,0,t +

∑

s

psγ
h
s,t

+
∑

s

∑

j

(
cl − μs,j,t+1 + μs,j,t

)
xh

s,j,t

+
∑

s

∑

j

(
cd + μs,j,t

)
ONh

s,j,t

⎞

⎠.

Then, the master problem, ZMP, is defined as follows:

max
∑

t

θt

s.t. θt ≤
⎛

⎝
∑

j

fjz
h
j,t +

∑

j

∑

i

∑

s

gj · vsdi,s,twh
i,s,j,t

Cj

+
∑

i

∑

s

hsw
h
i,s,0,t +

∑

s

psγ
h
s,t +

∑

s

∑

j

clxh
s,j,t

+ (
μs,j,t − μs,j,t+1

)
xh

s,j,t +
∑

s

∑

j

cdONh
s,j,t

−μs,j,tONh
s,j,t

⎞

⎠ ∀h ∈ Ht ∀t (23)

μs,j,t ≥ 0 ∀j ∈ J , s, t. (24)

Since the feasible solutions are not known in advance, sim-
ilar to [37] and [36], we use an iterative algorithm to solve
the master problem, starting with an empty set Ht. In each
iteration, the subproblems Zt(μ) are solved given fixed values
of the Lagrangian multipliers μs,j,t to obtain a new feasi-
ble solution h ∈ Ht. This solution is used to generate a
cut of the form (23) that is added to the master problem
ZMP. The master problem is then solved to obtain optimal
values of the Lagrangian multipliers μs,j,t that are used to
solve the subproblems in the next iteration. In each iteration,∑

t Zt(μ) gives a lower bound on the best Lagrangian bound,
whereas the solution of ZMP provides an upper bound. The
algorithm proceeds iteratively until the gap between the lower
and upper bound is within 0.1%. The resulting Lagrangian
bound is a lower bound on the original optimization
problem SPO.

In addition to exploiting the Lagrangian relaxation to
decompose the problem, one can take advantage of the struc-
ture of the subproblem to solve it more efficiently. The
subproblem described above Zt(μ) exhibits a structure that
can be exploited using a Benders decomposition approach. We
apply a standard Benders decomposition approach to the sub-
problem where the subproblem is now composed of a master
and a cut generation linear problem. All continuous variables
are projected out and we keep only the binary variables in the
master problem. At each step of the iterative approach, the
master is first solved to optimality. A cut generation problem
is then constructed using the solution of master and from
its solution, cuts for the master are derived (Benders cuts
herein). This process is repeated until no cuts are found by the
cut generation problem. The theorem of Benders guarantees
that at this point the original problem is solved to optimality.
In this work, we use the automatic Benders decomposition
implemented in the commercial solver IBM CPLEX [39] to
solve each Zt(μ) to optimality. The automatic Benders strat-
egy of CPLEX will have the master problem decide on the
allocation of DNN models to ENs for different time slots,
i.e., xs,j,t and zj,t, while the subproblem will decide on the
fraction and the value of latency being exceeded, i.e., wi,s,j,t

and γs,t.

17932 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

TABLE II
APPLICATION AND DNN MODEL CHARACTERISTICS

D. Heuristic: One-Step Ahead

We present a heuristic called One-step ahead to effi-
ciently solve the multiple-period model SPO. The heuristic
solves the complete problem by obtaining solutions for each
time period sequentially with a commercial solver such as
CPLEX. The key intuition behind the heuristic is that once
an optimal placement has been determined for time period
t − 1, the solution for time period t can be obtained by mod-
ifying constraint (2) based on the known values of xs,j,t−1.
Specifically, in a given time period t, if model s is placed on
EN j in the previous time period (i.e., xs,j,t−1 is 1), ONs,j,t

is set to 0, implying there is no download cost or impact
on latency if the DNN model is kept or removed in time
period t. Alternatively, if model s is not placed on EN j in
the previous time period t − 1, ONs,j,t is set to the value of
variable xs,j,t. This implies that if the model s is loaded in
time period t (xs,j,t = 1), it would be the first time the model
is loaded and consequently ONs,j,t is set to 1. In the first time
period (t = 0), we assume no models were placed previously
and consequently xs,j,t−1 = 0 ∀s, j. By doing so, we obtain
solutions for each time period quickly, while still efficiently
solving for the multiple-period model SPO. Implementation
details are provided in the next section.

IV. EVALUATION

This section presents the results from evaluating our
proposed solution One-step ahead in different types of
edge networks. Our solution provides a placement plan that
defines the DNN models to be loaded in the ENs over the next
24-h time period; assuming that the average demand is known
in 15-min intervals for the next day. We evaluate the total cost
of implementing the obtained placement plans and compare
it to different baseline approaches. We first experiment with
networks having random topologies and with varying levels of
randomly generated demand (Section IV-A). As a second step,
we also present results (Section IV-B) for a realistic network
using traces from a cloud service provider [40]. In both cases,
we consider a combination of four different categories of IoT
applications that require inference to be carried out on device-
generated data within different latency thresholds. Video, AR,
and vehicular applications rely on DNN inference on video
streams from cameras, AR headsets, and cars, respectively.
The compute-intensive applications represent object detection
on video streams using a more computationally heavyweight
and accurate DNN model [30]. The DNN models fall into
one of the four application categories, and have different
compute requirements, memory requirements, input size, and
loading costs (see Table II). The computation and memory
requirements for different DNN models are obtained from [20]

and [30] rounded up from decimal values to the nearest integer
values.

In all experiments, we evaluate the performance of the
solution obtained from our heuristic, One-step ahead.
The solutions from Lagrangian without Benders and
Lagrangian with Benders, the Lagrangian relaxation
and the Lagrangian relaxation using Benders decomposition
for the subproblem, respectively, provide a lower bound on
the original multiperiod optimization problem. This allows
us to assess the quality of the solution obtained using
One-step ahead. We solve the individual optimization
problems with CPLEX (version 20.1) through its Python
API on a server with an Intel Xeon Silver 4114 CPU.
The source code for the optimization and evaluation is
available at https://github.com/gpremsan/energy-efficient-opt-
placement.

Baseline Methods: We compare the performance of the solu-
tions obtained from One-step ahead with the following
two approaches.
Greedy-by-Capacity aims to load DNN models and

assign demand to the ENs such that the number of ENs is
minimized. It is based on a popular offline approximation
algorithm for bin packing [22]. In this algorithm, the mod-
els are first sorted in order of increasing latency thresholds,
so as to fit demand for latency-critical DNN models first. The
demand for each model is assigned to the EN with smallest
residual capacity and having sufficient capacity to load the
model in memory. Similar to SPO, we limit the compute uti-
lization of all ENs to 70% and the memory utilization to 95%.
Greedy-by-capacity is a heuristic solution and provides
an upper bound on the optimal solution.
Greedy-by-Latency aims to reduce the latency expe-

rienced by user requests for latency-critical applications.
The algorithm sequentially considers DNN models sorted by
increasing latency thresholds, and assigns the demand for the
model from each base station to the nearest EN. The demand is
assigned as long as neither the compute nor memory capacity
of the EN is exceeded (limited to 70% and 95%, respectively).
Greedy-by-latency is a heuristic and provides an upper
bound on the optimal solution.

Metrics: We evaluate the performance of the different
approaches in terms of the cost of implementing the place-
ment plans (1). The energy costs of running an EN include
a large cost (fj) if the EN is running without serving any
demand [28], followed by a cost (gj) that increases propor-
tionally to the demand served. Additionally, there are energy
costs associated with loading and downloading DNN mod-
els. The total cost of the placement plan includes the energy
costs, as well as costs for assigning demand to the cloud,
and for the average latency exceeding the latency thresh-
old. The values of the cost parameters fj, gj, hs, ps, cl, and
cd are set to 1000, 350, 200, 200, 1, and 1, respectively.
We also evaluate how many ENs are open in each time
period, how the utilization of the ENs vary, and how the
DNN models are loaded and unloaded from the ENs. We
report the time required to obtain a solution with One-step
ahead, Lagrangian with Benders and Lagrangian
without Benders for all networks. Note that the

PREMSANKAR AND GHADDAR: ENERGY-EFFICIENT SERVICE PLACEMENT 17933

Fig. 2. Number of requests per 15-min interval for (a) video, (b) compute, (c) AR, and (d) vehicular applications.

TABLE III
NETWORK CHARACTERISTICS

baseline approaches, namely, Greedy-by-capacity and
Greedy-by-latency, have very short running times that
are not reported.

A. Computational Results

We first experiment with networks having random topolo-
gies and demand drawn from a uniform random distribution.
There are three categories of networks, namely, small, medium
and large, depending on the number of BSs, ENs and DNN
models. Small networks comprise 10 BSs, 5 ENs, and 5
DNN models, medium networks comprise 18 BSs, 10 ENs,
and 13 DNN models, and finally, large networks comprise
25 BSs, 15 ENs, and 20 DNN models. Under each cate-
gory, we experiment with six different settings of demand
and compute capacity (Table III). Accordingly, networks 1–
6 correspond to small networks, networks 7–12 to medium
networks, and networks 13–18 to large networks. In each set-
ting, U(min,max) indicates that the average demand in each
15-min interval for each DNN model from each base station is
drawn from a uniform distribution within the range (min,max).
All ENs have a fixed memory capacity of 32 GB. Each DNN
model is randomly assigned to one of the four application cat-
egories (Table II). Finally, each BS is assumed to be close to
at least two ENs, i.e., the latency is drawn from U(10,15) ms,
whereas the remaining ENs can be accessed with an average
latency of U(25,50) ms. The average latency between a BS and
the cloud is drawn from U(100,120) ms.

The goal of this section is to evaluate the performance
of One-step ahead as compared to other baseline
approaches, and whether its objective value is close to the
lower bound provided by the Lagrangian relaxation, which
allows us to assess the quality of the solution provided by
One-step ahead. Table IV presents the results for the 18
considered networks. We observe that One-step ahead
achieves the lowest cost in all cases, with a value, that is,
between 53% and 89% lower than the next best approach

Greedy-by-capacity. Note that the solution for the com-
plete multiperiod problem is not included, as the relative gap
in CPLEX even for the smallest network was still 7% after
5 h of running time. Nevertheless, the Lagrangian relaxation
provides a lower bound on the complete optimization problem.
We observe that One-step ahead achieves a total cost, that
is, close to the Lagrangian relaxation in all networks (with an
average gap of 1.9%). Given the promising performance of
the One-step ahead, we further examine the results of
this approach in a realistic network with real demand patterns
in the next section.

B. Trace-Driven Results

This section describes the performance of our proposed
One-step ahead approach with real workload traces from
Microsoft Azure’s Function as a Service platform [40]. The
dataset comprises the number of invocations of serverless
functions in 1-min intervals. We use this dataset to repre-
sent the invocations of DNN models due to the lack of
public datasets for DNN inference workloads. Nevertheless,
the dataset is representative of DNN workloads as serv-
ing DNN models at the edge using such a Function as a
Service paradigm has been explored extensively [41]–[43].
Accordingly, we use the data from the first seven days and
consider the top 20 functions by the number of median invo-
cations. Next, the demand is split randomly between each base
station, with the assumption that there are groups of busy and
moderately busy base stations. This demand (di,s,t) is used as
input to our solution. The functions are mapped to one of the
four application categories presented in Table II, and Fig. 2
shows the average number of requests in 15-min intervals per
application. The resilience (Rs) is set to 2 for the latency-
critical AR and compute applications, i.e., these applications
must be loaded on at least two ENs. The network comprises
of 20 DNN models, 5 ENs, and 20 base stations. The latency
distribution is similar to that in the previous section. All ENs
have a computation capacity of 22 000 GOPS and memory
capacity of 32 GB, which are in line with the hardware used
for DNN inference [31].

Overall Results: Table V shows the total cost of
the placement plans obtained by One-step ahead,
Greedy-by-capacity, and Greedy-by-latency and
the time taken to obtain the plan for each day. First,
One-step ahead is able to find solutions within a short
time and under seven minutes in the worst case. Next, we
observe that One-step ahead determines placement plans

17934 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

TABLE IV
PERFORMANCE EVALUATION FOR RANDOMLY GENERATED NETWORKS

Fig. 3. (a) Energy costs. Average latency for DNN models used in (b) compute and (c) video applications.

TABLE V
PERFORMANCE EVALUATION FOR TRACE-DRIVEN RESULTS

with a lower cost than other approaches. This trend is simi-
lar to that observed in the previous section. However, if we
take a look at the energy costs [Fig. 3(a)], we observe that
One-step ahead is able to achieve costs that are similar
to Greedy-by-capacity that packs services (DNN mod-
els) on the fewest number of ENs. Thus, both approaches
are able to achieve a high utilization of ENs while keeping
energy costs low. On the other hand, Greedy-by-latency
results in running more ENs and thus, the energy cost is
higher than other approaches. On day 4, we observe that the
energy costs are similar for all methods as they load DNN
models on all five ENs. The energy costs for One-step
ahead are slightly higher than Greedy-by-capacity as
One-step ahead loads DNN models for latency-critical

applications on multiple ENs so as to lower the average
latency. Fig. 3(b) and (c) shows the average latency achieved
by the three approaches over all seven days for compute and
video applications. Overall, One-step ahead is able to
maintain the average latency within the configured threshold
(denoted by the dashed horizontal line) on most days. In partic-
ular, for compute-intensive applications, One-step ahead
exceeds the configured threshold only in four time periods,
whereas Greedy-by-capacity exceeds the latency at all
times. For video applications, One-step ahead maintains
the average latency below the threshold at all times, whereas
Greedy-by-capacity exceeds the threshold 23 times.
Even on days with high demand, One-step ahead is
able to keep the average latency within 5 ms of the con-
figured threshold, whereas the latency experienced by other
solutions are much higher (even up to 20 ms above the
threshold). We do not include the plots for AR and vehic-
ular applications as the trend is similar to that presented for
compute and video applications. Thus, the total cost is higher
for Greedy-by-capacity and Greedy-by-latency
as they are not able to maintain the average latency below
application-specific thresholds. Finally, we examine the uti-
lization of the ENs during the duration of the simulation run.
Fig. 5 shows the cumulative distribution function (CDF) of the
utilization of the ENs achieved in each 15-min interval during
the simulation run. As expected, Greedy-by-latency

PREMSANKAR AND GHADDAR: ENERGY-EFFICIENT SERVICE PLACEMENT 17935

Fig. 4. Results from increasing latency thresholds. (a) Energy costs. Average latency for DNN models used in (b) compute and (c) video applications.

TABLE VI
PERFORMANCE EVALUATION FOR TRACE-DRIVEN RESULTS WITH

INCREASED LATENCY THRESHOLDS

keeps several ENs running with a low utilization (median
value of 47.5%). In contrast, One-step ahead is able
to keep the utilization above 60% in the vast majority of
the time periods, i.e., in over 87% of the time periods.
Greedy-by-capacity achieves a high utilization of ENs,
however, there are a few instances (3%) where the utilization
of ENs is below 20%. One-step ahead avoids such cases,
and the lowest observed utilization is 23%. This indicates that
One-step ahead is able to keep the ENs running at high
utilization, thereby serving a large number of user requests
when running.

Varying Latency Threshold: Next, we experiment with
increasing the latency threshold by 30 ms for all appli-
cation groups (Table VI) while keeping the network and
demand the same as before. Here, on days 1 and 2, both
Greedy-by-capacity and One-step ahead are able
to achieve a placement plan with low overall costs. However,
on other days (days 3–6) when the overall demand is higher,
One-step ahead outperforms Greedy-by-capacity
by keeping the average latency low. Fig. 4(b) and (c) shows
that One-step ahead keeps the average latency below the
threshold on all days, including the fourth day when the
demand is high. On the other hand, Greedy-by-capacity
is able to keep the average latency low for the compute
applications, whereas the average latency for video applica-
tions exceeds the threshold by at least 10 ms when the total
demand for all DNN models is high (days 5–7). We also
observe that One-step ahead is able to lower the energy
costs [Fig. 4(a)] as compared to Greedy-by-capacity,
although both open similar number of ENs and keep the
average utilization of ENs close to 70%. This is because
One-step ahead reduces the number of times the DNN

Fig. 5. Empirical CDF of ENs’ utilization in 15-min intervals across the
simulated seven days.

models are loaded and unloaded throughout the day. For exam-
ple, for a single day in the evaluation, One-step ahead
loads DNN models at the beginning of a 15-min period 80
times during the day whereas Greedy-by-capacity loads
the DNN models 252 times during the day. Thus, One-step
ahead keeps the model loaded in memory as long as the
placement is able to meet the latency thresholds. This saves
energy by reducing the need to frequently download and load
DNN models in memory. Finally, the utilization of ENs is
similar to that observed in Fig. 5. One-step ahead keeps
the ENs running with a median utilization of 70% with a
lowest observed utilization of 32%. Although the median uti-
lization is 70% with Greedy-by-capacity, the utilization
is below 30% in 5% of the cases. Greedy-by-latency
achieves a median utilization of only 47% as it aims to min-
imize latency of served requests. Again, One-step ahead
ensures that the running ENs serve requests with a high uti-
lization, while balancing the requirements of both latency and
energy costs.

Varying Resilience Requirement: Next, we experiment with
setting different values for Rs in One-step ahead. This
value affects the number of ENs each DNN model must
be placed in, and thus, the number of running ENs. As
expected, increasing the Rs value results in increasing the
overall cost. However, even with Rs set to 4 for each DNN
model, the overall cost is still lower than other approaches
with a maximum total cost of 633 476.85 on any single
day (day 4). This is 83.8% lower than the total cost of

17936 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Greedy-by-capacity and 95.5% lower than the total cost
obtained with Greedy-by-latency on the same day. Thus,
both the placement of DNN models and fraction of requests
assigned to each model are crucial in ensuring that the place-
ment plan is able to both save energy and meet a target average
latency.

Summary and Discussion: Overall, the solutions obtained
by One-step ahead are able to minimize the total cost of
placing DNN models in ENs by balancing the requirements of
both low energy consumption as well as an average response
latency below a target threshold. Following the daily patterns
of the workload trace [40], the number of running ENs varies
between 2 and 4 on days 1 and 2 and between 2 and 5 on
days 3 and days 5–7. On day 4, all five ENs run throughout
the day. This demonstrates that having a placement plan can
enable network operators to save energy based on the predicted
traffic patterns by proactively placing DNN models and mini-
mizing the number of running ENs. Moreover, by considering
the models loaded in the previous time period, One-step
ahead decides when to keep the same model loaded in
memory instead of loading it on a new EN. Such a placement
plan is able to account for geographic variations in traffic pat-
terns. However, when the latency requirements are very strict,
the energy consumption may slightly increase as One-step
ahead loads the models on more ENs. Apart from the actual
placement of DNN models, the fraction of requests assigned
to each EN also play a crucial role in lowering average
latency. For instance, Greedy-by-capacity aims to min-
imize the number of ENs that are open, but this results in an
increased average latency. Greedy-by-latency results in
high energy consumption as more ENs are open than the other
two approaches. Despite this, the average latency exceeds the
threshold in many cases, indicating that the placement of
the models themselves and the fraction of requests that are
assigned to the cloud or EN are important factors. Finally,
this article focused on the energy-efficient placement of DNN
models in edge computing, using parameters (Table II) that
apply to DNN inference. Nevertheless, our formulation is gen-
eral enough to support the placement of services that follow
a request–response pattern, simply by changing the values of
the parameters.

V. CONCLUSION

This article considered the optimal placement of DNN
models for AI applications on ENs such that the energy con-
sumption of the ENs is minimized and the latency of serving
requests is low. We proposed a novel multiperiod optimization
problem that takes into account the impact of placing services
across time periods, the limited capacity of ENs, and a target
average latency for serving requests. Additionally, we utilized
a Lagrangian relaxation to decompose the multiperiod problem
and thereby, obtained a lower bound on the optimal solu-
tion. We proposed a heuristic that efficiently obtains solutions
that are able to simultaneously save energy while meeting
strict latency constraints. Extensive evaluations showed that
our heuristic achieved placement plans for DNN models at
a lower cost than other baseline approaches across different

network instances. As part of future work, we plan to include
the prediction of demand into our formulation and consider the
impact of uncertainty in the demand patterns on service place-
ment and scheduling. Comparing such an approach with recent
deep RL-based approaches that operate in an online manner
is also an interesting direction for future work. Finally, it will
be interesting to consider dependencies of DNN inference on
additional CPU-based computation and storage services that
also contribute to the energy consumed by AI applications at
the edge.

ACKNOWLEDGMENT

The authors are extremely grateful to the reviewers and the
Editor for their constructive comments which have contributed
to significant improvements to the manuscript.

REFERENCES

[1] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the Internet of Things: A case study,” IEEE Internet Things J., vol. 5,
no. 2, pp. 1275–1284, Apr. 2018.

[2] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[3] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[4] B. Jedari, G. Premsankar, G. Illahi, M. Di Francesco, A. Mehrabi, and
A. Ylä-Jääski, “Video caching, analytics, and delivery at the wireless
edge: A survey and future directions,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 1, pp. 431–471, 1st Quart., 2020.

[5] Y. Tian, L. Njilla, J. Yuan, and S. Yu, “Low-latency privacy-preserving
outsourcing of deep neural network inference,” IEEE Internet Things J.,
vol. 8, no. 5, pp. 3300–3309, Mar. 2021.

[6] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A survey of recent
advances in edge-computing-powered artificial intelligence of things,”
IEEE Internet Things J., vol. 8, no. 18, pp. 13849–13875, Sep. 2021.

[7] E. Chung et al., “Serving DNNs in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20,
Mar./Apr. 2018.

[8] H. Liu et al., “JIZHI: A fast and cost-effective model-as-a-service system
for Web-scale online inference at Baidu,” 2021, arXiv:2106.01674.

[9] S. Kekki et al., “MEC in 5G networks,” vol. 28, White Papar, ETSI,
Sophia Antipolis, France„ 2018.

[10] D. T. Nguyen, H. T. Nguyen, N. Trieu, and V. K. Bhargava, “Two-stage
robust edge service placement and sizing under demand uncertainty,”
IEEE Internet Things J., vol. 9, no. 2, pp. 1560–1574, Jan. 2022.

[11] B. Knowles, ACM TechBrief: Computing and Climate Change. New
York, NY, USA: Assoc. Comput. Mach., 2021. [Online]. Available:
https://dl.acm.org/doi/book/10.1145/3483410. doi: 10.1145/3483410.

[12] M. Xu et al., “From cloud to edge: A first look at public edge platforms,”
2021, arXiv:2109.03395.

[13] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and
G. Iosifidis, “EdgeBOL: Automating energy-savings for mobile edge
AI,” in Proc. 17th Int. Conf. Emerg. Netw. Exp. Technol., 2021,
pp. 397–410.

[14] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in Proc. IEEE INFOCOM, 2019, pp. 1459–1467.

[15] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[16] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware applica-
tion placement in mobile edge computing: A stochastic optimization
approach,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4,
pp. 909–922, Apr. 2020.

[17] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 779–792, Apr. 2021.

[18] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” in Proc. IEEE INFOCOM, 2019,
pp. 1279–1287.

http://dx.doi.org/10.1145/3483410

PREMSANKAR AND GHADDAR: ENERGY-EFFICIENT SERVICE PLACEMENT 17937

[19] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in Proc. IEEE ICDCS, 2018,
pp. 365–375.

[20] A. Gujarati et al., “Serving DNNs like clockwork: Performance pre-
dictability from the bottom up,” in Proc. 14th USENIX Symp. Oper.
Syst. Design Implement. (OSDI), Nov. 2020, pp. 443–462.

[21] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in Proc. IEEE INFOCOM, 2019, pp. 10–18.

[22] S. Martello and P. Toth, “Knapsack problems: Algorithms and computer
implementations,” in Interscience Series in Discrete Mathematics and
Optimization. New York, NY, USA: Wiley, 1990.

[23] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven
deep reinforcement learning for scalable fog and service place-
ment,” IEEE Trans. Services Comput., early access, Apr. 27, 2021,
doi: 10.1109/TSC.2021.3075988.

[24] Y. Hao, M. Chen, H. Gharavi, Y. Zhang, and K. Hwang, “Deep rein-
forcement learning for edge service placement in softwarized industrial
cyber-physical system,” IEEE Trans. Ind. Informat., vol. 17, no. 8,
pp. 5552–5561, Aug. 2021.

[25] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,” in Proc.
Conf. USENIX Annu. Tech. Conf., 2009, p. 28.

[26] Q. Zhou et al., “Energy efficient algorithms based on VM consolida-
tion for cloud computing: Comparisons and evaluations,” in Proc. 20th
IEEE/ACM Int. Symp. Clust. Cloud Internet Comput. (CCGRID), 2020,
pp. 489–498.

[27] X. Dai, J. M. Wang, and B. Bensaou, “Energy-efficient virtual machines
scheduling in multi-tenant data centers,” IEEE Trans. Cloud Comput.,
vol. 4, no. 2, pp. 210–221, Apr.–Jun. 2015.

[28] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, “GPU-NEST:
Characterizing energy efficiency of multi-GPU inference servers,” IEEE
Comput. Archit. Lett., vol. 19, no. 2, pp. 139–142, Jul.–Dec. 2020.

[29] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling
in large-scale heterogeneous GPU clusters,” in Proc. 19th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), Apr. 2022, pp. 1–16.

[30] V. J. Reddi et al., “MLPerf inference benchmark,” in Proc. ACM/IEEE
47th Annu. Int. Symp. Comput. Archit. (ISCA), 2020, pp. 446–459.

[31] M. Blott, L. Halder, M. Leeser, and L. Doyle, “QuTiBench:
Benchmarking neural networks on heterogeneous hardware,” ACM J.
Emerg. Technol. Comput. Syst., vol. 15, no. 4, pp. 1–38, 2019.

[32] D. Chou et al., “Taiji: Managing global user traffic for large-scale
Internet services at the edge,” in Proc. 27th ACM Symp. Oper. Syst.
Principles, 2019, pp. 430–446.

[33] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms
for data placement problems,” SIAM J. Comput., vol. 38, no. 4,
pp. 1411–1429, 2008.

[34] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch,
and G. Caire, “Wireless video content delivery through coded dis-
tributed caching,” in Proc. IEEE Int. Conf. Commun. (ICC), 2012,
pp. 2467–2472.

[35] M. L. Fisher, “The Lagrangian relaxation method for solving inte-
ger programming problems,” Manag. Sci., vol. 50, pp. 1861–1871,
Dec. 2004.

[36] B. Lin, B. Ghaddar, and J. Nathwani, “Electric vehicle routing with
charging/discharging under time-variant electricity prices,” Transp. Res.
C Emerg. Technol., vol. 130, Sep. 2021, Art. no. 103285.

[37] B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, and B. Eck, “A
Lagrangian decomposition approach for the pump scheduling problem
in water networks,” Eur. J. Oper. Res., vol. 241, no. 2, pp. 490–501,
2015.

[38] Y. Liu et al., “A Lagrangian relaxation based approach for service
function chain dynamic orchestration for the Internet of Things,” IEEE
Internet Things J., vol. 8, no. 23, pp. 17071–17089, Dec. 2021.

[39] IBM. ILOG CPLEX Optimization Studio: Bender’s Algorithm.
[Online]. Available: https://www.ibm.com/docs/en/icos/20.1.0?topic=
optimization-benders-algorithm (Accessed: Apr. 3, 2022).

[40] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), 2020, pp. 205–218.

[41] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and
S. Dustdar, “Towards a serverless platform for edge AI,”
in Proc. 2nd USENIX Workshop Hot Topics Edge Comput.
(HotEdge), Renton, WA, USA, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotedge19/presentation/rausch

[42] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “Barista: Efficient and scalable serverless serving system for
deep learning prediction services,” in Proc. IEEE Int. Conf. Cloud Eng.
(IC2E), 2019, pp. 23–33.

[43] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “BATCH: Machine learning
inference serving on serverless platforms with adaptive batching,” in
Proc. IEEE Int. Conf. High Perform. Comput. Netw. Storage Anal. (SC),
2020, pp. 1–15.

Gopika Premsankar received the Ph.D. degree
in computer science from Aalto University, Espoo,
Finland, in 2020.

She was a Postdoctoral Researcher with Ivey
Business School, London, ON, Canada. She is
a Postdoctoral Researcher with the University of
Helsinki, Helsinki, Finland, working on energy-
efficient networked systems. Her research interests
include edge computing, wireless communications,
augmented reality, and energy-efficient networked
systems. Her research has been supported by grants

from the Academy of Finland and the Finnish Cultural Foundation.

Bissan Ghaddar received the Ph.D. degree in oper-
ations research from the University of Waterloo,
Waterloo, ON, Canada, in 2011. She is a David
G. Burgoyne Faculty Fellow, a Dean’s Faculty
Fellow, and an Associate Professor of Management
Science and Sustainability with Ivey Business
School, London, ON, Canada, working on prob-
lems at the intersection of smart cities, mathematical
optimization, and machine learning. Prior to join-
ing Ivey Business School, she was an Assistant
Professor with the Department of Management

Sciences, University of Waterloo, Waterloo, ON, Canada. She has also worked
with IBM Research, Dublin, Ireland, and the Centre for Operational Research
and Analysis, Department of National Defence Canada, Ottawa, ON, Canada.
Her research has been supported by national and international grants, includ-
ing NSERC, OCE, Cisco, H2020, and FP7 IIF European Union Grant.

Dr. Ghaddar currently serves as an Associate Editor for the EURO Journal
on Computational Optimization.

http://dx.doi.org/10.1109/TSC.2021.3075988

