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Introduction: Finnish companies are legally required to insure their employees against occupational acci-
dents. Insurance companies are then required to submit information about occupational accidents to the
Finnish Workers’ Compensation Center (TVK), which then publishes occupational accident statistics in
Finland together with Statistics Finland. Our objective is to detect silent signals, by which we mean pat-
terns in the data such as increased occupational accident frequencies for which there is initially only
weak evidence, making their detection challenging. Detecting such patterns as early as possible is impor-
tant, since there is often a cost associated with both reacting and not reacting: not reacting when an
increased accident frequency is noted may lead to further accidents that could have been prevented.
Method: In this work we use methods that allow us to detect silent signals in data sets and apply these
methods in the analysis of real-world data sets related to important societal questions such as occupa-
tional accidents (using the national occupational accidents database).
Results: The traditional approach to determining whether an effect is random is statistical significance
testing. Here we formulate the described exploration workflow of contingency tables into a principled
statistical testing framework that allows the user to query the significance of high accident frequencies.
Conclusions: Our results show that we can use our iterative workflow to explore contingency tables and
provide statistical guarantees for the observed frequencies.
Practical Applications: Our method is useful in finding useful information from contingency tables con-
structed from accident databases, with statistical guarantees, even when we do not have a clear a priori
hypothesis to test.
� 2022 The Author(s). Published by National Safety Council Elsevier Ltd. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Before undertaking preventive or corrective occupational safety
actions, risks of accidents must be identified through rigorous
management of information (Ross et al., 2005). Accident statistics
information has been analyzed as defining different characteristics
of occupational accidents by, for example, Pietilä et al. (2018),
Ciarapica and Giacchetta (2009), Hovden et al. (2010),
Papazoglou et al. (2015), Cruz Rios et al. (2017), and Jacinto and
Guedes Soares (2008). In this paper, we present a method to find
unusually high accident counts, which allows iterative exploration
of data and gives a statistical guarantee for the observed counts.
We call these patterns silent signals, ‘‘silent” because they are easy
to miss with more traditional approaches, and ‘‘signals” because
they may be informative about emerging patterns or changes in
the data.

The digital era in which we now live provides even more possi-
bilities for complex data gathering and analysis (Badri et al., 2018).
Technological developments have made it possible to collect and
analyze different kinds of data from various sources using highly
developed tools and methods. However, this development trend
has not eliminated the role of humans as those who determine
whether the data are actually useful for accident prevention pur-
poses (Badri et al. 2018). The concept of ‘big data’ is used to
describe this entity of handling and processing massive data sets.
For instance, Wu and Li (2019) highlight the complexity of accident
database analyses and suggest applying entropy theory to be able
to more deeply understand the dynamic nature of occupational
safety.
ational
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Finnish workplaces are legally required to insure their employ-
ees against occupational accidents. Insurance companies are then
required to submit information about occupational accidents to
the Finnish Workers’ Compensation Center (TVK), which then pub-
lishes occupational accident statistics in Finland together with
Statistics Finland.

Therefore, Finland’s statistics and data have good coverage of
blue-collar and white-collar employees’ occupational accidents.
In this paper we use a data set of occupational accidents in Finland
from 2010–2015, available from TVK. Each accident is described by
a date and 15 categorical variables (see Supplementary Material 1).
Each variable consists of numerical codes that correspond to, for
example, different industries, job types, accident causes, and
injured body parts. We study the problem of finding accident
counts that are larger than could be expected by random chance
alone.

Accident frequencies can be displayed through contingency
tables (or cross tabulation, pivot tables). We present a permutation
testing-based statistical framework for exploring data through
these tables. Contingency tables (such as Table 1) may be relatively
large and contain multiple cells corresponding to accident frequen-
cies, and multiple tables may be viewed through an iterative pro-
cess. It is often the case that the analyst observes an unusually
high accident frequency and does not know whether this is a sig-
nificant finding or just a random effect. If the analyst can deter-
mine that it is a random effect, they can then focus on more
promising hypotheses and avoid wasting resources on spurious
findings or taking actions that are not based on the evidence at
hand. For example, in Table 1 the two highest frequencies (405
and 149) seem to be a significant finding, while it is difficult to
determine this for accidents with a lower absolute frequency
(e.g., 37 or 4).

A traditional approach for determining whether an effect is ran-
dom is statistical significance testing. Using, for example, a com-
mon statistical test, such as the chi-square test of independence
(Agresti, 2019; Cacha, 1997), they can answer questions such as:
‘‘How unlikely is it to observe the counts in Table 1, if the variables
are independent?” yielding a p-value of � 10�16. The low p-value
indicates that the cell values that were observed in Table 1 are
extremely unlikely if the variables were independent, and thus
there is evidence against independence.

However, these common statistical tests for contingency tables
suffer from several shortcomings. First, they test a specific hypoth-
esis and provide a single determination, or p-value, for the whole
table. If the analyst is interested in a single accident frequency in
the table, they are unable to obtain more focused answers. For
example, after obtaining a low p-value using a chi-square test on
Table 1, they know there is a significant finding, but cannot inves-
tigate which cells influenced this determination. If they attempt to
naively test every cell in the table, they risk false discoveries due to
the multiple comparisons problem (Dudoit et al., 2003). Second,
most statistical tests have a specified null hypothesis that is
formed before viewing the data. These are problems in practice.
Answering questions such as ‘what else is there in the data?’ is
not possible, because it would require formulating a new hypoth-
esis that somehow takes into account what has already been
observed, and then testing it on unseen data.

In practical data analyses, hypotheses are often formed after
viewing the data during an iterative process, which is not in line
with the assumptions made in traditional statistical testing, in
which the hypothesis about the data should be formed before even
observing the data at all. Therefore, there is a need for a statistical
methodology that allows for testing hypotheses during the iterative
workflow of viewing contingency tables. In this paper, we present
such a methodology (initially introduced in Savvides et al., 2019)
T C p
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Fig. 1. Flowchart of the statistical testing procedure (left) and the practical workflow from the user’s perspective (right).
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and examples of finding novel features from a data set of occupa-
tional accidents in Finland.

The number of compensated accidents at work in Finland has
been quite steady over the last 10 years. Registers show that over
126,000 occupational accidents occurred among wage earners in
2018 (Workers’ Compensation Center, 2019). The vast majority
(82%) of these accidents occurred at workplaces. Calculations by
the Ministry of Social Affairs and Health show the annual costs of
occupational accidents and injuries to be around EUR 2–2.5 billion
in Finland (Rissanen & Kaseva, 2014). In addition, the human suf-
fering of the injured person and their families and co-workers
causes indirect costs that are difficult to estimate (Manuele, 2011).

Despite several measures to strengthen accident prevention and
occupational safety, the statistics show a disparity between practi-
cal working life and the ambitious goal of zero accidents. Clearly,
new approaches to improving occupational safety and accident
prevention should be introduced. To contribute to this discussion,
we introduce a new approach to large-scale occupational accident
statistics categorization to achieve a more in-depth understanding
of accidents for occupational accident prevention purposes.

Our objective is to detect silent signals, by which we mean pat-
terns in the data such as increased occupational accident frequen-
cies for which there may initially be only weak evidence, making
their detection challenging. Detecting such patterns as early as
possible is important, since there is often a cost associated with
both reacting and not reacting: not reacting when an increased
accident frequency is noted may lead to further accidents that
could have been prevented. In this work we use methods that
allow us to detect silent signals in data sets and apply these meth-
ods in the analysis of real-world data sets related to important
societal questions such as occupational accidents (using the
national occupational accidents database).

1.1. Motivating example

We next present an example motivating our approach. The
example demonstrates how our approach works compared to a
standard method. Using our approach, an analyst may ask more
specific questions than standard methods.

Suppose that an analyst explores accident data using contin-
gency tables. Table 1 displays one such contingency table (or cross
tabulation, pivot table), in which each cell corresponds to an acci-
dent count in the chemical industries in Finland. If a cell appears to
have a high frequency, the analyst may wish to know whether the
high value is statistically significant. A standard approach, such as
3

a chi-square test of independence, provides a single p-value for the
whole table (p � 10�16). The low p-value indicates that the table is
statistically significant, and the analyst has made a ‘‘discovery.”
However, it is unclear which cell of the table is significant, which
is especially problematic when the table is large.

In our approach, we determine whether a cell value is signifi-
cantly high by computing a p-value for every cell in the table.
The p-values are computed using a permutation test, in which the
test statistic is the cell value and a p-value is computed by simulat-
ing the distribution of the test statistic under the null hypothesis.
Our approach works as follows. We use a null hypothesis of inde-
pendence between the variables of the table, and we simulate the
null distribution by permuting each column in the data indepen-
dently. This permutation scheme preserves the value distribution
within each column and breaks any dependencies between col-
umns. We permute the data multiple times and compute a contin-
gency table on each permuted data set (Fig. 1b). This process
provides a distribution of values for each cell in the table, which
corresponds to the null distribution of each test statistic. A p-
value can then be computed for each cell by comparing the simu-
lated null distribution of the test statistic with its value in the orig-
inal table. Finally, as we perform multiple tests, the p-values need
to be adjusted for the multiple hypotheses problem. We adjust the
p-values using a resampling-based adjustment procedure, called
minP, which is discussed in the Methods section.

By computing a p-value for every cell, we can answer more
specific questions. For example, the p-values in Table 1 communi-
cate how likely it is to observe a count as high as that in the table
when the ‘Specific physical activity’ and ‘Cause of accident’ vari-
ables are independent. In contrast, a standard approach, such as
a chi-square test of independence, that provides one p-value for
the whole table corresponds to the question: how likely is it to
observe Table 1, when the ‘Specific physical activity’ and ‘Cause
of accident’ variables are independent.

Another disadvantage of common statistical tests (besides not
being able to test single cells), is that the analyst is unable to test
more interesting hypotheses of independence. For example, how
unlikely is it to observe Table 2, when the variables are independent
over most of the data, excluding a subset in which they are dependent?
In order to answer this question, we construct a permutation test,
using a modified permutation scheme. Instead of permuting each
column independently (as in Table 1), we now independently per-
mute tiles. A tile is simply a subset of rows and columns (Fig. 1). It
can act as a constraint on the permutation process, in that the rows
in every tile are permuted independently to other tiles. In the pre-



Ta
bl
e
2

A
n
al
te
rn

at
iv
e
hy

po
th
es
is

is
te
st
ed

in
Ta

bl
e
1.

Th
e
ac
ci
de

nt
fr
eq

ue
nc

ie
s
ar
e
th
e
sa
m
e
as

in
Ta

bl
e
1,

w
hi
le

th
e
p-
va

lu
es

ar
e
co

m
pu

te
d
di
ff
er
en

tl
y.

In
ad

di
ti
on

to
in
de

pe
nd

en
ce
,w

e
us

e
ti
le

co
ns
tr
ai
nt
s
to

fi
x
th
e
re
la
ti
on

sh
ip

of
th
e
va

ri
ab

le
s

in
th
e
su

bs
et

of
th
e
da

ta
w
it
h
Sp

ec
ifi
c
ph

ys
ic
al

ac
ti
vi
ty
=(
10

.O
pe

ra
ti
ng

m
ac
hi
ne

).
A
s
a
re
su

lt
,a
ll
ce
lls

w
it
h
Sp

ec
ifi
c
ph

ys
ic
al

ac
ti
vi
ty

=
10

ar
e
in
si
gn

ifi
ca
nt
,w

he
re
as

th
e
ot
he

r
ce
lls

th
at

w
er
e
in
si
gn

ifi
ca
nt

in
Ta

bl
e
1
ar
e
no

w
si
gn

ifi
ca
nt
,e
.g
.,

(5
0.

Ca
rr
yi
ng

by
ha

nd
,2

69
9.

ot
he

r
po

rt
ab

le
/m

ob
ile

m
ac
hi
ne

s)
an

d
(2
0.

W
or
ki
ng

w
it
h
ha

nd
-h

el
d
to
ol
s,

27
03

.m
ac
hi
ne

s/
ch

em
ic
al

pr
oc

es
se
s)
.

C
au

se
of

ac
ci
de

n
t

Sp
ec
ifi
c
ph

ys
ic
al

ac
ti
vi
ty

11
00

gr
ou

n
d
le
ve

l
bu

il
di
n
gs
/s
u
rf
ac
es
/

st
ru

ct
u
re
s

26
99

ot
h
er

po
rt
ab

le
/m

ob
il
e

m
ac
h
in
es

27
03

m
ac
h
in
es
/c
h
em

ic
al

pr
oc

es
se
s

27
06

m
ac
h
in
es
,

ot
h
er

pr
oc

es
se
s

27
99

ot
h
er

fi
xe

d
m
ac
h
in
es

28
02

el
ev

at
or
s/

li
ft
s/

h
oi
st
s/
ja
ck

s
et
c.

28
03

cr
an

es
/

h
oi
st
in
g

m
ac
h
in
es

w
it
h

su
sp

en
de

d
lo
ad

28
11

n
on

-
li
ft
in
g
lo
ad

tr
an

sp
or
ti
n
g

de
vi
ce
s

28
16

fo
rk
li
ft

tr
u
ck

s

28
19

ot
h
er

h
an

dl
in
g

m
ob

il
e

de
vi
ce
s

28
99

tr
an

sp
or
t/

st
or
ag

e
sy
st
em

s
n
ot

li
st
ed

42
00

ch
em

ic
al
/

ra
di
oa

ct
iv
e/

bi
ol
og

ic
al

su
bs

ta
n
ce

00
N
o
in
fo
rm

at
io
n

4
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

11
(0
.0
15

)
10

O
pe

ra
ti
n
g
m
ac
h
in
e

5
(.
)

6
(.
)

4
(.
)

5
(.
)

7
(.
)

0
(.
)

0
(.
)

0
(.
)

1
(.
)

0
(.
)

1
(.
)

12
(.
)

20
W

or
ki
n
g
w
it
h

h
an

d-
h
el
d
to
ol
s

8
(.
)

1
(.
)

4
(0
.0
98

)
1
(.
)

2
(0
.9
8)

0
(.
)

0
(.
)

0
(.
)

1
(.
)

0
(.
)

0
(.
)

12
(0
.9
2)

30
D
ri
vi
n
g/
be

in
g
on

bo
ar
d
a
m
ea

n
s
of

tr
an

sp
or
t
or

h
an

dl
in
g

eq
u
ip
m
en

t

11
(.
)

3
(0
.5
5)

1
(.
)

1
(.
)

0
(.
)

0
(.
)

1
(0
.6
7)

0
(.
)

7 (<
0.
01

)
1
(1
)

1
(.
)

0
(.
)

40
H
an

dl
in
g
of

ob
je
ct
s

37
(.
)

7
(.
)

12
(0
.0
22

)
2
(.
)

8
(0
.7
)

1
(.
)

0
(.
)

3
(1
)

1
(.
)

1
(.
)

0
(.
)

14
9
(<
0.
01

)
50

C
ar
ry
in
g
by

h
an

d
36

(.
)

6
(0
.0
42

)
0
(.
)

1
(.
)

1
(.
)

1
(.
)

0
(.
)

1
(.
)

0
(.
)

1
(.
)

4
(0
.0
49

)
7
(.
)

60
M
ov

em
en

t
40

5
(<
0.
01

)
2
(.
)

1
(.
)

3
(.
)

5
(.
)

3
(.
)

0
(.
)

2
(.
)

5
(.
)

2
(.
)

3
(.
)

16
(.
)

70
Pr
es
en

ce
6
(.
)

0
(.
)

1
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

2 (0
.9
9)

0
(.
)

0
(.
)

23
(<
0.
01

)

99
O
th
er

sp
ec
ifi
c

ph
ys
ic
al

ac
ti
vi
ti
es

9
(.
)

1
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

0
(.
)

14
(0
.0
23

)

T. Räsänen, A. Reiman, K. Puolamäki et al. Journal of Safety Research xxx (xxxx) xxx

4

vious example of Table 1, we permuted each column indepen-
dently, which is equivalent to having a tile constraint over each
column and then permuting each tile independently. In this second
example of Table 2, we add a tile constraint over each column, as
before, and we also apply another tile constraint over a subset of
rows and all columns in which ‘Specific physical activity’=10. The
tile constraint causes the dependencies between the columns to
be preserved in this subset of the data. As a result, every permuted
data set has fixed the relationship of these variables in this subset
of the data, which modifies the null distribution and the computed
p-values. In practice, this means that the contingency table for
every permuted data set is identical to the original data for ‘Speci-
fic physical activity’=10, and the p-values are insignificant. There-
fore, by using modified permutation schemes we can answer
questions based on what was observed before, such as ‘‘what else
is there in the data that is not explained by the observed accident
counts?” This is not possible with standard methods.

In this paper, we present a permutation testing-based statistical
framework for exploring data through contingency tables, based on
the article published by Savvides et al. (2019). The framework
includes two contributions: (1) application of a powerful statistical
test that computes a p-value (adjusted for multiple testing) for
every cell in a contingency table, and (2) a sequential exploratory
procedure that is adjusted for multiple testing.
2. Material and methods

2.1. Data

The basic reporting of occupational accidents is done by compa-
nies. They investigate each accident and fill out an accident report
form for the insurance company. When compiling statistics that
present the conditions under which occupational accidents occur,
the TVK uses ESAW variables (European Statistics on Accidents at
Work). As described in the introduction, in this study we use a data
set of occupational accidents in Finland from 2010–2016. In TVK’s
data, each accident is described by a date and 15 categorical vari-
ables (see Supplementary Material 1). In addition to the 7 ESAW
variables, TVK use their own more specific variables. Each variable
consists of numerical codes that correspond to different industries,
job types, accident causes, and injured body parts.
2.2. Methods

2.2.1. Overview
We study the accident data by calculating contingency tables.

For example, an expert chooses the ‘industry’ and ‘body part’ vari-
ables and views a table that contains accident frequencies for every
combination of industry and body part.

In this exploratory workflow, the user may observe unusually
high or low accident counts, which may be true phenomena in
the data or merely random artefacts. One traditional method for
discarding findings that cannot be distinguished from random
noise, is statistical significance testing. Hence, here we formulate
the described exploration workflow of contingency tables into a
principled statistical testing framework that allows the user to
query the significance of high accident frequencies.

We follow an approach presented in our previous paper
Savvides et al. (2019), which uses a permutation test. In this article,
the authors provide a novel realization of the method for contin-
gency tables and a new iterative correction method based on alpha
investing. The test requires a test statistic and its null distribution.
If the test statistic computed on the observed data is extreme com-
pared to its null distribution, then it is significant. In our example,
the test statistic corresponds to an accident frequency (a value of
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the cell in the contingency table) and the null distribution is
defined as a model of the user’s knowledge of the data as defined
in Puolamäki et al. (2021). The user’s knowledge is parameterized
as a probability distribution over all possible data sets, and samples
are drawn from this distribution to form the empirical null distri-
bution of the test statistic.

Our null hypothesis assumes that the marginal distributions of
the variables are fixed and that all possible data sets can be
obtained by permuting the columns of the data sets. A sample from
the null hypothesis can be obtained by computing the contingency
table for such a permuted data set. Without any constraints, the
columns are permuted independently and at random, which
results in a null hypothesis corresponding to situations in which
the data attributes are independent of each other and any relation
between them is broken. During the exploration, the user’s knowl-
edge is updated, using observed contingency tables as constraints:
when a pattern is observed, the permutations are constrained so
that the attributes shown for the user in the permutation table
are permuted together, after which all samples produce the
observed contingency table. We can informally say that a test
statistic is significant if it is exceptionally high compared to the
user’s expectations (i.e., if the test statistic has a low p-value).

Two aspects in the exploration process require attention. Firstly,
multiple test statistics are often viewed and hence tested simulta-
neously. A multiple testing correction is required in order to avoid
false discoveries. Secondly, we assume that the user views the data
more than once (i.e., the exploration is an iterative process). If the
user looks at the data enough times, they will eventually discover
something significant by chance alone. This adds another level of
multiple testing, which also requires a correction. We next for-
mally describe our procedure that incorporates these two levels
of multiple testing corrections to control the family-wise error rate
(FWER) at a chosen level.
2.2.2. Details
In this section, we formally describe the testing procedure, as

initially described in our previous paper Savvides et al. (2019).
The novel contributions in this paper are the application to the
domain of accident data using contingency tables, two theorems,
and the use of alpha investing as an iterative correction.

Let X denote the sample space (i.e., the set of all possible data
sets), and x0 2 X the observed data set, which has been sampled
from an unknown probability distribution PrD over X. As discussed
above, we implicitly assume the user’s knowledge is parametrized
as a probability distribution of PrU over X.

Our goal is to formulate a statistical testing procedure in which
PrU is the null distribution and the test statistic corresponds to a
pattern observed in the data. Intuitively, we call the pattern signif-
icant if the test statistics (counts in contingency table) are extreme
compared to PrU .

Test statistics. We define test statistics as functions
Ti : X!R; i 2 nT½ �, which measure the ‘strength’ of an observed
pattern and where we have used the notation nT½ � ¼ 1; :::;nTf g. In
this paper, the observed patterns are the counts in a contingency
table.

Iterative exploration. We assume that the user is shown a
finite sequence of nV views of the data. Each view Vt with t 2 nV½ �
contains a subset of counts Ti shown in one contingency table
and is defined as an index set, i.e., Vt # nT½ �. The idea is that in view
Vt , the user observes the values of the test statistics on the
observed data Tj x0ð Þ for all j 2 Vt .

Null distribution. The user’s knowledge PrU can be updated
with the use of constraints Ci : X! P Xð Þ (where P Xð Þ denotes the
power set of X), which restrict the possible data sets to those that
have a test statistic equal to the observed data set, i.e.,
5

Ci Xð Þ ¼ x 2 X : Ti xð Þ ¼ Ti x0ð Þf g. We identify a set of constraints
using an index set I# nT½ � and we denote the set of possible data
sets that satisfy a set of constraints I# nT½ � as
XI ¼ \i2ICi Xð Þ ¼ x 2 X : Tj xð Þ ¼ Tj x0ð Þ8j 2 I

� �
.

In each view Vt , the null distribution is the user’s current knowl-
edge PrU , which has been updated on the basis of the test statistics
It observed so far. We define constrained p-values as:

pijI ¼
PrU x 2 XI : Ti x0ð Þ � Ti xð Þf gð Þ

PrU XIð Þ
The null hypothesis that corresponds to a constrained p-value

pijI is that the distribution PrD (from which the observed data x0

is sampled) satisfies the following condition for any x 2 XI:

PrD xð Þ
PrD XIð Þ ¼

PrU xð Þ
PrU XIð Þ ð1Þ

The intuitive interpretation for the null hypothesis is that if
true, then the conditional distribution of the data, given the con-
straints, is equal to the corresponding distribution assumed by
the user.

Within-views correction. A view contains multiple test statis-
tics, which are used simultaneously for testing the null hypothesis
(user’s knowledge). Since multiple tests are performed, a multiple
testing correction is warranted. We use the step-down minP proce-
dure (Westfall-Young, 1993) to compute FWER-adjusted p-values
for the test statistics in a single view.

The minP algorithm is summarized as follows: given a vector of
observed test statistics X0 ¼ x1; � � � ; xnð Þ and a matrix of m samples
of test statistic vectors from the null distribution Y ¼ X1; � � � ;Xmð Þ,
the minP algorithm computes a vector of FWER-adjusted p-
values P ¼ p1; � � � ; pnð Þ.

An implementation of the minP algorithm in the R program-
ming language (R Core Team, 2020) is provided in the Supplemen-
tary Material 2.

Between-views correction. The user is shown multiple views
in a sequential manner and in each view, a hypothesis is tested.
In addition to the within-views correction, an additional multiple
testing correction is warranted for the sequence of views. If the
number of views is known in advance, we can apply any multiple
testing correction, such as a Bonferroni correction. However, if the
number of views is not known in advance, we instead apply an
online multiple testing correction, such as alpha-investing (Foster
& Stine, 2008). In alpha investing, the user has an alpha wealth
of total acceptable error that they may ‘‘invest” in hypotheses. If
the hypothesis provides a significant result, then the alpha invest-
ment is returned and can be reused in future hypotheses.

A simple online multiple testing procedure is a generalization of
the Bonferroni, called a weighted Bonferroni correction (Holland &
Copenhaver, 1988). The weighted Bonferroni correction is summa-
rized as follows: given a sequence of p-values pt t 2 nV½ �, multiply

each p-value with a factor wt such that
P1

t¼1
1=wt ¼ 1. Then the p-

values pt ¼min 1; wt ptð Þ are adjusted for FWER.

2.3. Testing procedure

The elements described above (test statistic, null distribution,
iterative exploration, within-view correction and between-view
correction) are combined into a statistical testing procedure. The
testing procedure consists of the following steps, for a given data
set x0 2 X sampled from PrD, number of views nV and weights
wt for each view Vt ; t 2 nV½ �:

1. Set t  1;V0  fg; I0  fg
2. Set It  It�1 [ Vt�1
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3. View values of test statistics Tj x0ð Þ where j 2 Vt # nT½ �fIt
4. Compute within-view adjusted p-values ptj using minP algo-

rithm and apply between-view correction to obtain final
adjusted p-values ptj ¼min 1; wt ptj

� �

5. Set t  t þ 1
6. If t � nV continue from Step 2, else terminate

The flowcharts below (Fig. 2)) visualize the statistical procedure
(left) and how it translates to a workflow for the user (right). The
statistical procedure is generally applicable to data exploration
with any visualization, while the workflow presented here is a spe-
cial case where the visualization is a contingency table. The work-
flow is presented in the section Case Example.

The procedure is an iterative process, as denoted by the ‘‘Con-
tinue?” block in the flowchart. The process terminates either when
the user wishes to end the exploration, or when the exploration
has no practical reason to continue, for example if the data are fully
constrained (i.e., everything has been observed already), or the
specified alpha budget is depleted when using an alpha investing
method. In practice, the lack of a termination criterion means that
the user is free to explore as long as there are discoveries to be
made in the data and there is enough available alpha budget.

The following theorems show that the above procedure controls
the family-wise error rate (FWER) at a chosen level a; both within
each view and overall for the whole procedure. The theorems are a
novel contribution that extends our previous work (Savvides et al.,
2019).

Theorem 1 (within-view)
Let Vt be a contingency table containing test statistics Tj where

j 2 Vt , and pj are the corresponding p-values as computed with the
minP algorithm using PrU as a null distribution.

Then for any given constant a 2 0;1½ � and for every j 2 Vt we
have that Pr pj � a

� � � a, i.e., the probability of at least one false
discovery is at most a.

Proof. Assume we have m data samples from PrU , denoted by xi.
Let X0 ¼ Tj x0ð Þ� �

; j 2 Vt be a vector of test statistics for the
observed data set, Xi ¼ Tj xið Þ� �

; j 2 Vt be a vector of test statistics
for data sample xi, and Y ¼ X1; � � � ;Xm½ � be a matrix of m test
statistic vectors.
Then the p-values pi ¼ MINP X0;Yð Þ are FWER-adjusted, since
the minP algorithm controls FWER.

Theorem 2 (between-views)
Let S ¼ V1; � � � ;VnV

� �
be a sequence of views and ptj the p-values

in each view, as computed with the minP algorithm using PrU as a
null distribution and corrected with the weighted Bonferroni
correction.
Fig. 2. Illustration of permutation with tiles and its effect on contingency tables. Left: Dat
all combinations of values in variables A and B. Centre: Variables A and B are permuted
over each column and each tile is permuted independently. A contingency table is com
except for a subset of rows where B = B1. Tile constraints are placed in each column, as b
that variables A and B retain their relationship within the subset where B = B1. This is illu
those in the original data.
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Then for any given constant a 2 0;1½ �, for every t 2 nV½ � and
every j 2 Vt we have that Pr ptj � a

� � � a.

Proof. We use Wt #Vt to denote the views whose p-values obey
the null hypothesis, according to the definition of Eq. (1), and by
S ¼ W1; � � � ;WnVð Þ the respective sequence of views. We denote by
Pt ¼ min

j2Wt

pjt , with Pt ¼ 1 if Wt ¼ null, the minimal p-value in view

t 2 nV½ � in which the null hypothesis is true. Since the p-values in
each view have been corrected for FWER, we know that
P Pt � a0ð Þ � a08a0.

Consider an iteration t 2 nV½ �. The user has the option of choos-
ing any subset of test statistics j 2 nT½ � to Vt . It can be shown that
for all test statistics, including Pt , for which the null hypothesis is
true, it holds that they are stochastically no larger than the uniform
distribution. Then, Pt is multiplied by wt , which means that the
probability of a false positive at iteration t 2 nV½ � is therefore at
most wt

�1a, resulting in a total false positive probability of at most

a when summed over all iterations in nV½ �, since
PnV

t¼1
w�1t 6 1.

3. Case example

In this section, we demonstrate the statistical testing procedure
using case studies and discuss their results. As a first case study, we
focus on occupational accident data from the chemical product
industry in Finland in 2010–2015. The idea is to explore the acci-
dent data using the testing procedure in order to obtain insights
into unusually high accident frequencies in the chemical product
industry. Focusing the analysis on one industry enables the selec-
tion of variable categories that are relevant to that industry, for
example, standard variables in accident reports. Selecting only a
subset of categories reduces the number of multiple hypotheses
and hence improves statistical power.

Note that alternative approaches to find similar results are lim-
ited or are not typically used, to our knowledge. For example, using
a standard test, such as a chi-square test of independence, we can
compute a p-value for each table (Cacha, 1997). However, the test
provides a single p-value for the whole table (as opposed to one for
each table cell) and the p-value does not account for previously
observed significant patterns (whereas here the user’s knowledge
is updated, which affects future p-values). Therefore, traditional
methods are not directly comparable to our presented framework,
as discussed in the Motivating example. Two general methods that
can act as baselines are an approach where no corrections are per-
formed, and an approach where the corrections are overly strict.
The first approach may lead to spurious findings and no control
of the error rate, which our method controls. The second approach
may lead to no findings due to lack of statistical power, while our
a set D with variables A and B. A contingency table is computed from D by counting
independently. The permutation is realized through tile constraints. A tile is placed
puted in the same manner. Right: Variables A and B are permuted independently,
efore, and an additional tile is placed on a subset of rows where B = B1. The result is
strated in the contingency table in which the counts containing B1 are the same as
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approach retains statistical power through the powerful minP cor-
rection. In addition, the correctness of the results of the case study
cannot be demonstrated experimentally, since there is no ‘‘ground
truth” to compare to. The validity of the approach is provided by
the mathematical proofs in the methods section.

We now describe a case example of using the testing procedure
to explore a data set of occupational accidents. The exploration
consists of three iterations (i.e., three contingency tables are
viewed sequentially). In each iteration, the contingency table is
determined by selecting two variables (columns) and a subset of
data points (rows). For each cell in the table, a FWER-adjusted p-
value is computed using as a within-view correction the minP
algorithm and as a between-view correction a standard Bonferroni
procedure for a predetermined number of three iterations. After
viewing a table, the observed accident frequencies are used to
update the user’s background distribution and are therefore not
significant in future tables.

Iteration 1. We start by viewing a contingency table of the
Specific physical activity and Cause of accident variables for the
whole data. For the Cause of accident variable we view 12 out of
73 categories that are relevant to the chemical product industry
(e.g., chemicals, logistics and machinery). For the Specific physical
activity variable we view all nine categories (e.g., using machinery
or handling objects).

We discover eight statistically significant accident frequencies
in Table 3. These frequencies are unusually high compared to the
current knowledge of the user, as parameterized by the null
distribution.

After viewing Table 3, the user’s knowledge is updated so that if
Table 3 is viewed in future iterations, it does not contain significant
findings. The user’s knowledge is updated by modifying the null
distribution through a tile constraint {R = all rows, C = (Specific
physical activity, Cause of accident)} that fixes the relationship of
the variables in Table 3.

Iteration 2. The table for the next iteration is determined by the
user, by selecting a subset of rows and the two variables of the con-
tingency table. The next table can be completely independent from
the current one or (as in this example) it can be based on the find-
ings of previous tables. We now focus on a subset of the data that
was significant in Table 3, denoted by R1 = {Specific physical activ-
ity = 60 Movement, and Cause of accident = 1100 ground level
buildings/surfaces/structures}. In subset R1, we view a contingency
table of the Industry (4 digit) (using 18 out of 587 categories
which, based on our knowledge, are relevant for the chemical pro-
duct industry) and Working process (using all 32 categories) vari-
ables. The contingency table is presented in Table 4 (see
Supplementary Material 3 for full table) and we discover one sta-
tistically significant result.

The effect of Iteration 1 on Iteration 2 has two parts. First, sub-
set R1 was selected on the basis of the findings from Iteration 1.
Second, the constraints from Iteration 1 on the null distribution
may affect the p-values of Iteration 2. In this case, the constraints
have no overlap with the data of Table 4, and as such have no effect
on the p-values.

After viewing Table 4, the user’s knowledge is updated, simi-
larly to Iteration 1. The null distribution is updated by adding a tile
constraint {R = R1, C = (Industry (4 digit), Working process)} that
fixes the relationship of the variables in Table 4 for the viewed sub-
set R1 (i.e., not for all the data). After fixing this result for subset R1,
we can now test whether the result is significant for the rest of the
data. We do this by using the whole data set (instead of only subset
R1) to view the same variables as in Table 4.

Iteration 3. A significant result is discovered in Iteration 2, for
subset R1 of the data. We now repeat the steps of Iteration 2 using
all the accident reports in the chemical product industry, to inves-
tigate whether accident frequency is also significantly high for the
7



Table 4
Contingency table of Working process and Industry (4 digit) variables for the subset of the data defined by R1 (significant result from Table 3). Only a part of the table is shown here for clarity; refer to the Supplementary Material 3 for
the whole table. Each cell contains the accident count for a category of each variable. A FWER-adjusted p-value is computed for each cell and is contained inside parentheses. Insignificant p-values (p = 1) are denoted by a dot. p-values
with p � a = 0.1 are statistically significant.

Working process
Industry 4 digit

00 no
information

11 production,
manufacturing,
processing

12
storing

19 other
manufacturing and
storing

21
excavation

22 new
construction,
building

23 new construction,
roads, bridges, dams,
ports

24 remodelling, repairing,
building maintenance

25
demolition

29 other
construction

2011 Manufacture of industrial
gasses

2 (.) 4 (.) 2 (.) 0 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2012 Manufacture of colours
and pigments

0 (.) 2 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2013 Manufacture of other
non-organic basic
chemicals

6 (.) 27 (.) 1 (.) 1 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2014 Manufacture of other
organic basic chemicals

1 (.) 4 (.) 0 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2015 Manufacture of fertilizers
and nitrogen compounds

0 (.) 3 (.) 2 (.) 0 (.) 0 (.) 0 (.) 0 (.) 1 (.) 0 (.) 0 (.)

2016 Manufacture of plastic
materials

1 (.) 29 (0.05) 1 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2017 Manufacture of synthetic
rubber raw material

1 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2020 Manufacture of
pesticides and agriculture
chemicals

1 (.) 6 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2030 Manufacture of paints,
printing inks and enamels

0 (.) 17 (.) 9 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

Table 5
Contingency table of Working process and Industry (4 digit) variables for the whole data set. Only a part of the table is shown here for clarity; refer to the Supplementary Material 3 for the whole table, which contains more statistically
significant cells. Each cell contains the accident count for a category of each variable. A FWER-adjusted p-value is computed for each cell and is contained inside parentheses. Insignificant p-values (p = 1) are denoted by a dot. p-values
with p � a = 0.1 are statistically significant.

Working process
Industry 4 digit

00 no
information

11 production,
manufacturing,
processing

12
storage

19 other
manufacturing and
storage

21
excavation

22 new
construction,
building

23 new construction,
roads, bridges, dams,
ports

24 remodelling, repairing,
building maintenance

25
demolition

29 other
construction

2011 Manufacture of
industrial gasses

12 (.) 47 (.) 21 (.) 3 (.) 1 (.) 0 (.) 0 (.) 1 (.) 0 (.) 0 (.)

2012 Manufacture of colours
and pigments

1 (.) 27 (.) 2 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2013 Manufacture of other
non-organic basic
chemicals

17 (.) 168 (.) 20 (.) 15 (.) 1 (.) 1 (.) 0 (.) 0 (.) 1 (.) 0 (.)

2014 Manufacture of other
organic basic chemicals

5 (.) 53 (.) 8 (.) 10 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2015 Manufacture of fertilizers
and nitrogen compounds

4 (.) 32 (.) 7 (.) 3 (.) 0 (.) 0 (.) 0 (.) 1 (.) 0 (.) 0 (.)

2016 Manufacture of plastic
materials

6 (.) 123 (.) 13 (.) 14 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2017 Manufacture of synthetic
rubber raw material

2 (.) 21 (.) 2 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2020 Manufacture of
pesticides and agriculture
chemicals

2 (.) 25 (.) 1 (.) 1 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)

2030 Manufacture of paints,
printing inks and enamels

10 (.) 209 (0.083) 50 (.) 10 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.) 0 (.)
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whole data. In Table 5, we discover seven significant results (see
Supplementary Material 3). However, these do not include the sig-
nificant result from Iteration 2. In other words, we observe a signif-
icantly high accident frequency in subset R1 of the data and, after
taking it into account in the null distribution, the same accident
frequency is not significantly high in the whole data set, even
though more data are used. This suggests that the significantly
high accident frequency is somehow related to the constraints
added during the exploration: [{R = all, C=(Specific physical activ-
ity, Cause of accident)} + {R = R1, C=(Industry (4 digit), Working
process)}]. To further illustrate this relationship, we contrast the
above with a scenario in which there are no tile constraints from
previous iterations (i.e., when the user has not viewed the previous
two tables). In this scenario, the significantly high count in a subset
(from Iteration 2) is also significant for the whole data set.

The findings obtained from the above three iteration steps are
products of an exploratory data analysis. The benefit over existing
approaches is that the analyst is allowed to look at the data and
still be able to obtain a statistical guarantee that the observed acci-
dent counts are not due to random chance alone.

For an occupational safety analyst, the results of these three
iterations in this case study propose that in the manufacture of
plastic materials there may have been additional haste in produc-
tion, leading to relatively many slip, trip and fall-related injuries.
Now having this statistical guarantee, the analyst could start look-
ing at other data from the industry (such as production volumes)
that could explain the result according to their hypotheses. Finding
larger than expected accident counts is an ubiquitous problem
across safety research, for which our approach provides a practical
solution.
4. Discussion

Responsive methods for accident statistics analyses have tradi-
tionally been used in safety management (Goel et al., 2017) and a
selection of predictive methods have been introduced to supple-
ment these. Predictive models developed in recent years are able
to predict, for example, the number and severity of accidents at
work, but silent signals that can anticipate safety situations are still
poorly recognized by the commonly used analysis methods. We
see that more attention should be paid to identifying silent signals
and modern analytics tools in order to succeed in accident preven-
tion. By identifying information sources that anticipate critical
safety incidents and utilizing data mining, data collection and anal-
ysis can focus on relevant issues and be more cost-effective.

In practical working life, occupational accidents are often
approached through uni- and bi-variate distribution analyses that
show the distribution of incident characteristics in absolute num-
bers or percentages. In more sophisticated use, incident concentra-
tion analyses try to identify clusters of incidents with common
characteristics utilizing variables similar to ours to prioritize safety
measures (Kjellén and Albrechtson, 2017). Our analysis approach
utilizes similar data, with the purpose of identifying silent signals
from the data set of occupational accidents in Finland.

The ‘traditional’ way to conduct a scientific study on accident
statistics data has been to form a hypothesis and then use statisti-
cal testing methods to see if the hypothesis is true (e.g., some fre-
quencies are high). The methods presented in this article enable us
to draw more fine-tuned conclusions and also perform the analysis
iteratively, as the approach we present allows creating hypotheses
during the analysis based on viewing contingency tables created
from the data. This method would be useful for detecting ‘silent
signals’ for informed decision making, for example, even if they
concern only small portions of the data (e.g., one branch, city,
company).
9

Previous accident analysis models suffer from the fact that it is
not always obvious if the found patterns are valid in a statistical
sense. The methodology presented in this paper provides a
straightforward, understandable, yet powerful framework to find
hidden signals and weed out random artefacts. In the examples
of this paper we used raw data sets provided by TVK and only
had the human expert’s knowledge and intuition at hand. In prin-
ciple it would have been possible to use other variables in this con-
text (such as a person’s income level, health status, etc.). However,
this would have required combining different databases. As an
example, Pietilä et al. (2018) similarly combined two different
databases; an accident statistics database of one accident insur-
ance company and an employee health database of an occupational
health care provider.

New approaches to data analysis are needed when human
capacity is not sufficient to analyze available data efficiently and
reliably. Occupational safety management is facing such a chal-
lenge when it comes to utilizing fragmented information as well
as large materials; this creates its own challenges for information
management. In information management, information can be
divided into explicit and indirect information. The collection and
use of this indirect or tacit information can be of significant benefit
in the prevention of accidents at work (Podgorski, 2010). Data-
driven safety management, which takes advantage of more than
just accident data, enables continuous improvement (Wang et al.,
2018). This is what many employers strive for, as reducing accident
rates with traditional analytics and data is limited.

In principle, it would be possible to use an AI method, for exam-
ple, to suggest views of the data and our method to independently
assess the statistical validity of the results, or augment the data set
by attributes (e.g., risk indices) estimated by supervised learning
models. In this article, the focus was on the 15 variables used in
the TVK data. However, the TVK data also contained small verbal
descriptions of every accident. This part of the data we excluded,
as our focus was on statistical testing. Combining these two parts
of data would be an inspiring new approach for a future study on
this topic. As we have learned from the studies by, for instance,
Jocelyn et al. (2016), Nanda et al. (2016), Valmuur et al. (2016)
and Marucci-Wellman et al. (2017), machine learning has been
successfully tested in analyzing accident descriptions. We believe
that such an approach, going into the verbal data in depth, should
be studied further.
5. Conclusions

The presented method is generic and can, in principle, be used
to explore any data set from which one can compute contingency
tables and for which contingency tables are an informative ‘visual-
ization.’ Even though the examples in this paper are from quantita-
tive measurements, there is no reason why the same approach
could not be applied to qualitative data, from questionnaires, for
instance. Furthermore, machine learning algorithms such as classi-
fiers are often used to find relations in the data and to estimate
unobserved variables. For example, in the case of this work acci-
dent data set we could try to estimate some of the properties using
a classifier. The prediction given by a classifier could be added as a
new variable to the data.

Large data sets contain a great deal of potentially useful and
valuable information. Often, there is no one great question that is
clear in advance; finding the useful parts requires first exploring
the data. After we see something, it is then important to have some
confidence in the fact that the observed patterns – in our case acci-
dent frequencies – are ‘real’ and not just random artefacts.

In this paper, we have proposed a method to do this on a pub-
licly available occupational accident database. Our approach is
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based on iterative exploration of confidence tables. Although the
underlying mathematics and algorithms require some understand-
ing, the outcomes are easily understandable, namely contingency
tables and knowledge, if any of the contingency table elements
are larger than they would be expected to be by chance.

Future studies could focus on studying combined material in
larger samples as they introduce an interesting possibility to gain
more in-depth information. Analysis of large-scale data sets with
richer information about the employer, workplace and organiza-
tional practices could provide more insight into their effects on
occupational accidents.
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