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H I G H L I G H T S  

• Surface data differentiated apparent and direct temperature dependence of [O3]. 
• Volatile organic compounds contribute vitally to [O3] in this low-NOx environment. 
• Statistical model reproduces the [O3], without exactly stating all involved processes.  

A R T I C L E  I N F O   
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A B S T R A C T   

Tropospheric ozone (O3) concentrations are observed to increase with temperature in urban and rural locations. 
We investigated the apparent temperature dependency of daytime ozone concentration in the Finnish boreal 
forest in summertime based on long-term measurements. We used statistical mixed effects models to separate the 
direct effects of temperature from other factors influencing this dependency, such as weather conditions, long- 
range transport of precursors, and concentration of various hydrocarbons. The apparent temperature de
pendency of 1.16 ppb ◦C− 1 based on a simple linear regression was reduced to 0.87 ppb ◦C− 1 within the canopy 
for summer daytime data after considering these factors. In addition, our results indicated that small oxygenated 
volatile organic compounds may play an important role in the temperature dependence of O3 concentrations in 
this dataset from a low-NOx environment. Summertime observations and daytime data were selected for this 
analysis to focus on an environment that is significantly affected by biogenic emissions. Despite limitations due to 
selection of the data, these results highlight the importance of considering factors contributing to the apparent 
temperature dependence of the O3 concentration. In addition, our results show that a mixed effects model 
achieves relatively good predictive accuracy for this dataset without explicitly calculating all processes involved 
in O3 formation and removal.   

1. Introduction 

Ground level, or tropospheric, ozone (O3) is a harmful air pollutant 
for both humans and vegetation (e.g. Klingberg et al., 2011; Sousa et al., 
2013), and it also plays a central role in the oxidative chemistry in the 
troposphere. Therefore, changes or trends in tropospheric O3 concen
tration, such as temperature dependence, are of interest for many topics 

related to the atmosphere. Tropospheric O3 concentration is affected by 
multiple factors with both anthropogenic and biogenic origin (Monks 
et al., 2015). The photolysis of NO2 is the direct source for tropospheric 
O3. Higher concentrations of nitrogen oxides (NOx ≡ NO + NO2) and 
increased solar radiation will thus increase the observed O3 concentra
tion. Furthermore, any process which converts NO to NO2 - such as the 
oxidation of carbon monoxide (CO), methane (CH4) and other 
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hydrocarbons (often also referred to as non-methane volatile organic 
compounds) by hydroxyl radicals - will increase O3 production (e.g. 
Seinfeld et al., 2016). O3 can also be transported from the stratosphere to 
the troposphere. Removal of O3 can occur, for example, via dry depo
sition or various chemical reactions (Monks, 2005). Even though the 
mechanisms of O3 production are rather well understood, linking at
mospheric observations to specific chemical processes remains chal
lenging due to the complicated interplay of O3 formation and 
destruction mechanisms. Ozone has been intensively studied for multi
ple decades and decreases in peak O3 concentrations have been observed 
for many locations across the globe (Monks et al., 2015; Yan et al., 
2018). These decreases have been linked to successful regional emission 
controls, especially regarding anthropogenic sources of NOx and volatile 
organic compounds (VOCs). A similar decrease of peak O3 concentration 
has also been observed in Finland for both urban and rural locations, but 
the trends for average O3 concentration have been inconsistent (Anttila, 
2020). Several locations in Europe have had increasing trends for the 
average O3 concentration prior to the year 2000, but no positive trend 
later than that (Cooper et al., 2014). However, in some polluted areas, 
like Chinese megacities, the recent O3 concentrations have been 
increasing despite the decreasing NOx levels (e.g., Li et al., 2021b). 

The connections between O3 concentration and temperature have 
been intensively studied (e.g., Sillman et al., 1995; Bloomer et al., 2009; 
Steiner et al., 2010; Rasmussen et al., 2013; Romer et al., 2018; Laban 
et al., 2020), and O3 concentrations are observed to increase with 
temperature in multiple locations. For example, based on the review by 
Pusede et al. (2015), slopes between ~1 and 8 (ppb O3 

◦C− 1) have been 
reported for daily maximum O3 concentration in summertime in various 
locations across the United States. The strongest effects have been 
observed in urban locations with relatively high NOx concentrations, 
but successful emission controls lowering the NOx levels and anthro
pogenic VOCs (i.e. O3 precursors) have resulted in smaller temperature 
dependencies (Monks et al., 2015; Pusede et al., 2015). Indeed, the O3 
production rate response to changes in NOx levels differs depending on 
whether the O3 production is taking place in a low-NOx or high-NOx 
regime (NOx or VOC limited O3 production) (Seinfeld et al., 2016) 
making it important to distinguish investigated areas based on back
ground NOx and VOC concentrations. Due to the complex chemistry 
leading to O3 production, modelling studies with chemical transport 
models have also observed varying dependences between the resulting 
O3 concentrations and temperature when emissions of biogenic VOCs 
(BVOCs) and their influence on O3 formation reactions are considered 
(e.g., Ito et al., 2009). In addition, unresolved issues regarding O3 sinks 
still remain (e.g. Zhou et al., 2017). Fewer studies exist covering low 
enough NOx levels corresponding to remote and rural regions. Coates 
et al. (2016) investigated the temperature dependency of O3 in chemical 
transport model simulations, covering peak NOx concentrations be
tween 0.02 and 10 ppb. They assigned the temperature dependent in
crease in O3 concentration to be either caused by the chemistry itself (i.e. 
changes in reaction rates) or by the increase in isoprene emissions due to 
temperature. Romer et al. (2018), on the other hand, investigated 
observational data from a rural site at Centerville, Alabama in the 
southeastern United States, where they observed an increase in O3 
concentration of 2.3 ± 1 ppb ◦C− 1 (1.7 ± 0.2 ppb ◦C− 1 for long-term) 
with afternoon average NOx and isoprene concentrations of 0.3 ppb 
and 5.5 ppb, respectively, for the 2013 measurement campaign. 

To interpret the observed apparent temperature dependence of the 
O3 concentrations, multiple factors involved in the production and loss 
of O3 and their response to temperature changes need to be considered. 
This includes, e.g., the concentration of NO which determines if a region 
is a source or a sink for O3 (Seinfeld et al., 2016) or the concentration 
and reactivity of VOCs which can be oxidized by OH (forming OVOCs) 
and thus work as O3 precursors. However, VOCs can also react directly 
with O3, thus acting as a sink (Loreto et al., 2001). Furthermore, BVOC 
emissions from plants show a strong dependence on temperature. For 
example, monoterpene emissions increase exponentially with 

temperature (e.g. Guenther et al., 1995; Aalto et al., 2015; Hellen et al., 
2018), thus possibly introducing a temperature dependence to the O3 
formation. Weather conditions (T, RH, wind, and solar radiation) and 
soil properties (soil T and moisture, affecting plant dynamics) also affect 
the local O3 concentration in various ways (e.g. Ooka et al., 2011; Austin 
et al., 2015; Urban et al., 2017; Clifton et al., 2020b). Romer et al. (2018) 
deduced that for their study conditions, the increase in NOx emissions 
from microbial activity in the soil accounted for approx. 40% of the 
observed apparent temperature dependence of the O3 concentration. 
The remaining change could be attributed to an increase in HOx 
(hydrogen oxide radicals) production with increasing global radiation 
(which is correlated with T). Laban et al. (2020), attempted to separate 
the effect of temperature on the daily maximum O3 concentration from 
other variables, including changes in RH and NOx, for sites located in 
continental Africa with high anthropogenic and natural emissions. After 
accounting for these other changes, the increase of O3 concentration due 
to temperature in their study is clearly smaller (~0.4–1.5 ppb ◦C− 1) than 
reported earlier for urban locations (Pusede et al., 2015). However, both 
these studies (Romer et al., 2018; Laban et al., 2020) only covered short 
measurement campaigns of up to two years of continuous observations 
and could not investigate longer term trends. 

In this study, we aim to determine the factors contributing to the 
apparent temperature dependence of O3 concentration and to estimate 
the underlying change in O3 concentration due to temperature at the 
Station for Measuring Ecosystem – Atmosphere Relations (SMEAR II) 
measurement site (Hari et al., 2005) in Hyytiälä, Finland. For this 
data-based investigation, we apply multivariate mixed effects models on 
the comprehensive long-term observations from the measurement site. 
The advantage of using a mixed effects model is that it enables the 
prediction of the O3 concentration based on multiple processes without 
explicitly calculating all these processes. The study focuses on the 
summer months over a 15-year period. This station represents rural 
boreal forests, which account for almost a third of the forests around the 
globe (Fao, 2020). Due to the location of the site, SMEAR II is charac
terized by little urban pollution, the closest city being Tampere (238 140 
inhabitants, Statistics Finland, 2019), located approximately 50 km 
from the measurement station. The station is surrounded by rather ho
mogenous pine (Pinus sylvestris) forest, with monoterpenes being the 
largest group of BVOCs emitted (Rantala et al., 2015; Hellen et al., 
2018). 

2. Methods 

2.1. Data selection and pre-processing 

2.1.1. Measurements at SMEAR II, Hyytiälä, Finland 
The SMEAR II (Station for Measuring Ecosystem–Atmosphere Re

lations: Hari et al., 2005) station provides long-term time series for 
multiple variables describing aerosols, gases, meteorology, soil, and 
plants at the site freely available to the public in an online database 
(Junninen et al., 2009). In this study we use statistical methods to 
investigate this data and in the final mixed effects regression model, we 
have used data from 2012 to 2018/2019. This period was chosen due to 
the continuous methane (CH4) measurements that started in late 2012 
and the end of the studied time period is dictated by the availability of 
VOC measurements. However, for additional analysis supporting our 
results, data since 2005 have also been investigated. 

The atmospheric composition at SMEAR II is different between the 
different seasons. Winters usually see stronger anthropogenic influence, 
e.g. due to residential heating, whereas the emissions of BVOCs are more 
important during spring and summertime (e.g. Patokoski et al., 2014; 
Patokoski et al., 2015). To investigate O3 concentrations in an envi
ronment that is strongly affected by biogenic emissions, we have used 
only summertime (June, July, and August) data. In addition, due to the 
very different chemistry of O3 during day- and nighttime, we used only 
daytime data by selecting time points where the sun is at least one 
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degree above the horizon in Hyytiälä (lat. 61.80, lon. 24.30). This se
lection is consistent with previous studies investigating the maximum O3 
concentrations which do take place in daytime. The varying boundary 
layer height during the selected period of each day was taken into ac
count as a variable in the further data analysis. Depending on the 
measured variable, the original time resolution varied. Thus, we aver
aged all data into 1-hourly values by taking the arithmetic mean for 
every hour. Due to the operation of the VOC measurements system, VOC 
concentrations are provided for every 3rd hour (having on average 9 
observations within that hour), thus limiting our final investigation to 
one data point every 3 h (i.e., 1-h means for every 3rd hour). Data rows 
which had wind direction between 120◦ and 140◦ were removed from 
all the analyses to exclude the influence of the emissions from a nearby 
sawmill (Liao et al., 2011). Tables S1 and S2 show the data coverage 
relative to the hours available during daytime at summer after excluding 
the possible sawmill emissions. 

We investigated the following variables (in addition to the O3 con
centration itself) for their potential effect on [O3] at SMEAR II: wind 
speed (WS) and direction (WD), concentrations of nitrogen oxides (NOx, 
including NO and NO2), equivalent black carbon concentration (eBC), 
carbon monoxide (CO) and CH4 concentrations, atmospheric pressure 
(p), temperature (T), relative humidity (RH), global radiation (GlobR), 
soil temperature (soil T), soil moisture content (soil H2O) and VOC 
concentrations. The VOCs include aromatics (benzene and toluene + p- 
cymene), biogenic VOCs (BVOCs; isoprene, and monoterpenes) and 
oxygenated VOCs (OVOCs; methanol, acetaldehyde, ethanol + formic 
acid, acetone, acetic acid, methacrolein + methyl vinyl ketone, and 
methyl ethyl ketone). The variables listed here were inspected as they 
are either known and/or proposed to affect the O3 concentration directly 
or via pathways involving multiple processes. For example, CO, NOx and 
CH4 are involved in the gas phase chemistry of O3 formation and 
destruction (e.g., Seinfeld et al., 2016), RH has a strong connection to O3 
via controlling dry deposition (Altimir et al., 2006; Zhou et al., 2017), 
and VOCs can act as sources or sinks for O3 (e.g., Vermeuel et al., 2021). 
In addition, the O3 fluxes measured at SMEAR II were inspected for their 
potential dependence on temperature. Summary statistics and details of 
the measurement instruments are listed in Tables S3–S5. 

Global radiation was used to calculate the clear sky parameter by 
dividing the measured global radiation by the calculated theoretical 
maximum radiation. This parameter describes the cloudiness at SMEAR 
II, with less clouds with increasing numerical value (Baranizadeh et al., 
2014; Dada et al., 2017). In addition to the data measured within the 
forest canopy (measured at height 16.8 m), we also investigated (if 
available) the same observations from the measurement mast at 67.2 m 
thus being clearly above the ~18 m tall canopy. 

2.1.2. Back-trajectory data and airmass source analysis 
Hourly 96-h back trajectories were obtained from the HYSPLIT4 

model (Hybrid Single-Particle Lagrangian Integrated Trajectory, Stein 
et al., 2015) for the same time period as the measurements from SMEAR 
II. Due to the relatively short lifetime of O3 (Monks et al., 2015), we 
limited the trajectories to 24 h before reaching the station before clus
tering them into more specific airmass source areas. Longer trajectories 
(48–96 h) were tested, but as the airmass sources stayed approximately 
the same, shorter trajectories were used as they provided the most 
precise clustering results. The Euclidean distance matrix (Rencher et al., 
2012) calculated from coordinates of the 24-h long airmass trajectories 
corresponding to the final model data were clustered with partitioning 
around medoids (PAM). The algorithm for PAM is fully described else
where (Kaufman et al., 1990). Six clusters were reasonably interpretable 
and clearly distinct. Thus, they were used as random effects in the 
regression models. A short description of the trajectory calculations, 
PAM and selection of the clusters along with their characteristic prop
erties can be found in the SI. 

The arrival height at Hyytiälä was set to 100 m above ground. In this 
study, the trajectories are included to consider possible variation in the 

local variable concentrations in Hyytiälä due to long-range transport of 
various pollutants or their precursors. In addition, as various output 
parameters along the trajectories can be obtained, we used the mixing 
layer height (MLH, km) 1 h before the airmass arrives at Hyytiälä to 
represent the mixing layer height at Hyytiälä due to the absence of 
actual measurements of this variable prior to 2013 at the site. 

2.2. Multivariate mixed effects models 

2.2.1. General description of mixed effects models 
A multivariate mixed effects model was used to estimate the O3 

concentrations in Hyytiälä. A mixed effects model was used as these 
models estimate the variance-covariance structure of the data in addi
tion to the mean of the response variable, and do not require standard 
homogeneity and independency assumptions (e.g.,Mcculloch et al., 
2008; Demidenko, 2013) which are not often met with atmospheric 
data. Mixed effects models are also better justified than fixed effects 
models for grouped data sets with possible hierarchical structures (in 
this study, e.g. by airmass sources or hour of the day) (Demidenko, 2013; 
Mehtätalo et al., 2020). In addition, with mixed effects models, we can 
maintain the hourly resolution of the data and include the diurnal 
variation of the variables as a random effects without the need to 
average the data to efface the diurnal variability, similarly as in Mik
konen et al. (2020). 

The linear mixed effects model can be presented in general form as  

y=Xβ + Zb + ε, (1)  

where y is the vector of the response variable (here O3 concentration), β 
(n x 1, n is the number of fixed effects) and b (q x 1, q is the number of 
random effects) are the vectors of fixed and random effects, respectively, 
and X (p x n, p is the number of observations) and Z (n x q) are the 
related design/coefficient matrices (Mcculloch et al., 2008) representing 
the predictor variables in the model (e.g. temperature, concentrations of 
various compounds, air mass source area, etc.). Vector ε includes the 
random errors. The formulation of the final regression model with the 
measured variables is presented in section 3.2 with Eq. (2). Depending 
on the random effect structure (crossed or nested effects), the relation
ship between X and Z varies (Mcculloch et al., 2008). The general idea of 
the random terms is to consider the group specific properties in the data, 
e.g., here airmass source specific effects on O3 concentrations. More 
particularly, heterogeneity and correlation structure between and 
within the random effects of the data can be considered with justified 
choices of the design matrix Z, and covariance structures for random 
parameters Cov(b) = G (q x q) and for residuals Cov(ε) = R (n x n) can be 
defined and fitted. Modelling variances and covariances of the obser
vations helps to provide valid statistical inference for the fixed effects β 
of the mixed model. As a difference to general linear models, the error 
terms ε can be correlated and the correlation structure can be defined, 
which makes the modelling more robust and accurate. Thus, the distri
bution of predicted observations ŷ can be described by a distribution 
with the expectation of Xβ and the covariance matrix V (n x n), which is 
given by V = ZGZ’+R. However, as with multivariate regression models 
in general, the correlation structure within the independent variables 
(fixed effects) must be considered separately in order to avoid multi
collinearity (e.g., Freund et al., 2006). More details of the content and 
construction of the presented matrices in the mixed effects model can be 
found from the literature (e.g.,Mcculloch et al., 2008; Demidenko, 2013; 
Zuur et al., 2009; Burzykowski et al., 2013). 

A mixed effects model enables the prediction of the O3 concentration 
based on multiple affecting factors (expressed by the variable groups) 
without explicitly calculating all the processes involved. While the 
model does not include explicit description of the processes and there
fore specific processes cannot be investigated in detail, the role of 
various processes or variables in the changes in O3 concentration can be 
studied. It is a computationally efficient way to find and quantify the 
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dependencies in the data with high accuracy. For example, Yli-Juuti 
et al. (2021) used a mixed effects model to estimate the effect of tem
perature on the organic aerosol mass loading. The linear mixed effects 
model was calculated with R statistical software (R 4.1.1, R Core Team, 
2021) with the lmer-function provided in the package lme4 (Bates et al., 
2015). The restricted maximum likelihood method (e.g.,Mcculloch 
et al., 2008) was used for estimating the model parameters. 

2.2.2. Selection of relevant variables for the mixed effects model 
In this section we justify our decision to leave out a few variables, 

which are usually considered relevant for O3 formation, from the final 
mixed effects regression model. All the available variables listed in 
Table S1 were investigated for their impact on the concentration of O3. 
First, the model Bayesian information criterion (BIC) (Schwarz, 1978) 
was inspected to see if the added variable increased the overall fit of the 
model. Second, the significance of a certain variable (a significance level 
of α = 0.05 was used) to the model was determined by likelihood ratio 
tests (Wilks, 1938) calculated between different model versions. In 
addition to comparing two nested model structures, we compared 
non-nested models which had the same number of degrees of freedom 
(e.g., model1 with the predictors T, [CO], [BC] and [NO] and model2 
with T, [CO], [BC] and [NOx]). Due to the non-nested structure, the 
likelihood ratio test cannot be directly used to determine if one variable 
is a better predictor than another. Instead, we inspected the Pearson 
correlation coefficients (Pearson’s r) between modelled and measured 
data and inspected the other regression coefficients (in addition to that 
for T), as large changes in the coefficients (when changing a predictor in 
a model into another) could indicate a variable has relevance in the 
model. The Pearson’s r values were also inspected between the pre
dictors in order to avoid multicollinearity. 

The first exploratory investigation revealed that some variables had 
no significant effect (i.e., were not statistically significant based on the 
process explained above) or were not suitable due to their own depen
dence (Pearson’s r above 0.5) on T or other predictor variables. Below, 
we further elaborate why these variables were omitted from additional 
analysis. 

Even though RH is an important variable for O3 formation through 
affecting O3 loss via dry deposition, and it is a statistically significant 
predictor in the model, we have excluded it from the final model due to 
its high correlation with T (Pearson’s r-0.56 for summer during daytime 
between 2005 and 19) to avoid multicollinearity. However, the effect of 
RH is also partly covered by the clear sky parameter as high RH corre
sponds to situations with more cloud cover at SMEAR II: the Pearson’s r 
value between hourly RH and the clear sky parameter is − 0.64 for 
summertime data for daylit hours between 2006 and 2019. This 
connection is likely partly due to the drop in temperature due to more 
cloud cover (e.g., Seinfeld et al., 2016). In addition, during the pro
gression of the data analysis, we observed that the NOx and NO2 con
centrations were not significant predictors for O3 concentration in this 
data set and are thus omitted from the regression models presented 
below. However, NO concentration was found to be significant instead. 
This is likely caused by NO being more directly linked to the formation 
of O3 and thus also to the observed O3 concentration (e.g., Seinfeld et al., 
2016). NO2, however, can both enhance and decrease the O3 production 
and thus the model is not able to detect a significant net effect for [O3] 
due to [NO2]. In addition, in SMEAR II [NO] ≪ [NO2], thus small 
changes in NO concentration are not as pronounced in the total [NOx] 
which reduces the quality of [NOx] as a predictor. However, it has to be 
noted that the mixed effects model simply looks for predictors that are 
significant in the context of its framework. For a detailed chemical box 
model, which investigates the actual chemical processes, both the NO 
and NO2 concentrations would be relevant. The measured OVOC con
centration is highly dependent on temperature, leading to an exponen
tial increase of OVOC concentration as a function of T (Fig. S1). Thus, 
OVOC concentration also has a high correlation with temperature 
(Pearson’s r = 0.65 for daytime between 2010 and 18), thus preventing 

their use in the regression model together with temperature. We inves
tigated their relevance for O3 concentration by other means (see section 
3.4). Other variables excluded from the regression are concentration of 
aromatics, pressure, and soil T. These were not statistically significant 
predictors in the models. 

The random effects investigated are hour of the day, airmass source, 
and observation year. Variations in O3 concentration by these effects is 
visualized in Fig. S2. Hour of the day is needed in the regression model to 
include diurnal variation not captured by the other variables in the 
model. The use of airmass sources is justified due to differences in O3 
concentration between these sources. The observation year is used to 
consider any possible year-by-year variation in the measured data 
caused by factors not directly considered with the fixed variables in the 
model, such as instrumental reasons (e.g., the device measuring [eBC] 
changed in 2017, causing a small shift in the measured eBC 
concentrations). 

To investigate how the effect of temperature changes as more factors 
affecting the O3 concentration in the troposphere are taken into account, 
we separated the model predictors into different groups: basic chemis
try, anthropogenic influence, weather, BVOCs, soil/plant processes and 
random effects. Variables included in each group are shown in Table 1. 
The role of OVOCs was investigated separately (see section 3.4). The 
BVOCs represents the sum of MTs (monoterpenes) and isoprene con
centrations, as the effect of those VOCs on O3 was in the same direction 
with similar magnitude. Combining these VOCs did not affect the 
observed T dependency outside of the error limits. Regarding the 
weather variables, we observed that the wind speed (WS) is highly 
affected by the wind direction (WD), thus the WD was categorised into 
east (E, 45◦–120◦), south (S, 140◦–225◦), north (N, 0◦–45◦ and 
315◦–365◦) and west (W, 225◦–315◦) and we allowed the fixed effect for 
WS to vary depending on the categorised wind direction. Using more (e. 
g., 8) categories for the WD neither improved the overall fit nor changed 
the regression coefficients (including that for T) in the final multivariate 
mixed effects model, thus using 4 categories is sufficient. The mathe
matical formulation of the complete model with all the predictors is 
shown in Eq. (2) in section 3.2. All statistical analysis in this study was 
conducted with R statistical software (R 4.1.1, R Core Team, 2021). 

3. Results and discussion 

3.1. Results from simple regression 

For comparison to existing literature on O3 concentration depen
dence with temperature, simple regression fits were first calculated for 
1-h resolution data. Long-term observations show an increase in O3 
concentration with temperature (Fig. 1a). The slope of [O3] ~ T from the 
ordinary least squares (OLS; Chambers, 1992) regression estimates this 
increase to be 1.20 ppb ◦C− 1 (Pearson’s r = 0.62 between modelled and 
predicted [O3]), whereas a Deming regression (Deming, 1943) suggests 

Table 1 
Model predictor groups and variables in each group.  

Group Included variables 

Basic chemistry NO, CO, CH4 

Anthropogenic 
influence 

eBC 

Weather wind speed and direction, cloudiness (clear sky-parameter) 
and MLH 

BVOCs MTs and isoprene (sum of the concentrations) 
Soil/plant processes Soil H2O 
OVOCs* methanol, acetaldehyde, ethanol + formic acid, acetone, 

acetic acid, methacrolein + methyl vinyl ketone, and methyl 
ethyl ketone (sum of the concentrations) 

Random effects Hour of the day, airmass origin (cluster), and observation 
year 

* This group is excluded from the final model (section 3.2) but assessed in sec
tion 3.4. 
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an increase of 2.65 ppb ◦C− 1 (Pearson’s r = 0.62 between modelled and 
measured [O3]). The difference between the estimates is surprisingly 
large, but generally methods considering the errors for both x and y 
variables (i.e. as in Deming regression) should be preferred for this type 
of bivariate analysis (Mikkonen et al., 2019). Measured O3 fluxes do not 
show significant trends as a function of temperature (SI Section S1 and 
Fig. S3). The NOx levels in Hyytiälä (daytime median 0.30 ppb between 

2005 and 2019) are similar to those reported in Romer et al. (2018) for 
the rural US (slope of 1.7–2.3 ppb ◦C− 1 between O3 and temperature) 
and for both sites no apparent change in the NOx concentrations (slope 
from OLS regression − 0.0043 ppb ◦C− 1 with Pearson’s r = 0.04 between 
modelled and measured [NOx] at Hyytiälä) was observed with 
increasing temperature (Fig. 1b). However, at Hyytiälä the highest NOx 
concentrations for this dataset ([NOx] > 2 ppb) are mostly observed at T 
between 10 ◦C and 25 ◦C. The main difference between the sites (SMEAR 
II and the site in rural US in Romer et al., 2018) is the type of the sur
rounding forest, leading to more than one order of magnitude lower 
isoprene concentration at SMEAR II (daytime median of 0.12 ppb be
tween 2010 and 2019). 

Relatively high O3 concentrations (summertime daytime median 31 
ppb between 2005 and 19) were observed despite the rather low NOx 
concentration (summertime daytime median 0.30 ppb between 2005 
and 19). This could be due to low/missing sinks for O3. For example, Li 
et al. (2021a) showed that the typical day-night cyclicity is much less 
prominent at SMEAR II compared to the Landes forest (pine forest in 
France), where much stronger O3 loss by reactions with MTs can be seen. 
However, at the Landes forest site, the MT concentration is ~10 times 
higher than at SMEAR II (Li et al., 2021a). Vermeuel et al. (2021) also 
proposed, that in-canopy chemistry of BVOCs plays a significant role in 
the removal of O3, suggesting that the O3 sinks are weaker in SMEAR II 
where the BVOC concentrations are much smaller. Generally, BVOCs are 
suggested to play a significant role in removal of O3 (Wolfe et al., 2011). 
However, Zhou et al. (2017) estimated that the removal of O3 by 
chemical processes is relatively small at SMEAR II, compared to, e.g., 
deposition on wet surfaces. 

3.2. Estimating the temperature dependence of O3 by the mixed effects 
model 

We estimated the temperature dependence of the O3 concentration 
from the fixed coefficient for temperature in the mixed effects model, 
which can be expressed as  

where β0 is a model fixed intercept, bh, by and ba are the vectors of 
random intercepts for hour of the day, year, and airmass source, 
respectively. β1- β9 are the fixed coefficients for T, [NO], [CH4], [CO], 
[BVOC], [eBC], clear sky parameter, MLH, and soil H2O, respectively. 
βWS:WD is the (4x1) vector of coefficients for wind speed dependent on 
wind directions. Each variable group presented in Table 1 is separated 
with curly brackets in Eq. (2). 

In addition to the final version of the model, shown in Eq. (2) and 
discussed more in Section 3.3, we analyzed different versions of the 
model where specific variables or groups of variables were added in the 
model one at a time. To achieve consistent results, variables shown in 
Table 1 (except OVOCs) were first merged into one dataset (containing 
both measurement heights) with unified time resolution, thus leading 
into a final dataset with 3-h resolution due to the limitations in the VOC 
measurements. Only periods, when all parameters were available, were 
included in the analysis, and all time points where one or more of the 
variables were not available, were removed prior to the regression. 

Table 2 shows the results from the regression model as more groups 
(i.e., all variables within one group) are cumulatively added to the 
model. The Bayesian information criterion (BIC, Schwarz, 1978) and the 
correlation (Pearson’s r) between the observed and predicted values 
describe the goodness-of-fit. The simplest model (OLS regression) is a 
simple univariate regression model which is only based on the air T (first 
row in Table 2). These values differ slightly from the slopes shown in 
Fig. 1 as the data set size has changed due to the merging of the selected 
variables. The OLS regression is included as a reference point to compare 
with previous studies using the same approach. We then evaluate how 
the successive addition of variable groups change the apparent T 
dependence of the O3 concentration. The respective slopes for T 

Fig. 1. Daytime (sun 1◦ above the horizon) hourly a) O3 and b) NOx concentrations as a function of temperature for June–August 2005–2019 at SMEAR II, Hyytiälä, 
Finland within the forest canopy. The blue line shows a Deming regression fit and red line OLS (ordinary least squares regression) fit for the [O3] and [NOx] as a 
function of ambient T. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

[O3i] = β0 +
{

bh + by + ba
}
+ β1Ti +

{
β2[NOi] + β3

[
CH4,i

]
+ β4[COi]

}
+ {β5[BVOCi]}+ {β6[eBCi]}+ {βWS:WDWS+ β7ClearSkyi + β8MLHi} +

{
β9SoilH2O, i

}

(2)   
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(regression coefficients β1) and goodness-of-fit values are shown in the 
rows following the OLS (including only T as a predictor variable) case in 
Table 2. For each case, temperature was included in the model and the 
variable groups were successively added in the order as they are listed. 
When we add a variable group in the mixed effects model, a part of the 
variability of the O3 concentration can then be explained by the pro
cesses represented by these variables. This will separate the direct effect 
of temperature on the O3 concentration from these other dependences 
without explicitly modelling them (e.g., all possible VOC reactions with 
O3). A change in the regression coefficient β1 (slope for T) when a new 
variable group is added, indicates that the previously calculated 
apparent T dependence included these other effects. Each added group 
improves the fit (decreasing BIC and increasing Pearson’s r). Addition of 

the variable groups also increased the overall fit significantly based on 
likelihood ratio tests (Wilks, 1938). In addition, the changes in the 
apparent temperature dependence of the O3 concentration when each 
group is added separately without the other ones is presented in Table 3. 

Adding the random effects decreases the apparent T dependence by 
0.25 ppb ◦C− 1 within the canopy and by 0.22 ppb ◦C− 1 above the canopy 
(Table 2). The addition of the basic chemistry components does not 
change the apparent T dependence much, but it improves the prediction 
of the O3 concentration as indicated by the decreasing BIC and 
increasing Pearson’s r. This could suggest none of the components in 
that group (basic chemistry) show significant changes with temperature 
and/or their concentrations are so high that small variations in them do 
not affect the predicted O3 concentration. It is also possible that the 
effects of these components counteract each other, thus the net effect 
regarding the T dependence of [O3] is close to zero. The largest decrease 
in the slope for the cumulative approach (Table 2) is caused by the 
variable group “weather”. To further investigate if this large decrease in 
the temperature dependence is due to a single term within the weather 
parameters, we constructed additional models in which these parame
ters were investigated separately. Based on this analysis, the clear-sky 
parameter causes the largest decrease in the slope (for example, from 
0.98 to 0.79 within canopy with BIC decrease from 7290 to 7251) but 
the wind terms and MLH improve the model more (BIC decreases from 
7290 within canopy to 7207 or 7208, respectively). 

3.3. Validating the temperature dependence of O3 

The final model shown in Eq. (2) corresponds to the last row in 
Table 2, which includes the factors found statistically significant for the 
observed [O3] from the variables we tested (Tables S1 and S2) as 
described in Section 2.2.2. The predictor variables in this model also 
improved the overall fit significantly when added one-by-one instead of 
adding them as groups (not shown). The fixed regression coefficients 
and their significance levels for the final model are presented in Table 4 
and the intercepts (fixed and random) are visualized in Figs. S8 and S9. 

Table 2 
Regression model evolution per added variable group. The variable groups were 
added cumulatively from top (random effects) to bottom (soil/plant processes). 
The model evolution is shown with BIC (Bayesian information criterion) and 
Pearson’s r between observed and model predicted data. Data from both heights 
include simultaneous observations. The OLS fit is included to have a reference 
point to earlier studies.  

Added variable 
group 

Slope for T (ppb 
◦C− 1) i.e. β1 in Eq.  
(2) 

BIC Pearson’s r (obs. vs 
pred. [O3]) 

Measurement 
height 

within 
canopy 

above 
canopy 

within 
canopy 

above 
canopy 

within 
canopy 

above 
canopy 

OLS ([O3] ~ T) 1.16 ±
0.04 

1.12 ±
0.04 

7777 7720 0.64 0.63 

Base case: 
[O3] ~ T +

random 
effects 

0.91 ±
0.04 

0.90 ±
0.04 

7546 7471 0.74 0.74 

Variable group added to the base case (cumulatively): 
Basic chemistry 0.93 ±

0.05 
0.88 ±
0.04 

7493 7402 0.76 0.76 

BVOCs 1.08 ±
0.05 

0.98 ±
0.04 

7363 7330 0.79 0.78 

Anthropogenic 
influence 

0.98 ±
0.04 

0.85 ±
0.04 

7290 7231 0.80 0.80 

Weather 0.74 ±
0.05 

0.63 ±
0.05 

7153 7111 0.83 0.83 

Soil/plant 
processes 

0.87 ±
0.05 

0.76 ±
0.05 

7108 7063 0.84 0.84  

Table 3 
Regression model evolution per added variable group. The variable groups were 
added individually to the base case model including T and the random effects. 
The model evolution is shown with BIC (Bayesian information criterion) and 
Pearson’s r between observed and model predicted data. Data from both heights 
include simultaneous observations.   

Slope for T (ppb 
◦C− 1) i.e. β1 in Eq.  
(2) 

BIC Pearson’s r (obs. vs 
pred.) 

Measurement 
height 

within 
canopy 

above 
canopy 

within 
canopy 

above 
canopy 

within 
canopy 

above 
canopy 

Base case: 
[O3] ~ T +

random 
effects 

0.91 ±
0.04 

0.90 ±
0.04 

7546 7471 0.74 0.74 

Variable group added to base case (individually): 
Basic chemistry 0.93 ±

0.05 
0.88 ±
0.04 

7493 7402 0.76 0.76 

BVOCs 1.10 ±
0.04 

1.03 ±
0.04 

7405 7393 0.78 0.76 

Anthropogenic 
influence 

0.84 ±
0.05 

0.77 ±
0.05 

7539 7441 0.74 0.75 

Weather 0.79 ±
0.04 

0.78 ±
0.04 

7349 7347 0.80 0.78 

Soil/plant 
processes 

0.99 ±
0.05 

0.98 ±
0.04 

7527 7450 0.75 0.75  

Table 4 
Regression coefficients from the final mixed effects model fit. The * indicates 
variables that were observed also at the above canopy level, in addition to O3.  

Fixed effect/ 
slope 

Slope ± Std. Error P-value Unit  

At canopy Above 
canopy 

At 
canopy 

Above 
canopy  

T* 0.87 ±
0.05 

0.76 ±
0.05 

<0.001 <0.001 ppb/◦C 

NO* − 15.85 ±
3.58 

− 18.34 ±
3.06 

<0.001 <0.001 ppb/ppb 

CH4* − 0.09 ±
0.01 

− 0.10 ±
0.01 

<0.001 <0.001 ppb/ppb 

CO* 0.08 ±
0.01 

0.10 ±
0.01 

<0.001 <0.001 ppb/ppb 

Clearsky 3.75 ±
0.78 

4.74 ±
0.74 

<0.001 <0.001 ppb/1 

MLH 2.61 ±
0.47 

2.21 ±
0.43 

<0.001 <0.001 ppb/km 

eBC 16.69 ±
1.72 

19.53 ±
1.67 

<0.001 <0.001 ppb/ 
μgm− 3 

BVOCs* − 4.72 ±
0.43 

− 5.63 ±
0.61 

<0.001 <0.001 ppb/ppb 

Soil H2O 26.90 ±
3.80 

27.44 ±
3.75 

<0.001 <0.001 ppb/ 
m3m− 3 

WS*:WD(E) 0.50 ±
0.34 

0.18 ±
0.12 

0.1370 0.1180 ppb/ 
ms− 1 

WS*:WD(N) 0.53 ±
0.35 

0.16 ±
0.16 

0.1330 0.3130 ppb/ 
ms− 1 

WS*:WD(S) 1.64 ±
0.28 

0.64 ±
0.11 

<0.001 <0.001 ppb/ 
ms− 1 

WS*:WD(W) 1.53 ±
0.25 

0.56 ±
0.10 

<0.001 <0.001 ppb/ 
ms− 1  
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The model yields a temperature dependence of 0.87 ppb O3 
◦C− 1 and 

0.76 ppb O3 
◦C− 1 within canopy and above canopy, respectively, with 

rather good agreement between the observed and predicted O3 con
centration (Pearson’s r 0.84 within and above canopy) as shown in Fig. 2 
and reported in the last row of Table 2. The highest O3 concentrations 
are slightly underestimated (Fig. 2) suggesting some processes are still 
missing. However, this is expected, as e.g., OVOCs known to affect O3 
(Mellouki et al., 2015) were not included. To further validate our 
regression model, we ran 1000 bootstrap replicates (e.g., Efron et al., 
1986; see details from S4.2) to investigate if the model coefficients are 
sensitive to changes in the data or if significant bias exists. The distri
bution of the regression coefficients for T in those 1000 replicates are 
normally distributed (Fig. S10) and no clear biases were observed for the 
coefficients of the other variables either, indicating our regression model 
has reasonable capability to predict O3 concentration at SMEAR II. 

The obtained temperature dependence falls at the lower end of the 
values reported in previous studies for similar conditions. However, it 
needs to be considered that the mixed effects model separates the direct 
T dependence from the other factors. Studies that also distinguish 
multiple different factors show lower apparent T dependence values as 
well (e.g. Laban et al., 2020), when compared to bivariate models 
(Pusede et al., 2015 and references therein). The simplified box model 
analysis presented by Romer et al. (2018) suggested that 60% of the 
apparent T dependence can be attributed to an increase in the HOx 
production, which primarily depends on the global radiation but ap
pears to be temperature dependent. With our approach, this effect would 
be mostly covered by the clear sky parameter (Pearson’s r between clear 
sky parameter and GlobR in the final data is 0.80) and thus does not 
affect the apparent T dependence to the same degree. 

The direct T dependence of the O3 concentration is related to the 
temperature dependence of chemical reactions that are involved in 
producing O3. Often, the reaction rates involving O3 production are 
dependent on temperature and, in many cases, reactions involving 
oxidation of VOCs by OH, and NOx oxidation by HOx and ROx do 
actually have negative dependency on T (e.g., in MCMv3.2, Rickard 
et al., 2021). This would suggest a decrease of O3 with increasing T. 
However, as the net O3 production is not only determined by these 
oxidation reactions, the actual net change in O3 concentration might still 
end up positive. For example, Coates et al. (2016) predicted an increase 
of O3 with T due to changes in reaction rates to be approximately 
0.25–0.52 ppb ◦C− 1 with their chemical mechanism models under 
low-NOx conditions. 

3.4. The role of OVOCs 

Pusede et al. (2014) observed that the total organics reactivity with 
OH increases as a function of temperature. This increase is suggested to 
be driven by increasing concentrations of VOCs with temperature, most 
importantly of small oxygenated organic molecules. Even though we are 
not able to include both OVOCs and T in our model, we can investigate 
the effect of OVOCs with a similar approach. First, we created a dataset 
containing the OVOCs presented in Table 1 along with all the other 
variables used in the regression so far. As this slightly limited our 
dataset, we first refitted the regression model from section 3.2 with Eq. 
(2) (i.e., no OVOCs), which gave a slope of 0.87 ± 0.06 (ppb O3 

◦C− 1) for 
T within the canopy, with a Pearson’s r of 0.848 between measured and 
predicted O3. To investigate the possible effect of OVOCs, we then 
replaced the term β1Ti (which captures the T dependence) with a term 
for the dependence of the O3 concentration on the OVOCs concentration 
(β10[OVOCi]) and looked into the predictive capability of the model for 
the O3 concentration. Using the OVOC concentration instead of tem
perature, resulted in a Pearson’s r of 0.870, higher than for the model 
with temperature (0.848). The slope for [O3] ~ [OVOCs] (β10) was 
positive (1.23 ± 0.06 ppb O3 ppb− 1) in contrast to the slope for BVOCs 
(− 4.91 ± 0.45 ppb O3 ppb− 1). Regression coefficients for the other 
variables and intercepts (fixed and random) are reported in the sup
plementary material (Figs. S11–S12 and Table S7). A negative slope for 
BVOCs could indicate that those compounds act as a net “sink” for O3 
due to their reaction with O3, or that O3 is produced if the dominant 
BVOC reaction was with OH. Most of the OVOCs, on the other hand, do 
not react with O3 directly as they do not contain C––C double bonds. 
Those OVOCs (see Table 1) could be a source of O3 via their oxidation by 
OH, but they can also be reaction products of BVOC oxidation and thus 
be an indication of the amount of reacted BVOCs. Therefore, the 
different signs for the slopes of BVOC and OVOC are reasonable, how
ever it is not possible to conclude which is the dominant process. 
However, if the OVOCs were formed dominantly by the reaction of 
BVOCs with O3, it might indicate an O3 loss process, and we would 
expect a negative slope for OVOCs. Our methodology cannot resolve the 
actual processes involved here. However, our results show that further 
investigation of the relationship of OVOCs and O3 are needed. 

Our findings suggest that there is a rather strong, temperature 
dependent connection between [O3] and [OVOCs]. Whether this is 
solely due to the increase of OVOC concentration or changes in their 
reactivity caused by temperature, as suggested by Pusede et al. (2014), is 

Fig. 2. Predicted vs. the observed O3 concentration as a scatter plot a) within the canopy and b) above the canopy with the final model presented in Eq. (2). Pearson’s 
r between the observed and predicted [O3] for both heights is 0.84. The 1:1 line is shown in red as a reference for the “perfect fit”. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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hard to say. In addition, small-sized OVOCs increasing with T could also 
be connected to their reduced uptake on, or enhanced release from, wet 
surfaces upon the drying of these surfaces with increasing T (Fulgham 
et al., 2020). 

To get a rough estimate for the temperature effect when taking the 
concentration of OVOCs into account, we selected acetaldehyde and 
ethanol + formic acid from the full set of available OVOCs to be included 
in the model with temperature. This was possible as the Pearson’s r 
between T and individual OVOC concentrations varied, being smallest 
for those selected (Pearson’s r values < 0.5), thus decreasing the risk of 
multicollinearity. With this setup, an [O3] ~ T slope of 0.67 ± 0.06 (ppb 
O3 

◦C− 1) was obtained with a Pearson’s r of 0.876 between the observed 
and predicted [O3]. This further supports the hypothesis that the OVOCs 
play an important role in the observed T dependence of O3 concentra
tion. This link between [O3] and [OVOCs] is included in the slope be
tween [O3] and T obtained with simple linear regressions. This creates 
an illusion of a rather strong temperature dependence of O3 concen
tration, even though part of this dependence may not be directly caused 
by temperature but rather e.g. due to the temperature dependence of 
other relevant factors such as possible nonlinear processes involving the 
chemistry of OVOCs. 

The other variables in the model with OVOCs instead of T had only 
minor changes in their coefficients considering the changes in the data 
(Table S7), but soil H2O became insignificant for the model. This could 
indicate some interaction between OVOCs and the soil H2O (e.g., Fulg
ham et al., 2020), possibly linked to variations in plant and forest floor 
emissions (see e.g. Aaltonen et al., 2013; Mäki et al., 2019), as OVOCs 
can also be directly emitted by plants (e.g., Harley et al., 2007). How
ever, plants can also take up OVOCs and thus the stomatal closure 
caused by drought could both decrease the emissions and reduce the 
uptake of OVOCs (Filella et al., 2009; Saunier et al., 2017). Lin et al. 
(2020) observed increasing O3 levels with droughts. Thus, we might 
expect higher O3 concentration for dryer soils also for Hyytiälä. The 
Pearson’s r between O3 and soil H2O is slightly negative (− 0.09 between 
2005 and 19 and − 0.33 for the final model data), indicating higher O3 
concentrations occur more often with dryer soils. However, the regres
sion coefficient from our multivariate regression model with T (Eq. (2)) 
is positive (Table 4), indicating higher O3 concentrations occur with 
more humid soils (note that in the model including [OVOCs] instead of T 
the soil H2O term becomes non-significant). This could indicate changes 
in the plant emissions driven by soil moisture, promoting O3 formation. 
Temperature can also affect the stomatal uptake of O3 by changing the 
stomatal conductance of the plants. Stomatal conductance has been re
ported to increase with increasing T under constant humidity conditions 
(e.g. Urban et al., 2017). This could lead to an increase in O3 uptake due 
to stomatal opening, but the real relationship is complicated. A review 
from Clifton et al. (2020a) concluded that the uptake of O3 itself de
creases the stomatal conductance due to changes in cell signalling 
pathways and turgor pressure. Further processing of O3 inside the plant 
leaves can also cause e.g. cell death and stomatal sluggishness (Hoshika, 
2015; Clifton et al., 2020b) thus affecting the uptake. Strong connection 
between the non-stomatal O3 uptake and surface moisture has also been 
observed (Altimir et al., 2006). Lin et al. (2020), on the other hand, 
observed reduction in O3 uptake by forests due to droughts caused by 
heatwaves. However, we do not have a variable in our model that would 
directly describe the O3 uptake by vegetation. Soil H2O does link to [O3] 
the effects of vegetation, however our results are not conclusive on the 
soil water effects as our model did not consider the potential time lag in 
the effects of soil moisture on plant emissions (Rissanen et al., 2020) and 
drawing solid conclusion regarding if part of the increase in [O3] (due to 
increase in air T) could be caused by changes in O3 uptake by vegetation 
(caused by air T and/or related soil H2O effect affecting plants) is not 
possible within our methodology. 

4. Conclusions 

In this study, we investigated the factors contributing to the apparent 
temperature dependency of O3 concentration observed in Hyytiälä, 
Finland (estimated up to 2.65 ppb ◦C− 1 with linear regression when 
considering the errors in both T and O3 observations). Without consid
ering the OVOCs, the temperature dependence of [O3] obtained from the 
mixed effects model is decreased to 0.87 ppb ◦C− 1 when considering the 
basic components involved in O3 formation and destruction, weather 
conditions, anthropogenic influence, and possible long-range transport 
of O3. With these parameters, relatively good prediction accuracy 
(Pearson’s r 0.84) for O3 concentration is achieved for this dataset 
containing summer time daytime data. Note that this is achieved with a 
rather simple mixed effects regression model with no need to consider 
the detailed processes involved in O3 formation and removal. Additional 
analysis with OVOCs included in the mixed effects model indicated that 
portion of the temperature dependence may be linked to OVOCs. While 
our methodology can identify OVOCs as potentially important factors 
for the observed O3 concentration at this location, it cannot resolve the 
exact mechanism behind this relationship. OVOCs can act as indirect O3 
precursors (via oxidation with OH), but they can also be the products of 
BVOC oxidation which can be a loss process for O3 (via ozonolysis) or a 
production process (via OH oxidation). To clarify which of the suggested 
pathways is truly responsible for the observed linkage, dedicated 
mechanistic studies are needed with in-depth chemical box models. 

The mixed effects model deployed in this study identified factors that 
affect the observed O3 concentrations and that were masked as the 
apparent temperature dependence when applying a simple linear 
regression. The factors to be included were based on their expected 
importance of O3 concentration and availability of their long-term 
measured or calculated data. It should be noted, however, that our 
analysis was based on summertime (June–August) daytime data and, 
therefore, the importance of the variables should not be generalized for 
this site year-round. Our results indicate that the OVOC concentrations 
play an important role for variations of O3 concentration and more in
vestigations are needed to understand the detailed processes linking 
OVOC sources, sinks, and reactivities to observed O3 concentrations, 
especially in boreal forest environments. The conditions at SMEAR II 
seem quite unique in comparison with the few other existing studies 
about apparent T dependence of O3 concentrations, as shortly discussed 
in Section 3.1. Applying the mixed effects model approach to investigate 
the apparent and direct T dependence observed in these other envi
ronments may reveal temperature dependent processes involved in the 
O3 formation/removal, with relatively small computational effort, 
which are hidden or not yet known. Tropospheric O3 concentrations are 
observed to increase with temperature in both urban and rural locations 
around the world. As O3 is also a harmful pollutant for both humans and 
vegetation, climate change driven increases in temperature could lead to 
unfavorable effects. Thus, investigation of the factors affecting the 
temperature dependence is essential. Compared to computationally 
expensive box models with detailed chemistry, applying a mixed effects 
model is a fast and relatively simple approach with no need to explicitly 
calculate all processes involved in ozone formation. 

We encourage researchers to use this methodology to see if similar 
factors can be found to affect temperature dependence of [O3] in their 
data sets. Currently the model is defined with hourly data and applying 
it on daily averaged data would be indicative. However, lower resolu
tion data might contain some bias as large fraction of the total variation 
would be neglected. For the data set used in this study, addition of the 
weather and BVOCs groups had the largest effects on the obtained slope 
for T. Depending on the environment, effect of the other groups may 
increase. For instance, relative contribution of local O3 formation and 
long-range transport is expected to affect the relative importance of 
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including basic chemistry variables and back-trajectories in the model. 
The model in its current form is assumed to work properly in areas with 
similar meteorological conditions, with similar level of anthropogenic 
pollution and similar VOC profile to the SMEAR II location. To be used in 
very different environments, the model coefficients need further vali
dation. Furthermore, in a very different environment, additional vari
ables may become relevant, and should be added. Future work could 
include analysis with the model defined here and with coefficients ob
tained from our data to see how sensitive the current model is for 
different environments. Especially it would be interesting to see how the 
model performs, for example, in regions with extremely high tempera
tures (e.g. Steiner et al., 2010). Fitting new coefficients for different 
environments may also provide information on differences in domi
nating factors in defining [O3] between environments or on factors 
missing from the current model. 
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