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Abstract: Drought is a major abiotic stressor that causes yield losses and limits the growing area
for most crops. Soybeans are an important legume crop that is sensitive to water-deficit conditions
and suffers heavy yield losses from drought stress. To improve drought-tolerant soybean cultivars
through breeding, it is necessary to understand the mechanisms of drought tolerance in soybeans. In
this study, we applied several transcriptome datasets obtained from soybean plants under drought
stress in comparison to those grown under normal conditions to identify novel drought-responsive
genes and their underlying molecular mechanisms. We found 2168 significant up/downregulated
differentially expressed genes (DEGs) and 8 core modules using gene co-expression analysis to
predict their biological roles in drought tolerance. Gene Ontology and KEGG analyses revealed key
biological processes and metabolic pathways involved in drought tolerance, such as photosynthesis,
glyceraldehyde-3-phosphate dehydrogenase and cytokinin dehydrogenase activity, and regulation of
systemic acquired resistance. Genome-wide analysis of plants’ cis-acting regulatory elements (CREs)
and transcription factors (TFs) was performed for all of the identified DEG promoters in soybeans.
Furthermore, the PPI network analysis revealed significant hub genes and the main transcription
factors regulating the expression of drought-responsive genes in each module. Among the four
modules associated with responses to drought stress, the results indicated that GLYMA_04G209700,
GLYMA_02G204700, GLYMA_06G030500, GLYMA_01G215400, and GLYMA_09G225400 have high
degrees of interconnection and, thus, could be considered as potential candidates for improving
drought tolerance in soybeans. Taken together, these findings could lead to a better understanding
of the mechanisms underlying drought responses in soybeans, which may useful for engineering
drought tolerance in plants.

Keywords: co-expression analysis; drought stress; Glycine max; meta-analysis; transcriptome

1. Introduction

Drought stress is one of the main environmental stress conditions limiting crop pro-
duction and plant distribution throughout the world. Soybeans (Glycine max L.), which
constitute a major source of proteins, unsaturated fats, carbohydrates, and fibers, are one
of the most significant legume crops and are capable of providing nutritional security for
the global population, as well as being important for biotechnological applications [1]. The
timing, duration, and severity of drought stress are important factors in soybean yield and
quality. When plants are constantly exposed to drought stress, they can suffer from several
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impairments, such as oxidative injury, membrane system damage, cellular ion leakage, and
protein denaturation [2]. Previous studies have shown that the photosynthesis rate and
CO2 uptake of a plant decline during drought stress, adversely affecting biomass accumu-
lation and yield [3,4]. Therefore, plants have evolved complex molecular, physiological,
and biochemical strategies to adapt to the effects of drought stress [5,6]. In this regard,
water stress causes the production of reactive oxygen species (ROS), and excessive ROS
lead to oxidative stress, which inhibits plant growth and, ultimately, causes cell death [7].
An effective and direct approach to enduring drought stress is to reduce water loss by
closing stomata. Plants’ responses to drought stress are modulated by multiple factors,
including osmotic regulation, environmental signals, photosynthesis, hormone regulation,
CO2 concentration, and respiration [8]. Drought resistance is a complex trait controlled
by several different genes. Despite extensive research on drought resistance in plants, it
is still not fully understood and needs more investigation [9]. The genes differentially ex-
pressed during drought stress include those encoding critical enzymes for the biosynthesis
of hormones, proteins involved in osmotic adjustment and cell protection, and various
cell-signaling proteins such as kinases, phosphatases, and transcription factors [10].

Omics is a multidisciplinary field of study that is largely performed through the
application of several high-throughput technologies, which mainly involve qualitative
and/or quantitative detection of novel or previously identified genes, transcripts, tran-
scription factors, proteins, metabolites, and other parameters [11,12]. With the advent of
high-throughput sequencing technologies, large-scale genomic data are being generated
and deposited in public domain databases by various research organizations around the
world [13,14]. Most of these datasets are related to the expression of genes from various
experiments conducted to understand the complex biological mechanisms of plants under
biotic and abiotic stresses, including widespread transcriptional and metabolic events. Phys-
iological and molecular studies of stresses suggest a common network of multiple signaling
pathways in plants [15]. Therefore, progress in new techniques of functional genomics—
such as microarrays and RNA-Seq technologies—allows the analysis of gene regulation
and model species under various stresses. The RNA-Seq and microarray approaches are
fundamentally different from one another in terms of gene expression measurements.
The former allows for direct sequencing of the whole transcriptome, while the latter only
processes predefined transcripts/genes through hybridization [16]. RNA-Seq is superior
in detecting low-abundance transcripts, differentiating biologically critical isoforms, and
allowing the identification of genetic variants. Moreover, this approach does not depend on
genome annotation for prior probe set selection, and it avoids the related biases introduced
during hybridization of microarrays, such as background noise [17]. Despite the benefits
of RNA-Seq, microarrays are still the more common choice of researchers to perform tran-
scriptional profiling experiments. RNA-Seq technology is new to most researchers. This
method is also more expensive than microarrays, and its data storage is more challenging.
In addition, there is a lack of optimized and standardized protocols for its analysis, in spite
of the availability of multiple computational tools [16]. Thus, microarrays have become the
predominant platform for transcriptome profiling, because of their relatively high sensi-
tivity, specificity, ease of analysis, accuracy, throughput, and cost-effectiveness [18]. DNA
microarrays are helpful in studying complex ecological interactions; hence, we used this
method to conduct the comprehensive transcriptome analysis of drought-tolerant soybeans
in our research. [19]. In recent years, omics data and progressive statistical analyses such as
meta-analyses and computational systems biology have created excellent opportunities
to conquer biological complexity [20,21]. For instance, meta-analysis is a potent strategy
that integrates transcriptomic data to recognize core gene sets and regulate their complex
traits [22]. Therefore, researchers are able to obtain more reliable results by integrating
information from multiple sources. Furthermore, they can investigate the expression of
thousands of genes and their co-expression partners under diverse abiotic stresses [23]. Mi-
croarray data are frequently used to elucidate gene expression profiles and detect modules
in genetic network analysis, which allows the simultaneous analysis of a many genes and
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samples. Moreover, genetic network analysis provides a way to discover metabolic and
gene expression patterns at the genomic scale, as well as the possibility of analyzing the
expression of unknown genes compared to sequences in databases [24].

Analysis of gene co-expression networks must be carried out to understand the interre-
lationships between the selected DEGs and identify genes with similar expression patterns
that may participate in specific biological functions [25]. Weighted gene co-expression
network analysis (WGCNA) is a powerful approach for exploring transcriptomic data and
deciphering co-expression patterns among genes. The WGCNA technique deals primar-
ily with the identification of gene modules by using the gene expression levels that are
highly correlated across samples [26]. This approach has been successfully utilized to un-
derstand transcriptional regulation in many plant species, such as maize (Zea mays L.),
rice (Oryza sativa L.), tomatoes (Solanum lycopersicum L.), Arabidopsis thaliana, and soy-
beans [27–33]. Co-expression networks are scale-free networks of nodes representing
genes that are connected by edges whenever they are significantly co-expressed [25,26].
In such a network, highly connected genes are called hub genes, which are expected to
play a significant role in understanding the biological mechanisms of responses to biotic
and abiotic stresses in plants [34,35]. Here, we should also emphasize that the use of
co-expression network analysis is an effective technique to develop a hypothesis. The
widely used proof-of-hypothesis approach is direct selection for yield stability based on an
experimental system adapted to adverse environmental conditions. This system is a time-
consuming, labor-intensive process and is more challenging for abiotic-stress-related traits
due to its low heritability and the high influence of different environmental conditions [36].
Therefore, an alternative option is molecular breeding using co-expression analysis, which
can identify functional pathways and then accelerate the development of tolerant cultivars.

System biology approaches use correlations between genes to cluster genes with
similar expression profiles under multiple experimental conditions into co-expression
modules. Gene co-expression modules reflect DEGs that contribute to the interrelated
biological pathways and processes. Such gene modules may be conserved across species
and even various abiotic stresses. In the present study, we performed a large-scale meta-
analysis of stress-response studies using microarray gene expression data to detect DEGs
involved in responses to drought stress. Although meta-analysis has proven to be useful
in discovering differentially expressed genes (DEGs), co-expression network analysis is a
critical step in the selection of informative genes and predicting gene functions. As a result,
systems biology analysis was employed to identify hub genes and provide further insight
into the mechanisms related to soybeans’ response to drought stresses. These results will be
valuable resources for studying drought resistance in soybeans, as well as a basis for further
research on genes involved in drought resistance. The aim of this study is the identification
of core gene sets that regulate the drought tolerance between stress and normal conditions
in soybeans.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

The soybean microarray experimental datasets under drought stress were collected
from Gene Expression Omnibus with the platform GPL13674 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GPL13674, [accessed on 3 June 2011]). This platform contains
128 experimental samples and 10 series records on 66,660 probesets generated using the
Affymetrix Glycine max Gene 1.0 ST Array. A total of 30 vegetative tissue samples related
to drought stress were collected for further study. The number of selected controls and
treatments for each stress condition, along with the experimental sample IDs, is given in
Table 1. The conditions, stages, and tissues are as follows:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13674
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13674
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Table 1. Samples retrieved from GEO and ArrayExpress.

Accession Type Platform Control Treatment Tissue Released

E-GEOD-40627 Response to drought GPL13674, Affymetrix 3 3 Leaf 10 November 2012
E-GEOD-65553 Response to drought GPL13674, Affymetrix 9 9 Root 2 July 2015
E-GEOD-29663 Response to drought GPL13674, Affymetrix 3 3 Leaf 2 April 2012

Total samples 30

GSE29663 and GSE40627: Seedlings of soybean plants (cultivar: Williams 82) were
grown in pots containing Supermix. The pots were watered once per day under greenhouse
conditions (continuous 30 ◦C temperature, photoperiod of 12 h/12 h). Soybean plants
at the V6 stage (28 days after sowing, containing 7 trifoliate leaves) were withheld from
watering to initiate the drought treatment and, finally, leaf samples were collected for
RNA extraction.

GSE65553: Soybean plants (cultivar: Williams 82 and DT2008) were separately grown
in pots containing vermiculite under well-watered conditions in a controlled greenhouse
(continuous 30 ◦C temperature, photoperiod of 12/12 h). When the plants reached the
V2 stage (14 days after sowing, containing 2 trifoliate leaves), drought treatment was
imposed by withholding water. After the dehydration treatment, plants dehydrated for
2 and 10 h were collected, and the roots were separated from the shoots.

Initially, raw CEL files of these selected microarray datasets were pre-processed us-
ing the Robust Multichip Average (RMA) algorithm available in the affy Bioconductor
package of R [37,38]. The pre-processing stage included background correction, quantile
normalization, and summarization using the median polish approach [39]. Finally, the log2
scale-transformed expression data from the RMA for these collected microarray samples
were applied for further statistical analysis. Batch effects are one of the main sources of
non-biological variation that affect the outcomes of meta-analyses [40,41]. We used the SVA
package and empirical Bayes method in R software to correct the batch effect [42,43].

2.2. Screening and Identification of Differentially Expressed Genes

Gene expression data were filtered by removing genes with low transcript levels
in all 30 vegetative tissue samples. A total of 11,205 genes were applied to identify the
differentially expressed genes (DEGs), which were then analyzed using weighted gene
co-expression network analysis (WGCNA). The metaDE R package and RankProd method
were used to obtain the “base mean” value to identify DEGs [44]. The standard for screening
was the up- and downregulated genes with a p-value ≤ 0.05, which were considered to be
DEGs [45].

2.3. Weighted Gene Co-Expression Network Analysis

The co-expression network of all DEGs was constructed using a WGCNA R package
(V 1.51) to further elucidate the functions and mechanisms of genes in soybeans under
drought stress [25]. First, Pearson’s correlation coefficients were calculated for all pairwise
genes, and a soft threshold was then obtained to construct a similarity matrix. Subsequently,
the similarity matrix was converted to adjacency matrices by raising them to the power
(β) that highly approximated the scale-free behavior of the resultant networks. Finally, the
adjacency was transformed into a topological overlap matrix (TOM), and the genes were
hierarchically clustered based on TOM similarity. To identify highly correlated modules
and assign genes to them, a dissimilarity matrix was obtained (dissTOM) and used to
represent the distances between genes [44]. The dynamic hybrid tree-cut algorithm was
utilized to cut the hierarchal clustering tree and define modules as branches from the tree
cutting [26]. Moreover, the module eigengene was applied to summarize the expression
profile of each module. The modules were defined with a minimum module size of 30 genes
and a merged cut height of 0.3 to avoid abnormal modules in the dendrogram. Additionally,
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the soft-thresholding power (β = 10) was chosen based on the lowest power for which the
scale-free topology fit index reached a high value.

2.4. Identification of Hub Genes

Network visualization of each module was performed using the Cytoscape software
(V. 3.6.1) [46] with a cutoff value of the weight parameter obtained from the WGCNA, set
at ± 0.30. Hub genes are defined as central genes with high correlation in the candidate
modules in each stage. The central genes were identified using the cytoHubba plugin
of Cytoscape by visualizing the 30 nodes with the highest interaction in the biological
network [47]. Here, the calculation algorithms of maximal clique centrality (MCC) were
used as the most effective methods [48].

2.5. GO and Pathway Functional Enrichment Analyses

To identify the enriched biological processes and metabolic pathways involved in
drought tolerance, we routinely performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis. Gene Ontology analysis included
three categories: molecular function (MF), biological process (BP), and cellular component
(CC). The clusterProfiler R package was utilized to perform GO and KEGG analyses. The
results showed statistical significance at a p-value ≤ 0.05 and count > 2. Finally, the results
were exhibited using the “heat map” R package.

2.6. Cis-Acting Element Analysis

In order to obtain the promoter regions and the genomic sequences, 1500 bp from the
upstream flanking regions of shared DEGs were extracted from Ensembl Plants BioMart
version 54 (last updated on July 2022) (http://plants.ensembl.org). Briefly, all upstream
sequences of each gene to the beginning of the contig sequence were considered to be pro-
moter sequences. Then, the MEME version 5.4.1 (25 August 2021) (meme.nbcr.net/meme/
intro.html) [49] database was used to identify the conserved motifs on the sequences using
its default parameters, except for the maximum number of motifs (11). In the next step,
we used the Tomtom v 5.0.1 tool (http://meme-suite.org/tools/tomtom) to eliminate
redundant motifs and determine known CREs based on the motif database of JASPAR
CORE 2022 Plants [50], with threshold E-value cutoff of 0.05. Finally, the GMO tool
(http://meme-suite.org/tools/gomo) was also applied to determine the biological roles of
the drought-resistant motifs [51].

2.7. Identification of Transcription Factor Families

Selected genes were further analyzed and described using WGCNA. To identify
transcription factor families involved in soybeans’ drought tolerance, sequences of DEGs
were obtained by BLASTx search and then examined against the iTAK database (http:
//bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi) [44].

2.8. Protein–Protein Interaction (PPI) Networks

The network analysis of protein–protein interactions (PPIs) was performed to uncover
plausible interactions among proteins with candidate hub genes involved in the drought-
tolerance pathways. The STRING version 11.5 (12 August 2021) (Search Tool for the
Retrieval of Interacting Genes/Proteins, http://string-db.org/) interactome database with
default parameters (lowest required interaction score = 0.150) was employed to enable
PPI network analysis. Low confidence was applied to simplify the network and to study
significant and key connectivities. Finally, the Cytoscape software was used to visualize
the interaction networks [52].

2.9. Validation Analysis

To validate the results of the meta-analysis, a leave-one-out cross-validation (LOOCV)
was implemented on the expression values of hub genes derived via co-expression analysis.

http://plants.ensembl.org
http://meme-suite.org/tools/tomtom
http://meme-suite.org/tools/gomo
http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi
http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi
http://string-db.org/
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In the cross-validation process, an initial dataset was split into a training set and a test set.
Then, one sample from the initial dataset was consecutively discarded for test, and the
others for training [53,54].

3. Results
3.1. Pre-Processing and Identification of the Drought-Responsive Core DEGs

In this study, we analyzed the gene expression profiles of soybeans for drought stress
response using different datasets. A schematic workflow of the analysis is described in
Figure 1, from data collection and processing, to differentially expressed gene prediction,
potential module detection, hub characterization, and network construction.
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Figure 1. Workflow for data collection, pre-processing, and co-expression network analysis to assess
aspects of the responses of soybeans to the effects of drought stress.

The raw data related to drought stress were processed using intra-study RMA and
quantile normalization. The relative quality of different samples within the dataset was
examined using the Affymetrix Bioconductor package in R. The samples were split into con-
trol and stress conditions in each study to identify DEGs. To remove heterogeneity between
studies, batch effect correction was performed on gene expression data, followed by batch
variation between studies of reduction, and actual gene expression values were estimated
(Figure 2a). Finally, normalized datasets were used to detect differentially expressed genes
under drought stress using the RankProd method. A total of 2168 differentially expressed
genes were identified among the different samples in the datasets (adjusted p-value < 0.05).
Among them, 864 differentially expressed genes were significantly upregulated, whereas
1303 were downregulated across the datasets (Table S1). The Venn diagrams in Figure 2b
show the numbers of specific and commonly regulated genes between the drought stress
and control conditions.
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Figure 2. (a) Pre-processing of microarray studies. The E-GEOD-40627 study boxplot related to
drought stresses in the Affymetrix platform, with 6 control samples and 6 treatment samples, was
drawn for the pre- and post-normalization stages. The boxplot is presented after normalization,
where all comparisons that are not significant or are not equal to the change threshold are converted
to a log2 value to remove possible errors. The black lines of the boxplot are almost on the same
straight line, indicating a high level of normalization. The horizontal axis stands represents the
control and different treatment samples, while the vertical axis represents the expression values. The
black line in the box represents the median expression for each sample. (b) Venn diagrams illustrating
the numbers of down- and upregulated DEGs in the drought stress studies. The intersection in grey
represents the DEGs common between the two datasets.

3.2. Co-Expression Analysis and Module Identification under Drought Stress

The principal purpose of co-expression network analysis is to identify clusters or
modules of densely interconnected genes that can be analyzed by searching for patterns in
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connection strength [55]. In the present study, to identify the expression of genes related
to drought stress in soybeans, a gene co-expression network was constructed using the
WGCNA R package. Weighted gene co-expression networks do not depend on a hard
threshold, because using a hard threshold would be likely to lead to loss of information and
sensitivity [26]. Therefore, soft-thresholding power with a scale-free model fitting index
R2 < 0.8 (Figure 3a) was applied to maximize the scale-free topology. The DEGs based on
the dynamic tree-cutting algorithm were grouped into eight modules involved in response
to drought stress, ranging in size from 36 to 911 genes per module (Figure 3b and Table 2).
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Figure 3. (a) Determination of soft-thresholding power (β) in the weighted gene co-expression
network analysis (WGCNA) and module identification. The left panel shows the analysis of the
scale-free fit index for various soft-thresholding powers (β). The right panel displays the analysis of
the mean connectivity (degree, y-axis) for various soft-thresholding (x-axis) powers. (b) Weighted
gene co-expression network analysis by the dynamic tree-cutting method. Dendrogram of all DEGs
clustered based on a dissimilarity measure (dissTOM). The branches correspond to modules of highly
interconnected groups of genes. Each color represents one specific co-expression module, and the
tips of the branches represent genes.

Table 2. Modules of all treatment studies.

Module Name Number of Genes

Blue 441
Brown 258
Green 128
Red 99

Turquois 911
Yellow 220
Black 68
Pink 36

These eight modules yielded two main clusters: one contained two modules, while
the other contained the other six modules, which can also be divided into four sub-clusters.
This result was also supported by the heatmap plot of the adjacencies (Figure 4a). Genes
in green, pink, and brown modules showed similar expression patterns. In the eigengene
adjacency heat map, the slope of the variance in color from black to yellow represents the
connectedness of genes for various modules, from strong to weak. As is evident from the
corresponding red highlights in the drought stress heatmap in Figure 4b, the brown and
blue modules exhibited the strongest gene–gene interconnectedness based on the TOM
dissimilarity distances. According to the multidimensional scaling (MDS) in the soybean
drought stress data (Figure 4b), the genes in most modules—including the blue, turquoise,
brown, green, and pink modules—showed similar expression patterns. Moreover, based on
the topological overlap matrix (TOM) shown in Figure 4, dark colors represent low overlap,
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while progressively light and yellow colors represent higher overlap. Blocks of light colors
along the diagonal are the modules (Figure 4c).
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Figure 4. (a) The module eigengene adjacency shown by hierarchical clustering and heatmap. A
module eigengene (ME) summarizes the gene expression profile of each module. In the heatmap of
module–module relationships, the progressively more saturated blue and red colors indicate high
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darker red color represents low overlap, while progressively lighter color represents higher overlap
among DEGs. Blocks of darker colors along the diagonal correspond to the modules. The gene
dendrogram and module assignment are also shown along the left-hand side and the top.

The enrichment analysis for the biological process categories of genes comprising these
modules was performed to investigate how plants respond to drought stress (Table S2).
Several significant terms with p-values < 0.05 were identified. The turquoise, brown,
and blue modules formed the largest cluster of genes enriched in functions related to
responses to water-deprivation biological processes. Upregulated DEGs included NNRP-B
and GmMAPK3-2, while downregulated DEGs included PIP1-6 and HIS1-3; thus, genes
in these modules specifically regulate drought tolerance in soybeans. We observed that
in all of the detected modules, the gene expression levels were higher under drought
stress than under control conditions, including glutamine synthetase (GLYMA05G37760.1),
asparagine synthetase (GLYMA11G27480.1), galactolipids transferase (GLYMA01G32750.1),
thiamine thiazole synthase (GLYMA10G39740.1), ATP synthase, and functionally unknown
proteins. These results indicate that amino acid metabolism, fatty acid biosynthesis, and
energy supply are closely related. In addition, the gene hcf encoding photosystem II and
photosystem I in photosynthesis was linked to the turquoise, red, and black modules
containing ferredoxin (GLYMA_12G1694001) and glyceraldehyde-3-phosphate dehydroge-
nase (GLYMA02G36370.1), which play key roles in respiration. These modules probably
have a high positive correlation with leaves (r = 0.8; p < 0.05), because photosynthesis is
responsible for CO2 fixation in triose phosphate, which feeds sucrose synthesis [56,57].
Hence, our findings support a strong transcriptional co-regulation of sucrose synthe-
sis and photosynthesis genes, suggesting that these modules are involved in photosyn-
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thesis, respiration, and energy metabolism. Finally, many genes detected in previous
studies—such as genes involved in protein folding (Rotamase CYP4), regulation of lignin
biosynthesis (MYB, XIP1), transcription factors (AP2-EREBP, LHY2b), silencing proteins
(EMB2777), abscisic acid signaling pathways (TCH2, PIP, ACO3), auxin (Aux/IAA), peroxi-
dase precursors (PRX2B), and some proteins with unknown functions (GLYMA03G024400,
GLYMA08G150400, GLYMA11G099700, and GLYMA11G215500) that cause responses to
environmental stresses,—were assigned to this module. Lignin in plant biomass is the
main contributor to cell-wall recalcitrance; thus, low lignin can substantially improve the
scarification efficiency of plant cell walls, playing critical roles in plant growth, defense,
and morphology [58,59]. Taken together, the results of previous studies indicate that en-
gineered plants with low lignin contents confer adaptation to drought tolerance via an
ABA-dependent pathway [60].

3.3. Identification of Hub Genes and Enrichment Analysis

The network of co-expressed modules was constructed to identify the genes with high
connectivity (known as hub genes) and genes with central roles in the network. Owing
to their central location within the network clusters, the hub genes were considered to be
critical components of the networks. To investigate the relationships between the enriched
modules and drought stress, the hub genes were identified by ranking the connectivity
of each node to each module, and then they were further validated by their degree of
overall intramodular centrality (a high value confirmed hub status). The top 20 hub genes
were chosen for each module, and significant enrichment was performed for 160 hub
genes (Table S3). As mentioned in the previous section, these hub genes were strongly
enriched in translation, photosynthesis, protein folding, hydrolase activity, and integral
components of membrane activity, cytokinin dehydrogenase activity, protein kinase activity,
oxidoreductase activity, regulation of systemic acquired resistance, and oxidoreductase
activity, resulting in the reduction of molecular oxygen to two molecules of water (Figure 5).
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Among the four gene clusters associated with responses to drought stress, the re-
sults indicated that GLYMA_04G209700 in the turquoise module, GLYMA_02G204700 in
the green module, GLYMA_06G030500 in the pink module, and GLYMA_01G215400 and
GLYMA_09G225400 in the red module had high degrees of interconnection. However,
some hub genes—including GLYMA02G215700, GLYMA01G124500, GLYMA03G181700,
GLYMA01G232400, GLYMA01G142400, and GLYMA02G203300—were of unknown func-
tion; thus, they may be considered as potential candidates for further studies.

3.4. Identification of Transcription Factors

Transcription factors are essential players in biotic and abiotic stresses through tran-
scriptional regulation. Therefore, to acquire a better understanding of the potential impact
of transcription factors in the control of drought-tolerance genes and their contribution to
the manipulation of complex metabolic pathways, the sequences of genes that are differen-
tially expressed in a given pathway were used to predict the possible binding sites using
the iTAK database. A total of 174 TF genes for drought stresses were found, all of which
belonged to 36 TF families that are directly or indirectly involved in signaling and response
to stresses (Table S4). Members of the MYB, bHLH, C2H2, MYB-related, and AP2/ERF-ERFn
families were the top classes (Figure 6).

Among these transcription factor families, only 20 families (65 DEGs) were significantly
upregulated, including orphan, MYB, AP2/ERF-ERF, and WRKY. In addition, a total of 21
TF families (109 DEGs) were significantly downregulated, including bHLH, C2C2-MYB-
related, and C2C2-Dof. Moreover, these transcription factor families were shown to be
involved in positive regulation of transcription and DNA templates. Since TFs have been
well-characterized as involved in abiotic stress tolerance, we further extended the study to
detect significant hub genes and TFs in each module. We found that the transcription factor
abundance was higher in the turquoise module (86 TFs) compared to the blue module
(36 TFs), yellow module (17 TFs), and brown module (14 TFs). As mentioned above, we
selected only the top 20% of gene modules with high degrees of connectivity. A total of
160 DEGs were identified as hub genes (Table S3), including 11 TFs representing distinct
families, such as WRKY, MYB-related, HB-BELL, MYB, C2C2-Dof, C3H, bZIP, DBB, and
bHLH TFs. These families of crucial TFs are involved in ABA signaling pathway and
stomatal closure [61,62]. This indicates the role of the turquoise, blue, yellow, and brown
modules in water stress management by regulating stomatal closure and ABA signaling
pathways to reduce water loss, thereby minimizing photosynthesis activity and shifting to
other metabolic pathways to meet energy demands.

3.5. Cis-Acting Elements Analysis and Motif Identification

We performed promoter motif analysis to identify potential regulatory elements
associated with the drought stress resistance pathway. Initially, the 1500 bp upstream
flanking regions of the DEGs were analyzed to find conserved motifs and consensus
cis-acting regulatory elements. Then, 11 significant motifs with lengths ranging from
11 to 50 nt were identified in the promoters of DEGs using MEME (Table 3). The GOMO
analysis for the motifs found by MEME detected various biological functions (Table S6).
As shown in Table 3, Gene Ontology analysis indicated that these motifs are involved in
responses to water deprivation, amino acid phosphorylation, regulation of transcription,
photosynthetic electron transport in photosystem I, oligopeptide transport, the initiation
of DNA replication, and developmental growth. Based on the results, it seemed that the
C2H2, Dof, BBR/BBC, and MYB transcription factor families were the most significant
transcription factors, because 85% of the differentially expressed genes had a binding site
in these promoters (Table S5). This analysis also highlighted motifs related to the drought
tolerance signaling pathway. Moreover, these motifs were involved in molecular functions
including transcription factor activity, protein serine/threonine kinase activity, protein
binding, and protein heterodimerization activity (Table 3). After filtering (p-value ≤ 0.05),
many motifs were found in promoters related to C2H2 zinc finger factors (DOF5.8), the
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most notable of which were the motifs MA1281.1 and MA1278.1 in response to drought
stress DEGs.
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Table 3. The conserved cis-acting elements found in promoters of drought stress DEGs by
MEME analysis.

Motif Name Motif Logo E-Value Width Best Match in
JASPAR and PLACE

Significant GO Terms
Identified by GOMO

Motif 1
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Table 3. Cont.
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3.6. Protein–Protein Interactions and Selection of Key Genes

Understanding the regulatory gene network that is responsive to water stress can
help both researchers and breeders in manipulating plants to improve stress resistance
and productivity. The protein–protein interaction (PPI) network analysis comprised
80 drought-related hub genes. Minimum default settings were used to reduce the number
of interacting proteins and the complexity of the network (Figure 7). The network showed
79 nodes and 93 edges during drought stress. Some key genes with a high number of
interactions (>15)—including PURD, RCAALPHA, and GLYMA01G01370.1—were detected.
In addition, some genes that play an important role in biological pathways—including
metabolic pathways, photosynthesis, protein–chromophore linkage, reductive pentose–
phosphate cycle, photosystem I, phosphoribulokinase activity, oxidoreductase activity,
and response to light stimulus—were detected, such as GLYMA03G42310.1 (Gma.25294),
GLYMA01G28810.1 (Gma.55002), GLYMA04G33360.1 (Gma.18151), GLYMA12G29090.2
(Gma.25330), GLYMA02G38280.1 (Gma.62172), GLYMA01G01370.1 (Gma.31315),
GLYMA12G09731.1 (Gma.55256), and GLYMA08G41570.1 (Gma.1578). The results of
the network analysis also indicated the connections of some TFs with other molecules.
Some of the key upregulated hub (i.e., highly interacting) proteins that may play impor-
tant roles in drought stress response included WRKY9 (GLYMA01G06550.1), MYB140
(GLYMA09G29800.3), FAD8 (GLYMA03G07570.1), Ferredoxin-A (GLYMA03G07570.1), and
GLYMA09G35950.1 (GmCKX6-1). The yellow nodes indicate the selected hub genes in
the network. Other interactive proteins (pink nodes) at the protein–protein level were
commonly regulated with the abiotic stresses and may be considered to represent general
plant stress states.

3.7. Leave-One-Out Cross-Validation of Hub Genes

The LOOCV was applied to validate the results of the meta-analysis and evaluate
whether or not the hub genes could be used to distinguish between samples under drought
stress and control conditions. The results indicated that the control and stress samples
were correctly classified based on the expression levels of the top-ranked genes, and the
classification accuracy was 93.08% with an area under the curve (AUC) of 0.917 (Figure S1).
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Figure 7. A protein–protein interaction network highlighting the hub genes involved in drought
stresses in soybeans. The most significant hubs are ranked based on their importance in the network.
The yellow nodes represent the selected key genes, while the turquoise nodes represent the significant
biological functions in the network.

4. Discussion

Drought stress greatly affects grain production during the transition from vegetative
to reproductive development in the majority of crops—especially soybeans [63,64]. Thus, a
complete understanding of the physiological, biochemical, and gene-regulatory networks
associated with water-deficit stress tolerance at these different stages of vegetative growth
in soybeans is essential for breeding drought-tolerant cultivars. However, the complex
adaptive mechanisms underpinning water-deficit stress tolerance from vegetative growth
to the reproductive development stage have remained elusive, despite recent advances
in molecular biology approaches [65]. Improving the drought tolerance of soybeans is
very significant, and more research is needed to explore and understand drought stress.
In this study, we employed a microarray-based approach to perform a comprehensive
transcriptomic analysis of drought-tolerant datasets, which were used at the vegetative
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growth stages to identify key regulatory genes and gene co-expression networks involved
in soybeans’ drought stress responses. Recently, the availability of several bioinformatics
approaches and statistical tools has helped researchers to identify key biological processes
and metabolic pathways involved in tolerance to biotic or abiotic stresses. Our findings not
only provide informative clues for the elucidation of drought stress tolerance in soybeans,
but also represent a valuable resource and basis for the identification of candidate drought-
resistance genes.

The present investigation was carried out with the aim of understanding the key
players in drought tolerance in soybeans, using efficient co-expression network analy-
sis approaches. The datasets contain gene expression profiles from microarray data of
Glycine max under control and drought stress conditions. WGCNA is a powerful R package
that divides the core DEGs in different modules based on correlation between co-expressed
genes involved in specific metabolic pathways [25]. In the present study, we first identified
drought-responsive core DEGs by cross-comparison of various transcriptome datasets of
soybeans under water-deficit stress conditions (Figure 2b). Given that the expression of
many DEGs was affected by drought treatment, WGCNA was used to construct a gene
co-expression network to mine the main genes and reveal the key modules involved in
soybeans’ responses to drought stress in the vegetative stages. WGCNA of these core
DEGs was divided into eight modules, each of them contributing to drought tolerance via
a unique metabolic pathway. We observed that all of the detected modules—especially
the brown, blue, and turquoise modules—had positive correlations with drought stress
treatment; thus, genes in these modules positively regulate drought tolerance in soybeans
(Figure 3). The functions of DEGs with known biological functions could be predicted
according to their module, and this analysis found a series of biological processes that
were affected by water-deficit stress conditions. To obtain deeper insights into how these
modules participate in drought tolerance, we performed GO and KEGG analysis of each
module separately.

By comparing our results with those of previous studies, similar biological processes
were detected in plants’ responses to water stress. It is well known that partial closure of
the stomata with sufficient CO2 input maintains photosynthesis and significantly reduces
drought stress under all conditions evaluated. The probable explanation for this is that
drought stress damages the photosynthetic organs and alters vegetative structures, thereby
reducing the photosynthetic activities of plants and adversely affecting their growth [66].
Moreover, stomatal closure restricts the entry of CO2 and causes physiological damage
during drought stress by facilitating ribulose 1,5-bisphosphate regeneration and adenosine
triphosphate (ATP) production in photosynthesis and downregulating factors contributing
to respiratory metabolism. The restriction of RuBP synthesis is probably related to the
reduction in the synthesis of ATP [67]. Plants under drought stress exhibit a moderate
increase in water-use efficiency, since a reduction in stomatal opening restricts transpiration
more than the influx of CO2 [68]. This is due to a further increase in resistance to CO2
diffusion in the mesophyll, reducing the efficiency of carboxylation [67]. These results
show that the treatments effectively induce severe stress, and demonstrate a reliable basis
for further molecular analyses. The overproduction of ROS indicated a malfunction of
the plasma membrane [69] and lipid peroxidation [67] during drought stress. It has also
been reported that high ROS concentrations in plants are extremely toxic to lipids and
result in oxidative stress. Therefore, these results indicate that the overproduction of ROS
is the primary mechanism of water stress [70]. Compatible solutes such as carbohydrates,
sugars alcohols (galactinol and mannitol), amino acids (proline), and amines (spermidine
and glycine betaine) play important roles in adaptive mechanisms under drought stress.
Osmoprotectants facilitate maintenance of cell turgor and cellular water potential under
drought stress, as well as acting in membrane and macromolecule stabilization and ROS
scavenging [71]. Various osmoregulatory substances, such as soluble sugars and soluble
proteins, can increase the osmotic potential at the cellular level to prevent loss of moisture
and enhance plants’ water-deficit stress resistance [72]. Moreover, complex mechanisms
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operate in plants to coordinate the interactions between carbon assimilation and nitrogen
metabolism [73]. Carbon–nitrogen balance is a significant component in plants’ adaptation
to water stress [74]. Proline synthesized via the glutamate or ornithine pathways is believed
to act as a store of carbon and nitrogen, as well as affecting ROS scavenging. Accordingly,
various studies have revealed that overexpression of either the glutamate or ornithine path-
ways in different plant species results in increased proline levels, which could contribute
to enhanced stress tolerance [75]. Therefore, the gene co-expression network analysis
provides an essential resource for mining novel and significant genes related to drought
stress acclimation in soybeans. In particular, the hub genes and the genes involved in the
largest clusters (i.e., turquoise, blue, and brown) are suggested to be the key players in
soybeans’ drought stress response. Further downstream analysis studies will be essential in
determining each of these hub genes’ contributions to drought stress tolerance in soybeans.

To provide information regarding how genes are regulated in soybeans under drought
stress conditions, we identified TFs as key molecules in the regulatory networks that play a
central role in gene transcription and plants’ responses to drought stress. In the present
study, there were 174 TFs in the DEGs belonging to 36 TF families (Table S4). Some of the
major members of TF families—including orphan, MYB, AP2/ERF-ERF, and WRKY—were
upregulated, while other major members of TF families—such as bHLH, C2C2-MYB-related,
and C2C2-Dof—were found to be downregulated under stress conditions (Figure 6). The
C2H2 and MYB transcription factors are thought to be major transcriptional regulatory
mechanisms in drought response. In this study, co-expression network analysis revealed
that most TF transcripts connected with drought tolerance belong to the C2H2 and MYB
classes. The C2C2 zinc finger class was also found to be related to secondary cell-wall
biosynthesis in crops [76]. In recent years, numerous MYB transcription factors—mainly
in the model species Arabidopsis thaliana, but also in some crops—have been characterized
for their involvement in drought response. Multiple MYB TFs can be considered to be
useful targets for biotechnological manipulation to improve drought resistance through
overexpression or silencing. The expression of many MYB genes is regulated by drought.
For example, in some crops and A. thaliana, 65% of MYB genes were expressed in seedlings
and were differentially regulated under drought stress [77]. It has been shown that some
of them play a specific role in response to water stress, such as the regulation of stomatal
movement, the synthesis control of suberin and cuticular waxes, and the regulation of
flower development. Moreover, some of these MYB genes play central roles in the control
of plant-specific processes, including primary and secondary metabolism, cell fate and
identity, development, control of cellular morphogenesis, response to abiotic and biotic
stresses, and circadian rhythm [78].

Some MYB proteins are involved in responses to water stress through stomatal move-
ments and the regulation of lateral root growth. Interestingly, the MYB TFs are positive
regulators of lateral root growth through auxin signaling via interaction with the ABA
receptor [79]. It has been indicated that lateral root growth is more sensitive to inhibition by
ABA than that of wild-type seedlings in myb77-mutant plants. Exposure to auxin could re-
verse ABA-induced inhibition of lateral root growth in this mutant [80]. Generally, MYB77
represents a key protein mediating crosstalk between ABA and auxin signaling in lateral
root development in response to drought stress in soybeans.

Another important TF is C2H2-type zinc finger—a putative stress-associated gene,
which is mainly expressed in the roots and stems, while subcellular localization analysis
indicates that C2H2 is ubiquitously distributed in plant cells. Moreover, transgenic experi-
ments have indicated that C2H2 plays a negative role in plants’ tolerance to water stress
and might be involved in the ABA-dependent pathway during responses to drought stress.
Therefore, given the expression patterns of marker genes related to stress or ABA, along
with the effect of ABA on germination rates, it is clear that the function of C2H2 under
water stress involves the ABA pathway but not the ROS pathway [81].

Although MYB, C2H2, and other TFs are useful candidate hub genes for improving
drought tolerance in crops, the information acquired on MYB and C2H2 protein function
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so far has scarcely been applied to crop breeding. Taken together, these differentially
expressed TFs might be involved in soybeans’ response to water-deficiency stress, and they
could provide significant information for the study of drought tolerance in soybeans.

Analysis of the promoter regions of genomic sequences is often based on the detection
of regions of the genome with transcription factor binding. Transcription factors are proteins
that regulate gene transcription, and any change in their activity dynamically alters the
transcriptome, causing metabolic and phenotypic changes in response to environmental
stresses [82]. Therefore, investigating these regions and their transcription factors, along
with downstream genes that are regulated by these proteins, is an attractive topic in the field
of post-genomics and can provide new insights into critical metabolic pathways [83,84]. We
performed a promoter analysis located upstream of the DEGs, and 11 conserved motifs with
significant scores were identified (Table S5). Many cis-regulatory elements are related to
water-deficient tolerance signaling pathways. The majority of the motifs found at the DEG
promoters were highly matched to the MA128.1 and MA1278.1 motifs (Tables 2 and S5),
which are among the cis-acting elements of C2H2 zinc finger factors (DOF5.8). DOF TFs
are zinc finger regulators and plant-specific transcription factors that play significant roles
in vital processes and functions such as plant development, defense-regulatory networks,
and responses to multiple biotic and abiotic stresses in plants [85]. The results of our
study showed that Arabidopsis DOF5.8 is an upstream regulator of a gene encoding an
NAC family member in response to abiotic stress [86]. Furthermore, a recent study has
shown that the overexpression of this TF leads to a modification in the expression of many
genes involved in drought/salt stress response, vascular tissue formation, photosynthetic
carbon assimilation, dormancy and seed germination, secondary cell-wall deposition, and
hormonal signaling during physiological processes [87]. This provides novel insights into
the evolutionary and functional assays of the Dof gene family, which can aid in functional
genomic studies of candidate Dof genes in order to genetically improve responses to
drought stress in commercially important soybean cultivars.

PPI network analysis is a very useful tool to pinpoint associations between various
genes—particularly those playing roles in a certain pathway [88]. It also delineates the
putative interactions between TFs and their target genes. Interestingly, we observed a
protein–protein interaction network consisting of key proteins such as WRKY9, MYB140,
FAD8, Ferredoxin-A, and GmCKX6-1. In addition, the WRKY9, MYB140, FAD8, Ferredoxin-A,
and GmCKX6-1 genes had higher intramodular connectivity for the blue, brown, green,
black, and turquoise modules, respectively. Modifying the expression of genes associated
with the lipid metabolism pathway is one of the essential responses to stress conditions.
Fatty acids are critical components of the cell membrane and are affected by environmental
stresses. However, fatty acid desaturases (FADs) are a class of enzymes that mediate
desaturation of fatty acids by introducing double bonds, helping the cell membrane to
retain its function under stress by producing unsaturated fatty acids [89–91]. They play a
significant role in modulating membrane fluidity in response to various abiotic stresses.
Overexpression of two FAD genes (FAD3 or FAD8) in tobacco improved its tolerance to
drought and osmotic stresses [92]. In another study, silencing of FADs in tobacco plants
reduced their levels of linolenic acid and resistance to drought and salinity stresses [89].
However, overexpression of FADs in soybeans resulted in increased levels of jasmonic
acid and higher expression of WRKY as compared to mock-inoculated, vector-infected,
and FAD-silenced soybean plants under drought and salinity stress conditions. Further
investigation revealed that plants with overexpression of FADs showed higher chlorophyll
content, photosystem II efficiency, relative water content, transpiration rate, stomatal
conductance, and proline content, as well as a cooler canopy under drought and salinity
stress conditions. However, FAD-silenced soybean plants were more sensitive to drought
and salinity stresses [90].

Ferredoxins are known to increase water stress tolerance. Ferredoxins play significant
roles in ROS scavenging, and their overexpression confers increased drought resistance in
multiple systems [93,94]. Unique drought tolerance may involve producing additional ROS-
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scavenging ferredoxins. Moreover, ferredoxins are involved in photosynthesis in plants [95].
Thus, the main role of these proteins is to transfer electrons from photoreduced photosystem
I (PSI) to ferredoxin NADP+ oxidoreductase (FNR), where NADPH is produced to aid in
the assimilation of CO2.

The protein–protein interaction network analysis helped us to minimize the complexity
in understanding the physical interactions between proteins in different stages of soybeans’
vegetative growth under drought stress. Along with transcriptomic analysis, the protein–
protein interaction network analysis helped us to visualize and identify the key node
proteins that affected water-deficit stress. Thus, the co-expression networks play a major
role in identifying potential biomarkers of different abiotic stress conditions in plants by
comparing different omics datasets pertaining to a specific functional context.

5. Conclusions

This study provides valuable information on soybeans in terms of differential and
common host responses against drought stress. First, the meta-analysis and co-expression
network analysis were used to select informative genes from high-dimensional gene ex-
pression data. Second, a cis-acting regulator analysis approach was used to identify motif
promoters and TFs in a GCN. This study also shed some light on the mechanism of
drought stress response in soybeans and discovered some key genes. Moreover, functional
enrichment analysis of these key genes revealed their related intracellular functions un-
der drought stress. This information revealed various molecular mechanisms, such as
biosynthesis of secondary metabolites, photosynthesis, cytokinin dehydrogenase activity,
and stress-specific roles of certain plant products that may be useful for the mitigation
of drought stress in plants—particularly in soybeans. The key hub genes identified as
candidate targets for bioengineering may provide new insights for developing drought-
stress-resistant breeding and the genetic manipulation of crop plants by integrating and
analyzing resistance traits. Defense-related pathways can be determined based on this,
and they may simultaneously increase plants’ resistance to drought stresses and improve
crop productivity. Further studies are required to elucidate the molecular mechanisms
and validate the functions of responsive hub genes, TFs, and CREs that regulate plants’
responses to abiotic stresses.
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