
https://helda.helsinki.fi

The Effects of Osmosis and Thermo-Priming on Salinity Stress

Tolerance in Vigna radiata L.

Ali, Saqib

Multidisciplinary Digital Publishing Institute

2022-10-10

Ali, S.; Ullah, S.; Khan, M.N.; Khan, W.M.; Razak, S.A.; Wahab, S.; Hafeez, A.; Khan

Bangash, S.A.; Poczai, P. The Effects of Osmosis and Thermo-Priming on Salinity Stress

Tolerance in Vigna radiata L.. Sustainability 2022, 14, 12924.

http://hdl.handle.net/10138/349814

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Citation: Ali, S.; Ullah, S.;

Khan, M.N.; Khan, W.M.; Razak, S.A.;

Wahab, S.; Hafeez, A.;

Khan Bangash, S.A.; Poczai, P. The

Effects of Osmosis and

Thermo-Priming on Salinity Stress

Tolerance in Vigna radiata L.

Sustainability 2022, 14, 12924.

https://doi.org/10.3390/

su141912924

Academic Editors: Mohsen

Mohamed Elsharkawy and Md

Motaher Hossain

Received: 1 September 2022

Accepted: 2 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

The Effects of Osmosis and Thermo-Priming on Salinity Stress
Tolerance in Vigna radiata L.
Saqib Ali 1, Sami Ullah 1,*, Muhammad Nauman Khan 2,3 , Wisal Muhammad Khan 2 , Sarah Abdul Razak 4,
Sana Wahab 5, Aqsa Hafeez 5 , Sajid Ali Khan Bangash 6 and Peter Poczai 7,*

1 Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
2 Department of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
3 Biology Laboratory, Agriculture University Public School and College, (Boys), The University of Agriculture,

Peshawar 25130, Pakistan
4 Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
5 Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan
6 Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25120, Pakistan
7 Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7,

FI-00014 Helsinki, Finland
* Correspondence: sami_jan69@yahoo.com (S.U.); peter.poczai@helsinki.fi (P.P.)

Abstract: A plant’s response to osmotic stress is a complex phenomenon that causes many abnormal
symptoms due to limitations in growth and development or even the loss of yield. The current
research aimed to analyze the agronomical, physiological, and biochemical mechanisms accompa-
nying the acquisition of salt resistance in the Vigna radiata L. variety ‘Ramzan’ using seed osmo-
and thermopriming in the presence of PEG-4000 and 4 ◦C under induced salinity stresses of 100
and 150 mM NaCl. Seeds were collected from CCRI, Nowshera, and sowing was undertaken in
triplicate at the Department of Botany, Peshawar University, during the 2018–2019 growing season.
Rhizospheric soil pH (6.0), E.C (2.41 ds/m), field capacity, and moisture content level were estimated
in the present study. We observed from the estimated results that the agronomic characteristics,
i.e., shoot fresh weight and shoot dry weight in T9 (4oC + 150 mM NaCl), root fresh weight and
root dry weight in T4 (PEG + 100 mM NaCl), shoot moisture content in T5 (PEG + 100 mM NaCl),
and root moisture content in T6 (PEG + 150 mM NaCl) were the highest, followed by the lowest
in T1 (both shoot and root fresh weights) and T2 (shoot and root dry weights). Similarly, the shoot
moisture content was the maximum in T5 and the minimum in T6, and root moisture was the highest
in T6. We observed from the estimated results that agronomical parameters including dry masses
(T4, T6, T4), leaf area index, germination index, leaf area, total biomass, seed vigor index under
treatment T9, and relative water content and water use efficiency during T5 and T6 were the highest.
Plant physiological traits such as proline, SOD enhanced by T1, carotenoids in treatment T2, and
chlorophyll and protein levels were the highest under treatment T4, whereas sugar and POD were
highest under treatments T7 and T8. The principal component analysis enclosed 63.75% of the total
variation among all biological components. These estimated results confirmed the positive resistance
by Vigna radiata during osmopriming (PEG) and thermopriming (4 ◦C) on most of the features with
great tolerance under a low-saline treatment such as T4 (PEG), T5 (PEG + 100 mM NaCl), T7 (4 ◦C),
and T8 (4 ◦C + 100 mM NaCl), while it was susceptible in the case of T6 (PEG + 150 mM NaCl) and
T9 (4 ◦C + 150 mM NaCl) to high salt application. We found that the constraining impact of several
priming techniques improved low salinity, which was regarded as economically inexpensive and
initiated numerous metabolic processes in plants, hence decreasing germination time. The current
study will have major applications for combatting the salinity problem induced by climate change
in Pakistan.
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1. Introduction

Plants that grow in natural conditions are exposed to many harmful environmental
stresses that generally disrupt the photosynthetic apparatus, which retards the growth
of plants and their yield [1]. Worldwide, some areas annually receive the minimum
rainfall required for irrigation of plants grown in the field, which often leads to soil
salinity [2,3]. The term salinity is generally referred to as the degree of total salts dissolved
in water and is measured in parts per thousand. Soil salinity is commonly referred to
as the area above the roots where the electrical conductivity of the extract is saturated at
4 ds/m at 25 degrees Celsius and has transferable Na + ions [4]. Salinity interrupts the
metabolic processes and water relations in the tissues of plants [5]. It is stated that, on
Earth, the entire area is 14 billion hac: 6.6 billion hac of this consists of arid and semi-arid
parts, whereas 1 billion hac of this region is affected by salt [6,7]. The biochemical and
physiological reactions to increasing sodium chloride concentrations in combination or
isolation were observed in mung bean seedlings [8–11]. In the current studies, the increasing
NaCl concentration decreased the shoot–root growth, seedling vigor, chlorophyll content,
and biomass production significantly. Salt stress impacted the functioning of various
antioxidant enzymes; water control increased superoxide dismutase (SOD). Soil salinity
is an unavoidable defect of barren zones where, because of less rainfall and elevated
temperature, thorough discharge of salts cannot be achieved. The movement of soluble
salts is diverted upwards and causes aggregation closer to the soil surface. Pakistan, being
chiefly in the arid to semi-arid zone, is not an exclusion to the above phenomenon [12].
Salt stress, because of the excess aggregation of sodium chloride, is commonly the focus
of important research attention and an extremely detrimental factor in arid and semi-arid
regions globally. Saline soils are extensive on Earth, with more than 810 million ha of land
globally being salt influenced, equal to more than 5% of the land area worldwide. Irrigation
water is also one of the main causes of salinity [13].

It has been found that seed priming is an easy, economical, and more effective method
against stressful environmental conditions [14]. Seed pre-treatment processes such as
thermopriming involve the exposure to a specific temperature for a specific time period
to observe the temperature effect on a seed’s coat, physiology, and growth. Treatment
before germination is undertaken to improve the germination and vegetative development,
decrease the germination time, create a better stand foundation, recuperate damaged seeds,
improve plant energy, further develop the change in assimilation, speed up blossoming,
and create grain improved by gathering [15,16]. However, emotional oxidative digestion
also involves the activation of cell-reinforcing enzymes such as peroxidase (POD), super-
oxide dismutase (SOD), glutathione reductase in ripe seeds, and an increase in amylase,
corrosive phosphatase, ATPase, and RNA synthesis [17,18]. Nascimento et al. [19] inferred
that the most extreme level of germination was accomplished using thermopriming for
10 min, and the lowermost level of germination was achieved with the control treatment.
Thermopriming for 10 min allowed the seedlings to attain their full dry load, but the
control treatment only managed to reach a partial dry load. In osmopriming, the seeds
are subjected to a specific chemical for a specific time period to examine the effect of the
chemical on the seed’s coat, growth, and physiology. Manuela et al. [20] concluded that
different concentrations of salt had positive effects on fresh root weight, but significant
differences were not observed when primed and non-primed seed root weights were com-
pared. Ajit et al. [21] concluded that priming (both osmo- and hydro-priming) is applicable
on the seeds of cowpea for field performance and better germination. However, 1% KNO3
osmopriming for 6 h could lead to higher seedling germination. Therefore, the objectives
of the present study were to determine the effects of osmopriming and thermopriming
on agronomic characteristics, physiological attributes (chlorophyll a, b, and carotenoid),
osmolytes (proline and sugar), and antioxidative enzymes (SOD and POD) under induced
salinity stresses of 100 and 150 Mm.
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2. Materials and Methods
2.1. Experimental Design and Description of Site

The Peshawar district has an area of 1257 km2, situated between 34◦15 North latitude
and 71◦42 East longitudes and approximately 1173 feet (358 m) msl. The district Peshawer
is surrounded in the west by Mohmand and Khyber Agency, in the north side by the
Charsadda district, by the Nowshera District in the east, and the southeast parts are
bounded by tribal areas joining the Kohat and Peshawar districts. The semi-arid climate of
the Peshawar district has very hot summers and mild winters [22]. The average temperature
ranges between 5 ◦C and 39 ◦C in January to February and June to July, respectively, with
an annual rainfall of around 513 mm. The months of July and August have highest rainfall.
The collection of soil samples (0–30 cm) was conducted from the experiment site before
sowing for physico-chemical analysis of the soil. The hydrometer method determined
that the soil texture was silt-loam [22]. According to the report of Rehman et al. [23], the
chemical properties of the soil were: pH 6.9, bulk density 1.55 g·cm−3, and EC 0.288 ds/m,
respectively. The seeds of selected local accessions of Mung bean variety were collected
from CCRI, Persabaq, Nowshera, Pakistan. The nursery had dimensions of 3.0 m length
and 1.5 width, and the sowing of seeds was carried out in earthen pots (inside upper
diameter 18 cm, height 20 cm, lower diameter inside 18 cm, and thickness 2 cm) containing
silt and loam in a ratio of 1:2 in triplicates with well-rotted farmyard manure. All the pots
were placed 5 cm apart in a Complete Randomized Design (CRD) and were protected
from harsh environmental conditions (Figure 1). Regular watering was performed to
maintain soil moisture content during the whole experimental work. Approximately three
liters of water was used in each pot throughout the study until plants’ cultivation was
finished. In order to keep pots away from weeds, manual weeding was carried out for
better sunlight exposure and growth. Following a few days of post-germination, plants
were decreased to eight per pot and exposed to salt stress (100 mM and 150 mM NaCl) as
well as untreated control treatment (No NaCl solution). The appropriate standard methods
for the pot experiment were followed, and no pests or weeds were found during the
experiment. Intact, homogeneous, and identical experimental seeds in size and color and
without wrinkles were chosen for the planned experiment, preceded by surface sterilization
with ethanol 70% and mercuric chloride 0.1% for 10 min and finally rinsed four times with
distilled water [24]. During experimental work, PEG-4000 solution was prepared for seed
soaking for a specific time before seed sowing. Then, 50 mL of distilled water and 7 g of
PEG-4000 with osmotic potential of 0.2 MPa were mixed until the PEG was dissolved in
water. Then, one-third of the seeds were treated with the PEG solution and then dried [15],
whereas one-third of the seeds were treated at 4 ◦C [25].
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2.2. Agronomic and Physiological Analysis of Plant
2.2.1. Soil pH and Soil Electrical Conductivity (EC)

The pH value of rhizospheric soil was measured by preparing a 1:1 (soil: water)
suspension through the standard protocol of Ali et al. [26], modified by Mclean [27].
A 10 g sample of soil and 10 mL of water were taken, processed through standardized
mixing, and then filtered with Whatman # 42 filter paper. A pH meter was used for pH
determination, while the EC of soil was estimated through an electrical conductivity meter
in micro-Siemens per centimeter.

2.2.2. Sample Moisture Content Percentage and Field Capacity

For the measurement of soil moisture content, 10–15 g of soil was collected from
an even depth, i.e., a few inches below the surface of the pots. The fresh weight was
calculated initially, followed by the dry weight after drying in the oven for 70 h at 75 ◦C.
The moisture content of the roots, shoots, and leaves was also determined by weighing
them fresh and then drying them in an oven for dry mass computation. Determination of
moisture content percentage by the formula [25]:

%MC =
Fresh weight − Dry weight

Fresh weight
× 100

The field capacity of rhizospheric soil was determined according to the given equa-
tion [25]

%FC =
Weight of wet soil (g)− Weight of dry soil (g)

Weight of dry soil (g)
× 100

2.2.3. Germination Index (GI)

Germination Index has been reported according to the formula as described below [28]:

G1 = (10 × n1) + (9 × n2) + . . . . . . . . . + (1 × n10)

Hence, n1, n2 . . . n10 represent the number of germinated seeds on the first, second,
and the last day (10th) while 10, 9 . . . and 1 were the germinated seeds’ mass on the first,
second and last day (10th).

Seed vigor index (SVI)
The approach developed by Bina and Bostani [29] provided the seed vigor index in

terms of seedling length:
SVI = Mean root length + Mean shoot length × % seed germination.

2.2.4. Root–Shoot Ratio (RSR)

The equation used by Chuyong and Acidri [30] describes the root-to-shoot ratio. The
weights of the root and shoot in both treatments (100 mM and 150 mM) were noted by
putting the samples inside an oven for 72 h:

Root shoot Ratio = Shoot dry weight/Root dry weight

2.2.5. Water Use Efficiency (WUE)

Chuyong and Acidri [30] reported the formula for the determination of the water use
efficiency of plants. By the addition of the dry mass of the stem, root, and leaf of a plant,
the total biomass is taken:

WUE =
Total biomass (g)

Total water used during experiment (mL)
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2.2.6. Relative Water Content (RWC)

The relative water content of the plants were estimated by following Zainab et al. [31]:

RWC (%) = (FW − DW)/(TW − DW) × 100

Here, FW = fresh weight (g), DW = dry weight (g), and TW = turgid weight (g) of the
leaf sample.

2.2.7. Total Biomass (TB)

The dry weights of the root and shoot of plants were determined by following
Mehmood et al. [32].

2.2.8. Determination of Total Chlorophyll Content (TCC)

The total chlorophyll level of the fresh leafy material was estimated by following
Faryal et al. [33]. Fresh leaves samples of 0.2 g were incubated for 24 h in the dark; 80%
acetone was applied with a mortar and pestle and centrifuged for 10 min. A spectropho-
tometer was used to measure the absorbance of chlorophyll “a”, 663 nm for chlorophyll
“b”, and 470 nm for carotenoid against an 80% acetone blank.

Total chlorophyll (mg/L) = (20.2 × A645) + (8.02 × B663)

2.2.9. Approximation of Soluble Protein Content (SPC)

The protein content of fresh maize leaves was determined using Bovine Serum Albu-
min (BSA) (Sigma-Aldrich, St. Louis, MO, USA) as a reference, as described by [34,35]. The
fresh leaves were pulverized in 1 mL of phosphate buffer (pH 7.5) and 0.2 g of leaf material
using a pestle and mortar. The extract of 0.1 mL resulting from the process above were
emptied into tubes, and a volume of 1 mL was prepared with distilled water. A reagent of
3.0 mL was added containing: 3 g sodium carbonate (Na2CO3), 0.6 g NaOH (0.1 N), 1.5 g
Na-K tartrate dissolved in 150 mL of distilled water, and 0.125 g CuSO4.5H2O dissolved in
25 mL of distilled water. Following 10 min of shaking, 0.1 mL of Folin phenol reagent was
added. After 30 min of incubation, absorbance was measured for each sample at 650 nm

2.2.10. Measurement of Soluble Sugar Content (SSC)

The Grad technique was used to calculate total soluble sugars (TSS) [36]. To analyze
the leaf soluble sugar content, 0.5 g of plant matter was ground with a pestle and then
spun at 2500 rpm for 5 min. Next, 1 mL of 80% (w/v) phenol was combined with 0.1 mL of
supernatant, then 3.0 mL of conc. H2SO4 was added and detected on a spectrophotometer
at 420 nm.

2.2.11. Assay for Antioxidant Enzymes

The content of superoxide dismutase (SOD) was determined using conventional meth-
ods of Ma et al. [37]. The reaction mixture (3 mL) having 0.02 mM riboflavin, 13 mM
methionine, 0.1 mM EDTA, 0.075 mM NBT, and 0.1 mL of enzyme extract in 50 mM phos-
phate buffer (pH 7.8). For 10 min, the sample tube was placed beneath the light chamber.
The absorbance of the sample combination was measured using a spectrophotometer at
560 nm.

Peroxidase (POD) enzyme activity was evaluated by following Ma et al. [38] standard
method. The assay mixture contained enzyme extract (0.1 mL), 0.05% H2O2, 1.35 mL of
100 mM MES buffer (pH 5.5), and 0.1% phenylenediamine. Readings were taken at 48 nm
for 2 min with spectrophotometer, presented as ∆OD485nm/min/mg protein.

2.2.12. Determination of Total Proline Content (TPC)

The method of Ma et al. [39] was utilized to determine the proline content in shoots.
Plant material (0.25 g) was crushed in 5 mL of 3 % aqueous sulfosalicylic acid tailed through
filtration. This filtrate was then reacted in a test tube for 60 min with 2 mL of glacial acetic
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acid and 2.0 mL acid ninhydrin, followed by the addition of 4 mL of toluene to the mixture
and heated at 100 ◦C in a water bath. Toluene-containing chromophore was removed from
the aqueous portion, warmed to 25 ◦C, and sampled at 520 nm against toluene as a blank.

2.3. Statistical Analysis

For each treatment, all data were obtained, and mean values and standard errors
were computed. Data were analyzed using analysis of variance (ANOVA) and pairwise
comparison among treatment means was made by LSD test at p = 0.05 using Statistix 8.1.
Principal Component Analysis (PCA) and Pearson correlation analysis were applied using
XLStat and R-software.

3. Results
3.1. Agronomic Study

Table 1 shows that T9 (4 ◦C + 150 mM NaCl) had the highest shoot fresh weight, while
the range of shoot moisture was greatest in T5 (PEG + 100 mM NaCl). T1 (Untreated)
had the lowest shoot fresh weight, and T6 (PEG + 150 mM NaCl) had the lowest shoot
moisture content (p < 0.05). Similarly, T4 (PEG + 100 mM NaCl) had the highest root
dry and fresh weights, T6 (PEG + 150 mM NaCl) showed the greatest amplitude for root
moisture content, and T1 had the lowest root moisture content (Untreated) at p < 0.05. As
a result, the findings in Table 2 indicate that T5 (PEG + 100 mM NaCl) had the highest
amplitude for leaf moisture levels, whereas T2 (Untreated + 100 mM NaCl) had the lowest.
Nonetheless, the highest soil dry weight was found in T8 (40 ◦C + 100 mM NaCl) at p < 0.05.
The highest amplitude for soil moisture content was reported in T4 (PEG + 100 mM NaCl),
paired with the significant root–shoot ratio in T9 (4 ◦C + 150 mM NaCl). A minimal root–
shoot ratio, seed vigor indicator, leaf area rate, and germination ratio were reported in T9
(4 ◦C + 150 mM NaCl), whereas the seed vigor index, leaf area index, and minimum root–
shoot ratio and germination index were reported in T2 (Untreated + 100 mM NaCl) (Table 3).
The estimated values of leaf area and total biomass were highest in T9 (4 ◦C +150 mM NaCl)
at p < 0.05, whilst the maximum amplitude was recorded for relative moisture content in
T5 (PEG + 100 mM NaCl), water usage efficiency in T6 (PEG + 150 mM NaCl), and relative
water content in T2 (Untreated + 100 mM NaCl).

Table 1. Effect of osmo- and thermopriming on shoot fresh weight, shoot dry weight, shoot %
moisture content, root fresh weight, root dry weight, and root % moisture content of Vigna radiata L.
under salinity stress.

Treatment Shoot Fresh
Weight

Shoot Dry
Weight

Shoot Moisture
Content

Root Fresh
Weight

Root Dry
Weight

Root Moisture
Content

T1 0.45 ± 0.1 b 0.07 ± 0.02 c 83.7 ± 3.0 ab 0.04 ± 0.01 b 0.013 ± 0 ab 64.4 ± 17 bc

T2 0.46 ± 0.1 b 0.06 ± 0.01 d 86.9 ± 0.5 ab 0.06 ± 0.04 ab 0.012 ± 0 ab 75.4 ± 13 ab

T3 0.47 ± 0.1 b 0.07 ± 0.03 c 85.7 ± 2.6 ab 0.07 ± 0.04 ab 0.019 ± 0 ab 69.7 ± 17 abc

T4 0.61 ± 0.2 ab 0.09 ± 0.06 b 86.5 ± 4.8 ab 0.10 ± 0.03 a 0.019 ± 0 a 78.0 ± 16 ab

T5 0.81 ± 0.0 a 0.08 ± 0.04 c 89.9 ± 5.8 a 0.05 ± 0.02 ab 0.017 ± 0 ab 72.1 ± 13 abc

T6 0.47 ± 0.2 b 0.06 ± 0.04 d 87.0 ± 5.8 ab 0.05 ± 0.02 b 0.017 ± 0 b 82.6 ± 10 a

T7 0.51 ± 0.1 ab 0.08 ± 0.02 b 82.2 ± 0.7 b 0.08 ± 0.02 ab 0.015 ± 0 ab 81.0 ± 5 a

T8 0.67 ± 0.1 ab 0.10 ± 0.02 b 84.9 ± 1.1 ab 0.09 ± 0.03 ab 0.016 ± 0 ab 77.1 ± 18 ab

T9 0.72 ± 0.1 ab 0.12 ± 0.05 a 82.9 ± 4.6 b 0.05 ± 0.01 b 0.014 ± 0 ab 72.4 ± 8 abc

T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM NaCl; T4 = PEG + 100 mM
NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C; T8 = 4 ◦C + 100 mM NaCl;
T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter are significantly different from
each other according to the Least Significant Difference (LSD) test (p ≤ 0.05). All the data represented are the
average of three replications (n = 3). Error bars represent the standard errors (SE) of three replicates.
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Table 2. Effect of osmo- and thermopriming on leaves fresh weight, leaves dry weight, leaves %
moisture content, soil dry weight, soil % moisture content, and root–shot ratio of Vigna radiata L.
under salinity stress.

Treatment Leaf Fresh
Weight

Leaf Dry
Weight

Leaf Moisture
Content

Soil Dry
Weight

Soil Moisture
Content

Root Shoot
Ratio

T1 0.12 ± 0.06 ab 0.017 ± 0 b 84.6 ± 4 a 8.10 ± 0.88 b 19.0 ± 8.8 ab 0.36 ± 0.2 bc

T2 0.06 ± 0.03 b 0.018 ± 0 ab 66.7 ± 5 b 8.33 ± 0.58 a 16.6 ± 5.8 abc 0.24 ± 0.1 c

T3 0.09 ± 0.05 ab 0.021 ± 0 ab 69.7 ± 22 ab 8.13 ± 0.66 b 18.6 ± 6.6 ab 0.39 ± 0.1 bc

T4 0.14 ± 0.06 ab 0.027 ± 0 a 79.8 ± 4 ab 8.10 ± 0.95 b 19.0 ± 9.5 ab 0.52 ± 0.1 ab

T5 0.17 ± 0.02 a 0.026 ± 0 ab 85.3 ± 2 a 7.63 ± 1.01 c 23.6 ± 9.9 a 0.41 ± 0.1 bc

T6 0.13 ± 0.07 ab 0.021 ± 0 ab 82.2 ± 6 ab 8.33 ± 0.49 a 16.6 ± 4.9 abc 0.41 ± 0.1 bc

T7 0.12 ± 0.03 ab 0.024 ± 0 ab 78.7 ± 3 ab 8.40 ± 0.78 a 16.0 ± 7.8 abc 0.57 ± 0.1 ab

T8 0.12 ± 0.03 ab 0.023 ± 0 ab 79.8 ± 10 ab 8.66 ± 0.41 a 13.3 ± 4.1 bc 0.38 ± 0.1 bc

T9 0.10 ± 0.02 ab 0.023 ± 0 ab 77.0 ± 3 ab 8.36 ± 0.90 a 16.3 ± 9.0 abc 0.67 ± 0.1 a

T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM NaCl; T4 = PEG + 100 mM
NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C, T8 = 4 ◦C + 100 mM NaCl;
T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter are significantly different from
each other according to the Least Significant Difference (LSD) test (p ≤ 0.05). All the data represented are the
average of three replications (n = 3). Error bars represent the standard errors (SE) of three replicates.

Table 3. Effect of osmo- and thermopriming on leaf area index, seed vigor index, germination index,
leaf area, relative water content, water use efficiency, and total biomass of Vigna radiata L. under
salinity stress.

Treatment Leaf Area
Index

Seed Vigor
Index

Germination
Index Leaf Area Relative Water

Content
Water Use
Efficiency

Total
Biomass

T1 0.84 ± 0.07 ab 2057 ± 410 cd 149.6 ± 5.20 b 4.75 ab 75 ± 9.2 a 91 ± 21 ab 0.10 ± 0.02 d

T2 0.69 ± 0.35 b 1641 ± 200 d 150.0 ± 4.35 c 3.91 b 53 ± 16 b 98 ± 29 ab 0.09 ± 0.02 d

T3 0.75 ± 0.44 ab 2053 ± 300 cd 144.0 ± 2.51 c 4.25 ab 63 ± 23 ab 88 ± 47 abc 0.11 ± 0.04 c

T4 1.23 ± 0.30 ab 2435 ± 260 bc 148.3 ± 4.17 c 7.11 ab 77 ± 7.4 a 74 ± 32 bc 0.13 ± 0.06 b

T5 1.00 ± 0.35 ab 3126 ± 580 a 150.0 ± 6.00 b 5.66 ab 83 ± 1.8 a 86 ± 56 abc 0.12 ± 0.06 c

T6 1.01 ± 0.20 ab 2360 ± 400 bc 156.3 ± 6.98 b 5.75 ab 76 ± 11 a 99 ± 67 a 0.09 ± 0.04 d

T7 0.92 ± 0.49 ab 2292 ± 270 bcd 154.6 ± 1.76 a 5.25ab 75 ± 5.6 a 71 ± 16 bc 0.13 ± 0.02 c

T8 0.64 ± 0.25 b 2677 ± 400 abc 190.6 ± 8.76 a 3.66 b 75 ± 7.9 a 61 ± 10 c 0.14 ± 0.02 b

T9 1.47 ± 0.83 a 2846 ± 530 ab 211.3 ± 0.88 a 8.33 a 72 ± 5.1 ab 56 ± 25 c 0.16 ± 0.05 a

T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM NaCl; T4 = PEG + 100 mM
NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C, T8 = 4 ◦C + 100 mM NaCl;
T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter are significantly different from
each other according to the Least Significant Difference (LSD) test (p ≤ 0.05). All the data represented are the
average of three replications (n = 3). Error bars represent the standard errors (SE) of three replicates.

3.2. Physiological Study

In Figure 2, T5 (PEG + 100 mM NaCl) had the highest chlorophyll ‘a’ concentration
(p < 0.05), whereas T2 (Untreated + 100 mM NaCl), T3 (Untreated + 150 mM NaCl), T8
(4 ◦C, + 100 mM NaCl), and T9 (4 ◦C, + 150 mM NaCl) had the lowest. Similarly, Figure 3
showed that T4 (PEG) had the highest ratio of chlorophyll a/b at p < 0.05. The results in
Figure 4 present the highest chlorophyll content at p < 0.05, while the highest amplitude
of carotenoid content has been reported in T2 (Untreated + 100 mM NaCl), which was
not significant as compared to T4 (PEG + 100 mM NaCl) and T5 (PEG + 100 mM NaCl).
Figure 5 reveals that the highest sugar content was reported in T8 (4 ◦C + 100 mM NaCl) as
compared to other treatments. The sugar content has drastically decreased under salinity
stress. The highest total protein content was reported in T4 (PEG + 100 mM NaCl), whereas
the maximum content of proline has been found in T1 (Untreated) compared with other
treatments (Figure 6). In Figure 7, the results showed the highest POD was reported in T7
at p < 0.05 (PEG) and the highest variation with T8 (4 ◦C + 100 mM NaCl).
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Figure 2. Effect of osmo- and thermopriming on chlorophyll ‘a’ and ‘b’ content under induced salinity
stress. T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM NaCl; T4 = PEG + 100 mM
NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C, T8 = 4 ◦C + 100 mM NaCl;
T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter are significantly different
from each other according to the Least Significant Difference (LSD) test (p ≤ 0.05). All the data represented
are the average of three replications (n = 3). Error bars represent the standard errors (SE) of three replicates.
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Figure 3. Effect of osmo- and thermopriming on chlorophyll a/b ratio under induced salinity stress.
T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM NaCl; T4 = PEG + 100 mM
NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C, T8 = 4 ◦C + 100 mM
NaCl; T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter are significantly
different from each other according to the Least Significant Difference (LSD) test (p ≤ 0.05). All the
data represented are the average of three replications (n = 3). Error bars represent the standard errors
(SE) of three replicates.
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Figure 4. Effect of osmo- and thermopriming on total chlorophyll and carotenoid content under
induced salinity stress. T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM
NaCl; T4 = PEG + 100 mM NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C,
T8 = 4 ◦C + 100 mM NaCl; T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each
parameter are significantly different from each other according to the Least Significant Difference
(LSD) test (p ≤ 0.05). All the data represented are the average of three replications (n = 3). Error bars
represent the standard errors (SE) of three replicates.
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Figure 5. Effect of osmo- and thermopriming on soluble sugar content under induced salinity stress.
T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM NaCl; T4 = PEG + 100 mM
NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C, T8 = 4 ◦C + 100 mM
NaCl; T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter are significantly
different from each other according to the Least Significant Difference (LSD) test (p ≤ 0.05). All the
data represented are the average of three replications (n = 3). Error bars represent the standard errors
(SE) of three replicates.
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Figure 6. Effect of osmo- and thermopriming on soluble protein and total proline content under
induced salinity stress. T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM
NaCl; T4 = PEG + 100 mM NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C,
T8 = 4 ◦C + 100 mM NaCl; T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each
parameter are significantly different from each other according to the Least Significant Difference
(LSD) test (p ≤ 0.05). All the data represented are the average of three replications (n = 3). Error bars
represent the standard errors (SE) of three replicates.
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Figure 7. Effect of osmo- and thermopriming on peroxidase (POD) and superoxide dismutase (SOD)
content under induced salinity stress. T1 = Control; T2 = Control + 100 mM NaCl; T3 = Control + 150 mM
NaCl; T4 = PEG + 100 mM NaCl; T5 = PEG + 100 mM NaCl; T6 = PEG + 150 mM NaCl; T7 = 4 ◦C,
T8 = 4 ◦C + 100 mM NaCl; T9 = 4 ◦C + 150 mM NaCl. Bars sharing different letter(s) for each parameter
are significantly different from each other according to the Least Significant Difference (LSD) test (p ≤ 0.05).
All the data represented are the average of three replications (n = 3). Error bars represent the standard
errors (SE) of three replicates.

All the results of calculated parameters in Table 4 were found non-significant, except
POD, with a significant value at p = 0.05 that represented r = 0.500 and R2 = 0.250 in relation
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between salinity and Vigna radiata, and values for priming and Vigna radiata were r = 0.483
and R2 = 0.234.

Table 4. Regression and correlation analysis between physiological and biochemical attributes and
Vigna radiata L.

Correlation Analysis between Salinity and Vigna

Chlo “a” Chlo “b” TCC Chlo a/b
ratio CC SSC SPC TPC POD SOD

r = 0.365 r = 0.077 r = 0.255 r = 0.136 r = 0.053 r = 0.127 r = 0.265 r = 0.033 r = 0.500 *** r = 0.242
R2 = 0.133 R2 = 0.066 R2 = 0.065 R2 = 0.018 R2 = 0.003 R2 = 0.016 R2 = 0.070 R2 = 0.001 R2 = 0.250 R2 = 0.059

Correlation Analysis between Priming and Vigna

Chlo “a” Chlo “b” TCC Chlo a/b
ratio CC SSC SPC TPC POD SOD

r = 0.266 r = 0.050 r = 0.182 r = 0.153 r = 0.026 r = 0.196 r = 0.330 r = 0.034 r = 0.483 *** r = 0.214
R2 = 0.071 R2 = 0.02 R2 = 0.033 R2 = 0.024 R2 = 0.001 R2 = 0.038 R2 = 0.109 R2 = 0.001 R2 = 0.234 R2 = 0.046

Chlo “a” = Chlorophyll “a”; Chlo “b” = Chlorophyll “b”; Chlo a/b ratio = Chlorophyll a/b ratio; TCC = Total
chlorophyll content; CC = Carotenoid content; SSC = Soluble sugar content; SPC = Soluble protein content;
TPC = Total proline content; POD = Peroxidase; SOD = Superoxide dismutase; CAT = Catalase; APOX = Ascorbate
peroxidase. *** Significant at the p = 0.001.

3.3. Principal Component Analysis

Principal component analysis results (Figure 8 and Table 5) based on 10 characteristics
represented that the first PC1 described 28.674% of whole variance, which was correlated
significantly with chlorophyll “b”, and TCC, chlorophyll “ab”, CC, and SSC were mainly
correlated with growth parameters. Consequently, the second PC2 described 19.225% of
the whole variance, which was correlated particularly with TPC, POD, and SOD of plants
indicating that the PC2 was mainly correlated with antioxidant enzymes. However, PC3
accounted for 15.853% of the complete variance correlated with chlorophyll “a” and SPC.
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Table 5. Eigen values, variation explained (%), cumulative variance (%), coefficients of determination
of the first three principal components based on correlation matrix of biological components.

Traits Eigen
Values

Variance (%) Components
Individual Cumulative PC1 PC2 PC3

Chlo “a” 2.867 28.674 28.674 0.633 0.128 0.679
Chlo ”b” 1.922 19.225 47.899 0.877 0.263 −0.021

TCC 1.585 15.853 63.752 0.912 0.094 0.37
Chlo a/b ratio 1.138 11.376 75.129 −0.632 −0.135 0.552

CC 0.989 9.895 85.023 0.533 0.507 0.255
SSC 0.64 6.402 91.425 0.34 0.274 0.279
SPC 0.443 4.431 95.856 −0.196 0.218 0.431
TPC 0.28 2.798 98.654 −0.155 0.449 0.432
POD 0.135 1.346 100 −0.061 0.881 0.07
SOD 3.868 3.868 100 0.034 0.672 0.402

Chlo “a” = Chlorophyll “a”; Chlo “b” = Chlorophyll “b”; Chlo a/b ratio = Chlorophyll a/b ratio; TCC = Total
chlorophyll content; CC = Carotenoid content; SSC = Soluble sugar content; SPC=Soluble protein con-
tent; TPC = Total proline content; POD = Peroxidase; SOD = Superoxide dismutase; CAT = Catalase;
APOX = Ascorbate peroxidase.

3.4. Physiological and Biochemical Component Correlation Analysis

Analysis of correlation (Table 6) showed that chlorophyll “b” was correlated positively
with chlorophyll “a”, and TCC was correlated positively with chlorophyll “b” at a sig-
nificance level of p = 0.01. Similarly, CC, SSC, and SPC were negatively correlated with
one another and also with growth parameters and antioxidant enzymes. In addition, TPC
reported a positive correlation with SSC, whereas POD estimated a positive correlation
with TPC and SOD.

Table 6. Correlation analysis of physiological and biochemical components in Vigna radiata L.

Traits Chlo “a” Chlo “b” TCC Chlo a/b Ratio CC SSC SPC TPC POD SOD

Chlo “a” 1
Chlo “b” 0.394 * 1

TCC 0.814 ** 0.855 ** 1
Chlo a/b ratio 0.067 0.645 ** 0.369 1

CC 0.253 0.224 0.284 0.288 1
SSC 0.086 0.173 0.158 0.288 0.257 1
SPC 0.025 0.036 0.009 0.322 0.23 0.044 1
TPC 0.15 0.126 0.005 0.132 0.344 0.031 * 0.11 1
POD 0.124 0.148 0.023 0.01 0.332 0.24 0.265 0.385 * 1
SOD 0.22 0.188 0.006 0.172 0.198 0.171 0.045 0.004 0.431 * 1

Chlo “a” = Chlorophyll “a”; Chlo “b” = Chlorophyll “b”; Chlo a/b ratio = Chlorophyll a/b ratio; TCC = Total
chlorophyll content; CC = Carotenoid content; SSC = Soluble sugar content; SPC = Soluble protein content;
TPC = Total proline content; POD = Peroxidase; SOD = Superoxide dismutase; CAT = Catalase; APOX=Ascorbate
peroxidase. ** Significant at p = 0.01, * Significant at p = 0.05.

4. Discussion

The tolerance to biotic [40,41] and abiotic stresses such as heavy metals [42–46],
drought [47–49], salinity [50–52], temperature [53], and mineral deficiencies [54,55] are due
to the pre-treatment of seeds, suggesting that these molecules trigger the expression of
the potential to tolerate stress rather than having any direct effect as a protectant. Seed
priming may also increase the seed or seedling’s tolerance to stress. Seed priming initiates
metabolic activities, such as protein, RNA, and DNA synthesis; DNA replication; and
tubulin accumulation [51]. Recently, it has been suggested that priming could enhance the
activity of antioxidant enzymatic systems, resulting in a lower rate of lipid peroxidation,
contributing to seed invigoration as stated by Sani and Jodaeian [56]. Salinity is a major
threat to agricultural systems, causing inhibition of crop growth and development and loss
of crop productivity [49]. Soil salinity directly affects crop productivity, and the electrical
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conductivity in the soil affected with salinity ranges from 0.6 to 3.2 ds/m. Therefore, stress
imposed by salinity is considered as a key limitation to the productivity of crops [57]. In
growth and agronomical characteristics, thermopriming has been determined to positively
impact most of the features that included treatments, i.e., T4 (PEG), T5 (PEG + 100 mM
NaCl), T7 (4 ◦C), T8 (4 ◦C + 100 mM NaCl) showed that thermo- and osmopriming had
a positive impact on the Vigna radiata due to its thick seed coat and represented negative
effects in the case of T6 (PEG + 150 mM NaCl) and T9 (4 ◦C + 150 mM NaCl) due to the
high content of salt (NaCl). Nascimento et al. [19] concluded that the maximum percentage
of germination was attained by thermopriming for 10 min and the lowermost percentage
of germination was attained by the control treatment. A similar study was also conducted
by Ahmad et al. [58], who reported the effect of osmopriming and thermopriming on the
amelioration of mercuric chloride stress tolerance in mungbean. The top dry weight of
the seedling was achieved by thermopriming for 10 min, and the lower dry weight of
seedling was attained by the control treatment. The influence of thermopriming on germi-
nation was not significant [58]. By increasing thermopriming, an increased germination
percentage was recorded, reaching its maximum at 20 min of thermopriming. The outcome
of thermopriming was major (p ≤ 0.05) on germination percentage [59]. The maximum
percentage of germination (98 %) was attained by thermopriming for 30 min, and the
minimum percentage of germination (80.66 %) was achieved by the control treatment.

Similarly, the physiological study results determined that thermopriming improves
the majority of the features such as chlorophyll content, protein, proline, and sugar content
under treatments, i.e., T4 (PEG), T5 (PEG + 100 mM), T7 (4 ◦C), and T8 (4 ◦C + 100 mM)
were evaluated as having high growth rate and plant osmoprotectant along with active
antioxidant defense systems that resulted in maximum activity in the control treatment.
Our results are in agreement with those of [58] and described the estimation of chlorophyll a
and b contents, soluble protein, leaf soluble sugar contents, proline, and some antioxidative
enzymes (POD and SOD) in Vigna radiata L. The concentration of proline was greater in
plants sown in low NaCl (20 mM) [60]. The protein content was similar in plants sown at 40,
60, and 80 mM concentrations of NaCl and decreased at the highest concentration (160 mM).
Our findings are consistent with [61,62] and described the maximal chlorophyll “a” and “b”
contents when seedlings were primed. The osmopriming PEG increased carotenoid levels
and chlorophyll level in leaf tissues of tomato [63]. The priming causes tolerance in salinity-
stressed melon seedlings [64]. The concentration of sugar had a major rise in shoots under
salt stress [65]. Non-reducing and reducing sugar concentration showed improvement
in roots. Phaseolus vulgaris, sodium chloride concentration increases, and antioxidant
enzymes such as APX, CAT, and GR considerably declined while SOD (super oxidase)
action improved under salt-induced stress [66]. The activity of antioxidant enzymes
enhanced under stress conditions. SOD activity increased at 50, 100, and 200 mM NaCl
in comparison with the control. In this cultivar, there was a significant difference (p < 5%)
between the control and 50 mM NaCl at other levels. Catalase activity was significantly
increased in two cultivars at 50 mM NaCl in comparison with the control. However, at
higher levels of NaCl, i.e., 100, 150, and 200 mM, catalase activity significantly decreased
(p < 5%) in comparison with 50 mM NaCl by [67]. Similar result has been evaluated [68]
concluded that sorghum was osmoprimed by using PEG improved germination, osmolyte,
and chlorophyll content and enzymes antioxidant activities i.e., SOD, POD, APOX, and
CAT. However, although several biochemical and physiological changes have been shown
to be involved in the salinity acclimation process, little is known about the responses
of antioxidant enzymes against salt stress, which induces the overproduction of active
oxygen species.

5. Conclusions

The current study demonstrated the impact of salinity at different concentration on the
agronomical, physiological and biochemical mechanisms accompanying the acquisition of
Vigna radiata L. variety ‘Ramzan’ by seed osmo- and thermopriming in the presence of PEG-
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4000 and 4 ◦C. Overall, experiments T5 (PEG + 100 mM NaCl), T6 (PEG + 150 mM NaCl),
and T9 (4 ◦C + 150 mM NaCl) have positive impacts on the agronomic features of mungbean
plant, while plant physiological traits such as proline and SOD were enhanced by T1 and
carotenoid by T2. The chlorophyll and protein contents were the highest under T4, whereas
sugar and POD were highest under T7 and T8. We observed from the estimated results that
agronomic characters, i.e., shoot fresh weight and shoot dry weight in T9 (4 ◦C + 150 mM
NaCl); root fresh weight and root dry weight in T4 (PEG + 100 mM NaCl); shoot moisture
content in T5 (PEG + 100 mM NaCl); and root moisture content in T6 (PEG + 150 mM
NaCl), were the highest followed by lowest in T1 (both shoot and root fresh weight) and
T2 (shoot and root dry weight), respectively. Similarly, shoot moisture content was the
highest in T5 and lowest in T6, and root moisture was the highest in T6. We observed
from the estimated results that both agronomical parameters including dry masses (T4,
T6, and T4), leaf area index, germination index, leaf area, total biomass, seed vigor index
under treatment T9, while relative water content and water use efficiency during T5 and
T6, were observed as being the highest. Principal component analysis enclosed 63.75% of
the total variation among all biological components. These estimated results confined the
positive resistance by Vigna radiata during osmopriming (PEG) and thermopriming (4 ◦C)
on most of the features with great tolerance under low saline treatments such as T4, T5,
T7, and T8 while they were susceptible in the case of T6 and T9 to high salt application.
Our findings suggest that the constraining impact of several priming techniques improved
low salinity, which was regarded as economically inexpensive and initiated numerous
metabolic processes in plants, hence decreasing germination time. Such techniques will be
considered adaptive procedures to cope with the upcoming increase in salinity induced by
climate change in the region.
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