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Abstract: Sensors’ existence as a key component of Cyber-Physical Systems makes it susceptible
to failures due to complex environments, low-quality production, and aging. When defective,
sensors either stop communicating or convey incorrect information. These unsteady situations
threaten the safety, economy, and reliability of a system. The objective of this study is to construct a
lightweight machine learning-based fault detection and diagnostic system within the limited energy
resources, memory, and computation of a Wireless Sensor Network (WSN). In this paper, a Context-
Aware Fault Diagnostic (CAFD) scheme is proposed based on an ensemble learning algorithm
called Extra-Trees. To evaluate the performance of the proposed scheme, a realistic WSN scenario
composed of humidity and temperature sensor observations is replicated with extreme low-intensity
faults. Six commonly occurring types of sensor fault are considered: drift, hard-over/bias, spike,
erratic/precision degradation, stuck, and data-loss. The proposed CAFD scheme reveals the ability
to accurately detect and diagnose low-intensity sensor faults in a timely manner. Moreover, the
efficiency of the Extra-Trees algorithm in terms of diagnostic accuracy, F1-score, ROC-AUC, and
training time is demonstrated by comparison with cutting-edge machine learning algorithms: a
Support Vector Machine and a Neural Network.

Keywords: WSN; Extra-Trees; machine learning; classification; data-driven; context-aware system;
sensor faults; fault diagnosis

1. Introduction

Modern technologies, particularly the Internet-of-Things (IoT) and Cyber-Physical
System (CPS) merged with Artificial Intelligence (AI), play a vital role in everyday life.
These advanced systems have the ability to address social challenges such as environmental
sustainability and economic downfalls. In this technological era, from the evolution of
autonomous vehicles, smart factories, and intelligent healthcare systems towards smart
homes, the IoT and CPS have captured the utmost parts of the urban world [1–4].

However, these advanced systems are based on the integration of diverse physical
objects, such as sensors. To monitor physical conditions, sensors are spatially dispersed
and data are collected at base stations engendering the Wireless Sensor Network (WSN) [5].
Undeniably, sensors make our lives easier by their innumerable uses. Nevertheless, they
come at a cost of being prone to failures.

Deployment of sensors in complex environments while facing natural conditions,
electromagnetic interference, and other relevant factors can lead to abnormal sensor behav-
iors (i.e., anomalies or faults). These faults are serious threats to the economy, worker’s
safety, and system’s reliability. A typical sensor, along with the data flow through major
components, is shown in Figure 1. These major components trigger abnormal behavior
when defective. Each component is associated with certain static-limiting properties, which
can be described by specifications, and that may affect the resulting data. However, the
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sensor’s output can also be affected by the external environment, such as communication
or battery defects, which commonly occur in a WSN [6].

Figure 1. Depiction of a sensor and its key components.

To avoid any unpleasant circumstances caused by sensor failure, sensor fault detection
and diagnosis has been an important area of research in recent years [7]. Generally, fault
diagnostic approaches can be categorized as knowledge-based, signal-based, model-based,
and hybrid techniques [8,9]. However, due to the emergence of cloud computing and
Machine Learning (ML), the knowledge-based (or data-driven) approach is becoming an
effective method for detection, diagnostics, and prognostics by scrutinizing the behavior of
sensors through large amounts of data [10–12].

In this work, a new Context-Aware Fault Diagnostic (CAFD) scheme towards the
detection and diagnosis of faults or anomalies in sensors is employed. First, the data under
consideration are multi-labeled according to the context of the fault. These data samples
are then given as input to the context-based ML classifier to diagnose. Upon diagnoses
(or classification), the output of the context-based classifier, along with the original data
samples (or sensor output signals), are given as input to a fault-based ML classifier. Finally,
the fault-based classifier categorizes the data samples in order to detect and diagnose any
abnormal behavior occurring in the network. The proposed scheme is discussed in detail
in Section 4, and the general architecture of the proposed system is presented in Figure 2.
Multiple sensors data from distinct applications communicated to cluster heads through
wireless links are shown, where a lightweight ML classifier (Extra-Trees) is deployed for
timely detection and diagnosis of faults.
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Figure 2. Architecture of the proposed fault diagnostic scheme.

Contributions

The major contributions of this paper are summarized in the following points.

• All the commonly recognized sensor faults that occur in a WSN are considered: drift,
hard-over/bias, erratic/precision degradation, spike, stuck, and data-loss.
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• A realistic multi-hop WSN scenario composed of humidity and temperature sensor
measurements is designed with extreme low-intensity faults.

• We presented the context-aware system based on multi-label classification as well as
the multi-class classification for fault diagnosis, which, to our knowledge, has not
been studied in earlier research.

• Following that, the lightweight CAFD scheme is developed based on the ensem-
ble learning algorithm called Extra-Trees to detect and diagnose sensor faults in a
timely fashion.

• Lastly, the proposed CAFD scheme’s effectiveness, along with that of the Extra-Trees
algorithm, is revealed by comparison with a traditional approach and advanced
ML classifiers (SVM and NN). Widely employed performance evaluation metrics—
diagnostic accuracy, F1-score, ROC-AUC, and training time (as lightweight measure)—
are used.

The rest of this paper is organized as follows. In Section 2, related work is discussed.
Section 3 presents the sensor fault taxonomy. In Section 4, the proposed CAFD scheme and
classification techniques are discussed. Section 5 provides simulations and results. Finally,
Section 6 concludes the paper. Acronyms and abbreviations used in this paper are listed in
Table 1.

Table 1. List of acronyms and abbreviations.

AI Artificial Intelligence
CAFD Context-Aware Fault Diagnostic
CNN Convolutional Neural Network
CPS Cyber–Physical System
CV Cross-Validation
DA Diagnostic Accuracy
DL Deep Learning
DT Decision Tree
ET Extra-Trees

FDNN Fuzzy Deep Neural Network
IoT Internet-of-Things
ML Machine Learning
NN Neural Network

ROC-AUC Area under the ROC curve
RF Random Forest

SVM Support Vector Machine
WSN Wireless Sensor Network

2. Related Work

Rapid advancement in AI techniques over the last few years has opened new doors
for abnormality detection and diagnosis systems. Recently, context-aware and ensemble
learning methods are widely considered due to their high performance. For instance, the
authors in [13] proposed a context-aware intrusion detection system utilizing machine
learning for a smart factory, and the study in [14] used an ensemble machine learning
approach for disease diagnosis based on wearable sensors. The authors in [15] suggested an
ensemble learning-based algorithm named Random Forest (RF) for real-time fault detection
in magnetic position sensors.

In [16], the authors utilized Deep Learning (DL) techniques known as autoencoders
and a Fuzzy Deep Neural Network (FDNN) for feature selection and fault diagnosis,
respectively. Support Vector Machine (SVM) classification algorithm was employed to
detect sensor faults, whereas the FDNN served diagnostic purposes. The authors in [17,18]
exploited SVM algorithm, whereas the study in [19] employed RF to detect sensor faults,
which are both well-known supervised ML classifiers. In [20], the authors proposed a Con-
volutional Neural Network (CNN)-based fault diagnosis method by image classification.
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The DL-based CNN algorithm in that work achieved considerable accuracy. The authors
in [21] proposed a hierarchically fused FDNN that combines a fuzzy Neural Network (NN).
In [22], a high anomaly detection rate was achieved for WSN by utilizing one-class-SVM
scheme. The authors of [23] considered a Long Short-term Memory NN for fault detection
and isolation against three defective classes. In earlier work [24], we proposed an ensem-
ble learning-based lightweight approach to detect and diagnose most faults occurring
in a WSN. However, a more sophisticated system that is not only lightweight but also
significantly accurate is desirable.

All the aforementioned work has certain advantages and disadvantages associated
with it. Some of the work is focused on detection, disregarding diagnostics. The work that
focused on diagnostics did not consider all the commonly occurring faults in WSNs. In
addition, the abnormality in sensors is mostly treated as a binary problem. Other than
that, faults can be of extremely low intensity, for which a reliable system is required. DL
techniques can be highly accurate for the feature extraction/selection and detection of
low-intensity faults; nonetheless, they require high computational power for execution.

3. Sensor Fault Taxonomy

Faults are considered to be a divergence from normal operation in sensor output. These
faults can be transient, persistent, or intermittent, depending upon the situation [25,26].
Network congestion, intricate conditions, low-quality production, and aging of the sensor
are considered prime reasons for defects [27,28]. Sensor faults are categorized under the
trend in which they diverge from normal operations. Mathematically, a normally operating
sensor can be expressed by Equation (1):

Sn = f (t) + η (1)

where f (t) is the sensor output at time t, and η denotes noise. Ideally, signal Sn will be
equal to f (t), but in actual situations, a fault-free sensor will have some η associated with
it. The six commonly occurring types of sensor fault considered in this research can be
acquired by tampering with the above equation, which is explained as follows [8].

3.1. Drift Fault

In this type of commonly occurring fault, the sensor output linearly increases or
decreases over time at a constant rate [29]. Let i(t) be the bias added to the output signal
at time t, and it increases over time: i(t) = i(t − 1) + α. The drift fault is modeled in
Equation (2).

Sn = f (t) + η + i(t),

i(t) = i(t− 1) + α, α = constant
(2)

3.2. Hard-Over/Bias Fault

When the sensor output shifts from normal operation to a greater state, it is called a
hard-over fault. In this kind of fault, a constant rate is added to the output signal of the
sensor, as modeled in Equation (3).

Sn = f (t) + η + α, α = constant (3)

3.3. Spike Fault

As the name suggests, this type of fault is high-amplitude in an intermittent manner
at constant periods in the output signal of the sensor. Let τ be the period in the sensor
output at which the spikes occur. Mathematically, a spike fault is modeled in Equation (4).

Sn = f (t) + η + α(t); ∀t = n× τ,

f (t) + η; otherwise, n = {1, 2, 3, . . .}, τ ≥ 2
(4)
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3.4. Erratic/Precision Degradation Fault

The erratic fault adds noise to the sensor output signal, with a high variance and zero
mean. This type of fault is mathematically expressed in Equation (5).

Sn = f (t) + η + αα ∼ N(0, δ2
α)δ

2
α � δ2

η (5)

3.5. Stuck Fault

In the stuck fault, sensor output undergoes zero, or nearly zero, variations. This kind
of fault can be persistent as well as transient. In a persistent situation, this fault can be
expressed as a complete failure. The stuck fault is modeled in Equation (6).

Sn = α, α = constant (6)

3.6. Data-Loss Fault

As revealed by the name, the data-loss fault is a null state in sensor output over
arbitrary time intervals. This sort of fault is primarily caused by calibration or hardware
defects, and commonly occurs in a WSN.

Figure 3 illustrates sample plots of the aforementioned faults (or abnormal behaviors)
along with the normal state, whereas Figure 4 represents these faults according to their
context. These contexts can be explained as the internal or external environments of the
sensor that are accountable for triggering the faults. As shown in Figure 4, there can be
a single cause or multiple causes for a fault to arise. For instance, drift and hard-over
faults are primarily caused by a calibration defect (or error), while a data-loss fault is
caused by either calibration or hardware defects. Moreover, the spike fault can appear
as a consequence of hardware, communication, or battery defects. The erratic fault is the
result of a battery defect, whereas a stuck fault can be triggered by several defects, such as
hardware, communication, battery, and clipping.

Figure 3. Normal/legitimate and faulty signal sample plots.
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Figure 4. Representation of abnormal sensor behaviors (or faults) according to the context.

4. The Proposed CAFD Scheme
4.1. Classification Techniques

As an instance of supervised learning, classification is a technique to identify data
observations according to where they belong on the basis of training data. Classification
is primarily divided into three categories: binary, multi-class, and multi-label. Figure 5
exemplifies the types of classification.

• Binary Classification involves two classes. A set of data observations (or data sam-
ples) can only be assigned to one of the two classes. For instance, in sensor fault
detection, data observations are categorized as either a normal class or an abnormal
class.

• Multi-Class Classification deals with a single target variable of the individual class.
In other words, this technique comprises more than two mutually exclusive classes.
Data observations are categorized into multiple classes based on disparity. For in-
stance, in sensor fault diagnosis, data observations of multiple classes are classified
into any one of the target variables, such as a normal class, a drift fault class, a
hard-over fault class, and so forth.

• Multi-Label Classification handles multiple target variables of the individual class.
This technique is employed when data observations of a class concurrently belong to
two or more target variables. For instance, in the stuck sensor fault class scenario, data
observations simultaneously belong to multiple target variables, such as hardware,
communication, battery, and clipping (as shown in Table 2).

[0] Normal

[1] Defect

[0] Normal

[1] Defect A

[2] Defect B

[3] Defect C

. . . . 

[0] Normal

[1] Defect A

[2] Defect B

[3] Defect C

. . . . 

Binary Classification Multi-Class Classification Multi-Label Classification

Figure 5. Types of classification.

4.2. Extra-Trees

Extra-Trees (ET), commonly known as Extremely Randomized Trees, is an algorithm
based on an ensemble of Decision Trees (DTs) [30]. The idea behind the ensemble technique
is a combination of multiple DTs and taking decisions established by a fused network.
The same flux is followed by the RF algorithm, but with two key differences. First, ET works
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on the principle of random splitting phenomena, whereas RF follows the best-splitting tech-
nique. Second, ET retreats data observations without any replacement (Bootstrap = False),
whereas the observations are withdrawn with a replacement under RF.

Furthermore, node splitting in a tree is the process of transforming a non-homogeneous
root node into homogeneous split/child nodes. The random splitting technique of ET
divides the root node into random child nodes, but in RF, the best-splitting approach
coverts the root node to homogeneous child nodes. The advantage of ET over RF or other
ML classifiers is the high reduction of variance and bias error. High variance can cause the
overfitting problem, while a high bias can provoke underfitting. Moreover, the ET ability
in randomness makes it computationally faster, and robust towards noisy features [24,31].

The workflow of the ET algorithm can be explained in four key steps. First, training
set X is given as input at the root node. Second, the algorithm randomly selects N samples
from X without replacement. Third, it constructs a tree from the learning samples and, at
each child node, selects F features randomly and splits the node into arbitrary cut-points.
Fourth, the ET aggregates the outcome of each tree by repeating the second and third steps
T times. Furthermore, the most significant parameters to be taken care of while generating
the ET model are: the number of DT in the ensemble k, the number of features to randomly
select f , and the minimum number of samples needed to split the node nmin.

4.3. System Model

The term context in “Context-Aware Fault Diagnostic” refers to the interior or exterior
conditions (or environment) of the sensors, and aware relates to the conscious intelligent
ML algorithm. The idea behind the CAFD system is to utilize the contexts of the sensors,
which are primarily responsible for abnormal behaviors (anomalies or faults).

In Figure 4, the data-centric or soft faults (i.e., drift, hard-over, data-loss, spike, erratic,
and stuck faults) are represented by lines to their context, respectively. The system-centric
or hard defects (i.e., calibration, hardware, communication, battery, and clipping defects)
that can be declared as contexts of the sensors are the prime causes of data-centric faults.
The framework of the proposed CAFD system is presented in Figure 6.

Trained Model

(Multi-Label Classification)

C1 C2 CN

Context Output

Fault 1 Fault 2 Fault N

Sensor Output Signal

Communication
Defect

Hardware
Defect

Battery
Defect

Clipping
Defect

Calibration
Defect

Context & Fault-Based
Labelled Data

Context-Based
Labelled Data

Data-loss Fault

Hard-over Fault

Spike Fault

Erratic Fault

Drift Fault

Stuck Fault

Phase I: Data Training Phase II: Model Testing

Extra-Trees
Classifier

Extra-Trees
Classifier

Trained Model

(Multi-Class Classification)

Context-Labels

Figure 6. Framework of the proposed CAFD: the Context-Aware Fault Diagnostic scheme.
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Following data acquisition and preparation, the data samples are given as input to
the ML classifier for training. Each data sample is labeled according to the corresponding
context. For instance, hard-over fault samples are labeled 1 for calibration, and 0 for the rest
of the contexts, since a hard-over fault substantially transpires due to calibration. Table 2
lists the labels for each class under consideration in this work.

Table 2. Representation of labels for each class according to the context.

Label Class Calibration
Defect

Hardware
Defect

Communication
Defect

Battery
Defect

Clipping
Defect

1 Normal/Legitimate 0 0 0 0 0
2 Hard-over Fault 1 0 0 0 0
3 Drift Fault 1 0 0 0 0
4 Spike Fault 0 1 1 1 0
5 Erratic Fault 0 0 0 1 0
6 Data-loss Fault 1 1 0 0 0
7 Stuck Fault 0 1 1 1 1

Furthermore, the context-based multi-label data are first trained using the ET algo-
rithm for classification purposes. Subsequently, the context-based classifier (ET) is given
distinct sensor output signals (or data samples) to identify. This technique classifies each
sample according to its context (C1, C2, . . . Cn), which belongs to any one of the aforemen-
tioned contexts, such as calibration.

Afterwards, the output of the context-based classifier in the form of labels is utilized
as input features in the fault-based classifier. The fault-based multi-class data contain
legitimate and faulty data samples along with the additional features from the context-
based classifier. Furthermore, the fault-based multi-class data, labeled with normal and
data-centric faults classes as mentioned above, are used to train the ET classifier.

To detect and diagnose data-centric faults, the fault-based classifier is given the sensor
output signals Sn in the form of data observations. The final classification is performed by
the fault-based classifier (ET), which leads to the diagnosis of faults in the sensors.

5. Simulations and Results
5.1. Data Acquisition and Preparation

To evaluate the performance of ML classifiers, the data under consideration play an
essential role. It is ideal to get data with genuine faults obtained from realistic scenarios.
There are no publicly available datasets that in fact address all the faults in sensors. To con-
duct this research, we acquired a dataset published by the researchers at the University
of North Carolina [32]. This dataset is composed of humidity and temperature sensor
measurements. The data were acquired through Telos-B motes while creating single-hop
and multi-hop WSN scenarios. For this research, we obtained the multi-hop data (only
healthy measurements) and injected it with the six diverse sensor faults: drift, hard-over,
spike, erratic, stuck, and data-loss. This approach is common among researchers needing
to obtain faulty datasets [17–19].

To prepare the dataset, we generated 16-dimensional data samples (measurements
or vectors). Each sample was composed of 16 data points in 4 successive instances
(t0, t1, t2, t3). Each instance was constructed from 2 humidity sensor measurements
(H1, H2) and 2 temperature sensor measurements (T1, T2). In each instance, H1 and
T1 measurements belonged to the first node, whereas H2 and T2 belonged to the second
node of the multi-hop scenario. Figure 7 illustrates the data wrangling process.
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Figure 7. Illustration of the data preparation.

Overall, 400× 16 normal (legitimate/healthy) data points or observations were initi-
ated. Afterwards, the six above-mentioned distinct sensor fault types were injected into
the normal (non-faulty) data via simulations using Equations (2)–(6). To replicate a realistic
scenario of a WSN, half of the data points were used to introduce faults in the first node,
while the other half were used in the second node of the multi-hop network. Some of the
faults (such as drift, hard-over, spike, and erratic) were induced with different intensities of
fault (0.1, 0.2, . . . , 1.0), whereas, in the case of data-loss and stuck faults, the sensor’s output
is either null or an unchanging constant value. The higher the fault intensity, the higher the
fault rate in the data. For instance, the value 0.1 in the fault intensity corresponds to the
lowest fault rate, whereas 1.0 is the highest. However, the data-loss and stuck fault samples
remained unchanged throughout. Intuitively, the accuracy of the classifier improves with
the increase in fault intensity.

Considering the normal class (or legitimate data) and the six above-mentioned faulty
classes, the final dataset was composed of 7× 400× 16 data points. In each class, 60% of
the data samples were used to train the ML classifier, whereas 40% were used for testing.
In this work, two different labeling techniques were used to classify data (i.e., multi-class
classification and multi-label classification), as explained in Section 4. In the multi-class
technique, a single column of labels was introduced, while for the multi-label technique,
five distinct columns of binary numbers were taken into consideration, according to the
context of each class. Table 2 shows the labels in terms of numerical value for each class.

5.2. Results

To perform the simulations, the algorithms under consideration in this work were
constructed in Python, utilizing the Scikit-learn and NumPy libraries. The Grid-Search
Cross-Validation (CV) technique with CV = 5 was used on the dataset to obtain the optimal
hyperparameters for each algorithm to train. This technique works on the principles of
fit and score in order to determine the best parameters, which can be used to train the ML
models. In Table 3, these parameters are provided.

Generally, using a single performance evaluation metric for ML models is not con-
sidered good practice. In this work, three distinct metrics were taken into consideration
to assess the performance of the classification algorithms. These metrics are defined
as follows.

• Diagnostic Accuracy (DA) can be defined as the ratio of correctly diagnosed faulty or
defective data samples to the total number of faulty samples.

DA =
Number o f f aulty samples diagnosed

Total number o f f aulty samples
(7)

• F1-score or F-measure is described as the weighted average of precision and recall.
This weighted average is commonly used to assess the performance of ML classifica-
tion models.

F1− score = 2×
(

Recall × Precision
Recall + Precision

)
(8)

where
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Recall =
True Positives

Actual Positives
(9)

Precision =
True Positives

Predicted Positives
(10)

• Area value under the ROC curve (ROC-AUC) is an evaluation metric that calculates
a scalar value in the range [0, 1]. This measure determines how accurately the ML clas-
sifier can distinguish between faulty and non-faulty data observations. An accurate
classifier can have an ROC-AUC value up to 1.0.

Table 3. Parameters acquired by the grid-search approach for training the algorithms.

Algorithm Parameters

Extra-Trees

n_estimators = 150
max_features = auto

min_samples_split = 2
criterion = gini

Support Vector Machine

kernel = poly
decision_function_shape = ovr

gamma = auto
C = 1.0

Multi-Layer Perceptron

hidden_layer_sizes = 100
max_iter = 1000

solver = lbfgs
activation = identity

learning_rate = constant

In this work, the without-context (or traditional) approach is simply distinguished
from the context-aware (CAFD) approach as the scheme where sensor output signals are
given in their genuine state to the ML classifier without considering the additional features
extracted through the multi-label classification technique. The context-aware approach is
based on multi-class as well as multi-label classification technique as shown in the CAFD
framework (Figure 6). Furthermore, fault intensity depicts the rate of fault injected into the
datasets. For instance, a 0.1 fault intensity corresponds to the lowest fault rate, whereas
1.0 is the highest. As the fault intensity increases, the performance of the classifier is also
expected to improve. However, data-loss and stuck faults are free from the level of intensity
due to the fact that sensor output is an unchanging constant value in both cases.

ET performance is shown in Table 4 in terms of F1-score for normal and distinct fault
classes. The context-aware approach showed the ability to precisely distinguish between
the maximum number of classes, compared to the without-context approach. The F1-score
is increased overall by 9.28% using a context-aware approach. Nevertheless, the drift,
erratic, and data-loss fault classes have the same F1-score on both approaches. This is due
to the reason that data points of these classes have a very unique structure compared to
other classes, which makes it easy for any ML approach to classify. For instance, in the case
of drift fault, the data sample values are linearly increased over time, while in an erratic
fault, the data sample has high positive and negative values. Moreover, the data-loss fault
sample is comprised of null values.
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Table 4. ET F1-score comparison of individual classes on context-aware approach vs. without-
context approach.

Class Context-Aware Approach Without-Context Approach
F1-Score F1-Score

Normal/Legitimate 63% 37%
Hard-over Fault 92% 88%

Drift Fault 98% 98%
Spike Fault 91% 87%

Erratic Fault 97% 97%
Data-loss Fault 100% 100%

Stuck Fault 57% 26%
Average: 85.42% Average: 76.14%

Furthermore, the normal class and the stuck fault class have highly identical data
points, since sensor output undergoes low variation, which makes it hard for the classifier to
discriminate between both situations and hence resulting in a low F1-score. The bar graph
in Figure 8 explicitly provides the performance differences between the two approaches in
terms of F1-score average. Each number in the graph depicts a different class: (1) normal,
(2) hard-over fault, (3) drift fault, (4) spike fault, (5) erratic fault, (6) data-loss fault, and (7)
stuck fault. While some of the classes have shown a somewhat similar F1-score to both
approaches, most of them were improved with the context-aware approach.

1 2 3 4 5 6 7
Distinct Classes

0

20

40

60

80

100

F1
-S

co
re

 (%
)

Context-Aware Approach
Without Context

Figure 8. ET average F1-score comparison for distinctive classes using context-aware approach vs.
without-context approach.

In Figure 9, the ROC-AUC for ET versus different fault intensities under the proposed
scheme is revealed. Starting from the lowest fault intensity, 0.1 up to 0.3, the ET-based
context-aware approach AUC value increased considerably. The lowest AUC value no-
ticed was 0.89. However, from 0.3 to 1.0, the proposed approach constantly achieved
the maximum AUC value, up to 0.97. On the other hand, the same classifier (ET) in the
without-context approach with hyperparameters identical to those in the context-aware
approach revealed low performance, up to 0.81, whereas with the increase in fault intensity,
the ROC-AUC was also elevated.
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Figure 9. ROC-AUC against diverse fault intensities of the proposed ET-based context-aware ap-
proach, compared to the without-context approach.

Figure 10 shows the average DA of the approaches under consideration. As can be
seen, both approaches significantly improved with the increase in fault intensity. Nonethe-
less, utilizing the ET classifier, the proposed context-aware approach achieved a maximum
accuracy of up to 90%, whereas the without-context approach had the utmost DA, up
to 81%.
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Fault Intensity

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Context-Aware Approach
Without Context

Figure 10. Diagnostic accuracy of the context-aware approach vs. the without-context (traditional)
approach for ET on diverse fault intensities.

Furthermore, the DA of ET, SVM, and NN classifier at different fault intensities are
shown in Figure 11. As the intensity of fault decreases, the disparity between normal and
faulty data points reduces, so the performance of algorithms also diminishes. Moreover, an
abrupt drop in accuracy for ET can be noticed at a fault intensity of 0.1. This is due to the
reason that ET retreats data observations without replacement and uses a random splitting
technique while training. This random nature of ET during training causes deterioration
at an intensity of 1.0. Nevertheless, this limitation can be easily overcome by increasing a
small amount of data observations at low intensity if needed. Overall, ET has attained the
highest DA, up to 90%, compared to SVM and NN. This observation reveals that ET can
achieve high classification accuracy for a multiple class problem by significantly reducing
bias/variance error.



Sensors 2021, 21, 617 13 of 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fault Intensity

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

ET
SVM
NN

Figure 11. Diagnostic accuracy comparison of ET versus SVM and NN under the proposed
CAFD scheme.

Finally, the time taken by each classifier to train, based on the number of training
samples, is illustrated in Figure 12. We observed that ET is computationally inexpensive,
compared to the SVM and NN. It is easy to state that utilizing ET for lightweight systems
under the proposed CAFD scheme can achieve high performance by precisely detecting
and diagnosing sensor faults.
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Figure 12. Training time based on the number of training samples for ET, SVM, and NN.

6. Conclusions and Future Work

In this work, a lightweight CAFD scheme is proposed for timely detection and di-
agnosis of low-intensity faults in sensors. First, a dataset composed of healthy humidity
and temperature sensor observations was acquired. Afterwards, the faults commonly
occurring in sensors (drift, hard-over/bias, erratic/precision degradation, spike, stuck,
and data-loss) were injected at different intensities into the dataset to generate a realistic
defective WSN scenario. Healthy and faulty data observations were labeled utilizing
multi-label/multi-class classification techniques for experimental purposes. These data ob-
servations were then used to train ML classifiers. The proposed CAFD scheme is composed
of two ML-based classifiers: the first classifier carries out the multi-label classification task
and the second classifier performs the multi-class classification task. Using multi-label
classification, each fault was labeled according to its possible causes or context, such as
calibration, hardware, communication, battery, and clipping. This context-based labeled
data were then trained by an ensemble-method-based ML classifier named ET to diagnose
the causes of each fault. Subsequently, the output of the ET classifier was used as additional
features in fault-based labeled data to train the second ET classifier, which diagnosed the
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sensor faults such as drift. Extensive simulations revealed that using the contexts of the
sensors as additional features in the original data observations can significantly improve
a classifier’s performance. Furthermore, the proposed ET-based classifier in the CAFD
scheme showed more efficiency than the SVM and NN in terms of diagnostic accuracy and
training time.

In future work, we aim to increase the number of sensors in the network to check the
robustness of the proposed scheme. Other than that, in the case of diagnostic accuracy, the
performance of the proposed scheme was slightly deteriorated at the lowest intensity of
fault, which emphasizes the need for further improvement in future work that could result
in superior performance.
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