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ABSTRACT Integration of the Internet into the entities of the different domains of human society (such as
smart homes, health care, smart grids, manufacturing processes, product supply chains, and environmental
monitoring) is emerging as a new paradigm called the Internet of Things (IoT). However, the ubiquitous and
wide-range IoT networks make them prone to cyberattacks. One of the main types of attack is a denial
of service (DoS), where the attacker floods the network with a large volume of data to prevent nodes
from using the services. An intrusion detection mechanism is considered a chief source of protection for
information and communications technology. However, conventional intrusion detection methods need to be
modified and improved for application to the IoT owing to certain limitations, such as resource-constrained
devices, the limited memory and battery capacity of nodes, and specific protocol stacks. In this paper,
we develop a lightweight attack detection strategy utilizing a supervised machine learning-based support
vector machine (SVM) to detect an adversary attempting to inject unnecessary data into the IoT network.
The simulation results show that the proposed SVM-based classifier, aided by a combination of two or three
incomplex features, can perform satisfactorily in terms of classification accuracy and detection time.

INDEX TERMS Intrusion detection system, anomaly detection, Internet of Things, support vector machine.

I. INTRODUCTION
The concept of Internet of Things (IoT) is based on the
integration of uniquely identifiable heterogeneous physical
objects around us (humans, animals, sensors, instant cameras,
vehicles etc.) and the cyber world with the ability to transfer
data over a network without requiring human-to-human or
human-to-computer interfaces. As illustrated in Figure 1,
the applications of the IoTmay range from a simple appliance
for a smart home to a complex apparatus in a smart grid.
The IoT provides a tremendous opportunity for societies
around the world. Even with different objectives, contrasting
IoT applications have an intersection set of characteristics.
Broadly speaking, a primary node in IoT has capability to
perform three distinct actions; data collection, data transmis-
sion, and data processing and utilization [1]–[3].
In the data collection stage, small, memory-constrained

and low energy-consumption sensors with a short-range
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communications capability are employed to collect informa-
tion about the physical environment. Ethernet, WiFi, ZigBee,
andwire-based technologies are combinedwith Transmission
Control Protocol/Internet Protocol to connect the objects and
users across prolonged distances during data transmission.
During the data processing and utilization stage, applications
process the data to obtain useful information, and may ini-
tiate control commands to act on the physical environment
after making decisions based on the collected information.
The coordination of diverse technologies, the heterogeneity,
and the distributed nature of communications technologies
proposed for the IoT by different standards development
organizations [4] magnify the threat to end-to-end security in
IoT applications.

Numerous methods for improving data confidentiality,
authentication, and access have been reported in the lit-
erature; however, even with these mechanisms, IoT net-
works are prone to multiple attacks aimed at disrupting
the network. The growth, complexity, ubiquity, and diver-
sity of the IoT expands the potential attack surface.
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FIGURE 1. An example of IoT applications.

Therefore, intrusion prevention tools and signature-based
intrusion detection methods cannot be effective against mod-
ified attacks, and fundamentally new types of attacks, in the
IoT. A defense mechanism aiming to detect novel and poten-
tial intrusions is required. Intrusion detection systems (IDSs)
based on anomaly detection (a.k.a. statistically based) fulfill
this purpose [5]. Anomaly detection does not require prior
identification of attack signatures.

Considering that the development of IDSs for the IoT
represents a significant challenge for information security,
researchers describe IoT networks in terms of specific char-
acteristics as follows [1], [6].
• Unlike traditional networks, where the system adminis-
trator deploys IDS agents in network entities with high
computing and storage capacities, the memory capac-
ity, processing power, and battery energy-capacity con-
straints of IoT network nodes that host IDS agents is
challenging.

• In conventional networks, end systems are directly con-
nected to specific nodes (e.g., wireless access points,
switches, and routers) that are responsible for forward-
ing packets to the destination. In contrast, there are
multiple hops in IoT networks. Regular nodes may
simultaneously forward packets and work as end sys-
tems. Moreover, in some IoT applications, the net-
work topology regularly changes (e.g., VANETs, mobile

sinks, dynamic selection of cluster heads). The speci-
ficity of the topology poses new challenges for IDSs.

• Protocols used in IoT networks are different from con-
ventional networks, such as IEEE 802.15.4, IPv6 over
Low-power Wireless Personal Area Network (6LoW-
PAN), IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL) and Constrained Application Proto-
col (CoAP). Heterogeneity in protocols introduces new
weaknesses which result in new challenges for IDSs in
the IoT.

The characteristics of IoT networks given above limit the
design of an IDS to be lightweight still efficient enough
to secure the network from potential attacks. The term
lightweight does not refer to simplicity of the system.
It means that the IDS should be able to perform its operation
with the available amount of resources in the sensor nodes of
the network. Roesch et al. [7] defined a lightweight IDS as
small, powerful, and flexible enough to be used as permanent
element of the network security infrastructure. According to
Hai et al. [8], a lightweight system aims at energy saving
and reduced computational resources. Maleh and Ezzati [9]
consider a system as lightweight if it has reduced energy con-
sumption. Concluding, a lightweight system is the one which
can perform in limited energy and computation resources
regardless of simplicity. Keeping these definitions in mind,
we design a lightweight IDS system by avoiding the complex
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features extraction and feature selection steps. We provide
rather uncomplicated and limited number of features to be
extracted from raw data. The results show that, this type of
system can perform efficiently in discriminating an intrusion
in the IoT network.

The proposed scheme is intuitive to perform well in this
type of application. However, there is no literature address-
ing the intrusion detection problem using such a foolproof
algorithm. This leaves gap for proposing and analyzing such
uncomplicated and intuitive algorithms for these applications
rather than utilizing complex statistical techniques.

There are many datasets available providing samples
DoS attacks under different scenarios including KDD’99,
DARPA, CAIDA DDoS, etc. [10]. The issue to use these
datasets for evaluating our proposed algorithm lies in the
attributes in which these datasets are available. The only
characteristic of network traffic that is used in our algorithm
is the packet arrival rate per node. However, this characteristic
of the data is not given in any of the above given dataset. For
instance, the dataset KDD’99 represent the data samples in
attributes such as protocol type, duration of connection, Land
etc. but packet arrival rate [11]. This limits our algorithm to
be tested utilizing these online available datasets.

A. MOTIVATION
The novelty of this manuscript lies in the design of an IDS for
IoT networks with the characteristics of lightweight i.e., min-
imizing cost of system in terms of energy consumption and
computational resources. An Ideal IDS system is lightweight
enough to be implemented in a sensor node equipped with
limited battery capacity and computational resources, still
performing efficiently. In this work, this is achieved by elim-
inating the complex features extraction from data and the
feature selection steps. Instead of taking different charac-
teristics the proposed IDS rely on only the packet arrival
rate attribute of raw data. Moreover, the complexity of an
SVM-based classifier directly depends on the dimensions
of input vector. The higher the dimensions of input vector
the higher the complexity of SVM. Keeping this in mind,
we reduce the dimensions by extracting only 2 to 3 features
from input vector. In short, we try to develop a lightweight
IDS by the following way. We considering only one attribute,
i.e., the packet transmission rate, and extract only 2 to 3
features from that attribute. The three features utilized include
mean, median and maximum values obtained to perform the
classification. Intuitively, these steps reduce the energy and
computational cost as compared to a system considering up
to 40 complex attributes, such as protocol type, service, land,
wrong fragments etc. as given inNSL-KDDdataset [11]. This
approach makes the proposed IDS suitable for implementa-
tion in sensor nodes of IoT while keeping the efficiency of
system satisfactory as illustrated in the experimental results.

Furthermore, several researchers have proved that an
SVM-based classifier outperform neural networks, k-nearest
neighbor, random forest etc. [12]–[14]. This is the motivation
to design our proposed algorithm based on an SVM-based

classifier. A performance comparison of SVM-based classi-
fier and other machine learning-based algorithms can also be
found in literature supporting this argument.

B. CONTRIBUTIONS
Thus, to unlock the IoT potential, we need to improve
IoT security and the performance of IDS. In this paper,
we are motivated to consider intrusions (and corresponding
anomaly-based IDS) accompanied by changes in traffic inten-
sity. This effect is typical for a wide range of attacks in the
IoT environment. The main contributions of this paper are as
follows.
• We analyze DoS attacks in the IoT that were reported
in the literature [15]–[20] and conclude that the conse-
quences of the intrusions include changes in the intensity
of the transmitted packets. In some cases, the change
in traffic intensity is an attack tool; in other cases, it is
a concomitant effect. Analysis reveals the relationship
between traffic change profiles and types of intrusion.

• An intrusion detection on a sensor-by-sensor basis is
a challenging problem. At the same time, there is an
industrial demand on intrusion detection in devices [21].
In some recent papers it has been declared a low quality
of SVM based intrusion detection on a sensor-by-sensor
basis [22]. However, in this paper we demonstrate that
a foolproof SVM based approach combined with proper
statistics and feature engineering provides good perfor-
mance in various scenarios.

• Instead of utilizing complex attributes (given in online
datasets such as NSL-KDD) of the system, we utilize
only one attribute, the packet arrival rate to the sensor
node. To the best of authors’ knowledge, this work is
pioneer considering specifically this attribute for devel-
oping an IDS for IoT.

• Based on the above analysis, we develop a support vector
machine (SVM)-based classifier for a lightweight IDS.
The performance of classifier is analyzed for linear,
polynomial, and radial-basis kernel functions.

• Simulation experiments are conducted to verify the
choice of SVM parameters and to demonstrate the
method’s efficiency. The performance of IDS is ana-
lyzed in terms of true positive rate, true negative rate,
false positive rate, false negative rate, accuracy and
detection time.

• Furthermore, the performance of proposed SVM-
based IDS is compared with other machine learning
algorithms-based IDS including neural network, KNN
and decision tree. The accuracies comparison of 100 iter-
ations of experiments prove the efficiency SVM-based
classifier using linear and polynomial kernel functions.

• Finally, the performance of proposed algorithm is
compared with some of the proposed algorithms in liter-
ature. The accuracy measure is used to assess how effi-
ciently an algorithm can detect the intrusions. The CPU
time measure is used to compare the lightweightness
measure of different algorithms. The results show that
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the proposed algorithm is not only lightweight among
the given set of algorithms but it also outperforms these
algorithms.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. Section II
introduces the related work. An analysis of IoT attacks is pre-
sented in Section III, and we discuss the models of trustwor-
thy activity and abnormal behavior. Section IV proposes the
machine learning-based framework of the intrusion detection
system, followed by a performance evaluation in Section V.
The conclusion and future research directions are presented
in Section VI. The abbreviations used in this paper, are sum-
marized in Table 1.

II. RELATED WORKS
Farahnakian and Heikkonen [20] proposed a deep auto-
encoder (DAE)-based classification model to detect and clas-
sify intrusions in the network. The proposed classifier was
obtained by combining a set of auto-encoders (AE) such
that the output of an AE at (n − 1)th layer is the input to
the AE at the nth layer. The results presented showed that
the proposed DAE performed better in detecting intrusions
in the systems, compared to the deep belief network (DBN)
and a combination of AE+DBN. Shone et al. [23] stepped
forward and proposed a nonsymmetric deep auto-encoder
(NDAE) to learn features in an unsupervised manner. A set of
NDAEs is stacked to perform the learning and classification
tasks.

A malicious pattern detection mechanism was proposed by
Oh et al. [24] to secure networks in the IoT. They reduced
memory usage in a pattern-matching process by proposing
an auxiliary shifting method and an early decision scheme.
They reported efficient results in early detection of a mali-
cious pattern; however, they failed to detect and classify
other attacks, such as denial of service (DoS), false data
injection, etc. Furthermore, an attacker may try a unique
pattern each time, making it difficult for the node to detect
an attack. Moreover, Ali et al. [25] proposed a fast learn-
ing network (FLN) with particle swarm optimization (PSO)
applied for convergence of classifier parameters. Although
the results were satisfactory, the complexity of the system is
too high to be applied to sensor nodes due to their low com-
putation and energy-storage capabilities. Moukhafi et al. [26]
combined a hybrid genetic algorithm (GA) and an SVM with
PSO for feature subset selection in their proposed intrusion
detection system. This system was successful in differenti-
ating DoS attacks from other types of attack with an accu-
racy of almost 100%; however, it could not discriminate
normal class signals from other types of attacks with reason-
able accuracy. Vajayanand et al. [27] tried to improve clas-
sification accuracy by proposing a hybrid feature-selection
technique based on a GA and mutual information (MI) for
an SVM-based classifier. They also proved (by illustrating
their experimental results) that an SVM-based classifier is
successful in achieving better performance than an artificial

neural network (ANN). The highest accuracy achieved in
their experiment was 96% when the classifier was trained
with 400 samples. The results showed that utilizing both the
GA and MI could need as few as three informative features
to obtain these results. However, considering the battery and
computation-cost limitations of IoT devices, this scheme does
not seem like a promising solution.

Recently, Kabir et al. [28] proposed an optimum
allocation-based least square SVM (OA-LS-SVM) for intru-
sion detection systems. This technique first combines the
training and testing datasets. Then, an optimal alloca-
tion (OA) scheme determines the volume of training and test-
ing sets. Later, it selects representative samples directly from
training and testing datasets for the classifier. Although this
paper presented some interestingly satisfactory results, it can
miss some important information or features in the dataset
owing to their limiting the training dataset to samples having
a specific relation with a representative sample. Furthermore,
obtaining all the samples from training and testing datasets is
a challenge difficult to overcome.

Another IDS was proposed in [6] based on an automata
or finite state machine. The automata transitions are used to
characterize the network, and are later used to detect if an
intrusion occurred. The experimental results addressed only
three types of attack: the jamming attack, the false attack,
and the reply attack. DoS or false data injection attacks were
not addressed. A two-step technique to effectively detect
intrusions was proposed in [29]. In the first step, several
binary classifiers are utilized to classify the sample. In the
next step, the sample is classified by a k-nearest neighbors
(k-NN) algorithm if the output of step 1 is ambiguous. The
highest accuracy obtained in these experiments was around
94% at the cost of high computation resources usage and
high energy consumption to implement the several types of
classifier. Furthermore, Tao et al. [30] proposed an IDS based
on feature selection, weight, and parameter optimization of
an SVM based on a GA (shortened to FWP-SVM-GA).
The GA first selects the features subset, and then simul-
taneously optimizes the parameters of the SVM. Finally,
the trained classifier is used to detect and classify anomalies
in the network. In [31] the authors proposed an intrusion
detection system based on a conditional variational autoen-
coder (CVAE). The labels of the samples are added as extra
input to the decoder block of a VAE. An IDS based on
long short-term memory recurrent neural networks (LSTM-
RNNs) was proposed [32]. The authors showed that their pro-
posed technique can successfully overcome various machine
learning techniques, including SVM, k-NN, and Bayesian.
Khalvati et al. [33] used both SVM and naïve Bayes clas-
sifiers to efficiently detect and classify intrusions in a net-
work. Han et al. [34] focused on the energy efficiency of
the system, yet achieved satisfactory performance with the
proposed IDS based on game theory and an autoregres-
sive model. In [35], the authors used naïve Bayes, SVM,
and a random forest decision tree algorithm to detect DoS
attacks in wireless sensor networks (WSNs). Ozay et al. [36]
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TABLE 1. Nomenclature.

presented an analysis of supervised and unsupervised
machine learning algorithms to detect attacks targeting smart
grids. James et al. [37] targeted the detection of false data
injection attacks using a wavelet transform and a deep neural
network. Several other authors focused on false data injec-
tion attacks and proposed detection systems based on deep
learning techniques [38]–[40]. Teng et al. [41] proposed a
collaborative intrusion detection system using an SVM and
decision tree algorithms.

Helmer et al. [42] presented a distributed agent to imple-
ment a lightweight IDS. The reserved mobile agents would
move in the network to collect and report to a mediator
to obtain the status of the network. Although, this type of
architecture is successful to overcome the critical problems
of centralized network such as computing cycles on user’s
computer and providing higher ease of adding nodes to the
network. However, this type of network can have some crit-
ical issues of higher delay due to the transmission of data to
other nodes and then waiting for the response from media-
tor. Furthermore, these transmissions between nodes makes
this network more prone to cyber-attacks. Another attempt
to develop a lightweight IDS was done by Li et al. [43].
This algorithm includes feature selection phase as the first
step of training a linear SVM-based classifier. Although, this
algorithm performs satisfactory results when used to classify
an online sample, this scheme relies on a randommutation hill
climbing (RMHC) optimization technique to select the set of
best features. Furthermore, the time taken by feature selection
schemes to obtain final set of features increases with increase
in the number of features in dataset. Moreover, it is possible
that the feature selection strategy may select features which
are not capable of discriminating new types of intrusions.

Although all these proposed methods were able to per-
form efficiently in detecting intrusions in the network, these
techniques rely on resource-intensive computing and may be
too heavy for the low-capacity nodes of IoT networks. It is

necessary to design an IDS requiring low computational
costs, miminal energy, and little memory in the network
nodes [1].

III. ANALYSIS OF IOT THREATS
A. TYPICAL ATTACKS IN IOT AND CONCOMITANT EFFECT
Considering the specific characteristics of IoT networks,
an adversary can launch attacks to disrupt the system in many
ways. In this paper, we consider the typical attacks reported in
the literature [15]–[17], [44], [45]. Remark, there are several
projects on, and standardization initiatives for, WSNs, which
may eventually converge with the Internet of Things (IoT),
for example European Union projects of Internet of Things
Architecture (IoT-A) have been addressing the challenges
of IoT solutions development from the WSNs perspective.
A brief description of the typical attacks follows. A brief
description of these attacks follows.
• Packets Flooding: In a wide range of attacks, an intruder
can generate a storm of spoofed packets or repeatedly
duplicated legal packets. This results in the channels
being overloaded, network node buffers overflowing,
and in some cases, the goal of the intruder can be the
depletion of a network node battery (a vampire attack).
However, in all cases, the attack obviously increases
traffic intensity.

• Vulnerability Attacks: During a vulnerability attack,
some malformed packets are sent to the target to mislead
a protocol or an application running under it. It leads to
degradation of device functionality, and therefore, data
transmission intensity is degraded as well.

• Blackhole Attack: A malicious node can attract all the
packets by requesting a fresh, misleading route to the
destination. Then, it accepts them without forwarding
them to the destination.

• Jamming: An intruder transmits a signal and jams net-
work working frequencies in a way that decreases the
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FIGURE 2. Typical IoT Attacks and Concomitant Effects.

signal-to-noise ratio to a level where the nodes of the
wireless network can no longer function. As a result
of the attack, a group of nodes becomes isolated and
does not generate traffic. Therefore, the attack decreases
traffic.

• Selective Forwarding: An intruder drops part of the
packets, which leads to information integrity degrada-
tion. If an intruder does not replace the legal packets with
spoofed packets, that quickly unmasks the intrusion, and
then, traffic intensity decreases.

• Sybil Attack: A node in an IoT network is compro-
mised by adversaries in such a way that it depicts itself
with false identities to other nodes. Depending on an
intruder’s goal, the attack can lead to two scenarios
of traffic change. Sham nodes can generate additional
traffic, or inhibit the traffic of legal nodes.

• Sinkhole Attack: In this scenario, a compromised node
tries to attract network traffic by advertising false routing
information. Subsequently, it can be used to initiate other
attacks, like selective forwarding, acknowledge spoof-
ing, altering packets or dropping them etc.

• Clone Attack: In this situation, adversaries acquire the
secret information of nodes and create duplicates of
this information in the whole network to mislead data
packets. These kinds of attack are very dangerous to
wireless sensor networks. Cloned nodes can launch a
variety of attacks: blackhole, inject false data etc.

• Wormhole Attack: The adversary can attract and avoid
a huge amount of network data by creating a tunnel
between two distant nodes in an IoT network. This attack
is generally used in conjunction with eavesdropping or
selective forwarding.

• Hello, Flood Attack: In the network, each new node
sends ‘‘Hello’’ messages to discover its neighbor nodes.

Also, it broadcasts its route to the base station. Other
nodes may choose to route data through this new node if
the path is shorter. If a malicious node equipped with a
power transmitter sends a ‘‘Hello’’ message with attrac-
tive conditions, then a lot of nodes choose it for data
transmission. However, the packets of these nodes will
never be retransmitted. Therefore, the attack decreases
general intensity.

Thus, the typical attacks in the IoT are accompanied by
changes in traffic intensity. As the result of some attacks,
the intensity grows; in others, it declines. There are some
cases where the same attack leads to traffic increasing in one
location yet decreasing in another. In the preliminary stages
of the attack, an intruder usually explores the network looking
for vulnerabilities, which can be accompanied by an increase
in traffic. The relationships of typical IoT attacks to traffic
change are shown in Figure 2. The concomitant effect can be
inherent in all components of the CIA triad.

DoS attacks, especially distributed DoS (DDoS) are seri-
ous problems in the IoT, which have been inherited from
traditional IP networks. An efficient protection against these
types of attack does not exist yet; for example, the biggest
attack ever, recorded in 2016, left hundreds of thousands
of connected devices infected [18]. In the IoT, the situation
becomes worse due to the limited resources of IoT devices.
In the preliminary stages of an attack, an intruder can generate
some traffic to explore a network and identify system bottle-
necks. Moreover, fundamentally new attacks on the IoT lead
to traffic change, as well [19].

Thus, observations of traffic intensity can be used for an
IDS. To design an IDS for the IoT, the representative charac-
teristics of low computing power, limited memory capacity,
and constrained energy capacity in the nodes should be taken
into account. In this paper, we investigate a foolproof and
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FIGURE 3. Framework of the proposed support vector machine-based intrusion detection system.

lightweight IDS based on an SVM. We show in a series of
experiments that by extracting only two or three features from
an input sample, the SVM can achieve satisfactory results
detecting attacks against the network in a timely manner.

B. IOT TRAFFIC MODELING
Generally, to analyze network behavior, a mathematical
model of the traffic is used. Real traffic records are only
available in particular cases. The models are based on sim-
plifying assumptions; however, some often provide a basis
for adequate approximations of network behavior, as well as
worthwhile insights. The scientific and engineering commu-
nity has accepted the following fact [46]–[53]: the Poisson
process (i.e. exponentially distributed times between packet
arrivals) is appropriate for traffic modeling in the IoT as well
as in WSNs, which are considered an essential part of the
IoT [54].

Here, we consider conditions for Poisson process deriva-
tion. Let N (t) be the number of packets that have arrived in
the time interval (0, t), and let λ be a positive constant. Let us
formulate the following four conditions:

1) N (0) = 0.
2) Packet arrivals in non-overlapping time intervals are

mutually independent.
3) The probability reflecting the number of packet arrivals

in the interval (t, t + h) depends only on length h and
not on time origin t .

4) For a sufficiently small h, we get equations for the
probabilities as follows:

P [N (t + h) − N (t) = 1] = λh+ o (h)

P [N (t + h) − N (t) = 0] = 1− λh+ o (h)

P [N (t + h) − N (t) > 1] = o (h) (1)

where o (h) is the quantity as lim
h→0

o(h)
h = 0.

In other words, if interval h is small enough, then the
probability of the event ‘‘more than one packet arrival during
time h’’ is negligibly small.

If the four conditions above are met, then the traffic is
described by a Poisson process [55], i.e. the time between
packet arrivals is exponentially distributed, and the probabil-
ity mass function of N (t) is as follows:

P [N (t) = n] =
(λt)n

n!
e−λt , n ≥ 0. (2)

The Poisson process is used in many practical situations.
So in this paper, we use it to generate training and testing
samples for SVM performance analysis. However, we would
remark that we do not use special properties of a Poisson
probability mass function. Our features are limited by order
statistics, mean, and median. So, the proposed approach can
be applied even in more general situations.

IV. THE PROPOSED INTRUSION DETECTION SYSTEM
The framework of the proposed IDS is given in Figure 3. The
two main phases of the system include the training phase and
the evaluation phase. Remark, in this paper we consider intru-
sions accompanied by changing traffic intensity. However,
the proposed approach does not utilize any specific properties
of intrusions. Thus, it can be adopted for other cases. In the
training phase, a training dataset containing labeled samples
is obtained. Features are extracted from these samples in the
first stage of this phase to obtain a feature pool. The resulting
feature pool along with a vector of labels is then used to train
the classifier. After a trained classifier is obtained, it is then
presented to classify the unobserved samples from the test
dataset. To evaluate the performance of the classifier, similar
features used in the training phase are extracted from the
test samples in the test dataset. These unlabeled test samples
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are then given input to the classifier to obtain the predicted
output.

1) SUPPORT VECTOR MACHINE
The SVM was developed from the concepts of statisti-
cal learning theory in the late 1970s. The SVM primarily
deals with two-class classification problems. A linear line,
or hyperplane, is constructed as a decision boundary between
the datasets of two classes for classification. The data points
nearest to the hyperplane, which impart the construction of
the hyperplane, are called support vectors. Hence, the algo-
rithm is a support vector machine [12], [13], [56]. The opti-
mized hyperplane can be mathematically expressed as

wT x + b = 0, (3)

where w is the vector of weights, x is an input vector, and b
represents the bias. The equations of the support vectors for
each class are given as

wT x + b = +1, fordi = +1,

wT x + b = −1, fordi = −1, (4)

where di corresponds to the respective class, i.e., di = +1
for class A, and di = −1 for class B. The optimization
problem for training sample {(xi, di)}ki=1 to find the optimal
hyperplane, is given as:

min8(w) =
1
2
wTw, (5)

such that di(wT xi + b) ≥ 1, fori = 1, 2, . . . , k.
The final decision function can be obtained as follows:

f (x) = sign

(
N∑
i=1

αo,i(xT xi)+ b

)
, (6)

where x denotes the input vector to be classified and N is
the number of support vectors obtained in the training phase.
The non-negative parameters αo,i are used to define support
vectors among input vectors. The linearly non-separable pat-
terns are transformed into a higher dimensional feature space,
using a mapping function ϕ(x), allowing for classification of
the data using the linear hyperplane. The decision function in
Eq. (4) can be modified to

f (x) = sign

(
N∑
i=1

αo,i(ϕ(x)ϕ(xi))+ b

)
. (7)

The inner-product kernel function, defined as K (x, y) =
ϕ(x)ϕ(xi), is used to reduce the complexity of numerical opti-
mization in high-dimensional space. The decision function
can be updated as follows:

f (x) = sign

(
N∑
i=1

αo,iK (x, xi)+ b

)
. (8)

There are several kernel functions used in an SVM for
non-linear pattern classification, such as linear, polynomial,
sigmoid, and the radial-basis function (RBF). In this work,

TABLE 2. Inner-product kernels.

Algorithm 1 Training Phase of the Classifier
INPUT
λnorm: Parameter of the normal class
λint : Parameter of the intrusion class
m: Length of the sample/observation
M : Number of observations/samples
F1×K : Feature set of K variables
Kernel_function
Kernel_scale
cross_validation.

OUTPUT
svm_model: Trained classification model.
1: XnormM×n ← GenerateM signals of m-dimensions using the

Poisson distribution parameter λnorm
2: XFnormM×K ← Extract features from XnormM×n
3: Y normM×1 ← Label the normal class
4: X intM×n← GenerateM signals of m-dimensions using the

Poisson distribution parameter λint
5: XFintM×n← Extract features from X intM×n
6: X intM×1← Label the intrusion class
7: Y2M×1← XnormM×1: Concatenate the two vectors vertically

8: svm_model ← Train SVM model using
Kernel_function, cross_validation with samples X2M×K
and Y2M×K

three kernel functions (linear, polynomial and RBF) are used.
The mathematical expressions of these kernel functions are
given in Table 2.

For multi-class classification problems, the SVM can be
used in a one-versus-rest manner [12], [30], [41]. In this
approach, m distinct classifiers are formed for m-class clas-
sification. In each mth classifier, the data related to the mth
class are trained as true values, while the rest of the m − 1
classes are false values. The label of the test dataset is deter-
mined by the classifier giving the maximum output value.

Algorithm 1 illustrates the training phase of the classifier.
The parameters of normal class λnorm and intrusion class λint ,
the length of sample m, the number of samples M , the set K
of features F1×K , the kernel function, the kernel scale, and
the cross-validation technique applied, are all given as input
to the algorithm. The output of the algorithm is a trained
classification model based on an SVM: ‘svm-model’.

At first, M signals of m-dimensions using a Poisson dis-
tribution with parameter λnorm are generated. Then, the fea-
tures are extracted from each sample, and all observations
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FIGURE 4. Flowchart of Training Phase.

are labeled as the normal class. Similarly, M signals of
m-dimensions using a Poisson distribution with parameter
λint are generated. Then, the features are extracted from
each sample, and all observations are labeled as an intru-
sion class. Then, the vectors of observations and labels
are concatenated vertically. Finally, the classifier is trained
using this set of observations. A flowchart is given in Fig-
ure 4 showing the steps as explained above of training
phase.

Algorithm 2 shows the steps involved in the testing phase
of the proposed scheme. The parameters of the normal
class, λnorm, and the intrusion class, λint , the length of test
signal N , the length of window w, the set K of features
F1×K , and the trained classifier model (svm_model) are
given input to the algorithm. The output is obtained in the
form of a vector showing the predicted outputs of the test
signals.

In first step, generate random number r between 1 and N .
Then, an r-dimensional normal signal is generated using
Poisson distribution parameter λnorm. Similarly, an (N −
r)-dimensional intrusion signal using Poisson distribution
parameter λint is generated. These vectors are then concate-
nated horizontally to obtain a single signal of N dimensions.
Then, starting from the first element of the resulting signal,
a window of size w is extracted from the signal and given to
the classifier for classification. The output label is stored in
vector Y . In the next step, the window is obtained by starting
from the second element of the signal up to the (w + 1)th

element and tested. Similarly, all the (N − w+ 1) elements
of the signal are presented for testing and the output labels are

FIGURE 5. Flowchart of Testing Phase.

stored in vector Y . These steps of testing phase are illustrated
in flowchart given in Figure 5.

V. EXPERIMENTAL RESULTS
All the experiments and data acquisition steps are performed
in MATLAB version 2018b simulation tool. To obtain the
Poisson distributed signal, a built-in function, poissrnd is
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Algorithm 2 Testing Phase of the Classifier
INPUT
λnorm: Parameter of the normal class
λint : Parameter of the intrusion class
N : Length of the signal/sample
w: Length of the window/sample
F1×K : Feature set of K variables
itr : Number of iterations.

OUTPUT
Yitr×(N−n+1): Predicted labels.
1: for i in itr do
2: x ← random number ≤ N
3: Xnorm1×(x−1) ← Generate (x − 1)- dimensional normal

signal using Poisson distribution parameter λnorm
4: X int1×(N−x+1) ← Generate (N − x + 1)-dimensional

normal signal using Poisson distribution parameter
λint

5: X1×N ←
[
Xnorm1×(x−1),X

int
1×(N−x+1)

]
concatenate these

vectors horizontally
6: for j in N − w+ 1 do
7: XT ← X (j : j+ n)
8: XFT ← Extract Features
9: Yi,j ← svm_model

(
XFT

)
, Test XFT using trained

svm_model
10: end for
11: end for

used. Similarly, for implementation of different models such
as NN, k-NN and SVM, the built-in functions feedforward-
net, fitcknn, fitcsvm are used, respectively. For some exper-
iments, the online dataset is utilized. The online dataset is
downloaded and saved in the computer first in the format of
comma separated values (csv) file. Later on, they are loaded
to MATLAB to perform these experiments. Our intrusion
detection method and methods offered in other considered
papers are independent of routing protocol.

A. PERFORMANCE EVALUATION PARAMETERS
The performance evaluation parameters terms employed in
this paper are defined as follows

• True Positive (TP): Actual positive predicted as positive
• True Negative (TN): Actual negative predicted as nega-
tive

• False Positive (FP): Actual negative predicted as posi-
tive

• False Negative (FN): Actual positive predicted as nega-
tive

• Accuracy (ACC): The ratio of true values to total obser-
vations, calculated as follows:

ACC =
TP+ TN

N
, (9)

where N is the total number of observations.

• True Positive Rate:The ratio of true positives to the num-
ber of observations predicted as positive. Also known as
sensitivity, recall, or hit rate:

TPR =
TP

TP+ FN .
(10)

• False Positive Rate: The ratio of false positives to the
sum of false positives and true negatives. Also known as
fall-out.

FPR =
FP

FP+ TN
(11)

• False Detection Rate: Defined as (1 - accuracy) and
calculated as follows:

FDR =
FP+ FN

N .
(12)

B. DATA ACQUISITION
The dataset used to prove the efficiency of the proposed
IDS system is obtained through simulation. It is composed
of 100 normal samples and 100 intruded samples. A sample
or observation is the reading of the sensor in a unit time.
For instance, a raw sample represent a vector of readings
of packet arrival rates obtained during a time instant. The
100 samples are the 100 vectors obtained in 100 different time
instants where each vector is comprised of numbers repre-
senting packet arrival rates. The term raw here represent the
reading obtained from the sensor without applying prepro-
cessing i.e., feature extraction. Each vector has a length, N ,
referred to as the number of elements per observation directly
related to the size of observation time instant. To obtain a
normal sample, a vector is generated through simulation,
assuming as the packet arrival ratio reading of a time instant
under no attack/intrusion scenario, using Poisson distribution
with the parameter λnorm. Similarly, the vector obtained using
Poisson distribution with the parameter λintr is considered as
a sample from intruded class i.e., the network is under attack.
In this way, 100 raw samples from each class are obtained.
The simulation parameters are varied for each experiment
as illustrated in Table 3. Here, N represent the number of
elements per sample and w is the length of window explained
and used in next experiments 2 to 4. The features mean,
median, and max values are extracted from each of these
vectors. The three features or a combination of any two of
these features extracted from a single vector are referred to
as a preprocessed sample or observation. These preprocessed
observations are then utilized for training and validating the
proposed IDS, as illustrated in Figure 3.

C. EXPERIMENTS
To avoid any misunderstanding, we use two different terms;
attribute and features. The primary measure of packet arrival
rate which is obtained from the input data to node is termed
as attribute. The minimum, maximum and median extracted
from the only attribute (packet arrival rate) are termed as fea-
tures. Hence, the attribute and features should be considered
two different parameters throughout this paper.
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TABLE 3. Experimental parameters.

TABLE 4. Combinations of features.

TABLE 5. Performance evaluation of linear kernel-based SVM.

1) EXPERIMENT 1
To obtain the initial simulation results, an SVM-based clas-
sifier is trained with three kernels: linear, polynomial, and
radial-basis function. The four feature combinations include
mean and maximum (max) values, mean and median values,
max and median values, and mean, max, and median val-
ues. The parameter of the Poisson distribution to generate a
normal (or non-intruded) signal is 2.2, whereas to generate
an intruded signal, the parameter value is 2.4. The length
of a single observation, i.e., the number of elements per
observation, is 500. The dataset contained 100 observations
from each class (normal and intruded), and 40 observations
from each class were used to train the classifier, whereas the
remaining 60 observations were used for testing. The feature
combinations are listed in Table 4.

Table 5 shows ACC, TPR, FPR, TDR, FDR, and total
detection time (τ ) from classifying all 60 test observations
with the linear kernel-based SVM classifier (linear-SVM).
The results show that the classifier can achieve at least 91%
accuracy if the input combination of features has a mean
value. The worst performance was reported when only max
and median were used as input features. A combination of
mean and median obtains the highest accuracy among the
given combinations. This combination of features also had the
highest TPR and TDR, as well as the lowest FPR and FDR.
However, τ was slightly higher than the two combinations of
max and median, and mean, max, and median.

The results of the performance metrics of the polynomial
kernel-based SVM (poly-SVM) are given in Table 6, where
kernel scale = 3. A similar trend in performance can be seen
across the different combinations of features, from mean and
max, through to mean, max, and median. Mean and median

TABLE 6. Performance evaluation of polynomial kernel-based SVM.

FIGURE 6. Graphical representation of bigram techniques used to obtain
(a) signal S obtained for Experiments 2 to 4 and (b) testing signal used in
Experiments 2 to 4 with N = 1000 and w = 2.

outperformed all other combinations of features, achieving a
92% accuracy. However, the accuracies in all feature combi-
nations were degraded, compared to linear SVM. TPR, FPR,
TDR, and FDR have almost equal values, with an average
difference of 0.099, compared to that of the linear SVM,
except for one combination of features: max and median. The
TPR in this case was degraded from 0.866 to 0.3; however,
the FPR was reduced from 0.7333 to 0.1833. TDR, FDR,
and τ are similar to the linear-SVM for this combination of
features, as well.

The results obtained from the RBF kernel-based SVM (rbf-
SVM) for kernel scale = 0.8 are illustrated in Table 7. As can
be seen, the performance of each combination of features is
degraded further by using rbf-SVM. However, the mean and
median proved to be the best combination from among all
of them, achieving the highest accuracy of 91%. Moreover,
the TPR increased from 0.3 with poly-SVM to 0.43, as did the
FPR (from 0.18 to 0.33) for the max and median combination
of features.

In conclusion, linear-SVM outperformed the counter poly-
SVM and rbf-SVM in terms of accurately classifying the
input signal using all four combinations of features. However,
rbf-SVM achieved the highest values in TPR for all combina-
tions of features other than max and median. FPR, TDR, and
FDR values varied for different combinations of features for
different kernel-based SVMs. In addition, the detection time
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FIGURE 7. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 2.

TABLE 7. Performance evaluation of RBF kernel-based SVM.

for all types of SVM was similar for respective combinations
of features. Mean and max took the longest time among all
of them to classify 120 observations in the test set. On the
other hand, mean, max, and median was the combination
of features that required the shortest time from among all
combinations of features to obtain final results.

2) EXPERIMENT 2
In the following experiments, the performance of the clas-
sifier was tested using a signal, S, of length 1000 elements
obtained using a bigram technique (N-gram with N=2) as
follows : S = {s1, s2, . . . , sr }. To obtain this signal, first,
a number, r , was generated randomly between 1 and 1000.
Then, signal Snorm = {s1, s2, . . . , sr } was obtained through
Poisson distribution with parameter λnorm, and the signal
Sintr = {Sr+1, Sr+2, . . . , S1000}was generated with a Poisson
distribution from parameter λintr . Finally, the two vectors,
Snorm and Sint were concatenated to obtain one signal, S =
[Snorm,Sintr ], of 1000 elements as shown in Figure 6(a).

It is assumed that each element si represent the signal
element obtained at time ti. The input test observation, I ,
to the classifier at time ti is the window obtained from signal S
of window sizew, given as I ={st−w+ 1,st−w+ 2, . . . ,st }.
Figure 6(b) shows an example of such a test signal obtained
for N = 1000 and w = 2. The window size, w, is varied
from 5, 10,. . ., 50 to obtain the results in Figure 7. Each
column shows the results obtained for each feature set: 1, 2,
3, and 4, respectively. Each row illustrates the performance
of the classifier in terms of ACC, TPR, FPR, FDR, and τ .
λnorm = 2 and λintr = 4 are used to obtain the training and
testing signals.

Figure 7 shows that, for all types of classifier, i.e., lin-
ear, polynomial and RBF kernel-based classifiers, there was
an increase in the performance efficiency of the classifier
with an increase in the size of the window from 5 to 20.
Further increases in the window size had no (or a slightly
degrading) effect on performance. For instance, the accuracy
of classifiers using feature sets 1 and 2 slightly decreased
with an increase in window size. However, for feature sets
3 and 4, the performance was almost similar for all win-
dow sizes above 20. Nevertheless, the linear kernel-based
classifier outperformed the other two classifiers in terms of
accuracy. The polynomial kernel-based classifier reported the
worst accuracy for features sets 1, 2 and 3. But using feature
set 4, the RBF kernel-based classifier showed the lowest
accuracy.
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FIGURE 8. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 3.

The RBF kernel-based classifier outperformed the linear
and polynomial kernel-based classifiers in terms of TPR.
The worst results were reported by the polynomial kernel-
based classifier. Similarly, the linear kernel-based classifier
outperformed the two other kernels, in most cases, in terms
of FPR, FDR, and τ . The polynomial kernel-based classifier
showed the worst results.

3) EXPERIMENT 3
In this experiment, λnorm is the same as the previous experi-
ment; however, λintr was increased to 6. Interestingly, the per-
formance of the polynomial kernel-based classifier improved
to outperform the linear and RBF kernel-based classifiers in
most cases, as shown in Figure 8. For instance, using feature
set 1, the accuracy and TPR of the polynomial kernel-based
classifier increased for window sizes lower than 20. Further
increases in window size degraded the performance of the
classifier to a lower level than that reported by the linear
and RBF kernel-based classifiers. However, with feature sets
2, 3, and 4, the polynomial kernel-based classifier showed
comparable performance to the other two classifiers. Simi-
larly, the improved performance of the polynomial kernel-
based classifier is reported in terms of FPR, FDR, and τ .
Furthermore, it should be noted that the performance of all
classifiers for all sets of features improved, compared to
the results obtained in the previous experiment. Intuitively,

an increase in λintr increases the efficiency of all classifiers
for all sets of features.

4) EXPERIMENT 4
In this experiment, λintr was set to 1.5, a lower value than
λnorm = 2. All the other parameters were kept the same
as in experiments 2 and 3. As we can see from Figure 9,
the performance of the polynomial kernel-based classifier
was worse compared to the other two classifiers in many
cases. Moreover, the performance of the linear and RBF
kernel-based classifiers are comparable to each other.

5) EXPERIMENT 5
In this experiment, λintr was further decreased to 1 to analyze
the effect on the performance of the classifiers. The perfor-
mance by all classifiers improved for all cases and classifier
types, especially for the polynomial kernel-based classifier.
These results strengthen the statement that an increase in the
difference between λnorm and λintr increases the performance
of the classifiers, as shown in Figure 10. Furthermore, the lin-
ear kernel-based classifier can achieve the best results from
among the three types of classifiers.

6) EXPERIMENT 6
Figure 11 illustrates the comparison results of the proposed
SVM-based algorithm with neural network (NN), k-nearest
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FIGURE 9. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 4.

neighbor (KNN) and decision tree (DT) algorithm. The
SVM-based algorithm was implemented using three differ-
ent kernels i.e., linear, polynomial and radial-basis func-
tion, illustrated by SVM(L), SVM(P) and SVM(R) in figure,
respectively. The properties and parameters of each algorithm
used in this experiment are given as follows;Neural Network,
a feed forward network with input, hidden and output layers
comprised of 2 or 3 (depending on the number of input dimen-
sions), 2, and 1 node, respectively. A Levenberg-Marquardt
(LM) technique was used in training phase to perform back-
propagation; k-nearest neighbor, a classification KNN was
used to classify an input sample by obtaining the Euclidean
distance from 3 nearest neighbors; Decision Tree, a classifi-
cation decision tree was fitted in training phase to perform
classification of test samples; Finally, the SVM-based IDS
was implemented with three different kernel functions: Lin-
ear, Polynomial and RBF, exclusively. All of these algorithms
were implemented in MATLAB using built-in tools, feed-
forwardnet, fitcknn, fitctree, and fitcsvm. All the parameters,
except given above, were set to default values to perform this
experiment. The number of training samples per class were
set to 40, i.e., 40 samples from normal class and 40 samples
from intruded class, resulting in a total of 80 training sam-
ples. Whereas the testing set was composed of 1000 sam-
ples; 500 from normal class and 500 from intruded class.

The parameters λnorm = 2.2 and λintr = 2.4. The length of
sample was set to 50 elements. A total of 100 experiments
were performed whose results are given in figure in terms
of accuracies obtained in each iteration of experiment. The
feature sets are kept similar to the previous experiments.
It can be observed from figure that in most cases, the SVM-
based classifier perform better than other machine learning
algorithms. The mean accuracies of SVM(L) and SVM(P)
are higher than other algorithms irrespective of the feature set
utilized. However, using SVM(R) while using Feature Set 1
and Feature Set 4 perform poor than other techniques. These
results verify the results obtained in previous experiments.
Furthermore, these results verify the efficiency of proposed
IDS implemented with SVM-based classifier using linear and
polynomial kernels.

7) EXPERIMENT 7
To prove the efficiency of the proposed algorithm, we present
performance comparison in terms of accuracy and CPU time
among the proposed algorithm, and the algorithms given in
GA-SVM [30], A-IDS [57], and WFS-IDS [43]. The mea-
sure of accuracy shows how efficiently an algorithm clas-
sify an input signal as normal or intruded. To measure the
lightweightness of an algorithm, the two parameters includ-
ing consumed energy and elapsed time, can be used [58].
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FIGURE 10. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 5.

FIGURE 11. Comparative analysis of proposed SVM-based IDS with that implemented using NN, KNN
and DT in terms of accuracies of 100 iterations of experiment 6.
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In practice, these parameters are directly proportional to each
other, given the similar computational resources. In other
words, an algorithm taking longer time to execute will more
likely consume larger amount of energy as compared to
another algorithm with lower computation time. Unfortu-
nately, to obtain the energy consumption analysis of an
algorithm, a proper testbed and tools are required to obtain
these measurements. In the paper, subsequently we choose
the elapsed time as a performance index for the lightweight
measurement of the algorithms because we use MATLAB
version 2018b to simulate all the algorithms. More specif-
ically, the MATLAB provides some functions to obtain the
elapsed time to execute an algorithm. Taking advantage of
these functions, we present here the elapsed time analysis of
each algorithm to prove the lightweight property of proposed
algorithm.

As defined in the introduction section of our paper,
the lightweightness is not limited to the property of sys-
tem requiring low computational resources. There are other
requirements which should also be achieved in order to be
a lightweight system such as being small, powerful, and
flexible enough to be included in a node or network as a
permanent element. However, the requirement of being able
to perform using low computational resources, which aim
to reduce energy consumption of the system, is an integral
and the most important characteristic of lightweight IDSs.
It should be noted that, the proposed IDS try to achieve all
the above-mentioned properties while focusing mainly on the
property of being able to perform with low computational
resources. This property is proved using CPU time measure.

The CPU time is not very decisive factor in determining the
‘lightweightness’ of an algorithm. However, we are forced
to use this measure because other researchers widely use
the CPU time to prove the lightweightness of systems, for
example [43], [58]–[61]. Moreover, the authors of [60] have
also utilized MATLAB for performing the experiments to
prove efficiency of the model. We also do not investigate a
particular solution and we consider more general situation.
Thus, similar to themethod followed in [60], usingMATLAB
and performing simulation-based experiments is the only way
that we can follow to perform these experiments and prove the
efficiency of proposed algorithm.

We must accept the following arguments of previously
published papers. The energy consumed is obtained as the
product of power consumption and CPU time [59]. The
power consumption being constant (using same computa-
tional resources), the energy consumption is directly related
to the CPU time only. Furthermore, Lim et al. [58] state
that the processing time somewhat depends on the imple-
mentation of the system. However, a large difference in time
(seconds versus hours or even days) cannot be characterized
by the implementation method exclusively. Moreover, Chen
and Li [60] presented a comparison of energy consumption
and CPU time of their model. The given results generate
our claim. The energy consumed is in a direct relation
with the CPU time. Even a very small difference in time

(micro seconds) is reflected in the energy consumed measure
of the system perfectly in direct relation with CPU time
measure. These results show that, presenting only CPU time
may not replicate the exact practical behavior of the system,
however, it can be used to estimate the lightweightness trend
of the system.

First, we present a performance comparison among the
algorithms GA-SVM, A-IDS, WFS-IDS and the proposed
algorithm by utilizing the generated dataset using Poisson
distribution as explained in SectionV-B. This dataset contains
a total of 10 000 samples where the 60% samples are reserved
for training the algorithm, with equal number of normal and
intruded samples. The remaining 40% samples, with equal
number normal and intruded samples, are used to test the
algorithms. Each sample in this dataset is attributed in the
form of three features; mean, maximum andmedianmeasures
of the packet arrival rate as explained in the previous sections.
We set the parameters of the proposed algorithm based on
the results of experiments 1 to 6 as follows; we use the
polynomial kernel-based SVM algorithm with kernel scale
value 3 and select the features 1 and 3 from the dataset.
However, the algorithms from GA-SVM, A-IDS, WFS-IDS
have their respective feature selection procedures to select
two most discriminative among three features. To obtain the
accuracy given in Table 8, each algorithm is trained using the
training set. After the training is finished, the testing subset
is used to assess each algorithm.

As it can be seen from Table, the proposed algorithm
achieves the highest accuracy of 98.35%. As the GA-SVM
algorithm becomes a similar algorithm to the proposed algo-
rithm in the testing phase (because only SVMpart is utilized),
the accuracy of this algorithm is 98.21%, almost equal to that
of the proposed algorithm. However, the A-IDS and WFS-
IDS get the accuracy of almost 97.9 and 97.08%, respectively.
In terms of the CPU time, the proposed algorithm is also listed
on the top with the minimum training, testing and total times
as 16.3125, 0.0469, and 16.3594 seconds, respectively. The
A-IDS comes next by taking 17.1719, and 0.6250 seconds for
training and testing phases, respectively. However, the GA-
SVM and WFS-IDS algorithms take much longer training
time of almost 135 and 134 seconds. Nevertheless, the testing
time of these algorithm is lower than that of A-IDS. However,
the proposed algorithm has the lowest testing time as well.

The dataset used in previous comparative analysis was
generated by using theMATLAB 2018b according to Poisson
distribution with two different parameter values, each corre-
sponding to one class of Normal and Intruded. There are some
online datasets which the researchers normally have used to
prove their proposed intrusion detection system [10]. Some
famous datasets include the NSL-KDD and CICIDS217 both
generated by Canadian Institute for Cybersecurity unit based
at University of New Brunswick. These datasets are consid-
ered as benchmark for analysis of IDS by many researchers.
However, it should be noted that the proposed IDS in this
paper has two equally important parts; the attribute of the
received data used to perform intrusion detection, and the
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TABLE 8. Performance comparisons among the proposed algorithm with GA-SVM, A-IDS, and WFS-IDS using beget Dataset in terms of accuracy and
CPU time.

TABLE 9. CICIDS2017 dataset features.

classifier part. As the first part, we have proposed to utilize the
packet arrival rate of the receiving data. After that, the SVM-
based classifier is used to classify the input sample as normal
or intruded. Unfortunately, the benchmark datasets, which are
available online, do not contain the required attribute of data,
i.e. the packet arrival rate. This is why it is not possible to
directly use this dataset to prove the efficiency of the proposed
algorithm. To prove the efficiency of the proposed algorithm,
however we generate a parallel synchronized dataset to the
CICIDS2017. The steps of generating this beget dataset,
which is used for further analysis, are shown by using a
flowchart in Figure 12.

The CICIDS2017 dataset [62]is a benchmark dataset avail-
able online to assess and prove the cybersecurity algorithms
such as intrusion detection systems (IDS) and intrusion

FIGURE 12. Procedure of generating Beget Dataset.

prevention systems (IPS). Generated in 2017, this dataset
contains benign (normal) and the then up-to-date attacks. The
dataset is composed of data obtained for 5 days, starting at 9
a.m., Monday, July 3, 2017 and ending at 5 p.m. on Friday
July 7, 2017. On different days, different types of attacks
were implemented in the network to obtain this dataset.
We select a subset of CICIDS2017 dataset to assess and com-
pare the proposed algorithm. The selected subset contained
the samples obtained from network in the afternoon of Friday,
July 7, 2017. The DDoS attack was implemented in the net-
work at random points in time. This subset contained a total
of 225,745 samples attributed in 78 features given in Table 9.
We obtain the labels vector of CICIDS2017 dataset. Then we
check labels one-by-one to obtain the beget dataset. If the
ith label of CICIDS2017 dataset is benign, we add a benign
sample S, which is generated by Poisson distribution with
parameter of normal class, λnorm, as the ith sample to beget
dataset. Similarly, the ith sample of beget dataset is obtained
by Poisson distribution with parameter of intruded class,
λintr if the ith sample of CICIDS2017 dataset is intruded.
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TABLE 10. Performance comparison among the proposed algorithm, GA-SVM, A-IDS, and WFS-IDS using CICIDS2017 dataset.

In this way, we obtain a synchronized beget dataset with
CICIDS2017 which has similar number and position (class
label) of samples, as shown in Figure 12.
The data is divided into two subsets; training and testing

data sets. The training data contain 60% of the samples
including 86 729 benign samples and 48 718 intruded sam-
ples. Similarly, the testing data contain 49 000 benign and
41 298 intruded samples. This CICIDS2017 dataset is utilized
for GA-SVM, A-IDS and WFS-IDS algorithms while the
synchronized parallel generated beget dataset is utilized for
the proposed algorithm. However, the number of training,
testing and total samples as well as the labels remain same
in both datasets. In this way, we present the performance
comparison among the algorithms in Table 10 by using
CICIDS2017 dataset.

The second column shows the features selected by each
algorithm from the dataset. In the proposed algorithm, we use
the beget dataset which has three features; mean, max and
median. Based on the results from experiments 1 to 6,
we select mean and median values for the proposed algo-
rithm. The other techniques utilize respective feature selec-
tion algorithm to obtain the set ofmost discriminative features
given in the second column of Table 10. The accuracy of
the proposed algorithm is the highest at 98.03%. The worst
performance is shown by the A-IDS algorithm with 89.76%
accuracy. Similarly, the CPU execution time of the proposed
scheme is the lowest with 208.9063, and 2.281 seconds for
training and testing phases, respectively. Subsequently, these
results prove the lightweightness property of the proposed
algorithm with the given set.

A confusion matrix is a simple table layout used to under-
stand or analyze the performance of a classifier under consid-
eration. The actual labels of the samples should be known to
obtain this table. Generally, each row represents the labels of
actual class while the columns correspond to the instances
in predicted class. In practice, one class is set as positive
and the other as negative to fill up confusion matrix. In this
paper, the Benign or Normal class is set as positive class and
the Intruded class as negative class. In this table, each cell
represents a specific measure among the TPs, FNs, FPs, and
TNs instances in the order shown in Figure 13.
Figure 14 shows the confusion matrices obtained for

(a) Proposed IDS, (b) GA-SVM, (c) A-IDS and WFS-IDS
algorithms using the CICIDS2017 and related Benign
datasets. The results of proposed, GA-SVM and WFS-IDS
are comparable. However, the A-IDS shows comparatively
poor performance. Moreover, the proposed IDS successfully

FIGURE 13. Confusion matrix.

FIGURE 14. Confusion Matrices obtained utilizing CICIDS Dataset with
(a) proposed, (b) GA-SVM, (c) A-IDS, and (d) WFS-IDS algorithms.

achieve highest TPs, TNs and lowest FNs instances. However,
the FPs instances of proposed algorithm are slightly higher
than those obtained by GA-SVM.

VI. DISCUSSION
The tradeoff for using only three features as opposed to
‘40 complex attributes’ is related to the issue of feature
selection and reduction. The advantage of using only three
features is as following: First, the system processing time can
be reduced due to low time consumption of single attribute
acquisition from input data instead of multiple attributes.
Secondly, extracting just 2 or 3 features from that single
attribute takes lower time as compared to extraction of up
to 40 features from the multiple attributes. Lastly, the com-
plexity of SVM is also reduced because of utilizing a much
lower number of dimensions (features) of input samples.
Combining all these effects makes a big difference to the
complexity of system. Furthermore, the feature selection step
is omitted in the case of the proposed algorithm. These points
can be considered as the positive effects of utilizing the pro-
posed algorithm along with the proposed signal preprocess-
ing model. Nevertheless, the feature selection and reduction
techniques do not necessarily converge to global optimum,
and sometimes end up selecting redundant features, which
ultimately results in poor performance of classifier.

VOLUME 7, 2019 42467



S. U. Jan et al.: Toward a Lightweight Intrusion Detection System for the IoT

Apparently, the main drawback of the proposed algorithm
is that it lacks the ability to detect intrusions which do not
have concomitant (increasing or decreasing) effect on the
traffic intensity of node. The algorithms which consider the
complex 40 features may be able to detect more sophisticated
intrusions. This issue is reserved for future works.

In this paper, we have considered the packet arrival rate,
which follow the Poisson distribution, of the traffic intensity
to the node. The Poisson distribution is just used for per-
formance evaluation. We use this distribution because it had
been offered in papers of authoritative journals [46]–[54].
It should be noted that, we do not use specific properties of
CDF. Therefore, all expenses will be the same for any other
traffic pattern followed in practice. However, the selected
features such as mean, maximum and median, and the pro-
posed detection scheme can be used irrespective of the type
of distribution, given the condition that the intrusion or attack
has an increasing or decreasing effect on the traffic intensity
(packet arrival rate) to the node.

A. WHY NEED TO USE PACKET ARRIVAL RATE ATTRIBUTE?
As we have explained in Section III, the types of intrusions or
attacks considered in this paper are the ones which influence
the traffic intensity. Either the data rate is decreased (e.g.
in case of packets flooding attack, jamming attack etc.) or
increased (e.g. black hole attack, wormhole attack) whenever
any of these intrusions occur. This means that if the IDS
monitor the traffic intensity alone (ormore specifically packet
arrival rate measure), it may be able to detect these intrusions
most of the time. This is our motivation of proposing an IDS
which rely on packet arrival rate attribute exclusively to detect
the intrusions. This claim is also supported by experimental
results given in the paper.

B. WHY NEED TO EXTRACT MIN, MAX AND MEDIAN
FEATURES?
The packet arrival rate is the only attribute of data which is
used for intrusion detection in the network. Now, the question
is why needed to extract features from this attribute? Why
not use this attribute to detect an intrusion using a threshold
value? If the packet arrival rate goes higher than the threshold
value, it can be considered as intrusion and vice versa. The
answer to these questions can be given in a single argument;
the threshold value selection is not an easy and reliable way.
To find out a threshold for any system needs a continuous
monitoring of the network for a long time to get an esti-
mate of the threshold value. Selecting a sub-optimal value
of threshold would result in higher miss-detection or false-
alarm instances. Moreover, it is believed that the network
conditions are not consistent all the times. The nodes may
observe variations in packet arrival rate depending on the
network conditions i.e., network may be very busy or idle.
Therefore, the threshold selection method is not favored for
detection and classification application. On the other hand,
the machine learning algorithms try to learn the characteris-
tics of the network from a handful amount of historical data.

At this point, we have two choices; either directly use the
only attribute (packet arrival rate attribute value) as the single
input, or extract features (minimum, maximum and median
values) from this attribute to give input to machine learning-
based classifier. In former case, using the single input to the
classifier may degrade the performance of system because
of two reasons. First, there may be a single value which
is included in both classes i.e., intrusion and non-intrusion
classes. For instance, depending on the network condition,
a specific packet arrival rate may or may not be resulted due
to the intrusion in the network. Secondly, if a single value
of packet arrival rate attribute is used, the classifier needs to
perform detection every time we get a new value. Ultimately,
the energy consumption is increased due to the utilization
of computational resources more frequently. In this paper,
the minimum, maximum and median values are obtained
from the packet arrival rate attribute over a window of time
to solve both the problems. For instance, a packet of data is
arrived every t seconds to the node. If this single value is
used, then the classifier will perform the classification task
every t seconds. On the contrary, if we use a time window
T >> t , then the classifier has to perform classification every
T seconds. This leads to reduce the frequency of utilizing
computational resources as well as the algorithm converge
better as compared to using the first case of utilizing a single
attribute alone.

C. WHY SVM?
The SVM is favored among other machine learning algo-
rithms because of its efficient performance. The performance
comparison among different machine learning algorithms
given in the experimental results section confirms our claim.
Furthermore, the lightweightness of the proposed algorithm
is proved in the experimental results as well.

D. HOW DO WE GET LESS TRAINING AND TESTING
TIMES?
The main reason that the proposed algorithm has the lowest
training and testing time is that the other algorithms have
additional feature selection properties. They try to select
the best subset of features using complex optimization tech-
niques. For instance, GA-SVM utilizes genetic algorithm to
choose the best features among given set. Similarly, A-IDS
andWFS-IDS algorithms analyze and select the best features
using wrapper-based feature selection mechanism. A detailed
explanation about these algorithms is out of scope of the
current work, therefore, readers are suggested to refer these
papers for more details. However, the major reason which
reduces the computational time of the proposed algorithm is
the elimination of the feature selection which is the part of
training phase only.

The testing phase has no feature selection step, and hence,
the difference between the testing time of all these algorithms
is very low as given in Table 8 and 10. However, the small
differences in training time are reported because of using
different algorithms.
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E. HOW DO WE GET BETTER ACCURACY?
The complexity of the classifier has a direct effect of the com-
plexity and size of input vectors. The simple and small vectors
with high discrimination power among different classes are
easy to classify by classifier. On the other hand, the higher
number of the dimensions with complex relation among fea-
tures of input vector increases the challenge of classification
for classifier. In authors’ opinion, the input vector of only 2
dimensions with comparatively low complexity among fea-
tures are the key factors which lead the classifier to obtain a
highest accuracy of proposed IDS.

There are a few control values used in the proposed algo-
rithm. First, the kernel parameter used in the support vector
machine. Changing this value may affect the performance of
classifier. An optimized value can be obtained by hit and trial.
Another value which should be selected carefully is the time
window size. As shown in the experimental results, increase
in time window size may improve the performance to some
extent. Further increase in the time window size may degrade
the performance of classifier.

VII. CONCLUSIONS AND FUTURE WORKS
The IoT is a promising technology developed for applications
ranging from small smart-home systems to large networks,
such as smart grids. However, this vast network is exposed
to different types of attacks, compromising its reliability.
Furthermore, the limitations in the nodes, including memory,
computational resources, and battery capacity, challenge net-
work security. It is necessary to design a lightweight system
that can efficiently improve the security of the IoT with the
available resources.

This paper focuses on designing a lightweight IDS for
anomaly detection in the IoT. A common type of attack,
known as DDoS, is the target. The proposed IDS is focuses
on two major issues; the attribute of the receiving data used to
classify the signal and the machine learning based classifier.
The only attributed considered in this paper is the packet
arrival rate to the node. For classification purpose, an SVM-
based classifier with input given in the form of two or three
incomplex features is utilized. Through a series of experi-
ments, we prove that these two factors (the packet arrival
rate attribute and an SVM-based classifier) can be enough to
detect the intrusion in IoT network.

Furthermore, we presented a comparative analysis of
SVM-based classifier with other machine learning-based
classifiers includingNN, k-NN andDT to show the advantage
of utilizing SVM in terms of accuracy over other techniques.
For further proof, we also presented a comparison of pro-
posed algorithm with other IDS proposed in literature. The
results show that an SVM-based IDS can perform satisfacto-
rily in detection of attacks. Also, the lightweightness measure
of proposed algorithm is proven in terms of CPU time execu-
tion.

An investigation of various concomitant effects of attacks
and increase in the scope of this IDS system to encompass

other types of intrusions, where the effect of changing traffic
intensity is not clearly pronounced or masked by intruders,
is reserved for future works. Furthermore, concrete details
of IDS implementation and intrusions mitigation are defined
by application domains and strategy of security perimeter
deployment. It is also a direction of our future work.
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