
Citation: Panduman, Y.Y.F.;

Funabiki, N.; Puspitaningayu, P.;

Kuribayashi, M.; Sukaridhoto, S.;

Kao, W.-C. Design and

Implementation of SEMAR IoT

Server Platform with Applications.

Sensors 2022, 22, 6436. https://

doi.org/10.3390/s22176436

Academic Editors: Gianluigi Ferrari,

Luca Davoli, Laura Belli and Marco

Martalò

Received: 9 July 2022

Accepted: 23 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Implementation of SEMAR IoT Server Platform
with Applications
Yohanes Yohanie Fridelin Panduman 1, Nobuo Funabiki 1,*, Pradini Puspitaningayu 1, Minoru Kuribayashi 1,
Sritrusta Sukaridhoto 2 and Wen-Chung Kao 3

1 Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
2 Department of Informatic and Computer, Politeknik Elektronika Negeri Surabaya, Surabaya 60111, Indonesia
3 Department of Electrical Engineering, National Taiwan Normal University, Taipei 106, Taiwan
* Correspondence: funabiki@okayama-u.ac.jp

Abstract: Nowadays, rapid developments of Internet of Things (IoT) technologies have increased
possibilities of realizing smart cities where collaborations and integrations of various IoT application
systems are essential. However, IoT application systems have often been designed and deployed
independently without considering the standards of devices, logics, and data communications.
In this paper, we present the design and implementation of the IoT server platform called Smart
Environmental Monitoring and Analytical in Real-Time (SEMAR) for integrating IoT application systems
using standards. SEMAR offers Big Data environments with built-in functions for data aggregations,
synchronizations, and classifications with machine learning. Moreover, plug-in functions can be easily
implemented. Data from devices for different sensors can be accepted directly and through network
connections, which will be used in real-time for user interfaces, text files, and access to other systems
through Representational State Transfer Application Programming Interface (REST API) services. For
evaluations of SEMAR, we implemented the platform and integrated five IoT application systems,
namely, the air-conditioning guidance system, the fingerprint-based indoor localization system, the water
quality monitoring system, the environment monitoring system, and the air quality monitoring system.
When compared with existing research on IoT platforms, the proposed SEMAR IoT application server
platform offers higher flexibility and interoperability with the functions for IoT device managements,
data communications, decision making, synchronizations, and filters that can be easily integrated
with external programs or IoT applications without changing the codes. The results confirm the
effectiveness and efficiency of the proposal.

Keywords: Internet of Things; server platform; SEMAR; IoT application system; sensor; MQTT;
REST API

1. Introduction

The rapid growth of urban populations has increased the risk toward quality of life
(QoL) around the world [1]. Smart cities have been studied for identifying, preventing, and
acting in certain situations. In smart cities, QoL is commonly handled with indicators that
measure the effectiveness of the services and sustainability of a city in domains/verticals,
such as environments, health cares, securities, transportation, economies, educations, and
governments [2]. Particularly, the environment vertical has drawn special attention in
recent years. Indicators of environmental pollutants, such as air and water quality, road
conditions, and house conditions, must be monitored to detect adverse situations associated
with overpopulated regions. In this sense, Internet of Things (IoT) applications must provide
interoperability tools that collect, store, and disseminate data from several sensors, and
provide them to other systems [3,4]. Thus, smart cities require collaboration and integration
of various IoT application systems. Studies of IoT server platforms have emerged for
such purposes, where several challenges hinder better management and analysis of IoT
application data using platforms.

Sensors 2022, 22, 6436. https://doi.org/10.3390/s22176436 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176436
https://doi.org/10.3390/s22176436
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22176436
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176436?type=check_update&version=2


Sensors 2022, 22, 6436 2 of 28

The first challenge involves the lack of a common data format between data sensors
and data communication protocols. For instance, to measure the air and water quality,
different sensors with different geo-location concepts such as addresses, buildings, re-
gions, or cities can be handled in different ways. Thus, an IoT server platform should be
able to handle various data types from different sensors, which makes it necessary to be
able to work with each other despite the diversity in communication protocols or sensor
technologies.

The second challenge is the standard parameters for data processing. As an example,
the majority of air quality monitoring systems use Air Pollution Index (API) to define the
indicators of the carbon monoxide (CO), the nitrogen dioxide (NO2), the sulfur dioxide
(SO2), the ozone (O3), and the particulate matter (PM10) [5]. However, other researchers
mentioned that it might be necessary to consider other indicators such as the temperature
and the humidity for their measurements [6].

The third challenge concerns the data interoperability between various IoT application
systems within the same domain. It can be described as the integration of plural systems
by sharing output data through information networks [3]. For example, a smart building
system should integrate the human Indoor Positioning System (IPS) with the environment
monitoring system to improve QoL while reducing energy usage.

However, in general, IoT application systems for smart cities have been designed
without considering these challenges. They have been deployed independently and cannot
be integrated with other systems.

In this paper, we propose an IoT server platform called Smart Environmental Monitoring
and Analytical in Real-Time (SEMAR) for integrating various IoT application systems. SE-
MAR is able to offer Big Data environments with rich built-in functions for data aggregations,
synchronizations, and classifications with machine learning. Moreover, plug-in functions can
be easily implemented and added there. Data from devices for different sensors can be
accepted directly and through network connections, which will be used in real-time for
user interfaces, text files, and access to other systems through Representational State Transfer
Application Programming Interface (REST API) services.

For evaluations of SEMAR, we implemented the platform and integrated five IoT
applications, namely, the air-conditioning guidance system, the fingerprint-based indoor local-
ization system, the water quality monitoring system, the environment monitoring system, and
the air quality monitoring system. The results confirm the effectiveness and efficiency of the
proposal, including the reduction in the data transmission delay with the implemented
Message Queue Telemetry Transport (MQTT) service [7].

The rest of this paper is organized as follows: Section 2 presents related works.
Section 3 presents the design of SEMAR. Section 4 presents the implementation of SE-
MAR. Sections 5–9 briefly describe the IoT application systems implemented in the SEMAR.
Section 10 describes comprehensive performance evaluations and comparative analysis
with similar related work. Section 11 presents the threats to validity. Finally, Section 12
concludes this paper with future works.

2. Related Works

In [8], Kamienski et al. proposed a three-layered Open IoT ecosystem approach for
smart application architectures. It includes input, process, and output in IoT application
systems. The input gathers information from multiple sources, such as sensors and other
services. The standard communication protocols cover the device connections. The process
is given by a collection of methodologies, procedures, and algorithms for effective and
efficient data processing. The output provides capabilities for data visualizations and
accessibility.

In [9], Bansal et al. proposed five layers for the IoT application system architecture,
consisting of perception, transport, processing, middleware, and application. They divided
data processing into two layers, where the processing layer concentrates on filtering and



Sensors 2022, 22, 6436 3 of 28

formatting the data, and the middleware layer intends to execute various logical and
analytic operations.

The connectivity in IoT systems was discussed in [10], where Li et al. examined the
networking technologies, and described that IEEE 802.11 (WLAN), IEEE 802.15.1 (Bluetooth,
Low-energy Bluetooth), IEEE 802.15.6 (wireless body area networks), and 3G/4G were the
most widely adopted in IoT application systems and smart city environment systems.

Since IoT systems might consist of various physical things and sensors, it is essential
to provide a device-to-device communication protocol. Malche et al. in [11] proposed
the MQTT communication protocol for environmental monitoring systems with multiple
device sensors. Sharma et al. in [12] defined the Representational State Transfer (REST) web
service as the gateway to collect device data through the HTTP POST protocol. Zhang et al.
in [13] studied NATS open source messaging to communicate between IoT devices [14].

The numerous options of communication protocols were surveyed by Dizdarevic et al.
in [15]. They concluded that MQTT and HTTP POST are the most suitable for IoT applica-
tion systems since they are well matured and stable.

In [16], Marques et al. proposed the IoT system architecture for the indoor air quality
(IAQ) system in a laboratory environment named iAQ Plus (iAQ+). It collects data from
devices through Wi-Fi connections and stores data in the SQL server. The authors proposed
a web portal and mobile application to manage and visualize the obtained data; however,
the system does not offer data analysis functions to process sensor data.

In [17], Benammar et al. proposed the IAQ system that is integrated with the Emoncms
IoT platform for storing and visualizing air quality data, temperature, and humidity. The
authors used a Waspmote microcontroller connected to Raspberry PI as sensor nodes and
the MQTT service to send data.

In [18], Mandava et al. proposed to integrate machine learning algorithms and the
IoT platform infrastructure for monitoring air pollution in smart cities. The system collects
environmental and location data to determine air pollution conditions in specific areas, and
uses the collected data to build a data model for air pollution detections using supervised
machine learning algorithms. The experiment results confirmed the effectiveness of the
proposed data model for air pollution detections.

In [19], Senožetnik et al. proposed a management framework for groundwater data in
smart cities. The system uses a web-based IoT service to receive data through HTTP POST,
convert it into the JavaScript Object Notation (JSON) format, and store it in the MongoDB
NoSQL database. It also allows sharing collected data through REST API. This system is
similar to our proposed one; however, the system only provided data communications
through HTTP POST. Moreover, it did not implement data processing functions to analyze
the obtained data.

In [20], Kazmi et al. proposed a platform that provides interoperability of diverse IoT
applications in smart cities named VITAL-OS. It can be integrated with other IoT application
systems through REST API.

In [21], Toma et al. proposed an IoT platform for monitoring air pollution in smart
cities. The system contains wireless and wired connections with sensors to send data
through MQTT communications to the server using cellular networks. It allows sharing
data through REST API; however, this platform was built and implemented only for this
IoT application of monitoring air pollution.

In [22], Javed et al. proposed an IoT platform for smart buildings. It consists of the
discovery, storage, and service planes. The discovery plane performs connectivity control
with devices through HTTP communications. The storage plane manages data storage
using Apache Cassandra [23]. The service plane provides data processing composed of data
indexing, visualizing, and analysis.

In [24], Badii et al. proposed an open source IoT framework architecture for smart cities
called Snap4City. The system offers modules for device managements, data processing,
data analysis, and data visualizations.



Sensors 2022, 22, 6436 4 of 28

In [25], Putra et al. proposed an implementation of wireless sensor networks in smart
cities to monitor air pollution. A device will transmit data regarding the air pollution to a
server through a Wi-Fi network.

In [26], Gautam et al. proposed an IoT application for the water supply management
system in smart cities. The proposed architecture uses General Purpose Input Output (GPIO)
communications for connecting ultrasonic sensors and water pumps with Raspberry PI.
Moreover, it uses Ethernet cables as network interfaces to Raspberry PI and the router. It
offers data analysis services and real-time predictions using machine learning algorithms
for processing data; however, this framework is only built for this single IoT application.

In [27], Oliveira et al. proposed an IoT application for road environment monitoring
using mobile-based sensors. The system receives sensor data through HTTP POST commu-
nications in the JSON format, and allows processing and visualizing it. It also provides a
function to export data in CSV files.

In [28], Metia et al. proposed a digital filter for the IoT-based air pollution monitoring
system. The experiment results in this study show that the data processing using Kalman
filter has enhanced the reliability and accuracy of the system; however, they did not
implement the real-time data processing.

In [29], Twahirwa et al. proposed the system for monitoring roads, weathers, and
environments by attaching multiple sensors to a vehicle and sending sensor data to the
IoT server. The IoT server can process, store, and visualize data with the web application
system.

In [30], D’Ortona et al. showed the benefits of implementing MQTT communications in
IoT application systems for smart cities. The MQTT communications allow the construction
of highly scalable and flexible IoT systems.

In [31], Kumar et al. proposed an anomaly-based intrusion detection system (IDS) to secure
IoT networks from threats such as spying and malicious controls. It was implemented at
the fog node level. The proposed approach might be adopted as an additional system that
can avoid threats before the IoT platform receives them. Moreover, in [32,33], a method was
proposed to protect IoT networks by data pre-processing functions. It comprises feature
mapping, missing value inputting, normalization, and feature selection techniques. The
proposed method is similar to our approach in the data aggregation function. SEMAR only
processes and stores sensor data registered in the sensor format data storage.

In [34], Kumar et al. designed PEFL for secure open communication channels in
IoT application systems. The proposed method utilized Long Short-Term Memory (LSTM)
and privacy encoding techniques in order to reduce security risk and maintain privacy.
Moreover, in [35], authors proposed an framework for preventing cyber attacks on IoT-fog
computing. It offered virtualized northbound interfaces such as load balancer and resource
management to manage networks in IoT systems. The proposed architecture can be utilized
to enhance network performances for the SEMAR IoT application server platform in future
works.

3. Design of SEMAR IoT Server Platform

In this section, we present the design of the SEMAR IoT server platform for integrating
various IoT application systems.

3.1. System Overview

Figure 1 shows the proposed design of the SEMAR IoT server platform. The main
components are data input, data process, and data output. The data input is responsible
for accepting data from various sources. It consists of network interface devices and
communication protocols. The data process provides the modules for data processing,
control, and collection. The data output enables visualizations and sharing of collected
data. In Table 1 we summarize the nomenclature of all the symbols and variables used in
this paper.



Sensors 2022, 22, 6436 5 of 28

Figure 1. Design overview of SEMAR IoT server platform.

Table 1. Nomenclature used in the paper.

Parameters Description

Decision Tree algorithm:
t the node of decision tree
n number of targets classes
P(i|t) the probability of the specific data class i in node t

Support Vector Machine algorithm:
yi the class label of dataset
αi the learned weight
xi the support vector
x the labeled training sample data.
K() the kernel function

Radial Basis Function kernel:
l the length scale of the kernel RBF
d(xi, xj) the Euclidean distance between xi and xj

3.2. Data Input

SEMAR needs to collect data from a number of different devices using various network
connectivity and communication methods; therefore, the following network interfaces
for constructing physical network connections are implemented in the platform, where
standard IoT communication protocols for data transmission, namely HTTP and MQTT,
are included. In the context of IoT, physical devices as a perception layer consist of a
number of sensors connected to a controller. With the growth of IoT technology, controllers
such as Arduino and Raspberry PI have provided diverse network connectivity to accept
data from various sensors. General Purpose Input Output (GPIO) is the programmable
interface in the device controller to receive or send command signals from/to IoT sensor
devices [36]. In IoT application systems, GPIO is the standard interface for connecting
sensor devices with the controller. In addition, it is used for connecting controllers with
external modules such as Wi-Fi ones for data communications. Universal Serial Bus (USB) is
the serial communication media to link devices with computers via USB ports. Currently,



Sensors 2022, 22, 6436 6 of 28

numerous sensor instruments and devices can transmit data using USB connections. The
USB connection offers a high data transfer capacity. In addition, external communication
modules such as Wi-Fi for data communication can also be added using USB connection.

Regarding the IoT data transmission concept, diverse hardware and software con-
nectivity should be considered. Diverse network interfaces utilize hardware-based trans-
missions, such as Wi-Fi, Ethernet, and Cellular—this enables machine-to-machine and
device-to-server communication.

IEEE 802.11 wireless LAN (Wi-Fi) is the most prevalent network interface in IoT systems.
It connects devices with each other and to servers. Wi-Fi is useful to connect a lot of devices
regardless of their locations with computers, which improves IoT application developments.
Ethernet offers secure and dependable wired connectivity. It is one of the most used network
interfaces in IoT systems; however, the implementation can be difficult over long distances.

Although Wi-Fi and Ethernet offer excellent network performance, we should consider
their security and coverage area. The alternative network interface that can be utilized is
cellular networks. Cellular is the network interface allowing the mobility of devices with
the existing widespread availability of cells to connect with the internet. Currently, 5G
cellular connections offer solutions with wider bandwidths than Wi-Fi or Ethernet. The IoT
platform can use it through Wi-Fi interfaces with mobile routers.

The last part of Data Input is the communication protocol between IoT devices and
servers. An IoT server should support publish–subscribe and push-and-pull messaging
systems for sending and receiving data. Thus, our proposed system utilizes MQTT and
REST API for the communication protocol service.

MQTT is one of the protocols that have been designed for data communications in IoT
application systems. It can work with minimal memory and the processing
power [37]. The MQTT broker works for receiving messages from clients, filtering the
messages according to a topic, and distributing the messages to subscribers [38]. The
MQTT broker is implemented in the IoT gateway function of the platform to provide data
communication services in SEMAR. The IoT gateway function offers communication ser-
vices to connect sensor devices to the server. Using this protocol, sensor devices can
transmit messages containing sensor data in the JSON format with MQTT topics. By
subscribing data at the same MQTT topic, the data aggregation program in the platform
obtains each sensor data. In addition, the study by Al-Joboury in [39] shows that the load
balancer can increase the performance and the capacity of MQTT data communications.

The IoT gateway function also implemented the REST API for receiving sensor data
through the HTTP POST communication protocol. It can only receive data in the JSON for-
mat. The REST API provides URLs for sensor data transmission. The management function
in the platform creates the unique URL for each device. The HTTP POST communication
protocol is compatible with standard network interfaces. Using REST API, sensor devices
can transmit data in the JSON format.

3.3. Data Process

The data process in the SEMAR server platform offers various functions. The large
amount of data from data input will be processed to obtain meaningful information using
some functions. The functions are implemented as independent modules to reduce system
crashes at system failures. They can be extended to microservices [40,41]. The concept of
microservices is the method of developing a large-scale system with a set of small indepen-
dent services. For their implementations, thread-based programs are adopted to improve
their performances for real-time data processing. Each service will initiate a new thread to
process the newly coming data.

3.3.1. Data Management (Storage, Aggregator, and Plug-in Functions)

The data management system is the main function of the IoT platform. In the context
of IoT, systems must provide data storage, transaction management, query processing, and
data access for application systems. Thus, the IoT platform must offer services to process



Sensors 2022, 22, 6436 7 of 28

the data flow from input to output. Moreover, towards developing diverse IoT applications,
devices involved in IoT should be able to generate different kinds of data types according
to the application.

In order to provide various IoT application systems, SEMAR should be a useful
platform for a variety of IoT application systems. Thus, it needs to support massive
amounts of data in different formats. Moreover, it needs to store all the necessary data by
offering data storage for every application. The management data storage is the database that
stores the operating parameters in the SEMAR server platform including the implemented
IoT application systems. The data include the information regarding connected devices,
communications, and parameters for the process modules running on the platform. On
this platform, each device has its own unique sensor format. The management data storage
database keeps the sensor format as the template to help the development of an IoT
application system on this platform.

Meanwhile, the sensor data storage is the database that stores all the sensor data in
the platform. In IoT application systems, sensor devices may offer various data and it
may change it over time with unstructured formats; therefore, the platform uses the big
data technology to store unstructured JSON objects generates the unique data storage for
each device. This data storage utilized only accepts registered device data; therefore, we
implement additional data stored in the form of Log files. Log Files are used to keep the
values of any defined or undefined data using the CSV format. The defined data represents
a sensor data that fits the format registered in the management data storage. The undefined
data represents data whose format is not registered.

The schema data storage is the database that can be used to help the users of IoT
application systems by dynamically specify the names, fields, and data types in accessing
this storage. It supports multiple data types, including integer, float, date, time, date-time,
and string.

Figure 1 illustrates that this database is used to store data synchronization results.
Through REST API, other systems can access to the sensor data storage. As the advantage
of this database, it can be dynamically defined and modified by the user. It can assist
integration of various complex IoT application systems.

In an IoT system, the data lifecycle begins with the communication gateway re-
ceiving sensor data, continues with data aggregation and preprocessing, and concludes
with data storage. For this purpose, SEMAR provides a data aggregator function. The
data aggregator is the module of collecting data from various data sources, applying
the value-added processing, and repackaging the information in a consumable format.
Algorithm 1 illustrates the data processing procedure in this module. It forwards the result
to the following data filter or stores it in the data storage through the database access.

The data management system plays a role in the sensor data storage process and
provides access to additional data processing functions. Those services are not only for
systems integrated in the IoT platform (built-in) but also for plug-in functions that may be
deployed as an extension. Because an IoT application system may require unique data
processing that has not been implemented in the platform. Thus, the platform is designed
and implemented so that users can easily implement plug-in functions without modifying
existing codes, to fulfill the demands of IoT application systems. The plug-in functions can
use REST API to access the data in the platform.



Sensors 2022, 22, 6436 8 of 28

Algorithm 1 Data aggregator
Input :Raw sensor data received through a communication protocol (RSensor)

Device code (Dcode)
Output :Sensor data in a consumable format (MSensor)
begin

Save RSensor in a log file
Convert RSensor to JSON object
Find the sensor format from the database using Dcode as S f ormat
if S f ormat not empty then

Initialize MSensor ← empty JSON object
for each item in S f ormat do

if item in RSensor then
Set MSensor[item]← RSensor[item]

end
end
Set MSensor[”time”]← currenttimestamp
return MSensor

end
end

3.3.2. Data Filter and Synchronization

In this research, we additionally explore the data processing capabilities required
by IoT applications that are not included in the standard data management services. For
example, sensors of IoT devices may generate measurement errors and noise during the
measuring process. It can impact the risk of data analysis problems. In addition, IoT
applications such as indoor localization systems require real-time sensor data from several
devices simultaneously; therefore, our platform deploys the data filter and synchronization
functionalities for processing sensor data.

The functions of filtering sensor data before being saved in a data storage are imple-
mented. Digital filters are adopted to reduce noise and inaccuracies in data. The following
procedure is applied for filtering data:

• It receives sensor data in a JSON format.
• It selects the sensor field’s value to be filtered.
• It add the field value in the JSON object with the filter result.
• It stores the JSON object in the database.

The data synchronization function can synchronize the data from different devices
by referring to the timestamp in the data store schema. The timestamp was given when the
platform receives the data from the sensor device. Thus, the platform requests the data
from each sensor’s storage at a specified detection time. For each sensor data, the field for
the identifier (Fi) to group sample data in a specific value, the field for the value (Fv) to be
synchronized, the default value (de f ault), and the four functions to process the data are
prepared. The following functions are implemented to process the data:

• Average: it returns the average value of the data collected during the detection time.
• Current: it returns the last value among the data collected during the detection time.
• Max: it returns the highest value among the data collected during the detection time.
• Min: it returns the lowest value among the data collected during the detection time.

Algorithm 2 illustrates the data processing procedure in this module.



Sensors 2022, 22, 6436 9 of 28

Algorithm 2 Data Synchronization
Input : Detection time (Dtime), List of sensor data will be synchronized (LSensor)
Output :List of synchronized data (SyncData)
begin

Set TimeStart← currenttime
Set TimeEnd← TimeStart + Dtime
while True do

if TimeEnd = currenttime then
Set DataSource, Identi f ierList, SyncData← empty vector
for each sensor ∈ LSensor do

Set DSensor ← captured sensor data between TimeStart and TimeEnd
Set GroupData as empty vector
for each row in DSensor do

if row[Fi] not in Identi f ierList then
Append row[Fi] to Identi f ierList

end
Append row[Fv] to GroupData[row[Fi]]

end
for each i ∈ GroupData do

Set DataSource[sensor][i] ← processed GroupData[i] use the selected
function

end
end
for each ID ∈ Identi f ierList do

Set SyncItem← empty vector
Append ID to SyncItem[”identi f ier”]
for each sensor ∈ LSensor do

if DataSource[sensor][ID] is not empty then
Append DataSource[sensor][ID] to SyncItem

end
Append sensor[de f ault] to SyncItem

end
Append SyncItem to SyncData

end
Stores SyncData to the schema data storage
Set TimeStart← currenttime
Set TimeEnd← Tstart + Dtime

end
end

end

3.3.3. Machine Learning and Real-time Classification

One of the exploitation scenarios for the massive quantity of IoT data is its predictive
capability by utilizing machine learning approaches. Several researchers approved the
effectiveness of machine learning implementation in IoT applications [42–44]. Moreover,
Kumar et al. in [45] proposed the ensemble design combining machine learning algorithms
to protect networks on the Internet of Medical Things in real-time; therefore, we implement
machine learning and real-time classification function in SEMAR.

The machine learning algorithms are implemented to help data classifications. The
Support Vector Machine [46,47] and Decision Tree [48–50] are implemented in this platform as
standard machine learning algorithms in IoT application systems.

Decision Tree employs tree decisions including event outcomes, resource costs, and
utility costs. It can create a data model for predicting outcomes by learning simple decision
rules according to the data features. The data model structure consists of internal nodes
representing an attribute, branches representing a decision rule, and leaf nodes indicating
an outcome. Here, C4.5, CART (Classification and Regression Trees), and Naive Bayes Tree



Sensors 2022, 22, 6436 10 of 28

are selected and incorporated into the platform as the most well-known machine learning
algorithms [48]. CART is the binary recursive partitioning method that can handle both
numerical and category data [48–50]. It can determine the impurity degree of acceptable
data and build a binary tree in which each internal node provides two classes for the
accepted attribute. The tree is formed by iteratively picking the attribute with the lowest
Gini index. The Gini index for each node is calculated by the following equation [48]:

Gini(t) = 1−
n

∑
i=1

P(i|t)2 (1)

Support Vector Machine (SVM) is utilized as the regression and classification
technique [51]. This approach has been used for the big data classification [47]. The
SVM computes linear decision boundary lines that can separate the data for the labeled
groups. The SVM decision boundary line is calculated by the following equation:

f (x) = ∑
∀i

yiαiK(xi, x) (2)

where yi represents the class label, αi represents the learned weight, K() represents the
kernel function, xi denotes the support vector, and x denotes the labeled training sample
data. The kernel function is given by a collection of mathematical operations used to
process the input data and convert it into the required format. The radial basis function (RBF)
kernel is one of the common kernel functions in SVM. The following equation illustrates
the formula of the (RBF) kernel:

K(xi, xj) = exp(−
d(xi, xj)

2

2l2 ) (3)

where l represents the length scale of the kernel and d(xi, xj) denotes the Euclidean distance
between xi and xj.

Decision Tree and SVM have several hyper parameters. For them, the Randomized Search
Method is implemented in SEMAR to find the optimal combination of hyper parameters,
due to its superior performances with the low cost and short computing time compared to
other methods.

For reference, the Decision Tree algorithm has the following hyper parameters:

• Maximum depth (max_depth): represents the maximum depth of the tree model result.
It is used to select the optimal model to prevent over-fitting.

• Minimum samples split (min_samples_split): represents the minimal amount of data
required to separate an internal node. If it is large, it can prevent over-fitting; however,
if it is very large, it can cause under-fitting.

• Minimum samples leaf (min_samples_lea f ): represents the minimal amount of data
required to be left at the leaf node. It is similar to the minimum samples split parameter.

• Minimum weighted fraction leaf (min_weight_ f raction_lea f ): represents the total weight
required at a leaf node.

The Support Vector Machine algorithm has the following main hyper parameters:

• Kernel: represents the function of transforming the training dataset into the higher
dimension space. The standard kernel consists of Radial Basis Function (RBF), linear,
polynomials, and sigmoid.

• C: represents the penalty parameter that controls the trade-off between the decision
boundary and the misclassification. C value controls the margin of the decision
boundary line to avoid misclassifications. The large value can prevent the model
from allowing any misclassification. If the dataset is linearly separable, it will work;
however, if the dataset is non-separable/nonlinear, it is better to use a small C value
to avoid overfitting, although it allows misclassifications to occur.



Sensors 2022, 22, 6436 11 of 28

• Gamma: represents the coefficient of the kernel used to decide the curvature of the
decision boundary line. The value of Gamma determines the shape of the decision
boundary line according to the number of dataset points. The large value causes the
decision boundary to be easily affected by fewer data points, and the shape becomes
complex. It can be helpful for nonlinear datasets; however, if it is too large, it tends to
be over-fitting. On the other hand, for the linear dataset, the small values make the
decision boundary line more general and useful.

The machine learning algorithms allow the user to use the data stored in the data
storage as the sample data. This module can generate a data model for the real-time data
classification module.

The real-time data classification function is implemented to analyze a huge amount of
data from various sensor devices by periodically running the following procedure:

1. It loads the data classification model made by the machine learning algorithm.
2. It receives sensor data from the database.
3. It classifies data into classes by running the data model.
4. It stores results in the database.

The classification model can be created by each user separately. Moreover, the user
can start or stop the real-time data classification at the user interface.

3.4. Data Output

Several output components, such as the monitor display, the user interface, the data
export, REST API, and the notification function, are considered to use the data in the
platform. The monitor display is attached to the sensor node, and accesses the user
interface in the platform through a network connection. It can easily show sensor data for
each device.

The user interface is provided at the web browser to allow users to see the sensor
and synchronized data by tables, graphs, or maps. The platform allows users to access the
sensor data using the time of data receipt. It receives the sensor data in the JSON format by
accessing REST API. The column in the table is formed automatically based on the sensor
format of each device. The platform can generate the graph for each registered format
sensor. Visualization maps will display the data in digital maps based on the GPS data. The
data export feature is designed and implemented to allow users to download data in Excel,
JSON, text, or CSV format at the specified time. Users can use this feature by accessing to
the user interfaces.

REST API is employed as a back-end system to access the sensor data. The sensor data
are retrieved from the database and is converted to the JSON format. It will be sent to the
user interface and plug-in functions using HTTP POST communications. The platform can
exchange and integrate data with other IoT application systems via REST API.

The notification function allows the user to define the threshold for each sensor data
as the trigger of the message notification. If the value is over the threshold, the platform
will send a notification. The platform offers two different communication services. First, it
publishes a message to a specific topic using the MQTT communication protocol. Thus, the
IoT application system can subscribe to topic to receive the messages. Second, it delivers
email notifications through the mail server service installed on the server platform. The
user can dynamically define email recipients.

3.5. Management Service

The management service is used to manage all functions in the SEMAR platform. It
includes the managements of users, devices, communications, schema data, synchroniza-
tion functions, analytics, data filters, and notification functions. The management of users
allows us to add users, set permissions, and restrict access to the devices.

The device management service provides the functions to register the devices and the
sensors of the IoT application system. It allows managing the sensor format for each device
dynamically. The platform can process, save, and display the data registered in the sensor



Sensors 2022, 22, 6436 12 of 28

format. For convenience, the SEMAR platform provides a template to add the device with
the same sensor format easily. The schema data management allows to create the schema
database, define the field format, and manage the data.

The management service provides the functions to add, update, and delete settings
for data synchronizations, data analytics, data filtering, and notifications. It allows the user
to run and terminate the module service in the data process. All the configuration settings
are saved as JSON objects.

4. Implementation of SEMAR IoT Server Platform

In this section, we present the implementation of the SEMAR IoT server platform.
Table 2 shows the summary of the implementation.

Table 2. Technology specifications for implementation of SEMAR IoT server platform.

IoT Model Function Component Description

Input

MQTT MQTT Broker Mosquitto v2.0.10
MQTT Supports MQTT v5.0, v3.1.1, and v3.1

REST API Libraries and Framework Tornado Web Server, PyMongo,
JSONCommunication Supports HTTP-POST

Network Interfaces Network Interfaces Supports Wi-Fi, Ethernet, Cellular

Process

Server Operating System Ubuntu 18.04.5 LTS
Memory 6Gb

Data Storage Services MongoDB v3.6.3

Data Aggregator Libraries and Framework Tornado Web Server, PyMongo,
JSON, Paho

Communication Supports HTTP-POST and MQTT

Data Filter Libraries and Framework PyMongo, JSON, Numpy, Scipy
and KalmanFilter

Data Synchronization Libraries and Framework PyMongo, JSON , Pandas, Statistics
and Threading

Machine Learning and Real-time
Data Classification Libraries and Framework sklearn, Pandas, PyMongo, JSON,

and Threading

Output

User Interfaces and Data Export

Programming Language
PHP, CSS, HTML and Javascript

Libraries and Framework
CodeIgniter, Bootstrap, JQuery,

HighChart JS, DataTables,
OpenStreetMapWeb services Apache v2.4.29, PHP 7.2.24Development Pattern MVCSupported browsers Google Chrome, Firefox, Opera

REST API Libraries and Framework Tornado Web Server, PyMongo,
and JSONCommunication Supports HTTP-POST

Notification Functions
Libraries and Framework PyMongo, JSON, Paho, smtplib

Notification supports Email and MQTT
Email Service Postfix

Management Management Services Libraries and Framework Tornado Web Server, PyMongo and
JSONCommunication Supports HTTP-POST

In this implementation, the following two types of communication protocol services
are implemented for data input. Mosquitto [52] is installed for the MQTT broker. It allows
the platform to receive messages through various MQTT versions, and supports connections
from Wi-Fi, Ethernet, and Cellular network interfaces. Then, REST API is implemented



Sensors 2022, 22, 6436 13 of 28

based on Python programming and Tornado web server [53]. It allows the platform to
receive messages through HTTP POST and supports connections from Wi-Fi, Ethernet, and
Cellular network interfaces.

The data process is deployed and implemented in the platform. They are developed in
Python using a variety of modules and dependencies. For IoT data management systems,
we used two different databases service implemented in the platform according to the
design in Section 3. The Big Data repository MongoDB [54] is utilized for the data storage
for managements, sensors, and schema. MongoDB saves data in the JSON format as the
flexible approach—there is no need to define data structures, unlike SQL. In addition, the
log file is implemented in the CSV format. It can be accessed using a file controller library
in Python.

Two different data aggregators are implemented. The first one enables message
receptions using the MQTT communication protocol. It allows a different MQTT communi-
cation settings for each sensor device. The second one does it with REST API. Both data
aggregators access the data storage via PyMongo.

In this study, the data filter and synchronization capabilities are utilized to process
sensor data. Scipy and KalmanFilter Python libraries are used to apply the data filters. After
filtering the data, PyMongo is used to save it in the data storage. The data synchronization
used PyMongo for sensor data in the data storage. Pandas is used for grouping data sensors.
Threading library is used to enhance the performance of the platform. This function runs
periodically on the server based on the detection time. The user can stop and start this
service at the administration page in the user interface. Figure 2 illustrates the user interface
of the data synchronization function for the sensor data during 30 s.

Figure 2. Interface of data synchronization function.

According to the design systems in Section 3, the data analysis systems consist learn-
ing process and real-time analysis service. We implemented both services in Python.
Scikit-learn [55] is used to facilitate the learning process. The Sklearn library is utilized for
real-time analysis to make the classification model during the learning process.

Data output includes the data visualization and the data sharing with other systems
including the plug-in systems. The CodeIgniter PHP Framework is adopted to create user
interfaces based on the Model-View-Control (MVC) design paradigm [56]. A user interface
will offer data visualizations using HighchartJS, DataTalbes, and OpenStreetMap. Here, Apache
and PHP are required. Figure 3 shows the table of sensor data. Figure 4 show graphs of
sensor data.



Sensors 2022, 22, 6436 14 of 28

Figure 3. Table of sensor data.

Figure 4. Graphs of sensor data.

DataTables library is used to allow the user to download sensor data in Excel, JSON,
text, and CSV formats at the specified times. Figure 5 show the data export interface.
REST API is built with Python and Tornado. It allows other application systems and plug-in
functions to access to sensor data in JSON formats.

Figure 5. Data export interface.

Finally, The management service is built in Python and Tornado web server. It allows
us to receive messages through HTTP POST, and to access data storage by PyMongo.

5. Integration of Air Quality Monitoring System

As the first IoT application system, the air quality monitoring system is integrated in the
proposed platform. It can monitor the air quality in smart cities.

5.1. System Architecture

Figure 6 shows the system overview. This system uses a single-board computer (SBC)
that is connected to the GPS sensor device and the air quality sensor device through Wi-Fi.
The air quality sensor device covers the carbon monoxide sensor (MQ7), the particulate mat-
ter sensor (Shinyei PPD42), the sulfur dioxide sensor (MQ135), the ozone sensor (MQ131),



Sensors 2022, 22, 6436 15 of 28

and the nitrogen dioxide sensor (MiCS 2714. The sensor sends the voltage measurement
data to the Arduino UNO via GPIO. Arduino UNO converts the data into the value of the
pollutant concentration level and sends it to the SBC via the MQTT protocol. When the
air sensor data are received, the SBC adds the current time and the location information
(latitude and longitude) from the GPS sensor to the air sensor data, and sends it in the
JSON format every five seconds through the MQTT connection.

Figure 6. System overview of air quality monitoring system.

5.2. Implementation in Platform

Figure 7 shows the flow of the functions in the SEMAR server platform for integrating
this IoT application system. Through the MQTT connection, the data aggregator receives
the sensor data and stores it in the data storage. The real-time classification estimates the air
quality index from the data between 0 and 4 that corresponds to the air quality categories
of good, moderate, poor, very poor, and hazardous. The output data are shown at the user
interface.

Figure 7. Function flow for air quality monitoring system in platform.

To evaluate the system integration, we run the system to monitor actual air quality
conditions. The sensor device is mounted on the vehicle, and the single-board computer
system is placed inside the vehicle during the experiment. The device system sends air
quality and GPS data every five seconds. The evaluation results show that SEMAR has
successfully received the sensor data, processed it, and classified the air quality index based
on it. The results can be displayed on the user interface in real-time. Table 3 shows the
evaluation results of the classification model used in this experiment. We compare two
algorithms consisting of Support Vector Machine (SVM) and Decision Tree (DT).

Table 3. Evaluation of air quality monitoring classification model.

Features Algorithm Mislabel Accuracy MSE

Air Quality Support Vector Machine 605/10,053 0.94239 0.05761
Decision Tree 43/10,053 0.99591 0.00409



Sensors 2022, 22, 6436 16 of 28

Table 3 illustrates that the accuracy of the developed model is higher than 90%; there-
fore, we can conclude that the real-time classification function to determine the air quality
in SEMAR provides advantages over similar studies, including the study by Toma et al.
in [21].

Moreover, we also conducted experiment for hyper parameters tuning. Table 4 shows
the experiment setup for optimizing the hyper parameters using the randomized search
method in this IoT Application.

Table 4. Experiment setup for hyper parameter optimizations in air quality monitoring.

Component Specification

Operating System Windows 10 Enterprise, 64-bit
Processor AMD Ryzen 5 3550H
RAM memory 8.0 GB
Machine Learning Library Scikit-learn [55]
Machine Learning Method Support Vector Machine and Decision Tree

Datasets 25,000 rows air quality data (5 labels, 5
features)

Figure 8 shows the confusion matrices for the Decision Tree algorithm and the Support
Vector Machine algorithm in the air quality monitoring application. For Decision Tree,
max_depth = 12, min_samples_split = 4, min_samples_lea f = 9, and min_weight_ f raction
_lea f = 0.0 are obtained, where the accuracy of the model is 99%. For Support Vector
Machine, kernel = ”linear”, C = 1, and gamma = 0.01 are obtained, where accuracy of the
model is 95%.

Figure 8. Confusion matrices of Decision Tree and Support Vector Machine.

6. Integration of Water Quality Monitoring System

As the second IoT application system, the water quality monitoring system is integrated.
It can monitor the water quality in rivers flowing in smart cities.

6.1. System Architecture

Figure 9 shows the overview of the system architecture. This system utilizes the sensor
device equipped with water quality sensors for the hydrogen potential (pH), the oxidation
reduction potential (ORP), the dissolved oxygen (DO), the electrical conductivity (EC),
the temperature, total dissolved solids (TDS), the salinity (Sal), and the specific gravity
(SG). The edge computing device Raspberry Pi 3 collects the sensor data every five seconds
and sends it to a server. The system was tested at various points in the river in Surabaya,
Indonesia. The sensor node detects multiple parameters of water quality.



Sensors 2022, 22, 6436 17 of 28

Figure 9. The system overview of the water monitoring system.

6.2. Implementation in Platform

Figure 10 shows the flow of the functions in the platform for integrating this IoT
application system. Through the MQTT connection, the data aggregator receives sensor
data from the devices and stores it in the data storage. The real-time classification function
estimates the water quality index from the collected data with a number between 0 and
3 corresponding to lightly polluted, heavy polluted, and polluted. The output data are
shown in the user interface.

Figure 10. Function flow for water quality monitoring system in platform.

We evaluated the efficacy of the integration of SEMAR with the water quality monitoring
system. The evaluation was conducted by operating the system in a real-world environment
to monitor the water quality of a river. The device transmits the water sensor data to the
SEMAR server every five seconds through MQTT communications. The experiment results
indicate that the server received the sensor data, classified the water quality index based on the
obtained data, and displayed it on the user interface in real-time. In addition, we compared
the SVM and DT machine learning algorithms. are presented in Table 5 shows the evaluation
results of the classification model utilized in the real-classification function.

Table 5. Evaluation of water quality monitoring classification model.

Features Algorithm Mislabel Accuracy MSE

Water Quality Support Vector Machine 289/45,397 0.9936 0.0064
Decision Tree 34/45,397 0.9993 0.0007

Table 5 shows that the accuracy of the classification model for the water quality is
higher than 90%. Thus, the superiority of SEMAR on the integration with water quality
measurement systems was confirmed with abilities to receive and classify data in real-time.

7. Integration of Road Condition Monitoring System

As the third IoT application system, the road condition monitoring system is integrated.
It can monitor road surface conditions in smart cities.



Sensors 2022, 22, 6436 18 of 28

7.1. System Architecture

Figure 11 shows the system architecture overview. This system is implemented as a
mobile-based sensor network attached to the vehicle. This concept is called Vehicle as a
Mobile Sensor Network (VaaMSN). This system consists of the edge computing device, the
portable wireless camera, and the sensor device. The camera records the road conditions in
front of the vehicle and transmits the image frames through Real-Time Streaming Protocol
(RTSP). The sensor device collects GPS, accelerometer, and gyroscopes data, and transmits
them to the edge computing device via MQTT protocol.

Figure 11. System overview of road condition monitoring system.

The edge computing device detects potholes from the camera images using the deep
learning approach, OpenCV [57], and Tensorflow [58]. When detecting a pothole, image
data are recorded in the directory file. Figure 12 shows the detected pothole example by
the system. The edge computing will send the location, the accelerometer, the gyroscopes,
and the pothole state to the server through the MQTT connection.

Figure 12. Detected pothole example.



Sensors 2022, 22, 6436 19 of 28

7.2. Implementation in Platform

Figure 13 shows the flow of the functions in the platform for integrating this IoT
application system. The data aggregator receives sensor data from the device through the
MQTT connection, and stores it in the data storage. The output data appear in the user
interface.

Figure 13. Function flow for road condition detection system in platform.

To evaluate the system integration, we run the road condition monitoring system
to monitor road surfaces in actual conditions. We place the sensor device in the vehicle
according to the layout shown in the system overview. They send JSON data consisting
of the GPS location, accelerometer, gyroscope, and pothole status to the server through
MQTT communications when the system detects a pothole, as shown in Figure 12. The
experiment results show that the system can receive data from the device, process it, and
display it on the map of the user interface in real-time.

8. Integration of Air-conditioning Guidance System

As the fourth IoT application system, the air-conditioning guidance system (AC-Guide) is
integrated. It can offer the guidance for the optimal use of air-conditioning (AC) in smart
cities [59].

8.1. System Architecture

Figure 14 illustrates the system architecture overview. AC-Guide uses a web camera,
a DHT22 sensor, and Raspberry Pi 3 model b+ as the sensor device. The Python program
of the system periodically (1) collects the humidity and temperature of the room and the
AC control panel photo, (2) collects the standard outdoor weather data by accessing to
OpenWeatherMap API [60], (3) calculates the indoor discomfort index (DI) to determines
whether the indoor state is comfort or discomfort, (4) calculates the outdoor DI to determines
whether the outdoor state is comfort or discomfort, (5) detects the on/off state of the AC from
the photo, (6) sends the message to turn on or turn off the AC considering the indoor DI,
the outdoor DI, and the on/off state of AC, (7) saves the data in the log file, and (8) send
the data to the server using the MQTT connection.

Figure 14. System overview of AC-Guide.



Sensors 2022, 22, 6436 20 of 28

8.2. Implementation in Platform

Figure 15 shows the flow of the functions in the platform for integrating this IoT
application system.

Figure 15. Function flow for AC-Guide in platform.

We evaluated the effectiveness of the integration of SEMAR with the air-conditioning
guidance system. The experiment was carried out by running the system at the #2 Engineer-
ing Building in Okayama University. The device sends JSON data containing the indoor
humidity, indoor temperature, indoor discomfort index (DI), outdoor humidity, outdoor
temperature, outdoor discomfort index (DI), and state of AC using MQTT communications
every one minute. The evaluation results show that SEMAR can receive sensor data and
display sensor data in real-time on the user interface. Previously, these data were not
accessible from other systems. By integrating SEMAR, they can access the data through
REST API. In addition, SEMAR allows adding new sensors to the system without changing
the codes; therefore, the advantages of integrating the SEMAR system is confirmed.

9. Integration of Fingerprint-based Indoor Localization System

As the last IoT application system, the fingerprint-based indoor localization system using
IEEE802.15.4 protocol (FILS15.4) is integrated. It detects the user locations in indoor environ-
ments according to the fingerprints of the target location. The process is divided into the
calibration phase and the detection phase [61,62].

9.1. System Architecture

Figure 16 illustrates the overview of FILS15.4 architecture. This system adopts trans-
mitting and receiving devices by Mono Wireless which employs the IEEE802.15.4 protocol
at 2.4 GHz [63]. The transmitter Twelite 2525 is small with 2.5× 2.5 cm and can be powered
with a coin battery for a long time. The receiver Mono Stick is connected to Raspberry Pi over
a USB port. To improve the detection accuracy, the sufficient number of receivers should be
located at proper locations in the target area.

Figure 16. System overview of FILS15.4.

Raspberry Pi receives data from a transmitter, determines the link quality indication
(LQI) for each transmitter, sends the LQI with the ID to the MQTT broker using the MQTT
protocol. The server receives them from the MQTT broker, synchronizes the data from all
the receivers, calculates the average LQI with the same transmitter ID, and keeps the results



Sensors 2022, 22, 6436 21 of 28

in one record in the SQLite database. The previous implementation used a free public
MQTT service.

9.2. Calibration Phase

The calibration phase generates and stores the fingerprint dataset. Each fingerprint
consists of n LQI values where n represents the number of receivers. It represents the
typical LQI values when a transmitter is located at the corresponding location (room in
FILS15.4).

9.3. Detection Phase

The detection phase detects the current room by calculating the Euclidean distance
between the current LQI data and the fingerprint for each room and finding the fingerprint
with the smallest distance.

9.4. Implementation in Platform

Figure 17 shows the flow of the functions in the platform for integrating this IoT
application system. The data synchronization function synchronizes the measured LQI
values among all the receivers using the transmitter’s ID, and saves it in the schema data
storage. The detection program is implemented as the plug-in function in the platform, and
receives data through REST API services.

Figure 17. Function flow for FILS15.4 in platform.

We evaluate the integration of SEMAR with the fingerprint-based indoor localization
system by running the system at two floors in the #2 Engineering Building of Okayama
University. This system used six receivers to measure LQI from each transmitter. The
receiver sent the LQI data every 500 ms to the server through MQTT communications.
The evaluation results show that SEMAR can receive, process, and visualize the data. We
also evaluate the data synchronization of the LQI data at the multiple receivers from the
same transmitter. Figure 18 shows the synchronized LQI data for transmitter 1 during 30 s,
where LQi for i = 1, . . . , 6 indicates the LQI data at receiver i. They are saved in the schema
data storage and can be accessed from other programs through REST API. This system can
run without interruptions even if it processes empty LQI data or if error detection occurs.
When the system detects an error, it sets the LQI data to the default value. According to the
evaluation results, the effectiveness of integrating the SEMAR system is confirmed.

Figure 18. LQI data of transmitter 1.



Sensors 2022, 22, 6436 22 of 28

10. Evaluations

In this section, we evaluate the implementation of SEMAR IoT server platform.

10.1. Performance Analysis

To evaluate the performance of SEMAR at the parameter level, first, we investigate the
average response time for MQTT data communications when the number of IoT devices is
increased from 1 to 125. In the experiments, a virtual IoT device is created in the system
instead of a real device. Then, each virtual IoT device sends one message through a
different topic every second. During this experiment, the CPU usage rate of the machine is
also measured.

As the response time, the time difference at a virtual IoT device from the data transmis-
sion to the server to the message reception from the server is measured. For HTTP POST, it
can easily be obtained. When the IoT device sends data to the server, the REST API service
returns the response message; however, for MQTT, the program is modified to measure the
response time where it will send the MQTT message to the device when it stores data in
the storage.

Figures 19 and 20 show the average response time and the average CPU usage rate
when the number of virtual IoT devices is increased from 1 to 125, respectively. The average
response time is 315ms and the CPU usage rate is 74% for 125 devices. Thus, SEMAR our
can handle hundreds of devices with acceptable delay and CPU rate.

Figure 19. Average response time for MQTT communications with different numbers of devices.

Figure 20. Average CPU usage rate with different numbers of devices.

10.2. The State-of-the-Art Comparative Analysis

We compare the SEMAR IoT server platform with 14 recent research works that have
the similar approach. In the comparison with the recent related works in the literature, we
consider the following features to characterize each proposal:



Sensors 2022, 22, 6436 23 of 28

• IoT application: represents the IoT application that is covered or implemented in each
work.

• Device management: indicates the capability of the IoT platform to manage devices (Yes
or No).

• Communication protocol: describes the communication protocol utilized in each work.
• Data synchronization: implies the capability to synchronize data across several devices

(Yes or No).
• Data filtering function: indicates the implementation of digital filters to process data

(Yes or No).
• Decision-making assistance: indicates the implementation of tools to evaluate data or

generate alerts based on data obtained (Yes or No).
• Flexibility: shows the abilities to allow to join new devices, to handle different commu-

nication settings, to define data types, and to easily interact with external systems (Yes
or No).

• Interoperability: represents the ability to be integrated with plural external systems
through defined protocols (Yes or No).

• Scalability: demonstrates the capability of processing a number of data simultaneously
(Yes or No).

Table 6 compares the fulfillment of the nine features among the 14 related works and
the proposed SEMAR.

Table 6. State-of-the-art comparison between the existing related studies and the proposed solution.

W
or

k
R

ef
er

en
ce

Io
T

A
pp

li
-

ca
ti

on

D
ev

ic
e

M
an

ag
em

en
t

D
at

a
Sy

nc
hr

on
iz

at
io

n

D
at

a
Fi

lt
er

D
ec

is
io

n-
m

ak
in

g
as

si
st

an
ce

Fl
ex

ib
il

it
y

In
te

ro
pe

ra
bi

li
ty

Sc
al

ab
il

it
y

C
om

m
un

ic
at

io
n

Pr
ot

oc
ol

[17] Indoor Air Quality X 7 7 7 X 7 X HTTP
[64] Smart Agriculture X 7 7 X X X X MQTT
[18] Air Pollution X 7 7 X 7 7 X HTTP
[19] Water Management X 7 7 7 7 7 X HTTP
[65] Water Management X 7 7 X X X X MQTT
[21] Air Pollution X 7 7 7 X X X MQTT
[66] Indoor Air Quality X 7 7 X 7 X X MQTT
[67] Smart City X 7 7 7 7 7 X HTTP & AMQP
[68] Smart Industry X 7 7 X X X X MQTT
[69] Smart Agriculture and Smart City X 7 7 7 X X X MQTT
[70] Smart Farming X 7 7 X X X X MQTT
[22] Smart Building X 7 7 X 7 X X HTTP & Web Socket
[71] Smart Irrigation X 7 7 X 7 7 X MQTT
[72] Smart Green and Smart City X 7 7 7 X X X HTTP, MQTT, AMQP
SEMAR Various IoT applications X X X X X X X HTTP & MQTT

10.2.1. IoT Application

Although the works by Hernández-Rojas et al. in [64], Marcu et al. in [69], and
Antunes et al. in [72] have potentials of use in various IoT applications, they have been
studied in specific IoT applications. On the other hand, SEMAR has been integrated and
implemented in several types of IoT applications.

10.2.2. IoT Device Management

All the related works provide functions to add or remove IoT devices. Some works
support device management services. Some works include capabilities to define the sensor



Sensors 2022, 22, 6436 24 of 28

format for each IoT device dynamically. The work by Trilles et al. in [70] provides the
easy-to-use user interface to manage IoT devices. On the other hand, SEMAR provides all
of the functions on IoT devices.

10.2.3. Communication Protocol

HTTP and MQTT are the most adopted communication protocols in IoT application
platforms. In addition, Del Esposte in [67] and Antunes in [72] introduce AMQP as another
protocol utilizing TCP connections. Thus, it is suitable for server–client communications
[73]. None of the related works reported functions to synchronize data from several
devices and digital filters to process sensor data. Only SEMAR provides both the data
synchronization capability and digital filters to process data.

10.2.4. Decision Making Assistance

For decision-making assistance, a lot of works have offered functions for perspec-
tive data analysis based on collected data. The works by Mandava et al. in [18], by
Kamienski et al. in [65], by Chiesa et al. in [66], and by Boursianis et al. in [71] applied
machine learning algorithms for real-time classifications, and show the results for user
interfaces. The work by Hernández-Rojas et al. in [64] utilized message notifications
according to a specific data threshold. The work by Trilles et al. in [70] and our SEMAR
included both of them.

10.2.5. Interoperability and Flexibility

Several works provided interoperability. The works by Hernández-Rojas et al. in [64],
by Trilles et al. in [70], and SEMAR allow outer programs to process data without changing
the existing program in the systems.

Some works consider the flexibility as the IoT application platform. The works by
Hernández-Rojas et al. in [64] and by Trilles et al. in [70] provide the capability to dynami-
cally define the sensor format and the data type for each device, similar to SEMAR.

However, any work cannot be connected with other MQTT servers. Only SEMAR
flexibly allows users to use other MQTT servers, which will allow IoT applications to be
easily integrated with SEMAR.

11. Threats to Validity

There are two kinds of threats to the validity of this research, which are as follows:

• Internal validity threat: validates the potential errors in the SEMAR implementation.
In this study, SEMAR is integrated with five different IoT application systems. Each
IoT application utilized various kinds of sensors. Possible threats may occur when
submitting invalid or incomplete data. Moreover, the integration of SEMAR with the
fingerprint-based indoor localization system requires the synchronization of data from
each receiver to determine the location of the transmitter. To eliminate potential
threats, SEMAR checks sensor data with the format. In addition, the data synchro-
nization function will provide default values for devices with no data within the data
synchronization timeframe.

• External validity threat: validates the generalization ability of the obtained results. We
compare the results of SEMAR to those of previous IoT-related studies. The primary
potential external threat revealed by the comparison results is that not all of the related
IoT-related research provided comprehensive and clear explanations of the proposals.

12. Conclusions

This paper presented the design and implementation of the IoT server platform for
integrating various IoT application systems, called Smart Environmental Monitoring and
Analytical in Real-Time (SEMAR). It offers Big Data environments with built-in functions for
data aggregations, synchronizations, and classifications with machine learning, and plug-in
functions that access to the data through REST API. The platform was implemented and



Sensors 2022, 22, 6436 25 of 28

integrated with five IoT application systems. The results confirmed the effectiveness and
efficiency of the proposal.

In future studies, we will continue improving the platform by implementing Rules
Engine and Complex Event Processing (CEP) [74] for the data processing. Rules Engine
will support user-defined rules, actions, and notifications. CEP will offer the real-time
data analysis based on rule patterns [75]. It will control the device action or deliver
messages to users when rule patterns are matched; however, these functions meet issues in
parallelism, resource allocations, distributed networks, and multi-rules optimizations [76],
which will be studied. Then, we will continue integrating the proposal with various IoT
application systems.

Author Contributions: Conceptualization, Y.Y.F.P., N.F. and S.S.; Methodology, Y.Y.F.P.; Software,
Y.Y.F.P. and P.P.; Writing—Original Draft Preparation, Y.Y.F.P.; Writing—Review and Editing, N.F.; Vali-
dation, M.K. and W.-C.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the reviewers for their thorough reading and helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Theofilou, P. Quality of Life: Definition and Measurement. Eur. J. Psychol. 2013, 9, 150–162. [CrossRef]
2. Macke, J.; Casagrande, R.; Sarate, J.; Silva, K. Smart City and Quality of Life: Citizens’ perception in a Brazilian case study.

J. Clean. Prod. 2018, 182, 717–726. [CrossRef]
3. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Networks

Appl. 2018, 24, 796–809. [CrossRef]
4. Cubo, J.; Nieto, A.; Pimentel, E. A Cloud-Based Internet of Things Platform for Ambient Assisted Living. Sensors 2014, 14,

14070–14105. [CrossRef]
5. Leong, W.; Kelani, R.; Ahmad, Z. Prediction of Air Pollution Index (API) using Support Vector Machine (SVM). J. Environ. Chem.

Eng. 2020, 8, 103208. [CrossRef]
6. Perlmutt, L.; Cromar, K. Comparing Associations of Respiratory Risk for The EPA Air Quality Index and Health-Based Air

Quality Indices. Atmos. Environ. 2019, 202, 1–7. [CrossRef]
7. MQTT Org. Message Queuing Telemetry Transport Protocol. Available online: http://mqtt.org/ (accessed on 12 May 2022).
8. Kamienski, C.; Prati, R.; Kleinschmidt, J.; Soininen, J.P. Designing an Open IoT Ecosystem. In Proceedings of the Workshop on

Cloud Networks 2019, Belem, Brazil, 16 July 2019.
9. Bansal, S.; Kumar, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. Int.

J. Wirel. Inf. Netw. 2020, 27, 340–364. [CrossRef]
10. Li, S.; Xu, L.; Zhao, S. The Internet of Things: A Survey. Inf. Syst. Front. 2014, 17, 243–259. [CrossRef]
11. Malche, T.; Maheshwary, P.; Kumar, R. Environmental Monitoring System for Smart City Based on Secure Internet of Things (IoT)

Architecture. Wirel. Pers. Commun. 2019, 107, 2143–2172. [CrossRef]
12. Venkanna, U.; Sharma, S.; Katiyar, B.; Prashanth, Y. A Wireless Sensor Node Based Efficient Parking Slot Availability Detection

System for Smart Cities. In Proceedings of the 2018 Recent Advances on Engineering, Technology and Computational Sciences
(RAETCS), Allahabad, India, 6–8 February 2018; pp. 1–6.

13. Zhang, Q.; Zhong, H.; Shi, W.; Liu, L. A Trusted and Collaborative Framework for Deep Learning in IoT. Comput. Netw. 2021, 193,
108055. [CrossRef]

14. Jain, V.; Ahuja, A.; Saini, D. Evaluation and Performance Analysis of Apache Pulsar and NATS. In Cyber Security and Digital
Forensics; Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2021; pp. 179–190.
[CrossRef]

15. Dizdarević, J.; Carpio, F.; Jukan, A.; Masip-Bruin, X. A Survey of Communication Protocols for Internet of Things and Related
Challenges of Fog and Cloud Computing Integration. ACM Comput. Surv. 2019, 51, 1–29. [CrossRef]

16. Marques, G.; Pitarma, R. An Internet of Things-Based Environmental Quality Management System to Supervise the Indoor
Laboratory Conditions. Appl. Sci. 2019, 9, 438. [CrossRef]

17. Benammar, M.; Abdaoui, A.; Ahmad, S.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring.
Sensors 2018, 18, 581. [CrossRef] [PubMed]

http://doi.org/10.5964/ejop.v9i1.337
http://dx.doi.org/10.1016/j.jclepro.2018.02.078
http://dx.doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.3390/s140814070
http://dx.doi.org/10.1016/j.jece.2019.103208
http://dx.doi.org/10.1016/j.atmosenv.2019.01.011
http://mqtt.org/
http://dx.doi.org/10.1007/s10776-020-00483-7
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1007/s11277-019-06376-0
http://dx.doi.org/10.1016/j.comnet.2021.108055
http://dx.doi.org/10.1007/978-981-16-3961-6_16
http://dx.doi.org/10.1145/3292674
http://dx.doi.org/10.3390/app9030438
http://dx.doi.org/10.3390/s18020581
http://www.ncbi.nlm.nih.gov/pubmed/29443893


Sensors 2022, 22, 6436 26 of 28

18. Mandava, T.; Chen, S.; Isafiade, O.; Bagula, A. An IoT Middleware for Air Pollution Monitoring in Smart Cities: A Situation
Recognition Model. In Proceedings of the IST Africa 2018 Conference, Gabarone, Botswana, 9–11 May 2018.

19. Senoz̀etnik, M.; Herga, Z.; Šubic, T.; Brades̀ko, L.; Kenda, K.; Klemen, K.; Pergar, P.; Mladenić, D. IoT Middleware for Water
Management. Proceedings 2018, 2, 696. [CrossRef]

20. Kazmi, A.; Serrano, M.; Soldatos, J. VITAL-OS: An Open Source IoT Operating System for Smart Cities. IEEE Commun. Stand.
Mag. 2018, 2, 71–77. [CrossRef]

21. Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT Solution for Smart Cities’ Pollution Monitoring and the Security Challenges.
Sensors 2019, 19, 3401. [CrossRef] [PubMed]

22. Javed, A.; Malhi, A.; Kinnunen, T.; Framling, K. Scalable IoT Platform for Heterogeneous Devices in Smart Environments. IEEE
Access 2020, 8, 211973–211985. [CrossRef]

23. The Apache Cassandra Software Project Website. Available online: https://cassandra.apache.org/ (accessed on 22 August 2022).
24. Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Smart city IoT Platform Respecting GDPR Privacy and Security Aspects. IEEE Access 2020,

8, 23601–23623. [CrossRef]
25. Putra, K.; Chen, H.; Prayitno; Ogiela, M.; Chou, C.; Weng, C.; Shae, Z. Federated Compressed Learning Edge Computing

Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications. Sensors 2021, 21, 4586.
[CrossRef]

26. Gautam, G.; Sharma, G.; Magar, B.; Shrestha, B.; Cho, S.; Seo, C. Usage of IoT Framework in Water Supply Management for Smart
City in Nepal. Appl. Sci. 2021, 11, 5662. [CrossRef]

27. Oliveira, F.; Costa, D.; Lima, L.; Silva, I. iBikeSafe: A Multi-Parameter System for Monitoring, Evaluation and Visualization of
Cycling Paths in Smart Cities Targeted at Cycling Adverse Conditions. Smart Cities 2021, 4, 56. [CrossRef]

28. Metia, S.; Nguyen, H.; Ha, Q. IoT-Enabled Wireless Sensor Networks for Air Pollution Monitoring with Extended Fractional-Order
Kalman Filtering. Sensors 2021, 21, 5313. [CrossRef] [PubMed]

29. Twahirwa, E.; Rwigema, J.; Datta, R. Design and Deployment of Vehicular Internet of Things for Smart City Applications.
Sustainability 2021, 14, 176. [CrossRef]

30. D’Ortona, C.; Tarchi, D.; Raffaelli, C. Open-Source MQTT-Based End-to-End IoT System for Smart City Scenarios. Future Internet
2022, 14, 57. [CrossRef]

31. Kumar, P.; Gupta, G.; Tripathi, R. Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network.
Autom. Control. Comput. Sci. 2021, 55, 137–147. [CrossRef]

32. Kumar, P.; Gupta, G.; Tripathi, R. A Distributed Ensemble Design Based Intrusion Detection System Using Fog Computing to
Protect The Internet of Things Networks. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 9555–9572. [CrossRef]

33. Kumar, P.; Gupta, G.; Tripathi, R. Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature Reduced
Approach for IoT Networks. Arab. J. Sci. Eng. 2021, 46, 3749–3778. [CrossRef]

34. Kumar, P.; Gupta, G.; Tripathi, R. PEFL: Deep Privacy-Encoding-Based Federated Learning Framework for Smart Agriculture.
IEEE Micro 2022, 42, 33–40. [CrossRef]

35. Kumar, P.; Tripathi, R.P.; Gupta, G. P2IDF: A Privacy-preserving Based Intrusion Detection Framework for Software Defined
Internet of Things-fog (SDIoT-Fog). In Proceedings of the 2021 International Conference on Distributed Computing and
Networking, Nara, Japan, 5–8 January 2021; pp. 37–42.

36. Wu, H.; Chen, C.; Weng, K. Two Designs of Automatic Embedded System Energy Consumption Measuring Platforms Using
GPIO. Appl. Sci. 2020, 10, 4866. [CrossRef]

37. Munshi, A. Improved MQTT Secure Transmission Flags in Smart Homes. Sensors 2022, 22, 2174. [CrossRef]
38. Dinculeană, D.; Cheng, X. Vulnerabilities and Limitations of MQTT Protocol Used between IoT Devices. Appl. Sci. 2019, 9, 848.

[CrossRef]
39. Al-Joboury, I.; Al-Hemiary, E. IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing.

EAI Endorsed Trans. Internet Things 2018, 4, 155332. [CrossRef]
40. Waseem, M.; Liang, P.; Shahin, M. A Systematic Mapping Study on Microservices Architecture in DevOps. J. Syst. Softw. 2020,

170, 110798. [CrossRef]
41. Fridelin, Y.; Ulil Albaab, M.; Anom Besari, A.; Sukaridhoto, S.; Tjahjono, A. Implementation of Microservice Architectures on

SEMAR Extension for Air Quality Monitoring. In Proceedings of the 2018 International Electronics Symposium on Knowledge
Creation and Intelligent Computing (IES-KCIC) 2018, Bali, Indonesia, 29–30 October 2018; pp. 218–224.

42. Kumar, P.; Gupta, G.; Tripathi, R.; Garg, S.; Hassan, M. DLTIF: Deep Learning-Driven Cyber Threat Intelligence Modeling and
Identification Framework in IoT-Enabled Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 1–10.

43. Kumar, P.; Kumar, R.; Gupta, G.; Tripathi, R. BDEdge: Blockchain and Deep-Learning for Secure Edge-Envisioned Green CAVs.
IEEE Trans. Green Commun. Netw. 2022, 1330–1339.

44. Kumar, P.; Gupta, G.; Tripathi, R. TP2SF: A Trustworthy Privacy-Preserving Secured Framework for Sustainable Smart Cities by
Leveraging Blockchain and Machine learning. J. Syst. Archit. 2021, 115, 101954. [CrossRef]

45. Kumar, P.; Gupta, G.; Tripathi, R. An Ensemble Learning and Fog-cloud Architecture-driven Cyber-attack Detection Framework
for IoMT Networks. Comput. Commun. 2021, 166, 110–124. [CrossRef]

46. Chang, C.; Lin, C. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]

http://dx.doi.org/10.3390/proceedings2110696
http://dx.doi.org/10.1109/MCOMSTD.2018.1700016
http://dx.doi.org/10.3390/s19153401
http://www.ncbi.nlm.nih.gov/pubmed/31382512
http://dx.doi.org/10.1109/ACCESS.2020.3039368
https://cassandra.apache.org/
http://dx.doi.org/10.1109/ACCESS.2020.2968741
http://dx.doi.org/10.3390/s21134586
http://dx.doi.org/10.3390/app11125662
http://dx.doi.org/10.3390/smartcities4030056
http://dx.doi.org/10.3390/s21165313
http://www.ncbi.nlm.nih.gov/pubmed/34450755
http://dx.doi.org/10.3390/su14010176
http://dx.doi.org/10.3390/fi14020057
http://dx.doi.org/10.3103/S0146411621020085
http://dx.doi.org/10.1007/s12652-020-02696-3
http://dx.doi.org/10.1007/s13369-020-05181-3
http://dx.doi.org/10.1109/MM.2021.3112476
http://dx.doi.org/10.3390/app10144866
http://dx.doi.org/10.3390/s22062174
http://dx.doi.org/10.3390/app9050848
http://dx.doi.org/10.4108/eai.6-4-2018.155332
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1016/j.sysarc.2020.101954
http://dx.doi.org/10.1016/j.comcom.2020.12.003
http://dx.doi.org/10.1145/1961189.1961199


Sensors 2022, 22, 6436 27 of 28

47. Suárez Sánchez, A.; García Nieto, P.; Riesgo Fernández, P.; del Coz Díaz, J.; Iglesias-Rodríguez, F. Application of an SVM-based
regression model to the air quality study at local scale in the Avilés urban area (Spain). Math. Comput. Model. 2011, 54, 1453–1466.
[CrossRef]

48. Ghiasi, M.; Zendehboudi, S. Decision Tree-Based Methodology to Select a Proper Approach for Wart Treatment. Comput. Biol.
Med. 2019, 108, 400–409. [CrossRef]

49. Hagan, D.; Isaacman-VanWertz, G.; Franklin, J.; Wallace, L.; Kocar, B.; Heald, C.; Kroll, J. Calibration and Assessment of
Electrochemical Air Quality Sensors by Co-Location with Regulatory-Grade Instruments. Atmos. Meas. Tech. 2018, 11, 315–328.
[CrossRef]

50. Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.; Mandin, C. Machine Learning and Statistical Models for Predicting
Indoor Air Quality. Indoor Air 2019, 29, 704–726. [CrossRef] [PubMed]

51. Ghosh, S.; Dasgupta, A.; Swetapadma, A. A Study on Support Vector Machine Based Linear and Non-Linear Pattern Classification.
In Proceedings of International Conference on Intelligent Sustainable Systems (ICISS) 2019, Palladam, India, 21–22 February 2019;
pp. 24–28.

52. MQTT Mosquitto Server. Available online: https://mosquitto.org/ (accessed on 12 May 2022).
53. Dory, M.; Parrish, A.; Berg, B. Introduction to Tornado; O’Reilly Media: Sebastopol, CA, USA, 2012.
54. MongoDB, Mongodb: The Application Data Platform. Available online: https://www.mongodb.com/(accessed on 12 May 2022).
55. Hao, J.; Ho, T. Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. J. Educ. Behav.

Stat. 2019, 44, 348–361. [CrossRef]
56. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.M. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Professional; Addison-Wesley: Boston, MA, USA, 1994.
57. Villán, A.F. Mastering OpenCV 4 with Python: A Practical Guide Covering Topics from Image Processing, Augmented Reality to Deep

Learning with OpenCV 4 and Python 3.7; Packt Publishing Ltd.: Birmingham, UK, 2019.
58. Pang, B.; Nijkamp, E.; Wu, Y. Deep Learning With TensorFlow: A Review. J. Educ. Behav. Stat. 2019, 45, 227–248. [CrossRef]
59. Huda, S.; Funabiki, N.; Kuribayashi, M.; Sudibyo, R.; Ishihara, N.; Kao, W. A Proposal of Air-Conditioning Guidance System Using

Discomfort Index. In Proceedings of the 15th International Conference on Broad-Band and Wireless Computing, Communication
and Applications (BWCCA-2020), Yonago, Japan, 28–30 October 2020; pp. 154–165.

60. OpenWeatherMap. Current Weather and Forecast—OpenWeatherMap. Available online: https://openweathermap.org/
(accessed on 12 May 2022).

61. Huo, Y.; Puspitaningayu, P.; Funabiki, N.; Hamazaki, K.; Kuribayashi, M.; Kojima, K. A. Proposal of the Fingerprint Optimization
Method for the Fingerprint-Based Indoor Localization System with IEEE 802.15.4 Devices. Information 2022, 13, 211. [CrossRef]

62. Puspitaningayu, P.; Huo, Y.; Funabiki, N.; Hamazaki, K.; Kuribayashi, M.; Kao, W. Investigations of Detection Accuracy
Improvements for Fingerprint-based Indoor Localization System Using IEEE 802.15.4. In Proceedings of the Fourth International
Conference on Vocational Education and Electrical Engineering (ICVEE) 2021, Surabaya, Indonesia, 2–3 October 2021; pp. 1–5.

63. Mono Wireless. Mono Wireless Product Information. Available online: https://mono-wireless.com/jp/products/index.html
(accessed on 12 May 2022).

64. Hernández-Rojas, D.; Fernández-Caramés, T.; Fraga-Lamas, P.; Escudero, C. A Plug-and-Play Human-Centered Virtual TEDS
Architecture for the Web of Things. Sensors 2018, 18, 2052. [CrossRef]

65. Kamienski, C.; Soininen, J.; Taumberger, M.; Dantas, R.; Toscano, A.; Salmon Cinotti, T.; Filev Maia, R.; Torre Neto, A. Smart
Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [CrossRef]

66. Chiesa, G.; Cesari, S.; Garcia, M.; Issa, M.; Li, S. Multisensor IoT Platform for Optimising IAQ Levels in Buildings through a Smart
Ventilation System. Sustainability 2019, 11, 5777. [CrossRef]

67. De M. Del Esposte, A.; Santana, E.; Kanashiro, L.; Costa, F.; Braghetto, K.; Lago, N.; Kon, F. Design and Evaluation of a Scalable
Smart City Software Platform with Large-Scale Simulations. Future Gener. Comput. Syst. 2019, 93, 427–441. [CrossRef]

68. Christou, I.; Kefalakis, N.; Zalonis, A.; Soldatos, J.; Bröchler, R. End-to-End Industrial IoT Platform for Actionable Predictive
Maintenance. IFAC-PapersOnLine 2020, 53, 173–178. [CrossRef]

69. Marcu, I.; Suciu, G.; Bălăceanu, C.; Vulpe, A.; Drăgulinescu, A. Arrowhead Technology for Digitalization and Automation
Solution: Smart Cities and Smart Agriculture. Sensors 2020, 20, 1464. [CrossRef] [PubMed]

70. Trilles, S.; González-Pérez, A.; Huerta, J. An IoT Platform Based on Microservices and Serverless Paradigms for Smart Farming
Purposes. Sensors 2020, 20, 2418. [CrossRef] [PubMed]

71. Boursianis, A.; Papadopoulou, M.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S. Smart Irrigation System for
Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2021, 21, 17539–17547. [CrossRef]

72. Antunes, M.; Santiago, A.; Manso, S.; Regateiro, D.; Barraca, J.; Gomes, D.; Aguiar, R. Building an IoT Platform Based on Service
Containerisation. Sensors 2021, 21, 6688. [CrossRef]

73. Depari, A.; Fernandes Carvalho, D.; Bellagente, P.; Ferrari, P.; Sisinni, E.; Flammini, A.; Padovani, A. An IoT Based Architecture
for Enhancing the Effectiveness of Prototype Medical Instruments Applied to Neurodegenerative Disease Diagnosis. Sensors
2019, 19, 1564. [CrossRef] [PubMed]

74. Mazon-Olivo, B.; Hernández-Rojas, D.; Maza-Salinas, J.; Pan, A. Rules Engine and Complex Event Processor in the Context of
Internet of Things for Precision Agriculture. Comput. Electron. Agric. 2018, 154, 347–360. [CrossRef]

http://dx.doi.org/10.1016/j.mcm.2011.04.017
http://dx.doi.org/10.1016/j.compbiomed.2019.04.001
http://dx.doi.org/10.5194/amt-11-315-2018
http://dx.doi.org/10.1111/ina.12580
http://www.ncbi.nlm.nih.gov/pubmed/31220370
https://mosquitto.org/
https://www.mongodb.com/
http://dx.doi.org/10.3102/1076998619832248
http://dx.doi.org/10.3102/1076998619872761
https://openweathermap.org/
http://dx.doi.org/10.3390/info13050211
https://mono-wireless.com/jp/products/index.html
http://dx.doi.org/10.3390/s18072052
http://dx.doi.org/10.3390/s19020276
http://dx.doi.org/10.3390/su11205777
http://dx.doi.org/10.1016/j.future.2018.10.026
http://dx.doi.org/10.1016/j.ifacol.2020.11.028
http://dx.doi.org/10.3390/s20051464
http://www.ncbi.nlm.nih.gov/pubmed/32155934
http://dx.doi.org/10.3390/s20082418
http://www.ncbi.nlm.nih.gov/pubmed/32344569
http://dx.doi.org/10.1109/JSEN.2020.3033526
http://dx.doi.org/10.3390/s21196688
http://dx.doi.org/10.3390/s19071564
http://www.ncbi.nlm.nih.gov/pubmed/30935157
http://dx.doi.org/10.1016/j.compag.2018.09.013


Sensors 2022, 22, 6436 28 of 28

75. Da Costa Bezerra, S.; Filho, A.; Delicato, F.; da Rocha, A. Processing Complex Events in Fog-Based Internet of Things Systems for
Smart Agriculture. Sensors 2021, 21, 7226. [CrossRef]

76. Flouris, I.; Giatrakos, N.; Deligiannakis, A.; Garofalakis, M.; Kamp, M.; Mock, M. Issues in Complex Event Processing: Status and
Prospects in the Big Data Era. J. Syst. Softw. 2017,127, 217–236. [CrossRef]

http://dx.doi.org/10.3390/s21217226
http://dx.doi.org/10.1016/j.jss.2016.06.011

	Introduction
	Related Works
	Design of SEMAR IoT Server Platform
	System Overview
	Data Input
	Data Process
	Data Management (Storage, Aggregator, and Plug-in Functions)
	Data Filter and Synchronization
	Machine Learning and Real-time Classification

	Data Output
	Management Service

	Implementation of SEMAR IoT Server Platform 
	Integration of Air Quality Monitoring System
	System Architecture
	Implementation in Platform

	Integration of Water Quality Monitoring System
	System Architecture
	Implementation in Platform

	Integration of Road Condition Monitoring System
	System Architecture
	Implementation in Platform

	Integration of Air-conditioning Guidance System
	System Architecture
	Implementation in Platform

	Integration of Fingerprint-based Indoor Localization System
	System Architecture
	Calibration Phase
	Detection Phase
	Implementation in Platform

	Evaluations
	Performance Analysis
	The State-of-the-Art Comparative Analysis
	IoT Application
	IoT Device Management
	Communication Protocol
	Decision Making Assistance
	Interoperability and Flexibility


	Threats to Validity
	Conclusions
	References

