
S ystemic lupus erythematosus (SLE) is a chronic 
systemic autoimmune disease characterized by the 

production of multiple autoantibodies and the involve-
ment of multisystemic organ damage [1].  The estimated 
incidence of 23.2 cases per 100,000 persons is the high-
est incidence reported in North America [2].  Due to 
treatment advances and earlier diagnosis,  the mortality 
rate is now only 10% within 10 years,  compared with 
50% within 3 years in the 1960s [3].  Despite the use of 
corticosteroids,  immunosuppressants,  and biologic 
agents,  some patients exhibit life-threatening organ 
damage by cardiovascular disease as a side effect of ste-

roid therapy [4],  renal failure with active lupus,  and 
infections related to immune suppression [5].  New 
treatments are needed to overcome resistance to con-
ventional therapy.

The pathophysiological mechanisms of SLE are 
incompletely understood but involve both genetic and 
environmental factors such as sex hormone imbalance,  
genetic predisposition,  epigenetic regulation,  immu-
nological factors,  and other,  undefined factors [6].

A microRNA (miRNA) is a 22-nucleotide single- 
stranded noncoding RNA that contributes to post-tran-
scriptional modulation of gene expression [7].  miRNAs 
control the immune system as epigenetic regulatory 
elements involved in the regulation of cellular develop-
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ment and differentiation [8].  miRNA dysregulation is 
implicated in the pathogenesis of SLE [9].  The exact 
mechanism by which miRNAs lead to SLE is still 
unknown,  and anti-miRNA therapy for SLE remains in 
preclinical stages.  However,  the identification of miR-
NAs critically involved in SLE’s pathogenesis will pro-
vide new therapeutic clues.  This review focuses on the 
recent discoveries by which miRNAs can become 
promising therapeutic targets for the treatment of SLE.

miRNA Biology

Recent evidence suggests that 2,300 human mature 
miRNAs exist [10] and target approximately 20-30% of 
all human mRNAs [11].  miRNAs regulate gene expres-
sion by facilitating sequence-specific RNA interference 
and the induction of RNA degradation or the inhibition 
of its translation [12].

The synthesis of mature miRNAs begins with the 
transcription of nuclear genes into primary RNA tran-
scripts (pri-miRNAs) and the cleavage into precursor 
miRNAs (pre-miRNAs) by the ribonuclease III (RNase 
III) enzyme Drosha and the protein DiGeorge syn-
drome critical region 8 (DGCR8) [13].  Exportin-5/
Ran-GTP transports pre-miRNA to the cytoplasm [14].  
Dicer and transactivation-response RNA-binding pro-
tein splice pre-miRNA into single-stranded mature 
miRNA.  A functional miRNA strand is loaded into the 
RNA-induced silencing complex (RISC) with the 
Argonaut (AGO) protein [15].  The RISC complex binds 
to the 3´UTR of the target mRNA with the seed region 
of the miRNA (7-8 bases from the second 5´ end of the 
miRNA) and exerts translational suppression or target 
degradation [16 , 17].

miRNA Targeting Therapy

Nucleic acid-based therapies include antisense oli-
gonucleotides (ASOs),  small interfering RNA (siRNA),  
anti-miRNA (antagomirs),  miRNA mimics,  aptamers,  
and unmethylated CpG-containing synthetic oligonu-
cleotide [18].

Although 13 nucleic acid-based therapies,  includ-
ing 3 siRNA drugs,  are approved by the U.S.  Food and 
Drug Administration (FDA),  no miRNA targeting 
therapies are on the market today [19].  The following 
oligonucleotide drugs are FDA approved: fomivirsen,  
an ASO for the treatment of cytomegalovirus infections 

[20]; pegaptanib,  an aptamer for the treatment of ocu-
lar vascular disease [21]; mipomersen,  a gapmer ASO 
for the treatment of homozygous and severe heterozy-
gous familial hypercholesterolemia [22]; eteplirsen,  a 
steric block ASO for the treatment of Duchenne mus-
cular dystrophy [23]; nusinersen,  an ASO for the 
treatment of spinal muscular atrophy [24]; CpG1018,  
an unmethylated CpG-containing synthetic oligonucle-
otide as an adjuvant for hepatitis B vaccines [25]; inot-
ersen,  a gapmer ASO for the the treatment of heredi-
tary transthyretin amyloidosis [26]; patisiran,  an 
siRNA lipid nanoparticle (LNP) formulation for the 
treatment of hereditary transthyretin-mediated amyloi-
dosis [27]; givosiran,  an siRNA (GalNAc conjugate) 
for the treatment of acute hepatic porphyria [28];  
golodirsen,  viltolarsen,  and casimersen,  ASOs for the 
treatment of Duchenne muscular dystrophy [29-31];  
and lumasiran,  an siRNA for the treatment of primary 
hyperoxaluria type 1 [32].

Compared with siRNA drugs,  only 10 miRNA tar-
geting therapies have entered clinical trials and none has 
progressed to phase III [33].  In contrast to siRNA,  
miRNA targeting therapy can influence not only a sin-
gle gene but also cellular pathways or processes [16].  
The usefulness of miRNA targeting therapy has been 
suggested for the treatment of cancers and other dis-
eases [34].  Major companies have active programs 
focused on developing novel miRNA targeting therapies 
for cancer and other diseases [35].

The therapeutic application of miRNAs involves 
three main strategies: first,  through antisense-medi-
ated inhibition of overexpressed miRNAs with ASOs,  
miRNA antagomirs,  and locked nucleic acid (LNA)-
modified oligonucleotides,  such as miR-122 [36 , 37];  
second,  through the replacement of underexpressed 
miRNAs with either miRNA mimics or viral vector- 
encoded miRNAs such as miR-34a,  which targets 
SIRT3 in prostate cancer [38]; third,  miRNA manipu-
lation to enhance a patient’s response to standard thera-
pies,  such as miR-34a antagomirs to radio-sensitize 
breast cancer cells [39 , 40].

The first anti-miRNA drug to enter clinical trials was 
miravirsen,  which is an ASO for the treatment of 
chronic hepatitis C virus (HCV) infection by targeting 
the liver-specific miR-122 [37].  Currently,  5 miRNA 
targeting therapies are undergoing clinical trial and in 
development: RG-012 for Alport nephropathy by tar-
geting miR-21,  RG-125 for nonalcoholic fatty liver 
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disease by targeting miR-103/107,  Cobomarsen for 
cutaneous T-cell lymphoma by targeting miR-155,  
Remlarsen for keloids by targeting miR-29,  and MRG-
110 for skin excisional wounds by targeting miR-92a 
[33].  However,  6 anti-miRNA drugs were terminated 
or suspended despite beginning clinical trials: mira-
virsen and RG-101 for HCV infection by targeting miR-
122,  MesomiR 1 for malignant pleural mesothelioma 
and non-small-cell lung cancer by targeting miR-16,  
pSil-miR200c and PMIS miR200a for tooth extraction 
status NOS by targeting miR-200a/c,  MRX34 for mela-
noma,  primary liver cancer,  and hematologic malig-
nancies by targeting miR-34a,  and RGLS4326 for poly-
cystic kidney disease by targeting miR-17 [33].  The 
differences between siRNA and miRNA are the target 
sequences,  the sequence complementarity,  and the 
number of target genes [33].  miRNAs exhibit 20-90% 
complementarity to the 3´ untranslated region of 
mRNA [41] and the targets of the anti-miRNA drug 
ranged from 30 to 250 in number [33].  siRNAs exhibit 
100% complementarity to the coding region of mRNA 
[42] and a single siRNA targets 1 to 3 genes [33].  For 
example,  MRX34 (a miR-34a mimic) was discontinued 
during a phase I clinical trial by serious immune- 
related adverse events.  Dysregulation of immune path-
ways including cytokine signaling was predicted by 
using KOBAS (a web server for the annotation and 
identification of enriched pathways and diseases) 
[33 , 43].  The important challenge in the progression of 
miRNA targeting therapy is to overcome such therapy’s 
limitation,  which is that each miRNA has multiple tar-
gets.  This limitation may be overcome by targeted 
delivery and chemical modifications.

Chemical modifications and delivery systems of 
miRNA in in vivo application can enhance the efficiency 
of miRNA by wrapping the unstable state of naked 
nucleotides.  Commonly used delivery vehicles include 
adenoviral vector,  poly (lactide-co-glycolide) (PGLA),  
EnGeneIC Delivery Vehicle (EDV) nanocells,  and poly-
ethylenimine (PEI) molecules [44].  Safety issues as well 
as tumor-specific delivery systems are still tested in 
animal models and clinical trials [34].  For example,  
tiny LNAs are highly chemically modified anti-miRNA 
antisense oligonucleotides with high activity and speci-
ficity.  N-acetylgalactosamine (GalNAc)-conjugated 
miR-122‒targeting tiny LNA is 300-500 times more 
potent than the original,  unconjugated tiny LNA in in 
vivo activity and is expected to become a clinically use-

ful anti-miRNA therapy [45].
Moreover,  miRNAs derived from plants may 

become potential miRNA therapies,  because they affect 
only genes of a pathogen and do not interfere with host 
genes [41 , 46].  The effect of miRNA may be stronger in 
stressed or diseased conditions than in healthy ones,  
cell/tissue-type-specific miRNA expression may influ-
ence gene expression profiles in different cell types,  and 
utilizing the synergistic effects of targeting multiple 
miRNAs may be an effective therapeutic approach [47].  
Therefore,  miRNA targeting therapy is worthy of fur-
ther investigation and development.

Therapeutic Approaches Targeting miRNA in SLE

miRNAs play an important role in the pathogenesis 
of SLE,  represented by the breakdown of self-tolerance 
(Table 1).  Innate and adaptive immune aberrant responses 
against self-antigens induce the production of autoanti-
bodies,  and the deposition of immune complexes in 
tissues leads to the activation of complement,  the accu-
mulation of neutrophils and monocytes,  and the devel-
opment of self-reactive lymphocytes [48].  Specifically,  
the rate of apoptotic cells increases despite the reduc-
tion of its clearance in SLE.  This leads to the exposure 
of its nuclear antigens to the innate immune system and 
induces endogenous type I interferon (IFN) production 
through the activation of the Toll-like receptor (TLR) 
family [49].  Moreover,  IFN-α can promote the trans-
formation of monocytes into dendritic cells (DCs),  
improve the antigen presentation ability of DCs,  and 
continuously produce IFN-α [50].  The involvement of 
let-7c [51],  miR-155 [52],  and miR-150 [53] in regulat-
ing the functions of DCs in response to TLR stimulation 
has been reported recently.  As target genes,  suppres-
sors of cytokine signaling-1 (SOCS1),  CD40,  and 
TREM-1 are identified by bioinformatics prediction and 
validation by reporter gene assays and/or Western blot-
ting (Table 1).

The loss of central and peripheral tolerance of B cells 
is also a characteristic of SLE patients.  Autoantibodies 
are produced by self-reactive B cells.  In addition,  aber-
rant B cells mediate the presentation of antigen to T 
cells,  co-stimulatory functions through the expression 
of accessory molecules engaging stimulatory receptors 
on T cells,  and the production of cytokines such as 
IL-6,  IL-10,  IFNγ,  and TNF [54].  The over-reactivity 
of B cells in SLE contributes to the Janus kinase/signal 
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Table 1　 The roles of miRNAs in the pathogenesis of SLE

miRNA
Change in 

miRNA 
expression

Target genes
Change in 
target gene 
expression

Sample SLE mouse model or 
human

Associated pathway (biological 
function) Reference

let-7a ↑ IL-6 ↑ mesangial cells New Zealand Black/White 
(NZB/W) mice

Enhancement of IL-6 production [41]

let-7c ↑ suppressor of cytokine signaling-1 
(SOCS1)

↓ dendritic cells DC Blimp1ko mice Enhancement of IL-6 production 
from DC

[51]

let-7a and
let-7e

↑ TNF alpha induced protein 3
(TNFAIP3)

↓ kidney tissues SLE patients (with lupus 
nephritis)

Enhancement of NF-κB activity [87]

miR-7 ↑ PTEN ↓ B cells MRLlpr/lpr mice Promotion of B-cell differentiation 
into plasmablasts/plasma cells and 
spontaneous germinal center forma-
tion through downregulation of 
PTEN/AKT signaling

[56]

miR 10a ↑ IL-8 ↓ CD19+ cells SLE patients Block the generation of autoreac-
tive antibodies by B cells

[63]

miR 10a-3p ↓ regenerating islet-derived 3 α
(REG3A)

↑ PBMC SLE patients (with lupus 
nephritis)

Increment of Th17/Treg ratio in 
CD4+ T cells and promotion of 
JAK2/STAT3 pathway activation

[68]

miR-15a ↑ splenic cell and 
plasma

(NZB×NZW) F1 or B/W 
mice

Reduction of IL-10‒producing 
CD1dhiCD5+ B cells (B10 cells) and 
increase in dsDNA autoantibody 
production

[61]

miR-15b ↓ cyclinD3 (CCND3) ↑ human CD19+ B 
cells and spleen 
B cells

SLE patients and B6-Faslpr 
mice

Abnormal activation of Toll-like 
receptor 7 (TLR7) signaling path-
way in SLE B cells

[64]

miR-16 ↓ differentially expressed in chon-
drocytes 2 (DEC2)

↑ kidney tissues Fcγ receptor II-b-deficient 
(Fcgr2b－/－) mice

Activation of the TLR4 signaling 
pathway

[88]

miR-21 ↑ RASGRP1 ↓ CD4+ cells MRLlpr/lpr mice Suppression of Ras-MAPK pathway 
signaling and downregulaton of 
DNMT1

[80]

miR-21 ↑ programmed cell death 4 
(PDCD4)

↓ CD4+ cells SLE patients Regulation of aberrant T-cell 
responses

[69]

miR-21 ↑ PDCD4 ↓ CD4+ T cells B6.Sle123 mice Regulation of aberrant T-cell 
responses

[70]

miR-21 ↑ 3-hydroxy butyrate dehydrogenase 
2 (BDH2)

↓ CD4+ T cells SLE patients DNA demethylation and self- 
reactive T cells by dysregulation of 
iron homeostasis in CD4+ T cells

[81]

miR-23b ↓ TGF-β-activated kinase 1/
MAP3K7 binding protein 2 (TAB2), 
TAB3, and inhibitor of nuclear fac-
tor κ-B kinase subunit α (IKK-α)

↑ kidney tissues SLE patients and MRLlpr/lpr 
mice

Enhancement of IL-17-, tumor 
necrosis factor α (TNF-α)-, or IL- 
1β-induced NF-κB activation and 
inflammatory cytokine expression

[89]

miR-26a and 
miR-30b

↓ human epidermal growth factor 
receptor 2 (HER-2)

↑ kidney tissues SLE patients (with lupus 
nephritis) and lupus-prone 
NZM2410 mice

Activation of the type I IFN path-
way

[90]

miR-29b ↑ sp1 ↓ CD4+ T cells SLE patients Reduction of DNMT1 levels and 
DNA hypomethylation

[82]

miR-30a ↑ Lyn ↓ B cells SLE patients Promotion of B-cell proliferation and 
the production of IgG

[60]

miR-31 ↓ forkhead box P3 (FOXP3) ↑ CD4+CD25－

T cells
SLE patients Negative regulation of Treg cell 

development
[71]

miR-31 ↓ RhoA ↑ CD3+ T cells SLE patients Reduction of IL-2 production [72]

miR-34a ↑ FOXP3 ↓ Treg SLE patients Disruption of Treg/Th17 balance [73]

miR-98 ↓ IL-6 ↑ PBMC SLE patients Amelioration of STAT3-mediated 
cell proliferation and inflammatory 
cytokine production

[107]

miR-124 ↓ TRAF6 ↑ serum and human 
renal mesangial 
cells

SLE patients (with active 
lupus nephritis)

Activation of the growth and inflam-
mation of renal mesangial cells

[91]

continued to next 2 papes.



August 2022 miRNA Targeting Therapy in SLE 363

miRNA
Change in 

miRNA 
expression

Target genes
Change in 
target gene 
expression

Sample SLE mouse model or 
human

Associated pathway (biological 
function) Reference

miR-125a ↓ Stat3, Ifng, and Il13 ↑ CD4+ T cells SLE patients Shifting of the balance from 
immune suppression to inflamma-
tion

[74]

miR-125a ↓ KLF13 ↑ CD3+ T cells SLE patients Elevated expression of chemokine 
RANTES level

[75]

miR-126 ↑ DNA methyltransferase 1
(DNMT1)

↓ CD4+ T cells SLE patients Demethylation and upregulation of 
genes encoding CD11a and CD70, 
thereby causing T-cell and B-cell 
hyperactivity

[83]

miR-130b ↓ IFN regulatory factor 1 (IRF-1) ↑ kidney tissues SLE patients (with lupus 
nephritis) and (NZB ×
NZW) F1 lupus-prone mice

Activation of the type I IFN path-
way

[92]

miR-130b ↑ phosphatase and tensin homolog 
(PTEN)

↓ kidney tissues SLE patients (with lupus 
nephritis)

Interference with the viability and 
apoptosis of mesangial cells

[108]

miR-133 ↓ Lim and SH3 protein 1 (LASP1) ↑ kidney tissues SLE patients (with lupus 
nephritis)

Suppression of proliferation and 
promotion of apoptosis

[93]

miR-142-
3p/5p

↓ signaling lymphocytic activation 
molecule‒associated protein 
(SAP), CD84, and interleukin-10 
(IL-10)

↑ CD4+ T cells SLE patients Overactivation of T cells and 
hyperstimulation of B cells

[76]

miR-145 ↓ signal transducer and activator of 
transcription-1 (STAT-1)

↑ CD3+ T cells SLE patients Association with lupus nephritis [77]

miR-146a ↓ IFN regulatory factor 5 and 
STAT-1

↑ PBMCs SLE patients Abnormal activation of the Type I 
interferon pathway

[109]

miR-146a ↓ TRAF6 ↑ PBMCs SLE patients (with lupus 
nephritis)

Promotion of NF-κB pathway (e.g., 
IL-1β, IL-6, IL-8, and TNF-α) in 
lupus nephritis

[110]

miR-146a ↓ PBMCs, lung, 
spleen, and kid-
ney tissues

lupus-prone BXSB mouse Enhancement of the production of 
autoantibodies and SLE progres-
sion in lupus-prone mice

[111]

miR-148a ↑ DNA methyltransferase 1
(DNMT1)

↓ CD4+ T cells MRLlpr/lpr mice Contribution to DNA hypomethyla-
tion and T-cell hyperactivity

[80]

miR-148a ↑ BACH1, BACH2, and PAX5 ↓ B cells SLE patients (with multiple 
relapses of lupus nephritis)

Association with development of 
multiple relapses in patients with 
lupus nephritis

[65]

miR-148a-
3p

↑ phosphatase and tensin homology 
deleted on chromosome ten 
(PTEN)

↓ serum and kidney 
tissues

MRLlpr/lpr mice and SLE 
patients (with lupus 
nephritis)

Enhancement of glomerular cell 
proliferation

[94]

miR-150 ↓ triggering receptor expressed on 
myeloid cells 1 (TREM-1)

↑ splenic conven-
tional dendritic 
cells

MRLLlpr/lpr mice Enhancement of inflammation 
responses in splenic cDCs

[53]

miR-150 ↑ suppressor of cytokine signaling 1
(SOCS1)

↓ proximal tubular 
and mesangial 
cells from kidney 
biopsies

SLE patients Promotion of renal fibrosis by 
increasing profibrotic molecules 
through downregulation of SOCS1

[105]

miR-152-3p ↑ Kruppel-like factor 5 (KLF5) ↓ B cells SLE patients Increment of BAFF expression [66]

miR-152 ↓ macrophage migration inhibitory 
factor (MIF)

↑ kidney tissues SLE patients (with lupus 
nephritis)

Increment of COL1A1 expression [95]

miR-155 ↑ CD40 ↑ bone marrow 
derived plasma-
cytoid dendritic 
cell

Lupus-prone NZB/W F1 
mice

Hyperactivation of TLR7-mediated 
cytokine modulation

[52]

miR-155 ↑ CD1d ↓ B cells MRLlpr/lpr mice Impairment of antigen presentation 
to iNKT cells

[57]

miR-155 ↑ SH2 domain-containing inositol 5′
-phosphatase 1 (SHIP-1)

↓ B cells B6-Faslpr mice Increment of serum IgG anti-dsDNA 
antibodies and kidney inflammation

[58]

miR-155 ↓ PU.1, TNF-α ↑ PBMC, B cells SLE patients Enhancement of TNF-a/BAFF/
CD19 signaling pathway

[59]
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miRNA
Change in 

miRNA 
expression

Target genes
Change in 
target gene 
expression

Sample SLE mouse model or 
human

Associated pathway (biological 
function) Reference

miR-155 ↑ sphingosine-1-phosphate receptor 
1 (S1PR1)

↓ splenocyte and 
PBMC

MRLlpr/lpr mice and SLE 
patients

Enhancement of autoimmune 
inflammation of systemic lupus 
erythematosus

[112]

miR-155 ↑ PPARα ↓ lung tissues pristine-induced lupus 
mouse model (C57BL/6 
mice)

Enhancement of the progression of 
diffuse alveolar hemorrhage

[113]

miR-181b ↓ activation-induced cytidine deam-
inase (AID) and interferon-α
(IFN-α)

↑ PBMC SLE patients Impairment of negative regulation to 
IFN-α

[114]

miR-182-5p ↑ forkhead Box O1 (Foxo1) ↓ kidney tissues 
and blood sam-
ples

MRLlpr/lpr mice and SLE 
patients

Promotion of development of lupus 
nephritis

[96]

miR-183 ↓ mammalian target of rapamycin 
(mTOR)

↑ kidney tissues MRLlpr/lpr mice and SLE 
patients (with lupus 
nephritis)

Enhancement of mTOR pathway [97]

miR-183 ↓ transforming growth factor beta 
receptor 1 (Tgfbr1)

↑ kidney tissues MRLlpr/lpr mice Activation of TGF-β/Smad/TLR3 
pathway and renal fibrosis

[115]

miR-198 ↑ phosphatase and tensin homology 
deleted on chromosome ten 
(PTEN)

↓ kidney tissues SLE patients Promotion of glomeruli cell growth 
and proliferation in LN

[98]

miR-199a ↑ Klotho ↓ kidney tissues pristine-induced lupus 
mouse model (BALB/c 
mice)

Promotion of LPS-induced NF-κB 
activation and the secretion of 
TNF-α and IL-1β

[99]

miR-223 ↓ S1pr1 ↑ CD4+ T cells MRLlpr/lpr mice Stimulation of CD4+ T-cell infiltra-
tion into the kidney tissue

[78]

miR 224 ↑ interferon regulatory factor 4 
(IRF4)

CD4+ cells SLE patients B-cell hyperresponsiveness [63]

miR-224 ↑ apoptosis inhibitory protein 5 
(API5)

↓ CD3+ T cells SLE patients Acceleration of T-cell activation-in-
duced cell death

[77]

miR-302d ↓ interferon regulatory factor (IRF)-9 ↑ CD14+

monocyte
SLE patients Elevated expression of interfer-

on-stimulated genes (ISGs) includ-
ing MX1 and OAS1

[116]

miR 345 ↑ interferon regulatory factor 8 
(IRF8)

↓ CD19+ cells SLE patients Regulation of B-cell differentiation [63]

miR-371-5p ↓ hypoxia inducible factor 1α 
(HIF-1α)

↑ kidney tissues SLE patients Promotion of mesangial cell prolif-
eration and inhibition of apoptosis

[100]

miR-410 ↓ Stat3 ↑ CD3+ T cells SLE patients Reduction of IL-10 expression lev-
els

[79]

miR-410 ↓ IL-6 ↑ kidney tissues MRLlpr/lpr mice Promotion of fibrosis through upreg-
ulation of TGF-β1

[101]

miR-422a ↑ kallikrein-related peptidase 4
(KLK4)

↓ kidney tissues SLE patients (with lupus 
nephritis) and NZB/W F1 
mice

Inhibition of renoprotective proper-
ties

[102]

miRNA-
451a

↑ IFN regulatory factor (IRF) 8 ↓ spleen and
thymus

B6-Faslpr mice Enlargement of the spleen and 
increment of the proteinuria and 
immune complex deposits

[117]

miR-654 ↓ macrophage migration inhibitory 
factor (MIF)

↑ PBMC SLE patients Enhancement of the phosphoryla-
tion of ERK and AKT and upregula-
tion of downstream inflammatory 
cytokine production of MIF

[118]

miR-663a/
miR-423-5p

↑ TNIP2 ↓ kidney tissues SLE patients Increment of IL-1β, IL-6, and TNF-
α secretion

[103]

miR-873 ↑ forkhead box O1 (Foxo1) ↓ PBMC SLE patients Promotion of Th17 cell differentia-
tion

[119]

miR-1246 ↓ early B-cell factor 1 (EBF1) ↑ B cells SLE patients Activation of the AKT signaling 
pathway

[62]



transducer and activator of transcription (JAK-STAT),  
B-cell receptor/phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (AKT),  and TLRs [48].  B-cell activat-
ing factor (BAFF),  which is involved in interaction 
between T cells and B cells,  is overexpressed,  promotes 
the proliferation of B cells,  and prolongs the survival 
time of self-reactive B cells in SLE [55].  Aberrant 
expression in the B cells of SLE patient has been 
reported for miRNAs including miR-7 [56],  miR-155 
[57-59],  miR-30a [60],  miR-15a [61],  miR-1246 [62],  
miR-10a [63],  miR-15b [64],  miR-148a [65],  miR-
152-3p [66],  and miR-345 [63].  Their target genes are 
phosphatase and tensin homolog (PTEN),  CD1d,  SH2 
domain-containing inositol 5´-phosphatase 1 (SHIP-1),  
PU.1,  TNF-α,  Lck/Yes novel tyrosine kinase (Lyn),  
Early B cell factor 1 (EBF1),  IL-8,  CyclinD3 (CCND3),  
BACH1,  BACH2,  PAX5,  Kruppel-like factor 5 (KLF5),  
and interferon regulatory factor 8 (IRF8) (Table 1).

Aberrant activation,  differentiation,  and function of 
CD4+ T cells are also characteristics of SLE patients.  It 
can initiate and amplify the inflammatory process 
through the activation of B cells and DCs in lymphoid 
organs,  secrete pro-inflammatory cytokines,  and 
induce abnormal cell signal transduction such as in the 
T-cell receptor (TCR)-CD3,  CD44-Rock-ERM,  and 
PI3K-Akt-mTOR signaling pathways [50 , 67].  In addi-
tion,  naive CD4+ T cells can differentiate into various 
effector T-cell subsets,  including Th1,  Th17,  Th2,  and 
follicular helper T (Tfh) cells.  Imbalances of Th1/Th2,  
Th17/regulatory T (Treg) cells,  and enhanced Tfh-cell 
response are recognized in SLE patients [50].  Aberrant 
expression of miRNAs in CD4+ T cells and CD3+ T cells 
has been reported in miR-10a-3p [68],  miR-21 [69 , 70],  
miR-31 [71 , 72],  miR-34a [73],  miR-125a [74 , 75],  
miR-142-3p/5p [76],  miR-145 [77],  miR-223 [78],  
miR-224 [63 , 77],  and miR-410 [79].  Their target genes 
are regenerating islet-derived 3 α (REG3A),  programmed 
cell death 4 (PDCD4),  forkhead box P3 (FOXP3),  
RhoA,  Stat3,  IFNγ,  IL-13,  KLF13,  signaling lympho-
cytic activation molecule–associated protein (SAP),  
CD84,  IL-10,  signal transducer and activator of tran-
scription-1 (STAT-1),  sphingosine-1-phosphate recep-
tor (S1pr1),  interferon regulatory factor 4 (IRF4),  
apoptosis inhibitory protein 5 (API5),  and Stat3 (Table 
1).

A part of the aberrant expression of miRNAs in 
CD4+ T cells of SLE has associated to DNA methylation,  
such as miR-21 [80 , 81],  miR-29b [82] miR-126 [83],  

and miR-148a [80].  Target genes are RASGRP1,  
3-hydroxy butyrate dehydrogenase 2 (BDH2),  sp1,  and 
DNA methyltransferase 1 (DNMT1) (Table 1).  Global 
DNA methylation levels are reduced by 15-20% in the 
CD4+ T cells of patients with active SLE by genome-
wide analysis [84].  As DNA methylation is usually 
repressive,  hypomethylation typically induces overex-
pression of genes,  such as ITGAL,  CD40LG,  CD70 and 
PPP2CA in SLE.  In SLE patients,  DNMT1,  which 
maintains the methylation status of genes in proliferat-
ing cells [85],  was significantly lower than in healthy 
subjects [48].  The change in expression of miRNAs was 
involved in hypomethylation in the CD4+ T cells of SLE 
patients and led to aberrant activation and differentia-
tion of them.

The dysregulation of miRNA in kidney samples from 
lupus nephritis (LN) patients and SLE mouse models 
leads to abnormal renal cell proliferation,  inflamma-
tion,  and kidney fibrosis in LN [86].  Aberrant expres-
sion of miRNAs in kidney tissues has been reported in 
let-7a and let-7e [87],  miR-16 [88],  miR-23b [89],  
miR-26a/miR-30b [90],  miR-124 [91],  miR-130b [92],  
miR-133 [93],  miR-148a-3p [94],  miR-152 [95],  miR-
182-5p [96],  miR-183 [88, 97],  miR-198 [98],  miR-
199a [99],  miR-371-5p [100],  miR-410 [101],  miR-
422a [102],  and miR-663a/miR-423-5p [103].  Their 
target genes are TNF alpha induced protein 3 
(TNFAIP3),  differentially expressed in chondrocytes 2 
(DEC2),  TGF-β-activated kinase 1/MAP3K7 binding 
protein 2 (TAB2),  TAB3 and inhibitor of nuclear factor 
κ-B kinase subunit α (IKK-α),  human epidermal 
growth factor receptor 2 (HER-2),  TRAF6,  IFN regula-
tory factor 1 (IRF-1),  Lim and SH3 protein 1 (LASP1),  
phosphatase and tensin homology deleted on chromo-
some ten (PTEN),  macrophage migration inhibitory 
factor (MIF),  forkhead box O1 (Foxo1),  mammalian 
target of rapamycin (mTOR),  transforming growth fac-
tor beta receptor 1 (Tgfbr1),  PTEN,  Klotho,  hypoxia‑ 
inducible factor 1α (HIF‑1α),  IL-6,  kallikrein-related 
peptidase 4 (KLK4),  and TNIP2 (Table 1).  Aberrant 
expression of miRNAs has also been reported with 
let-7a,  which targets IL-6 in mesangial cells [104],  and 
miR150,  which targets SOCS1 in proximal tubular and 
mesangial cells from kidney biopsies [105].

miRNA targeting therapy and gene knockout (KO) 
have been demonstrated to improve disease activity of 
SLE in mice (Tables 2 and 3).  The following SLE mouse 
models are mainly used to verify in vivo therapeutic 
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Table 2　 miRNA targeting drugs for SLE

miRNA target-
ing drug

Chemical modifications and 
delivery system Target gene/organ

Change in 
target gene 
expression

SLE mouse model or 
human

Associated pathway (biological 
function) Reference

miR-7 
atagomirs

- PTEN ↑ MRLlpr/lpr mice Downregulation of PTEN/AKT 
signaling promoted B-cell differen-
tiation into plasmablasts/plasma 
cells and spontaneous germinal 
center (GC) formation

[56]

miR-16 
agomirs

- differentially
expressed in
chondrocytes 2
(DEC2)

↓ Fcγ receptor 
II-b-defi cient
(Fcgr2b－/－) mice

Inhibition of mesangial cell prolifer-
ation and inactivation of the TLR4 
signaling pathway

[88]

adenovirus
encoding 
miR-23b

adenovirus encoding MRLlpr/lpr mice Suppression of the severity of renal 
lesions, including the proliferation 
of glomerular cells and the infiltra-
tion of periglomerular, perivascular, 
and interstitial mononuclear cells

[89]

PEAL 
(miR-125a)

monomethoxy
(polyethylene glycol)-poly(d,l-
lactide-co-glycolide)-poly(l- 
lysine) (mPEG-PLGA-PLL) 
nanoparticles (PEAL)

splenic T cells MRLlpr/lpr mice Alleviates SLE disease progression 
by reversing the imbalance of 
effector/regulatory T cells

[120]

miR-130b 
agomir

- IRF-1 ↓ (NZB ×NZW) F1 
lupus-prone mice

Amelioration of IFNα accelerated 
lupus nephritis

[92]

miR-146a
mimic

- RELA, IRAK1, interleu-
kin-1β (IL1β), and
IL-10 in kidney tissues

↓ MRLlpr/lpr mice Inhibition of classical and nonclas-
sical NF-κB signaling pathways

[121]

M S 2  V L P -
based delivery 
of miR-146a

bacteriophage MS2 virus-like 
particles (VLPs)

lupus-prone BXSB 
mice

Inhibition of the production of auto-
antibodies and SLE progression in 
lupus-prone mice

[111]

miR-146a
mimic

- pr is t ine - induced 
lupus mouse model 
(C57BL/6  (B6 ) 
mice)

Suppression of the pristine-induced 
pulmonary hemorrhage through type 
I IFN pathway inactivation

[122]

Anti-miR-
148a-3p 
adenovirus

adenovirus phosphatase and ten-
sin homology deleted 
on chromosome ten 
(PTEN)

↑ MRLlpr/lpr mice Inhibition of glomerular cell prolif-
eration

[94]

LNA-anti-
miR-150

locked nucleic acid (LNA) kidney Fcγ receptor 
II-b-defi cient
(Fcgr2b－/－) mice

Anti-fibrosis and anti-inflammation 
as well as reduction of the infil-
trated kidney resident macro-
phages

[123]

miR-155
antagomir

- PPARα ↑ pr is t ine - induced 
lupus mouse model 
(C57BL/6 mice)

Inactivation of NF-κB pathways 
and reduction of the progression of 
diffuse alveolar hemorrhage

[113]

miR-182-5p
antagomir

forkhead Box O1
(Foxo1)

↑ MRLlpr/lpr mice Amelioration of renal structure and 
functional impairments associated 
with LN

[96]

miR-183 mimic - mammalian target of 
rapamycin (mTOR)

↓ MRLlpr/lpr mice Inhibition of mTOR pathway [97]

miR-654 mimic - macrophage migration 
inhibitory factor (MIF)

↓ pr is t ine - induced 
lupus mouse model 
(BALB/c mice)

Suppression of the phosphorylation 
of ERK and AKT and reduction of 
downstream inflammatory cytokine 
production of MIF

[118]

LV-anti-
miR-873

Lentivirus-encoding forkhead box O1 
(Foxo1)

↑ MRLlpr/lpr mice Downregulation of the levels of 
anti-dsDNA, anti-Sm/RNP autoan-
tibodies and proteinuria and IL-17A 
production

[119]



effects of miRNA targeting agents: MRLlpr/lpr mice,  Fcγ 
receptor II-b-deficient (Fcgr2b−/−) mice,  (NZB × NZW) 
F1 lupus-prone mice,  lupus-prone BXSB mice,  and a 
pristine-induced lupus mouse model (C57BL/6 or 
BALB/c mice).  Parts of agomir,  mimic,  and antagomir 
are modified by viral encoding or the use of monome-
thoxy (polyethylene glycol)-poly(d,l-lactide-co- 
glycolide)-poly(l-lysine) (mPEG-PLGA-PLL) and 
nanoparticles (NPs) as a delivery system.  In particular,  
treatment with miR-125a-loaded mPEG-PLGA-PLL 
(PEAL(miR-125a)) NPs shows excellent therapeutic 
efficacy and safety.  By delivering miR-125a directly into 
splenic T cells with NPs,  the imbalance of effector/reg-
ulatory T cells is improved [41].  The reported miRNA 
KO mice were conventional except miR-21−/−CD4-Cre 
conditional (Table 3).  Although the disease activities of 
lupus models were improved by miRNA targeting ther-
apy and KO,  these approaches have not yet reached the 
level of clinical application.  One reason for this is the 
still-insufficient analysis of adverse events such as 
MRX34 (an miR-34a mimic),  as mentioned above.

As for new miRNA-targeting drugs for the treatment 
of SLE,  an oral miR-155 inhibitor was identified by 
using a drug discovery platform based on iterative frag-
ment-based screening by nuclear magnetic resonance 
and machine learning to identify ligands of pre-
miR-155.  This oral miR-155 inhibitor reduced not only 
miR-155 but also TNFα in a mouse model [106].  Low 
molecular weight drugs,  including those used in 
miRNA targeting therapy are an attractive alternative to 
bio log ics  such  as  b e l imumab (B en lyst a ®,  
GlaxoSmithKline),  because they can be developed and 
produced quickly and with low cost,  and because they 
can be administered orally.  Chemical modifications and 
delivery systems of miRNA,  which can expand the 
range of target tissues that ASOs reach,  are important 
for the development of SLE therapeutic agents,  because 
the expression of a specific miRNA differs among cells 
and tissues within a single SLE patient,  and one miRNA 
targets various mRNAs.
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Table 3　 miRNA knockout lupus mouse models

miRNA Target gene/organ
Change in 
target gene 
expression

SLE mouse model Associated pathway
(biological function) Reference

miR-21 3-hydroxy butyrate dehydroge-
nase 2 (BDH2)

↑ miR-21－/－CD4Cre 
conditional knockout 
mice

Enhancement of global DNA methyl-
ation and the reduction of global 
DNA hydroxymethylation and intra-
cellular iron concentration

[81]

miR-155 SH2 domain-containing inosi-
tol 5′-phosphatase 1 (SHIP-1)

↑ miR-155－/－Faslpr/lpr 
mice

Repression of serum IgG anti-dsDNA 
antibodies and kidney inflammation

[58]

miR-155 p r i s t i ne - i nduced 
miR155－/－ mice

Reduction of autoantibody levels and 
severity of nephritis and pneumonitis

[124]

miR-155 PPARα ↑ p r i s t i ne - i nduced 
miR155－/－ mice

Inactivation of NF-κB pathways and 
reduction of the progression of dif-
fuse alveolar hemorrhage

[113]

miR-155 Sphingosine -1 -phosphate 
receptor 1 (S1PR1)

↑ miR-155－/－Faslpr/lpr 
mice

Amelioration of autoimmune inflam-
mation of systemic lupus erythema-
tosus

[112]

miR-223 S1PR1 ↑ miR-223－/－Faslpr/lpr 
mice

Inhibition of CD4+ T-cell infiltration 
into the kidney tissue

[78]

miR-451a IFN regulatory factor (IRF) 8 ↑ miR-451a－/－Faslpr/lpr 
mice

Repression of enlargement of the 
spleen and reduction of the urine 
protein content and immune complex 
deposits

[117]



Conclusions and Perspectives

Investigations into miRNAs involved in SLE could 
clarify the complex pathogenesis of this disease and lead 
to the development of new therapeutic agents for SLE.  
Although miRNA targeting therapies for the treatment 
of a variety of diseases have been in development,  they 
have not yet reached the clinical level in SLE and in 
other diseases.  In the future,  further research into 
chemical modifications and delivery systems of miRNA 
will help us develop novel therapeutic agents for SLE.
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