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Abstract: The fabrication of microflow channels with high accuracy in terms of the optimization of
the proposed designs, minimization of surface roughness, and flow control of microfluidic parameters
is challenging when evaluating the performance of microfluidic systems. The use of conventional
input devices, such as peristaltic pumps and digital pressure pumps, to evaluate the flow control
of such parameters cannot confirm a wide range of data analysis with higher accuracy because
of their operational drawbacks. In this study, we optimized the circular and rectangular-shaped
microflow channels of a 100 µm microfluidic chip using a three-dimensional simulation tool, and
analyzed concentration profiles of different regions of the microflow channels. Then, we applied a
deep learning (DL) algorithm for the dense layers of the rectified linear unit (ReLU), Leaky ReLU,
and Swish activation functions to train and test 1600 experimental and interpolation of data samples
which obtained from the microfluidic chip. Moreover, using the same DL algorithm, we configured
three models for each of these three functions by changing the internal middle layers of these models.
As a result, we obtained a total of 9 average accuracy values of ReLU, Leaky ReLU, and Swish
functions for a defined threshold value of 6 × 10−5 using the trial-and-error method. We applied
single-to-five-fold cross-validation technique of deep neural network to avoid overfitting and reduce
noises from data-set to evaluate better average accuracy of data of microfluidic parameters.

Keywords: microfluidics; fluid dynamics; 3D simulation; ReLU dense layers; Leaky ReLU; swish
activation functions; deep learning model

1. Introduction

Microfluidics technology is used to manipulate liquids within microfluidic networks of
microchannels, where flow-field patterns of fluids are exhibited in the form of monophasic
and multiphasic continuous flows or discrete microdroplets within the femto-to-microliter
scale (10−15–10−6 L). Owing to the small dimensions of microfluidic systems, their unique
and significant physical properties [1,2] make them versatile for a wide range of appli-
cations in material science, ecological screening, microscale physics, in vitro diagnostics
using organ-on-chips [3], drug discovery [4], high throughput screening of cancer cells for
cell therapy [5], food safety [6], automated blood cell detection and counting [7], blood
sample testing [8], and biotechnology process control [9]. Moreover, moderate, precise,
cheap, and accessible microfabrication techniques have been developed and applied in the
microfluidics field over the last two decades. These techniques involve manipulating fluid
mixtures with precise control to satisfy the requirements, making them applicable to fluid
mechanics and interdisciplinary research. External input devices such as peristaltic pumps,
digital pressure machines, and digitally modulated pressure controllers are probably the
simplest conventional mechanisms for generating set values of microfluidic parameters
(such as the fluid flow rate and pressure drop) [10] and analyzing the manipulation of
different fluid mixtures through microflow channels of microfluidic systems. Moreover,
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these input devices generate pulsatile and oscillating fluid flow [11] through the microflow
channels. The parameters can vary from their original generating values to instantaneous
effective values of different microfluidic parameters, such as the pressure drop, velocity,
volumetric flow rate, and diffusivity. Readings of microfluidic parameters, such as the
volumetric flow rate and pressure drop, can be selected from random calibration using
these devices as inputs to obtain a limited number of experimental measurement data [10],
laser scanning image data [12] and microparticle image velocimetry data [13]. However,
the output readings obtained using the trial-and-error method through the random cali-
bration of such input devices do not confirm the full accuracy of the microfluidic system
performance. For the known measured output values, the input values generated using the
devices cannot reveal the corresponding effective input values of microfluidic parameters
experimentally. Moreover, real-time experimental measurements using the trial-and-error
method are time-consuming and associated with human-controlled errors if high precision
of the analyzed data is required.

Deep learning [14–16] and Machine learning (ML) algorithms [17,18] improve the
accuracy of microfluidic system performance because they process large amounts of data
from experiments, field measurements, and large-scale numerical simulations [19] in fluid
dynamics. Therefore, DL and ML facilitate modular and agile modeling frameworks for
solving many problems in fluid mechanics, such as experimental data processing, reduced-
order modeling, shape optimization, turbulence closure modeling, and control. Moreover,
DL and ML can significantly reduce the measurement time by determining the exact input
values corresponding to the measured output values of the microfluidic parameters of the
designed microfluidic chip. Zheng, Jiahao et al. [20] summarized the state-of-art review of
artificial intelligence (AI) in microfluidics using tables 1–3 of their article.

In this study, we proposed five-to-seven layers-based a DL algorithm to configure
three different models for each of three basic activation functions of deep neural networks
(DNNs), called dense layers of rectified linear unit (ReLU) [21,22], Swish [23,24] and, Leaky
ReLU [25,26] activation functions. We configured the DL model as simple as possible.
Because we employed to train up to 1600 experimental and interpolated data samples from
capillary-design-based microflow channels of a microfluidic chip. For such small data-set,
we did not employ any other complex DL algorithm. The advantages of using the above-
mentioned three basic functions of DNN over others AI-based microfluidic technology are
to reduce the computational complexity, cost and operational congestion. Before applying
the DL model, the designed microfluidic chip was optimized using the simulation scale of a
three-dimensional (3D) simulation tool. We analyzed the concentration profiles of different
regions of the microflow channels to clarify the flow dynamics of the mixture of two buffer
solutions with pH values of 4 and 10. Such an analysis is significant for optimizing the
microflow channels and determining the data measurement range, specifically in terms
of velocity and volumetric fluid flow rate. Therefore, we selected each set value of the
volumetric fluid flow rates as inputs, ranging from 0.001 to 4.2 mL/min. We measured the
corresponding outputs of the volumetric fluid flow rates at the outlet well of our designed
a 100 µm height of the rectangular and circular channels-based microfluidic chip, and
made the interpolation of data samples. Initially, in case of ReLU function, we applied
a single train-validation-test split technique of a simple DL algorithm to obtain training
and validation losses with respect to 20 epochs for the defined threshold value of 10−5.
However, they caused overfitting during the data-learning process. Therefore, we applied
another DL algorithm of dense layers of ReLU, Swish and Leaky ReLU to test the data by
configuring three different models for each of them. However, we kept each model same
except the change in internal middle layers of the DL algorithm. As a result, total 9 average
accuracy values obtained for the defined threshold value of approximately 6 × 10−5 using
the trial-and-error method. It evaluated percentages of average accuracy values for all basic
functions using the k-fold cross-validation technique [27–29]. This k-fold cross-validation
technique reduced the noise and avoided overfitting from data samples. In this study,



Micromachines 2022, 13, 1352 3 of 13

we used a single-to-five-fold cross-validation technique. Here, sample data trained with
epochs of 20 and batch size of 50.

2. Materials and Methods
2.1. Simulation for Microfluidic Channel Optimization

A 3D simulation tool was used to optimize the dimensions of the microflow channels
of the microfluidic chip. We followed the similar steps of the simulation algorithm of
sub-section A of the article of Ahmed et al. [10] where, the geometric details of the designed
structure (Figure 1) were used as input data to simulate the multiphase flow of the two
pH buffer fluids. From Table II of the article of Ahmed et al. [10], we took viscosities
and densities of individual and mixed pH 4 and 10 buffer solutions. We activated all
governing equations associated with the mass, momentum, and energy conservation of
fluid dynamics, followed by the sub-sections B and C (governing equations and numerical
settings) and Appendix C of the article of Ahmed et al. [10]. We considered surface
roughness (0.001 µm) value inside the microfluidic channels before running the simulator.
Then, using 3D simulation tool, we made cross-sections of different regions of flow patterns
of two pH fluids to reveal concentration profiles of microflow channels to clarify the
behavior of flow dynamics. Moreover, from the simulation, we observed the distribution of
charge particles within the inner regions of microflow channels of the microfluidic chip.

Figure 1. Using a 3D tool, geometric details of the designed 3D structure drafted to prepare a replica
mold of PDMS-made microfluidic chip.

2.2. Fabrication of Microfluidic Chip and Experiments for Data Measurements

In this study, polydimethylsiloxane (PDMS)-made circular and rectangular microflow
channels with a height of 100 µm rectangular channels-based a microfluidic chip of two inlet
wells and an outlet well were designed. The channels drafted using a 3D tool and printed
using a 3D printer (Agilista-3100; serial no.: 96M14458). Next, the 3D-printed structure
was poured with a Sylgard® 184 silicone elastomer base agent and a Sylgard®184 silicone
elastomer curing agent (manufactured by Dow Corning (Midland, MD,USA)) at a ratio of
10:1 to prepare the replica mold of the PDMS-made microfluidic chip for performing the
laboratory experiments. The 3D structure drafted using the 3D tool is depicted in Figure 1.
A digital pressure machine (Model fusion 710, Chemyx Inc., Stafford, TX, USA) employed
to generate two buffer solutions with pH values of 4 and 10 to measure the volumetric fluid
flow rates at the outlet well of the microfluidic chip. For the micro-fabrication process of the
microfluidic chip, we employed similar procedure of sub-section B of method section [10]
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and experiments section [12]. Using Equation (A1) of appendix A of the article of Ahmed
et al. [10] and different dimensions of wells of Figure 1, the microfluidic resistances of two
inlet wells and a outlet well calculated. From the set values of fluid flow rates, Qinlet1 and
Qinlet2 (mL/min) of the digital pressure machine, we first calculated pressure drop across
two inlet wells, Pinlet1 and Pinlet2 using Equation (1) of the article of Ahmed et al. [10]. In
addition, average velocities at two inlet wells, Vinlet1 and Vinlet2 calculated from Equation
(A4) of appendix A of the article of Ahmed et al. [10] and diameters of two inlet wells
of Figure 1. During the measurement, the mixed two pH solutions were flushed-out
automatically into a beaker through a tube from the outlet well for a certain estimated total
measurement time of 32 min. Subsequently, for each output reading, we calculated the
volume of the flushed-out pH solutions from the total occupied volume of mixed solutions
within the beaker in milliliter. As a result, we obtained volumetric fluid flow rates, Qoutlet
(mL/min) at the only outlet well from the experimental measurement data (Figure 2). Then,
from Equation (A4) of appendix A of the article of Ahmed et al. [10], we calculated average
velocities, Voutlet and pressure drops across the only outlet well, Poutlet using Equation (1)
of the article of Ahmed et al. [10]. At the final step, we made the interpolation of data
samples to obtain 1600 data of corresponding microfluidic parameters. The calculated
values of microfluidic resistances and other parameters are available in the excel file with
the processed data used for DNN analysis (see Supplementary Materials).

Figure 2. Using digital pressure machine, experimental measurement set up of a PDMS-made
microfluidic chip to determine data of microfluidic parameters.

2.3. Dense Layers of ReLU, Swish, and Leaky ReLU of DL Model

Dense layers of ReLU are widely used for training processed data and testing data
samples with the predicted DL model. As an activation function similar to other functions,
the ReLU can determine the output of the designed model, computational efficiency,
and accuracy. In contrast, Swish is an alternative and newly developed scalar activation
function, which adopts a scalar as the input and outputs the scalar because scalar activation
functions can be utilized instead of the ReLU basic function without changing the main
network architecture. The Leaky ReLU is another activation function, an improved version
of ReLU. Leaky ReLU exhibits all ReLU properties except the dying problem of the ReLU
function. Generally, the training data-set for the DL approach contains tens of thousands of
sample data. A larger data-set made the DL model grow deeper, and thus, the prediction
accuracy increased. At the Preliminary step, a DL model of a single train-validation-test
split technique applied to obtain training and validation losses with respect to 20 epochs for
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the defined threshold value of 10−5 in case of ReLU function. The designed DL algorithm’s
internal architecture of dense layers of the ReLU function is depicted in Figure 3. However,
our running DL model on small data-set could cause overfitting [30–32]. We had a sample
size of only 1600 data; therefore, we maintained the model as simple as possible. In the
next step, we attempted a new DL model, which contained only nine layers of densely
connected deep neural networks. The ReLU, Leaky ReLU, and Swish functions used as
basic and simple activation functions in this model. Figure 4 shows the newly-designed
algorithm of the internal architecture of the dense layers of the ReLU, Leaky ReLU, and
Swish basic functions to analyze the microfluidic parameter data. Keras was used for the
implementation. Among the data, 90% was used for training, and 10% was used for testing.
The Adam optimizer was used, and each loss function was calculated using the mean
squared error.

Figure 3. The algorithm of the internal architecture of the dense layers of the ReLU basic activation
function of DL model.

Figure 4. The algorithm of the internal architecture of the dense layers of the ReLU, leaky ReLU, and
Swish basic functions applied to analyze the microfluidic parameter data.

Based on the continuity equation and Hagen’s law of fluid dynamics, we used the same
set values of the volumetric fluid flow rates at each of the two inlet wells and volumetric
fluid flow rate at the outlet well as input parameters. In addition, we adopted the velocities
at the two inlet wells and an outlet well and the pressure drop at each of the two inlets and
one outlet as output parameters. That is, we considered two input parameters and five
output parameters for the DNN. Our aim is to predict the possible inputs for the desired
output parameters. Therefore, real-time input was selected as the output (Voutlet, Vinlet,
Pinlet1, Pinlet2 and Poutlet), and real-time output was adopted as the input (Qinlet and Qoutlet)
to set up the DNN. The steps to implement the microfluidic data-set analysis from the
perspective of DL analysis are as follows.

2.3.1. Prediction of Possible Inputs

As previously mentioned, the objective is to assume possible inputs for the desired
output parameters. For this purpose, the real-time input was adopted as the output and
the real-time output as the input for the designed DNN algorithm. In the computer coding,
Qinlet and Qoutlet denoted as C1 and Cout respectively [33].
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2.3.2. Establishment of Deep Neural Network Model

Each of DL models (Figures 4 and 3) was generated using Keras and TensorFlow [34,35].
We split the dataset into a training set (90%) and a test set (10%) of the input and output
parameters using the train_test_split function, called from the sklearn library [36]. This
indicated that our data were ready for setting up a DL model [33]. It is mentioned already
that real-time input data were the output, and real-time output data were used as the input
for the DL model. Therefore, to generate this model, we used five input data and two
output data for the DL approach. In this case, we used a sequential model as the linear
stack of layers, where we passed a list of layers to the constructor. The designed model
satisfied the following technical specifications.

• The first layer, called the input layer, has an input shape to set an input size of 5 that
matches the training data.

• Next, weights of the output shape of dense layers of 10, 50, 100, and 50 of the ReLU
activation function are updated (Figure 3).

• In another DL model, weights of the output shape of dense layers of 10, 25, 50, 100, 100,
50, 25, and 10 of the ReLU, Swish, and Leaky ReLU activation functions are updated
(Figure 4).

• Finally, the output layer has a weight update of two units of the ReLU dense layers.

2.3.3. Training of Model

We trained a classifier on the trained data, tuned the data using the validation set, and
evaluated the final performance on the test data-set. Initially, by training the data with
20 epochs, we obtained training and validation losses from the single train-validation-test
split technique of training and test data for the threshold value of 10−5(in case of the ReLU
function). We used a simple algorithm to develop a DL model (Figure 3). However, this
single-splitting technique caused overfitting and noise inside data samples. As a result,
we designed another DL algorithm (Figure 4) for the dense layers of ReLU, Leaky ReLU
and Swish using single-to-five-fold cross validation technique. For all three different basic
activation functions, we used the same DL algorithm. However, if the middle layers are
varied, each model is different. These middle layers either removed or added to change the
depth of the model and, tested the performance of each model with the effect of mid-size
DL model. Moreover, we established each model to consider a small number of layers (five-
to-seven layers) to avoid overfitting in data-set. Otherwise, it might show biased results
due to overfitting. Therefore, we applied k-fold cross-validation to avoid overfitting and
improve the average accuracy values by repeating the cross-validation of the single-fold
to up to five-fold. We generated three models for each of three basic activation functions
by varying internal middle layers of the proposed algorithm and, got total nine average
accuracy values from them (using the trial-and-error method). The test data were compared
with the predicted DL model within the set threshold value of 6 × 10−5 in each case. We
trained our model with epochs [37,38] of 20 and a batch size [39,40] of 50.

3. Results
3.1. Concentration Profiles of Different Microflow Regions Revealed from Simulations

At the two inlet wells, the same set values of volumetric fluid flow rates (for example,
1.82 mL/min at the two inlets) were applied as inputs to determine the mixture of the
multiphase flow of fluid patterns in terms of the velocity profile through 100 µm rectangular
microflow channels. The objective of this optimization is to determine the charge particle
distribution in different regions of microflow channels by revealing concentration profiles
in terms of the velocities of the mixture of the two pH buffer fluids. A slight chaotic mixing
that started at the end of the junction point, C3, towards the gateway of outlet, E, was
observed (Figure 5a). Nevertheless, the two pH buffer fluids exhibited gentle behavior up
to the middle of C3 from the two inlet points. At the junction point, the two pH buffer fluids
transferred heat, temperature, energy, and other parameters according to thermodynamics
principles, resulting in a somewhat complex mixture of both fluids. The flow dynamics
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of the charged particle distribution obtained from the simulation results are shown in
Figure 5b.

Figure 5. (a) Contour image of velocity field of two multi-phases pH 4 and 10 buffer solutions for
the 100 µm microchannels. (b) Isometric three-dimensional flow dynamics of distributed charged
particles through the microchannels path.

In the simulations, the center point of the outlet well of the microfluidic structure
was indicated as the origin location for reference. From this reference, different local
microchannel regions were cross-sectioned to produce different flow-field concentrations
in terms of the mixture velocity of the two multiphase pH buffer fluids. The cross-sectional
diagrams of different regions of the microflow channels with the reference point are shown
in Figure 6.
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Figure 6. (a) The origin (0, 0) location for reference from the center point of the outlet well of the
simulated 3D microfluidic structure to determine distances of different cross-sectional portions of
microchannels. Directions away from and toward this origin mean positive and negative distances
respectively. (b) (0, 0) origin point- cross-section of the portion of outlet. (c) 0.04 cm positive distance
with respect to the origin- cross-section of the portion of outlet. (d) 0.28 cm negative distance with
respect to the origin- cross-section of the rectangular common path. (e) 0.35 cm negative distance
with respect to the origin- cross-section of rectangular two inlet paths. (f) 0.155 cm positive distance
with respect to the origin- cross-section of the portion of the outlet.
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3.2. Dense Layers of ReLU, Swish, and Leaky ReLU Functions to Test Training Data Accuracy
with Applied k-fold Cross-Validation

At the development of small epochs, the losses for the test data exhibited a difference
for the single train-validation-test split technique (Figure 7). Here, we applied DL model
of Figure 3. However, in our generated model, with the progress of larger epochs up
to 20, the plot of training and validation losses started to reach stability points with a
narrow or no gap between them. This confirmed that the plot of these two learning
curves showed a good fit. However, continuous training of a good fit led to overfitting,
generated noise in the data-set. It might have drawbacks in model fitting or data-set
which obtained from the measurement and interpolation of data. Therefore, we decided
to apply the k-fold cross-validation technique to increase the maximum average accuracy
of 99.81% to prevent overfitting and minimize noise in the data-set. In this technique, we
trained and tested three different models for each of ReLU, Leaky ReLU and Swish of the
same DL algorithm (Figure 4), by varying (adding or removing) internal middle layers of
that designed algorithm. As a result, using trial-and-error method, we obtained total 9
average accuracy values of the above-mentioned three basic activation functions for the
set threshold value of 6 × 10−5. The comparison chart of ReLU, Leaky ReLU and Swish
activation functions with the obtained average accuracy from three different models is
given in Table 1.

Figure 7. The Graph of training and validation losses with respect to twenty (20) number of epochs
(Applying single train-validation-test split technique to DL model of Figure 3) in case of ReLU
basic function.

The chart suggests that the generated third model of Leaky ReLU achieved maximum
average accuracy of 99.81% among all basic functions. Moreover, Leaky ReLU showed
good percentage of average accuracy for each of model 2 and 3. While ReLU and Swish
had the worst average accuracy values for the third model. Overall, Leaky ReLU showed
satisfactory results for all generated models.
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Table 1. Average Accuracy chart of ReLU, Leaky ReLU and Swish functions of DNN, obtained from
the addition or removal of internal layers of the same applied DL algorithm.

Defined Threshold
Value

Basic Activation
Functions

Average Accuracy
(Model 1)

Average Accuracy
(Model 2)

Average Accuracy
(Model 3)

ReLU 91.68% 88.74% 62.06%
6 × 10−5 Leaky ReLU 94.56% 99.44% 99.81%

Swish 86.80% 94.62% 51.25%

The computer code is shown in the reference [33] using a URL link and in the sup-
plementary material section too. In addition, raw measurement and interpolation of data
samples with the processed data of microfluidic parameters and some of graphs "loss
versus epochs" with their corresponding data are available. Moreover, 9 average accuracy
values data are also available (see Supplementary Materials).

4. Discussion

We illustrated the flow diagram of procedures of this work to help the readers to
understand the simulation, experiments and programming steps for evaluating the average
accuracy of a microfluidic system (Figure 8). For the 100 µm microflow channels of the
designed microfluidic chip, we simulated the flow-field patterns in terms of the velocities
of two multiphase pH buffer fluids. Both fluids were mixed at a junction with a transfer
of temperature, energy, chemical kinetics, and other properties. The simulations were
run in an intensive 3D environment free from external atmospheric pressure. We found
that the maximum gained velocity at the end of junction point C3 towards the gateway of
outlet well E resulted from the mixture of the two buffer fluids (Figure 5a). Moreover, the
simulations help clarify the isometric 3D flow dynamics of the charged particle distribution
within different internal regions of the microflow channels (Figure 5b). In addition, we
analyzed the concentration profiles of different local regions of the internal microflow
channels of the microfluidic chip, providing guidelines for optimizing microflow channels
during the final design and printing processes.

Next, we measured the volumetric fluid flow rates at the outlet well and determined
microfluidic resistances, average velocities and pressure drops across two inlets and the
outlet well of the designed microfluidic chip. Then, the raw measurement data processed
with the interpolation of data samples. Consequently, our processed data-set consisted of
1600 samples for the analysis of three basic activation functions (ReLU, Leaky ReLU, and
Swish) of DNN. Initially, a single train-validation-test split technique utilized to design a
simplified DL model (Figure 3) for the ReLU basic activation function. However, using
that data-split technique, for such a limited data-set, a large amount of noise generated
with overfitting, which depended on how the training and test data were partitioned.
To overcome this difficulty, we applied k-fold cross-validation in which the entire data-
set was partitioned into two or more folds. In this study, single-to-five-folds approach
applied. We evaluated the best-fit model for the test data-set using the single-to-five fold
cross-validation process. Using trial-and-error method, we changed or removed internal
middle dense layers of the same applied DL algorithm (Figure 4) for the setting threshold
value of 6 × 10−5. By such internal changing, we found 3 average accuracy values from
three different models for each of ReLU, Leaky ReLU and Swish activation functions.
Thus, after training the data samples with the tested data samples within our designed
DL model, we obtained 9 average accuracy values for all activation functions, from which
Leaky ReLU showed comparatively maximum accuracy values for third established model.
The maximum accuracy of Leaky ReLU was 99.81%. Moreover, Leaky ReLU generated
comparatively good percentages of average accuracy values for all three generated models.
Such an investigation is crucial for revealing the exact input data-set corresponding to the
output data-set of microfluidic parameters based on the applied DL model. Despite the
limited number of data-set, the DL approach can provide future guidelines to train and test
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more data samples to compare the accuracy, validation and training losses for evaluating
data of microfluidic parameters.

Figure 8. Flow diagram of simulation, optimization, 3D-printing, experimental measurement, calcu-
lation of data of microfluidic parameters and DNN algorithm design to analyze the average accuracy
of such data of microfluidic parameters.

5. Conclusions

Microfluidics technology is driven by the application of different ML and DL neural
network algorithms. In this study, based on the data analysis of microfluidic parameters
for a defined threshold value of 6 × 10−5, we obtained a maximum average accuracy of
99.81% for all single fold to five folds of the Leaky ReLU function from the third generated
model among all three models. In contrast, ReLU and Swish showed poor accuracy in
case of each of third generated models. Overall, the performance of Leaky ReLU for such
evaluation of data of microfluidic parameters was excellent. The above DL analysis of
microfluidics will promote high-throughput screening of cancer cells for cell therapy and
regenerative medicine, point-of-care analysis of automated blood-cell detection, in vivo and
in vitro counting using organ-on-chips, contamination assessment of pH-controlled food
samples, and pH-level testing of blood samples in biomedical and chemical research. In
future studies, we plan to perform high-throughput sequencing of different biological and
chemical live-saving samples using microflow channels and analyze their flow dynamics.
Moreover, different images of flow-field patterns will be captured using a 3D simulation
tool and terahertz laser scanning to analyze several images of fluid flow patterns with
different DL model algorithms. Thus, we hope to develop imaging flow cytometry-directed
microfluidic technology to analyze a wide range of laser-generated imaging data using a
deep neural network to classify human and animal cells in the biomedical industry.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Excel
document S1: First data file Raw masurement data of Microfluidic parameters, PDF document S1:
second data file Processed Data of Microfluidic parameters, PDF document S2: Computer Code-ML
in microfludics simulations ipynb-Colaboratory, PDF document S3: data and corresponding graphical
analysis of loss versus epochs of ReLU, Swish and leaky ReLU, Folder S1: Leaky ReLU data of

www.mdpi.com/xxx/s1
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generated three models, Folder S2: Leaky ReLU data of generated three models, Folder S3: Swiss
model data of generated three models.
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