
Citation: Kubota, S.; Aoyama, E.;

Takigawa, M.; Nishida, T. Fibroblast

Growth Factors and Cellular

Communication Network Factors:

Intimate Interplay by the Founding

Members in Cartilage. Int. J. Mol. Sci.

2022, 23, 8592. https://doi.org/

10.3390/ijms23158592

Academic Editor: Riko Nishimura

Received: 28 June 2022

Accepted: 28 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Fibroblast Growth Factors and Cellular Communication
Network Factors: Intimate Interplay by the Founding Members
in Cartilage
Satoshi Kubota 1,*, Eriko Aoyama 2, Masaharu Takigawa 2 and Takashi Nishida 1

1 Department of Biochemistry and Molecular Dentistry, Faculty of Medicine,
Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
tnishida@md.okayama-u.ac.jp

2 Advanced Research Center for Oral and Craniofacial Sciences, Faculty of Medicine,
Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
eaoyama@cc.okayama-u.ac.jp (E.A.); takigawa@md.okayama-u.ac.jp (M.T.)

* Correspondence: kubota1@md.okayama-u.ac.jp; Tel.: +81-86-235-6645

Abstract: Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act
in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication
network factors (CCN) family is composed of six members that manipulate extracellular signaling
networks. FGFs and CCNs are structurally and functionally distinct, except for the common char-
acteristics as matricellular proteins. Both play significant roles in the development of a variety of
tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed
and grow through a process designated endochondral ossification, in which chondrocytes play the
central role. The growth plate cartilage is the place where endochondral ossification occurs, and
articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2,
one of the founding members of this family, and all of the CCNs represented by CCN2, which is
required for proper skeletal development, can be found therein. Research over a decade has revealed
direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological
outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF
and CCN genes by FGF signaling. In this review, after a brief introduction of these two families,
molecular and genetic interactions between CCN and FGF family members in cartilage, and their
biological effects, are summarized. The molecular interplay represents the mutual involvement of
the other in their molecular functions, leading to collaboration between CCN2 and FGFs during
skeletal development.

Keywords: fibroblast growth factor; cellular communication network factor; cartilage; skeletal
development; CCN2

1. Interplay by the Members of Two Distinct Families of Proteins in Cartilage

Fibroblast growth factor (FGF) and cellular communication network factor (CCN)
families are established groups of proteins with distinct structural and functional properties.
As summarized in Table 1, the mammalian FGF family consists of as many as 22 members,
whereas the CCN family has six members only. Structurally, FGFs are characterized by a
single core region containing conserved amino acid residues for specific binding to FGF
receptors (FGFRs) [1]. In contrast, CCNs are generally larger than FGFs in molecular weight
and are composed of four conserved modules linked in tandem, all of which bind to a
number of cofactors. Therefore, while FGFs are believed to reveal specific effects through
their own receptors, CCNs exert diverse effects depending upon the cofactors present in the
microenvironment [2]. However, certain members of each family share common functional
counterparts that are represented by heparan sulfate proteoglycans and FGFRs, which is
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introduced later in detail. Moreover, recent studies uncovered that these members from
CCN and FGF families directly bind to each other, and one regulates the gene expression
of the other. These findings collectively indicate the intimate interplay involved in their
molecular function. In cartilaginous tissues, members of both families are present and play
crucial roles. Therefore, it is critical to know the FGF–CCN interplay for understanding
better their molecular behaviors and biological functions in cartilage.

Table 1. Distinct properties of mammalian CCN and FGF family members.

Properties FGF Family CCN Family

Family members 22 6
Molecular weights 17–34 kD 1 26–42 kD
Molecular structure Single core region Four modules linked tandem

Receptors Specific Multiple and diverse
Function Specific Context-dependent

1 Molecular weights of the major isoforms.

2. FGF Family

The fibroblast growth factor (FGF) family is a large protein family that consists of
18 secretory signaling molecules and four proteins of intracellular functions [3,4]. Although
human FGF ligands are numbered from 1 to 23, FGF15 has not been identified, whereas
murine genome contains FGF15 and lacks FGF18 [1]. Among the 18 extracellular members,
most typical members are called canonical FGFs, acting in paracrine and autocrine fashions
under the interaction with heparan sulfate proteoglycans in the extracellular matrix (ECM)
and various FGF binding proteins. This group includes FGF-1, 2, 4, 8, 9, and 18, which all
play critical roles in cartilage development, growth, and metabolism under the interaction
with their proper receptors, FGF receptor (FGFR) 1, 2, 3, and 4 [3,4].

The FGFRs are transmembrane molecules with tyrosine kinase activity in the intracel-
lular domains and transmit the signals from high-affinity ligands upon binding to their
extracellular domains. Activation of the kinase in the intracellular domain is provoked
by the dimerization of the receptors caused by the binding of a proper ligand, leading
to the activation of mitogen activated protein kinases (MAPKs), signal transduction, and
activation of transcription (STAT) and phospholipase C (PLC) -γ [5–9]. As a result, these
15 canonical FGFs conduct essential cellular events in the early stages of development
in a variety of tissues and organs [3,4]. After development, these proteins still act as
local regulators of growth, maintenance, and regeneration of corresponding tissues and
organs. The other extracellular FGF family members are profoundly involved in phosphate
homeostasis, bile acid synthesis, and lipid metabolism as hormones, and are thus entitled
endocrine FGFs [10–13]. Finally, four intracellular members are mainly engaged in the
regulation of voltage-gated sodium channels without interaction with the abovementioned
FGFRs [5,14–16]. Furthermore, it is also known that one of the representative canonical
ligands, FGF-2, also executes its intracellular mission in the nucleus [17,18]. Recent studies
also uncovered an endocrine function of the other founding member, FGF-1, as a metabolic
hormone that prevents the development of insulin resistance [19,20]. In this way, in spite of
their structural similarities, the biological functions of FGFs turned out to be quite diverse
and beyond the functionality suggested by their original names.

3. FGFs in Cartilage

The mammalian skeleton is developed through two distinct procedures; one is in-
tramembranous ossification, and the other is endochondral ossification, in which chondro-
cytes play a central role (Figure 1) [3,21]. As a typical example, development of appendicu-
lar long bones starts from the formation of the limb bud by mesenchymal condensation.
Subsequently, all of the appendicular skeletal elements are initially produced as cartilage
by the cells grown and differentiated from the limb bud. During this limb bud formation
and patterning process, FGF-4 and -8 are known to act as key signaling molecules to de-
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termine the shape, size, and location of each skeletal element [4,22]. At this earliest stage
of chondrogenesis, FGF-2, -9, and -17 as well as FGF-4 and -8 are produced, suggesting
their fundamental role in skeletal development [3]. Endochondral ossification and articular
cartilage development start therein from the vascular invasion at the center to construct the
primary ossification center.

Figure 1. Two major modes of the ossification that constructs the human skeleton. Clavicle and cranial
bones are formed through intramembranous ossification, where osteoblasts create the prototype (left)
and grow the bone (shown in pink). Most of the other bones are initially formed by chondrocytes as
cartilage anlagen (left, shown in light blue), and chondrocytes grow them at the growth plate inside
and develop articular cartilage at the epiphysis. Along with bone growth, ECM is mineralized by
osteoblasts. In the growth plate, chondrocytes follow a serial differentiation process from resting (R),
proliferation (P), mature (M), and hypertrophic (H) stages towards ossification (bottom).

Thereafter, chondrocytes grow the bone as cartilage, following a series of differentia-
tion steps that construct a distinct structure called growth plate. Immature chondrocytes
located distant from the ossification center are at the resting stage and are thus quiescent.
Towards the ossification center, those chondrocytes gradually proliferate to increase the
number of cells, while forming characteristic columnar structures. After the prolifera-
tion stage, chondrocytes maturate and produce cartilaginous ECM. In this way, mature
chondrocytes grow the cartilaginous bone anlagen, whereas these cells continue later dif-
ferentiation to the hypertrophic stage. At this terminal stage of chondrocyte differentiation,
enlarged chondrocytes eventually disappear after producing matrix vesicles that initiates
calcium crystallization with osteoblasts. Along with the progress of bone growth and
ossification, secondary ossification centers are formed at epiphyses, leaving permanent
articular cartilage at the surface of the bone to serve as a critical component that supports
locomotive function of synovial joints. During this process after early chondrogenesis,
expression of FGF-8 with a potential to promote chondrocytic differentiation is quite low,
whereas FGF-2 is significantly expressed in these chondrocytes [3,23]. Although FGF-2-null
mice show no prominent abnormality in the growth plate, these mice are characterized by
decreased bone mass, suggesting the contribution of FGF-2 to proper endochondral ossifi-
cation [24]. Several studies with isolated chondrocytes have indicated that FGF-2 promoted
cell proliferation, whereas this canonical ligand was found to accelerate the degradation
of cartilaginous ECM [25,26]. Recent studies also unveiled the catabolic effects of another
founding member, FGF-1, on chondrocytes. Of note, FGF-1 is induced in the articular
cartilage of a rat model of osteoarthritis [27], in which articular cartilage is damaged, and
locomotive function is impaired.
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As such, these two founding members of the FGF family are regarded as pathological
as well as physiological signaling molecules in cartilage. This notion is consistent with
the fact that excess FGF signaling caused by activating mutations in the FGFR3 gene
incurs severe defects in endochondral ossification and skeletal development observed
in achondroplasia and thanatophoric dysplasia [28,29]. This catabolic outcome of excess
FGF signaling is also supported by a report showing the therapeutic potential of an anti-
FGFR antibody against osteoarthritis [30]. However, FGFR3 is distinctly demonstrated on
chondrocytes in both growth plate and articular cartilage in normal individuals, indicating
the physiological role of FGF signaling during cartilage development and maintenance. It
is known that FGF-9 and 18 are produced by perichondrium and periosteum, and mice
lacking FGF-9 and/or FGF-18 suffer from osteochondral dysplasia [3,31,32]. Additionally,
studies in vitro and in vivo suggest the anabolic effects of FGF-18 on chondrocytes [33,34].
These two ligands are thought to regulate endochondral ossification and articular cartilage
homeostasis from remote sites in a delicate manner.

4. CCN Family

Cellular communication network factor (CCN) is a relatively new family of proteins
founded in 1993 simply by combining the initial letters of the first three members [35].
The first member of this family was identified in 1989 [36], and was designated as chicken
embryonic fibroblast (CEF) 10 or cysteine-rich protein (CYR) 61. Within a few years, another
two proteins with striking structural similarities were discovered and named connective
tissue growth factor (CTGF) and nephroblastoma overexpressed (NOV) [37,38]. At this
time, these proteins were regarded as members of a distinct protein family, and the family
name was given based on the acronym of these founding members (Cyr61-Ctgf-Nov)
by Bork in 1993 [2,35]. Unlike the FGF family, this family was not named after CTGF,
owing to its molecular property. CCN2 could be regarded as a growth factor, considering
that a recombinant CCN2 produced by E. coli exerted significant mitogenic effects on
osteoblasts [39]. However, such effects observed with CCN2 purified from mammalian
cells might involve those of the co-purified minor partners, because it binds to a number
of growth factors [37,40]. Furthermore, CCN2 interacts with a variety of cell surface
receptors as well as ECM components, indicating its property as a matricellular protein
rather than a growth factor [41]. As such, the CCN family was born under a definition
that is different from the present one—cellular communication network factors. Together
with the additional three members discovered later as Wnt-induced protein 1, 2, and 3,
six members finally constitute the mammalian CCN family [42]. Subsequently, Brigstock
comprehensively explained the concept of the CCN family in 1999 [43], and two years later,
this nomenclature was adopted in 2001 by the International CCN Society [44].

Although functional identification of a signal peptide was reported only in CCN2 [45],
all of the CCN family members contain deduced signal peptides for secretion at the
N-termini and thus basically are extracellular entities. Nevertheless, a few members are
suggested to also work inside the cells, particularly in the nucleus. Indeed, CCN5 was
shown to be recruited to the promoter of the transforming growth factor-β receptor II gene
and to repress its expression in human breast cancer cells [46]. Nuclear localization of
CCN2 and CCN3 was also confirmed in human mesangial cells and osteosarcoma cells,
respectively [47,48]. Following the signal peptide, three or four cysteine-rich modules
that are highly conserved among the members are connected in tandem. These modules
are designated based on the structural characteristics: N-terminus, insulin-like growth
factor binding protein-like (IGFBP), von Willebrand factor type C repeat (VWC), throm-
bospondin 1 type 1 repeat (TSP1), and C-terminal cystine knot (CT) (Figure 2) [2,40,49,50].
Except for the hinge domain between the VWC and TSP1 modules, no other domains are
present. Using these highly interactive modules, CCN family proteins bind to a variety
of molecules in the extracellular microenvironment, such as growth factors, cell surface
receptors, and ECM components [40,41]. As a result, these proteins manipulate and tune
the extracellular signaling network, yielding highly context-dependent biological effects.
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Considering these unique molecular behaviors, in 2018 the CCN family was reborn as the
cellular communication network factor family under the approval of the human genome
organization (HUGO) upon proposal by the international CCN society (ICCNS) scientific
committee [51]. Collectively, the naming of “CCN” was proposed under a group effort by
a number of scientists.

Figure 2. Molecular structure of CCN2 and its interactions with canonical FGFs and their receptors.
Tetra-modular structure of CCN2 with a signal peptide for secretion (black triangle) and a hinge
domain (wavy line between V and T) is illustrated at the middle of the top. I, V, T, and C represent
insulin-like growth factor binding protein-like (IGFBP), von Willebrand factor type C repeat (VWC),
thrombospondin 1 type 1 repeat (TSP1), and C-terminal cystine knot (CT) modules, respectively.
Bi-directional arrows denote direct binding between the two. Out of four FGF receptors, FGFR1,
-2 and -3 are all known to bind to CCN2.

5. CCNs in Cartilage

During the development of long bones through endochondral ossification, all of
the CCN family members are differentially expressed, suggesting certain roles of all the
members in this process [52]. In developing cartilage anlages, CCN1 is detected broadly
in the proliferating and pre-hypertrophic zones, whereas CCN2 is present in the pre-
hypertrophic and hypertrophic zones around the vascular invasion sites. CCN3 is initially
induced in the regions deep inside, where ossification starts. Thereafter, this protein stays
at the end of the initial hypertrophic layer [53]; however, accumulation of CCN3 is mainly
observed in the zones with immature chondrocytes. Both CCN4 and CCN5 are observed
in the pre-hypertrophic and hypertrophic zones, and CCN6 is found around the vascular
invasion sites [52].

In articular cartilage left after the completion of skeletal development, CCN1 and
CCN2 are present, even under normal conditions, and are increased by the development of
osteoarthritis [53,54]. This induction is considered to be a reparative response against the
cartilage damage toward regeneration. In fact, exogenous addition of CCN2 or its modular
fragments onto the damaged articular cartilage accelerated its regeneration [55,56]. All of
the other members are not actively produced; however, local accumulation of CCN3 in the
restricted area between the surface and middle zones is observed [21].

Consistent with their distribution, Ccn2-null mice are lethal upon delivery due to the
severe defect in endochondral ossification [52], and mice with CCN3 with the deletion of the
VWC module develop severe joint malformation [57]. It should also be noted that cartilage-
specific overexpression of CCN2 conferred resistance to osteoarthritis in mice [58]. In
contrast, no distinct phenotypic changes were evident in the cartilage of mice lacking CCN4,
CCN5, or CCN6 [59–61], except for the expanded hypertrophic zone in the CCN4-deficient
mice [59]. Owing to the indispensable role of CCN1 in vascular development, Ccn1-null
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mice are embryonic lethal, and thus sufficient information on the effect of CCN1 depletion
in cartilage development was not obtained. Nevertheless, a subsequent study revealed
that cartilage-specific overexpression of CCN1 resulted in chondrodysplasia, indicating its
significant role in cartilage development and maintenance [54].

CCN1 and CCN2 were reported to promote the proliferation and maturation of chon-
drocytes [54,62], while CCN3 represses their proliferation and regulates their commitment
to articular chondrocytes [52,63] On the other hand, these three founding members uni-
formly promote angiogenesis [64–66]. Collectively, CCNs collaborate to initiate endochon-
dral ossification through the formation of ossification centers by their angiogenic activity.
Afterwards, CCN3 is used to keep chondrocyte resting at an early stage, while CCN1 and
CCN2 are produced at later stages to promote endochondral ossification [54,67]. In adult
articular cartilage, CCN3 distributed beneath the surface layer is thought to maintain the
quiescence and stemness of the surrounding articular chondrocytes [21], because CCN3 is
known to be a critical regulator of cellular stemness [68,69]. CCN1 and CCN2 are found
therein, probably to support the potential to proliferate and supply the cartilaginous ECM,
which is, however, insufficient to combat osteoarthritis per se.

6. Molecular Interaction between FGFs and CCNs

Because interaction with heparan sulfate proteoglycans is one of the molecular events
involved in the function of matricellular CCNs and FGFs [3,41], indirect association be-
tween CCNs and FGFs is supposed in various physiological and pathological situations
in vivo. In fact, CCN1 was reported to displace FGF-2 from the ECM of human umbil-
ical vein endothelial cells, leading to the enhancement of FGF-2 function [70]. It is also
known that both CCN2 and FGF-2 are rapidly secreted from injured cartilage, indicating
their common matricrine action [71,72]. Furthermore, experiments in vitro showed direct
interaction among CCNs, canonical FGF ligands, and receptors. Direct binding between
CCN1 and FGF-2 was first indicated by a solid-phase binding assay, which was not affected
by the enzymatic fragmentation of CCN1 by kallikrein-related peptidase 12 [73]. The
direct interaction of CCN2 with FGF-2 was more carefully confirmed by surface plasmon
resonance (SPR) and co-immunoprecipitation analyses, as well as a solid-phase binding
assay with a distinct system [74]. As a result, a dissociation constant (Kd) of 5.5 nM was
computed for the direct interaction between CCN2 and FGF-2 [74]. Extensive evaluation
with mono-modular, di-modular, and tri-modular fragments of CCN2 clarified that the
CT module was the binding interface between the two [74]. Under a similar experimental
strategy, binding between FGF-1 and CCN2 was subsequently confirmed [75]. Namely,
FGF-1 was found as a candidate of the CCN2 binding counterparts by screening a protein
array, which was subsequently confirmed by a solid-phase binding assay. The result of SPR
analysis revealed a Kd of 3.98 nM for FGF-1-CCN2 interaction [75]. Therefore, FGF-1 and
FGF-2 share CCN2 as a common functional counterpart, although it is not clear whether
these FGFs compete each other to obtain CCN2 as a partner, or not. Additionally, bind-
ing between CCN5 and FGF-2 was also indicated and was shown to be sensitive to the
proteolytic cleavage of CCN5 at the TSP1 module [73].

It is a matter of fact that FGF-1 and FGF-2 bind to their canonical receptors. Moreover,
CCN2 was found to bind to FGFR1, FGFR2, and FGFR3 [74,76], whereas, to our knowledge,
interaction between CCN2 and FGFR4 has not been reported. Proteomic screening of
CCN2-binding molecules nominated FGFR2 and FGFR3 as two of the top-three candidates
for CCN2 partners among the FGF-related proteins tested [76]. These interactions were
confirmed by solid-phase binding assays, which indicated a stronger affinity of FGFR2
to CCN2 than FGFR3. According to the result of SPR analysis, the Kd between CCN2
and FGFR2 was 7.91 nM. Interestingly, CCN2 rather enhanced the molecular association
between FGFR2 and its canonical ligands, FGF-2 and FGF-4, suggesting their collabo-
ration [76]. Actually, canonical FGF signaling as represented by MAPK activation was
enhanced by the addition of CCN2 to osteoblastic cell culture [76]. FGFR1 was not included
as one of the highly-ranked candidates in the proteomic screening above; however, direct
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interaction of this FGF receptor with CCN2 was solidly confirmed by the combination of
solid phase, SPR, and co-immunoprecipitation analyses [74]. These direct interactions are
summarized in Figure 2, with CCN2 at the center.

7. FGF–CCN Collaboration in Cartilage

In the growth plate cartilage, resting chondrocytes express FGFR2 at a modest level,
whereas proliferating chondrocytes demonstrate abundant FGFR3 [3]. Afterwards, ex-
pression of this receptor decreases before hypertrophy, and pre-hypertrophic and hyper-
trophic chondrocytes show high levels of FGFR1 demonstration [3]. Because FGF-1, CCN2,
and these FGFRs are distributed in the growth plate, the interactions of these signaling
molecules and receptors are involved in the process of endochondral ossification in a
zone-specific manner. FGFR3 displayed on proliferating chondrocytes transmit signals
from FGF-2 to promote the proliferation of immature chondrocytes in this zone through
FGFR3, where CCN2 expression is not prominent, and thus the biological significance
of CCN2–FGF-2 molecular interaction is obscure. However, as stated in the last section,
CCN2 expression is dramatically induced before hypertrophic differentiation, while FGFR1
is dominantly demonstrated on the chondrocytes in the pre-hypertrophic and hypertrophic
zones. Therefore, the physiological significance of CCN2–FGF-2–FGFR1 interaction is
strongly suggested therein.

Considering the restricted expression of FGFR1 in hypertrophic chondrocytes, the FGF
signal through this particular receptor is supposed to play a central role in the terminal
differentiation of chondrocytes in this zone. Regarding the ligands, both FGF-2 and CCN2
bind to FGFR1 and promote the hypertrophic differentiation of chondrocytes, enhancing
the expression of hypertrophic marker genes. Interestingly, although CCN2 binds to FGFR1,
this molecule neither provokes FGF signaling by itself, nor acts as an antagonist that in-
terferes with the activation of FGFR activation by FGF-2, suggesting that FGF-2–CCN2
heterodimer is also capable of activating FGFR1 (Figure 3) [74]. In addition, a recent study
revealed that CCN2 can be proteolytically processed into biologically active C-terminal
sub-fragments that comprise TSP1 and CT modules [77]. Generation of such C-terminal
fragment has actually been confirmed in human chondrocytic cell cultures [74,78]. More-
over, a CCN2 fragment containing the CT module was found to directly bind to FGF-2,
whereas the TSP1 module did not [74]. Importantly, this CT module does not bind to
FGFR1, but inhibited the signal transduction from FGF-2 to the downstream MAPKs [74].
Excess and early canonical FGF signal during endochondral ossification results in the
compression of the growth plate, as observed in achondroplasia. CCN2 is produced from
the chondrocytes before hypertrophic differentiation and in regulating the proper onset of
this terminal cellular event, probably via the formation of C-terminal sub-fragments that
regulate the signal through FGFR1.

Figure 3. Multimolecular interactions among FGF-2, FGFR1, CCN2, and its single modular sub
fragment. Activated form of FGFR1 is represented by stars in red, whereas silent form is represented
by spheres in light blue. Letters indicate the same modules defined in Figure 2, with the exception
of F, which denotes FGF-2.
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Under physiological conditions, FGF-1 and CCN2 do not usually meet in cartilage.
Nevertheless, FGF-1 was reported to appear in articular cartilage upon cartilage injury and
provoke catabolic response and ectopic hypertrophy in articular chondrocytes, leading
to osteoarthritic cartilage degeneration [27]. Of note, FGFR1 is demonstrated on articular
chondrocytes, and the signals through this receptor are indicated to promote cartilage
degradation. Exogenous application of CCN2 is known to ameliorate this pathological
state of articular cartilage in vivo [55], where CCN2, FGF-1, and FGFR1 could meet, and
their direct interaction is assumed, but its biological significance is still unclear. In articular
cartilage, the co-presence of CCN2 and FGF-2 was indicated in the pericellular matrix
of chondrocytes [72], and the roles of these two proteins in osteoarthritis development
is highly controversial. In one study, postnatal and cartilage-specific deletion of floxed
CCN2 by tamoxifen-inducible Cre under the control of an Acan promoter conferred no
significant effect on OA development [79], and global CCN2 deletion after birth by hu-
man ubiquitin C promoter-driven Cre even added resistance against OA in the other [72].
The difference between the two suggests some role of CCN2 acting in paracrine and/or en-
docrine fashions in OA development. However, paradoxically, constitutive overexpression
of CCN2 by a Col2a1 promoter protected the cartilage from OA [54]. Of interest, deletion
of the larger isoform of FGF-2 protected mice from OA, whereas ablation of the smaller
isoform accelerated OA development [80]. These findings may represent isoform- and
context-dependent roles of FGF-2 as well as CCN2, behind which the intimate interplay
among these ligands and receptors exists.

8. FGF–CCN Genetic Interaction in Chondrocytes

To date, no reports directly show regulation of the gene expression of FGF family
members by a CCN family member, despite evidence that indicates possible intracrine
function of a few CCN family members as transcription factors [46–48]. Similarly, little
information has been available on the regulation of CCN family gene expression by the FGF
signaling. Nevertheless, recent studies revealed a clear-cut regulation of CCN2 at a tran-
scriptional level by canonical FGF signaling in chondrocytes [81]. Namely, FGF-1, one of the
founding members of the FGF family, was found to strongly repress the expression of this
CCN family founder. This effect of FGF-1 was accompanied by other catabolic responses
represented by the strong induction of MMP-13 expression and decreased expression of the
genes encoding cartilaginous ECM components. At the same time, FGF-1 expression was
strongly enhanced, which amplified the outcome of the FGF signaling through a positive
feedback loop (Figure 4). Surprisingly, this simultaneous CCN2 repression and FGF1 induc-
tion by FGF-1 were mediated by the same transcription factor, forkhead box protein A1
(FOXA1) [81]. FOXA1 is a representative member of a huge family of transcription factors.
The FOX family is divided into 19 subgroups that start from FOXA group containing this
protein as the first member [82]. Using their forkhead DNA binding motifs, these proteins
bind directly to DNA in the chromatin structure, and FOXA1 indeed binds to the proximal
enhancers in both CCN2 and FGF1 loci [82]. Regarding this bidirectional effect mediated by
a single transcription factor, it is of particular note that FOXA1 either enhances or represses
the target gene expression, depending upon the biological context and transcriptional
microenvironment. Physiologically, this bipartite regulation could be a critical component
of the biological system that induces hypertrophy in growth plate chondrocytes. Upon
the hypertrophic differentiation of chondrocytes, FGFR1 emerges and MMP-13 is induced
with a rapid decrease in CCN2 expression after reaching the peak at the pre-hypertrophic
stage. From a pathological point of view, this bidirectional regulation by FOXA1 is highly
suspected to be involved in the development of osteoarthritis. FGF-1 induces catabolic
responses in chondrocytes, which is amplified by the positive feedback loop, together with
the simultaneous suppression of a cartilage regenerative factor, CCN2 (Figure 4). This
event can be triggered by another FGF family member, FGF-8, which was induced along
with the osteoarthritis development in a mouse model [83,84].
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Figure 4. Integrated bidirectional regulation of FGF1 and CCN2 by the FGF signal in chondrocytes.
Canonical FGF signaling emitted by FGF-1 induces FOXA1 to activate FGF1 and repress CCN2
simultaneously. Activation of FGF1 results in the formation of a positive feedback loop to amplify
the outcome of this bipartite regulation. Synergistic cartilage degeneration would be induced by
enhancing the catabolic effects of the FGF signal and repressing the anabolic effects of CCN2. Objects
on FGF1 and CCN2 stand for transcriptional co-activator and co-repressor, respectively.

It is not clear whether this FOXA1-mediated FGF–CCN2 genetic interaction is working
specifically in chondrocytes or is a universal molecular events in various types of cells.
It is known that FOXA1 binds to CCN2 and FGF1 in HEPG2 hepatocellular carcinoma
cells. Metabolically, CCN2 supports glycolysis in chondrocytes, whereas FGF-1 suppresses
lipolysis and hepatic glucose production. Therefore, this FGF–CCN2 genetic interaction
may be utilized in a number of cells, particularly in hepatocytes, in order to maintain the
systemic homeostasis of energy metabolism.

9. Mechanism of the Integrated FGF–CCN Regulation in Chondrocytes

The mechanism of how a single transcription factor, FOXA1, could regulate two
distinct genes, FGF1 and CCN2, is not yet clear. It is at least indicated that class I histone
deacetylases (HDACs) plays a significant role, both in FGF1 upregulation and CCN2
down regulation, because the bipartite effects of FGF-1 were abolished by class I HDAC
inhibitors [81]. It is probable that HDACs contributes to the formation of the general
chromatin status required for transcriptional regulation in concert with FOXA1. This
finding is consistent with the molecular property of FOXA1 as a pioneer factor that opens
the condensed chromatin into an accessible form [85]. Thereafter, in order to realize
this bidirectional gene regulation distinctively, efficient and precise recruitment of target-
specific cofactors is required. Although a number of transcription factors were reported
to interact with and regulate CCN2 and FGF1, it is unclear which factors are recruited to
each locus due to the activation of canonical FGF signaling. Nevertheless, it is suspected
that FOXA1 plays a crucial role other than as a pioneer factor in the stable locus-dependent
recruitment of cofactors.

Highly locus-specific transcriptional regulation is thought to be enabled within a
membrane-free microcompartment known as liquid droplets, which are constructed through
the liquid–liquid phase separation (LLPS) process [86]. Most of the membrane-free subcel-
lular structures in the nucleus and cytoplasm, such as nucleoli, paraspeckles, Cajal bodies,
nuclear speckles, and stress granules, are formed through this physicochemical process.
LLPS is also utilized for realizing independent transcription regulations occurring simulta-
neously in the nucleus [87]. Into the droplet formed around a locus, the factors necessary for
the proper transcriptional regulation are recruited and condensed without being mixed up
with other proteins in the nucleus. To undergo LLPS, two critical components are required;
one is proteins with intrinsically disordered regions (IDRs), and the other is RNA molecules
represented by long noncoding RNAs (lncRNAs) [88]. In this context, it is of particular note
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that RNA polymerase II, which produces mRNAs and lncRNAs, was shown to induce LLPS
via its IDR [89], suggesting that LLPS may take place around all the transcriptionally active
loci of protein coding genes. Furthermore, we found that FOXA1 could be an IDR protein
by analyzing the primary structure of this protein in silico (unpublished data). Owing to
the presence of FOXA1, droplets around CCN2 and FGF1 could be more stable, providing a
closed nano environment, in which each gene can be regulated in a highly independent
fashion. As such, not only as a pioneer factor to open the chromatin up, FOXA1 may now
be regarded as a nuclear mediator that contributes to the clear-cut bidirectional regulation
of the target genes by promoting LLPS, supporting the genetic interaction of CCN2 and
FGF1 with its autoinduction loop. Considering these functionalities of FOXA1, this protein
does not seem to be involved in the selective recruitment of cofactors for CCN2 and FGF1
loci. It is probable that RNA, the other principal component of droplets, is playing a certain
role in the locus and context-dependent selection of cofactors to be invited therein.

10. Conclusions

The molecular interaction of CCN2 with FGF family members other than FGF-1 and
FGF-2 has not been investigated. However, as CCN2 binds directly to three out of four
FGFRs and HSPG, the involvement of CCN2 in the events caused by all of the canonical and
hormone-like FGF ligands is expected. Especially, interaction between CCN2 and Klotho
co-receptors appears to be worth investigating, because it could enable tissue-specific
response to endocrine FGF-1, FGF-19, FGF-21, and FGF-23 through the regulation of CCN2
production. From a metabolic point of view, direct and indirect interplay between CCN2
and FGF-21, as well as FGF-1, is an interesting topic. In this context, CCN3, which is
a CCN family member with molecular functionalities counteracting CCN2, needs to be
investigated, as the hormonal function of CCN3 and its association with obesity, diabetes,
and insulin resistance were pointed out.

In addition to FGF-1, FGF-2, FGFR1, FGFR2, and FGFR3, proteomic analysis picked up
FGF-10, FGF-12, FGF-13, and FGF-16 as potential candidates that may bind to CCN2 [70]. In
spite of there being no evidence indicating the molecular interactions between FGFs/FGFRs
and CCN family members except for CCN2, direct binding of the other CCN family
members with FGF ligands and FGFRs is highly suspected, considering the molecular
nature of CCN family members with four highly interactive modules. Regarding indirect
binding, CCN1 and CCN3 are able to interact with FGF ligands and receptors via HSPG.
However, only a few reports, including a very recent one indicating the regulation of CCN2
by FGF-18, have unveiled the genetic interaction between FGFs and CCN2 only. Proteomic
and other genome-wide analyses are necessary in order to obtain an integrated view of the
molecular and genetic interplay between these two families of signaling molecules.

Author Contributions: S.K. constructed the concept of this review article and composed the draft.
E.A., M.T. and T.N. provided the necessary information and reviewed the draft. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by JSPS KAKENHI, Grant Numbers JP19H03817, JP20K20611,
JP20K09889, and JP21H03105.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Yoshiko Miyake for her secretarial assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ornitz, D.M.; Itoh, N. Fibroblast growth factors. Genome Biol. 2001, 2, REVIEWS3005. [CrossRef] [PubMed]
2. Perbal, B. CCN proteins: Multifunctional signalling regulators. Lancet 2004, 363, 62–64. [CrossRef]
3. Ornitz, D.M.; Marie, P.J. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015, 29, 1463–1486.

[CrossRef] [PubMed]

http://doi.org/10.1186/gb-2001-2-3-reviews3005
http://www.ncbi.nlm.nih.gov/pubmed/11276432
http://doi.org/10.1016/S0140-6736(03)15172-0
http://doi.org/10.1101/gad.266551.115
http://www.ncbi.nlm.nih.gov/pubmed/26220993


Int. J. Mol. Sci. 2022, 23, 8592 11 of 14

4. Ornitz, D.M.; Marie, P.J. Fibroblast growth factors in skeletal development. Curr. Top. Dev. Biol. 2019, 133, 195–234.
5. Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266.

[CrossRef]
6. Su, W.C.; Kitagawa, M.; Xue, N.; Xie, B.; Garofalo, S.; Cho, J.; Deng, C.; Horton, W.A.; Fu, X.Y. Activation of Stat1 by mutant

fibro-blast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997, 386, 288–292. [CrossRef]
7. Kouhara, H.; Hadari, Y.R.; Spivak-Kroizman, T.; Schilling, J.; Bar-Sagi, D.; Lax, I.; Schlessinger, J. A lipid-anchored Grb2-binding

protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997, 89, 693–702. [CrossRef]
8. Tan, Y.; Rouse, J.; Zhang, A.; Cariati, S.; Cohen, P.; Comb, M.J. FGF and stress regulate CREB and ATF-1 via a pathway involving

p38 MAP kinase and MAPKAP kinase-2. EMBO J. 1996, 15, 4629–4642. [CrossRef] [PubMed]
9. Mohammadi, M.; Honegger, A.M.; Rotin, D.; Fischer, R.; Bellot, F.; Li, W.; Dionne, C.A.; Jaye, M.; Rubinstein, M.; Schlessinger, J.

A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2
domain of phospholipase C-gamma 1. Mol. Cell Biol. 1991, 11, 5068–5078. [PubMed]

10. Jones, S. Mini-review: Endocrine actions of fibroblast growth factor 19. Mol. Pharm. 2008, 5, 42–48. [CrossRef]
11. Kharitonenkov, A.; Shiyanova, T.L.; Koester, A.; Ford, A.M.; Micanovic, R.; Galbreath, E.J.; Sandusky, G.E.; Hammond, L.J.;

Moyers, J.S.; Owens, R.A.; et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005, 115, 1627–1635. [CrossRef] [PubMed]
12. Yu, X.; White, K.E. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 2005, 16, 221–232. [CrossRef]

[PubMed]
13. Shimada, T.; Kakitani, M.; Yamazaki, Y.; Hasegawa, H.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Tomizuka, K.; Yamashita, T. Targeted

ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest.
2004, 113, 561–568. [CrossRef] [PubMed]

14. Goldfarb, M.; Schoorlemmer, J.; Williams, A.; Diwakar, S.; Wang, Q.; Huang, X.; Giza, J.; Tchetchik, D.; Kelley, K.; Vega, A.; et al.
Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels.
Neuron 2007, 55, 449–463. [CrossRef]

15. Wang, C.; Hennessey, J.A.; Kirkton, R.D.; Graham, V.; Puranam, R.S.; Rosenberg, P.B.; Bursac, N.; Pitt, G.S. Fibroblast Growth
Factor homologous factor 13 regulates Na+ channels and conduction velocity in murine hearts. Circ. Res. 2011, 109, 775–782.
[CrossRef]

16. Lou, J.Y.; Laezza, F.; Gerber, B.R.; Xiao, M.; Yamada, K.A.; Hartmann, H.; Craig, A.M.; Nerbonne, J.M.; Ornitz, D.M. Fibroblast
Growth Factor 14 is an intracellular modulator of voltage-gated sodium channels. J. Physiol. 2005, 569, 179–193. [CrossRef]

17. Baldin, V.; Roman, A.M.; Bosc-Bierne, I.; Amalric, F.; Bouche, G. Translocation of bFGF to the nucleus is G1 phase cell cycle
specific in bovine aortic endothelial cells. EMBO J. 1990, 9, 1511–1517. [CrossRef]

18. Sherman, L.; Stocker, K.M.; Morrison, R.; Ciment, G. Basic fibroblast growth factor (bFGF) acts intracellularly to cause the
transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 1993, 118, 1313–1326.
[CrossRef]

19. Suh, J.M.; Jonker, J.W.; Ahmadian, M.; Goetz, R.; Lackey, D.; Osborn, O.; Huang, Z.; Liu, W.; Yoshihara, E.; van Dijk, T.H.; et al.
Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 2014, 513, 436–439. [CrossRef]

20. Gasser, E.; Moutos, C.P.; Downes, M.; Evans, R.M. FGF1: A new weapon to control type 2 diabetes mellitus. Nat. Rev. Endocrinol.
2017, 13, 599–609. [CrossRef]

21. Kubota, S.; Kawaki, H.; Perbal, B.; Kawata, K.; Hattori, T.; Nishida, T. Cellular communication network factor 3 in cartilage
development and maintenance. J. Cell Commun. Signal 2021, 15, 533–543. [CrossRef]

22. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 1998, 12, 1571–1586. [CrossRef]
23. Gonzalez, A.M.; Hill, D.J.; Logan, A.; Maher, P.A.; Baird, A. Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1

messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr. Res 1996, 39, 75–385. [CrossRef]
24. Montero, A.; Okada, Y.; Tomita, M.; Ito, M.; Tsurukami, H.; Nakamura, T.; Doetschman, T.; Coffin, J.D.; Hurley, M.M. Disruption

of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J. Clin. Invest. 2000, 105, 1085–1093.
[CrossRef]

25. Schmal, H.; Zwingmann, J.; Fehrenbach, M.; Finkenzeller, G.; Stark, G.B.; Südkamp, N.P.; Hartl, D.; Mehlhorn, A.T. bFGF
influences human articular chondrocyte differentiation. Cytotherapy 2007, 9, 184–193. [CrossRef]

26. Im, H.J.; Li, X.; Muddasani, P.; Kim, G.H.; Davis, F.; Rangan, J.; Forsyth, C.B.; Ellman, M.; Thonar, E.J. Basic fibroblast growth
factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J. Cell Physiol.
2008, 215, 452–463. [CrossRef]

27. El-Seoudi, A.; Abd El Kader, T.; Nishida, T.; Eguchi, T.; Aoyama, E.; Takigawa, M.; Kubota, S. Catabolic effects of FGF-1 on
chondrocytes and its possible role in osteoarthritis. J. Cell Commun. Signal 2017, 11, 255–263. [CrossRef]

28. Baujat, G.; Legeai-Mallet, L.; Finidori, G.; Cormier-Daire, V.; Le Merrer, M. Achondroplasia. Best Practice & Research. Clin. Rheumatol.
2008, 22, 3–18.

29. Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; Le Merrer, M.; Munnich, A.; Maroteaux, P. Common mutations in the fibrob-
last growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism.
Am. J. Med. Genet. 1996, 63, 148–154. [CrossRef]

30. Xiao, L.; Williams, D.; Hurley, M.M. Inhibition of FGFR Signaling Partially Rescues Osteoarthritis in Mice Overexpressing High
Molecular Weight FGF2 Isoforms. Endocrinology 2020, 161, bqz016. [CrossRef]

http://doi.org/10.1002/wdev.176
http://doi.org/10.1038/386288a0
http://doi.org/10.1016/S0092-8674(00)80252-4
http://doi.org/10.1002/j.1460-2075.1996.tb00840.x
http://www.ncbi.nlm.nih.gov/pubmed/8887554
http://www.ncbi.nlm.nih.gov/pubmed/1656221
http://doi.org/10.1021/mp700105z
http://doi.org/10.1172/JCI23606
http://www.ncbi.nlm.nih.gov/pubmed/15902306
http://doi.org/10.1016/j.cytogfr.2005.01.002
http://www.ncbi.nlm.nih.gov/pubmed/15863037
http://doi.org/10.1172/JCI200419081
http://www.ncbi.nlm.nih.gov/pubmed/14966565
http://doi.org/10.1016/j.neuron.2007.07.006
http://doi.org/10.1161/CIRCRESAHA.111.247957
http://doi.org/10.1113/jphysiol.2005.097220
http://doi.org/10.1002/j.1460-2075.1990.tb08269.x
http://doi.org/10.1242/dev.118.4.1313
http://doi.org/10.1038/nature13540
http://doi.org/10.1038/nrendo.2017.78
http://doi.org/10.1007/s12079-021-00629-z
http://doi.org/10.1101/gad.12.11.1571
http://doi.org/10.1203/00006450-199603000-00001
http://doi.org/10.1172/JCI8641
http://doi.org/10.1080/14653240601182846
http://doi.org/10.1002/jcp.21317
http://doi.org/10.1007/s12079-017-0384-8
http://doi.org/10.1002/(SICI)1096-8628(19960503)63:1&lt;148::AID-AJMG26&gt;3.0.CO;2-N
http://doi.org/10.1210/endocr/bqz016


Int. J. Mol. Sci. 2022, 23, 8592 12 of 14

31. Hung, I.H.; Yu, K.; Lavine, K.J.; Ornitz, D.M. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascu-
larization in the developing stylopod. Dev. Biol. 2007, 307, 300–313. [CrossRef] [PubMed]

32. Liu, Z.; Lavine, K.J.; Hung, I.H.; Ornitz, D.M. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular
invasion of the growth plate. Dev. Biol. 2007, 302, 80–91. [CrossRef] [PubMed]

33. Gigout, A.; Guehring, H.; Froemel, D.; Meurer, A.; Ladel, C.; Reker, D.; Bay-Jensen, A.C.; Karsdal, M.A.; Lindemann, S. Sprifermin
(rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthr. Cartil. 2017, 25, 1858–1867.
[CrossRef] [PubMed]

34. Meloni, G.R.; Farran, A.; Mohanraj, B.; Guehring, H.; Cocca, R.; Rabut, E.; Mauck, R.L.; Dodge, G.R. Recombinant human FGF18
preserves depth-dependent mechanical inhomogeneity in articular cartilage. Eur. Cell Mater. 2019, 38, 23–34. [CrossRef] [PubMed]

35. Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett.
1993, 327, 125–130. [CrossRef]

36. Simmons, D.L.; Levy, D.B.; Yannoni, Y.; Erikson, R.L. Identification of a phorbol ester-repressible v-src-inducible gene. Proc. Natl.
Acad. Sci. USA 1989, 86, 1178–1182. [CrossRef]

37. Bradham, D.M.; Igarashi, A.; Potter, R.L.; Grotendorst, G.R. Connective tissue growth factor: A cysteine-rich mitogen se-
creted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J. Cell Biol.
1991, 114, 1285–1294. [CrossRef]

38. Joliot, V.; Martinerie, C.; Dambrine, G.; Plassiart, G.; Brisac, M.; Crochet, J.; Perbal, B. Proviral rearrangements and overexpression
of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol. Cell Biol. 1992, 12, 10–21.

39. Kawaki, H.; Kubota, S.; Suzuki, A.; Yamada, T.; Matsumura, T.; Mandai, T.; Yao, M.; Maeda, T.; Lyons, K.M.; Takigawa, M.
Functional requirement of CCN2 for intramembranous bone formation in embryonic mice. Biochem. Biophys. Res. Commun.
2008, 366, 450–456. [CrossRef]

40. Kubota, S.; Takigawa, M. The CCN family acting throughout the body: Recent research developments. Biomol. Concepts
2013, 4, 477–494. [CrossRef]

41. Lau, L.F. Cell surface receptors for CCN proteins. J. Cell Commun. Signal 2016, 10, 121–127. [CrossRef]
42. Pennica, D.; Swanson, T.A.; Welsh, J.W.; Roy, M.A.; Lawrence, D.A.; Lee, J.; Brush, J.; Taneyhill, L.A.; Deuel, B.; Lew, M.; et al.

WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and
aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. USA 1998, 95, 14717–14722. [CrossRef] [PubMed]

43. Brigstock, D.R. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr. Rev.
1999, 20, 189–206. [PubMed]

44. Brigstock, D.R.; Goldschmeding, R.; Katsube, K.I.; Lam, S.C.; Lau, L.F.; Lyons, K.; Naus, C.; Perbal, B.; Riser, B.; Takigawa, M.; et al.
Proposal for a unified CCN nomenclature. Mol. Pathol. 2003, 56, 127–128. [CrossRef] [PubMed]

45. Chen, Y.; Segarini, P.; Raoufi, F.; Bradham, D.; Leask, A. Connective tissue growth factor is secreted through the Golgi and is
degraded in the endosome. Exp. Cell Res. 2001, 271, 109–117. [CrossRef]

46. Sabbah, M.; Prunier, C.; Ferrand, N.; Megalophonos, V.; Lambein, K.; De Wever, O.; Nazaret, N.; Lachuer, J.; Dumont, S.;
Redeuilh, G. CCN5, a novel transcriptional repressor of the transforming growth factor β signaling pathway. Mol. Cell Biol.
2011, 31, 1459–1469. [CrossRef]

47. Wahab, N.A.; Brinkman, H.; Mason, R.M. Uptake and intracellular transport of the connective tissue growth factor: A potential
mode of action. Biochem. J. 2001, 359, 89–97. [CrossRef]

48. Perbal, B. Nuclear localisation of NOVH protein: A potential role for NOV in the regulation of gene expression. Mol. Pathol.
1999, 52, 84–91. [CrossRef]

49. Leask, A.; Abraham, D.J. All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. J. Cell Sci.
2006, 119, 4803–4810. [CrossRef]

50. Jun, J.I.; Lau, L.F. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat. Rev. Drug Discov.
2011, 10, 945–963. [CrossRef]

51. Perbal, B.; Tweedie, S.; Bruford, E. The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-
6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1-3 respectively. J. Cell Commun. Signal. 2018, 12, 625–629.
[CrossRef] [PubMed]

52. Kawaki, H.; Kubota, S.; Suzuki, A.; Lazar, N.; Yamada, T.; Matsumura, T.; Ohgawara, T.; Maeda, T.; Perbal, B.; Lyons, K.M.; et al.
Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN
family proteins in cartilage. J. Bone Miner. Res. 2008, 23, 1751–1764. [CrossRef] [PubMed]

53. Yu, C.; Le, A.T.; Yeger, H.; Perbal, B.; Alman, B.A. NOV (CCN3) regulation in the growth plate and CCN family member
expression in cartilage neoplasia. J. Pathol. 2003, 201, 609–615. [CrossRef] [PubMed]

54. Omoto, S.; Nishida, K.; Yamaai, Y.; Shibahara, M.; Nishida, T.; Doi, T.; Asahara, H.; Nakanishi, T.; Inoue, H.; Takigawa, M.
Expression and localization of connective tissue growth factor (CTGF/Hcs24/CCN2) in osteoarthritic cartilage. Osteoarthr. Cartil.
2004, 12, 771–778. [CrossRef]

55. Nishida, T.; Kubota, S.; Kojima, S.; Kuboki, T.; Nakao, K.; Kushibiki, T.; Tabata, Y.; Takigawa, M. Regeneration of defects in
articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J. Bone Miner. Res. 2004, 19, 1308–1319. [CrossRef]

http://doi.org/10.1016/j.ydbio.2007.04.048
http://www.ncbi.nlm.nih.gov/pubmed/17544391
http://doi.org/10.1016/j.ydbio.2006.08.071
http://www.ncbi.nlm.nih.gov/pubmed/17014841
http://doi.org/10.1016/j.joca.2017.08.004
http://www.ncbi.nlm.nih.gov/pubmed/28823647
http://doi.org/10.22203/eCM.v038a03
http://www.ncbi.nlm.nih.gov/pubmed/31393594
http://doi.org/10.1016/0014-5793(93)80155-N
http://doi.org/10.1073/pnas.86.4.1178
http://doi.org/10.1083/jcb.114.6.1285
http://doi.org/10.1016/j.bbrc.2007.11.155
http://doi.org/10.1515/bmc-2013-0018
http://doi.org/10.1007/s12079-016-0324-z
http://doi.org/10.1073/pnas.95.25.14717
http://www.ncbi.nlm.nih.gov/pubmed/9843955
http://www.ncbi.nlm.nih.gov/pubmed/10204117
http://doi.org/10.1136/mp.56.2.127
http://www.ncbi.nlm.nih.gov/pubmed/12665631
http://doi.org/10.1006/excr.2001.5364
http://doi.org/10.1128/MCB.01316-10
http://doi.org/10.1042/bj3590089
http://doi.org/10.1136/mp.52.2.84
http://doi.org/10.1242/jcs.03270
http://doi.org/10.1038/nrd3599
http://doi.org/10.1007/s12079-018-0491-1
http://www.ncbi.nlm.nih.gov/pubmed/30393824
http://doi.org/10.1359/jbmr.080615
http://www.ncbi.nlm.nih.gov/pubmed/18597638
http://doi.org/10.1002/path.1468
http://www.ncbi.nlm.nih.gov/pubmed/14648665
http://doi.org/10.1016/j.joca.2004.06.009
http://doi.org/10.1359/JBMR.040322


Int. J. Mol. Sci. 2022, 23, 8592 13 of 14

56. Abd El Kader, T.; Kubota, S.; Nishida, T.; Hattori, T.; Aoyama, E.; Janune, D.; Hara, E.S.; Ono, M.; Tabata, Y.; Kuboki, T.;
et al. The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone
2014, 59, 180–188. [CrossRef]

57. Heath, E.; Tahri, D.; Andermarcher, E.; Schofield, P.; Fleming, S.; Boulter, C.A. Abnormal skeletal and cardiac development,
cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Dev. Biol.
2008, 8, 18. [CrossRef]

58. Itoh, S.; Hattori, T.; Tomita, N.; Aoyama, E.; Yutani, Y.; Yamashiro, T.; Takigawa, M. CCN family member 2/connective tissue
growth factor (CCN2/CTGF) has anti-aging effects that protect articular cartilage from age-related degenerative changes.
PLoS ONE 2013, 8, e71156. [CrossRef]

59. Maeda, A.; Ono, M.; Holmbeck, K.; Li, L.; Kilts, T.M.; Kram, V.; Noonan, M.L.; Yoshioka, Y.; McNerny, E.M.; Tantillo, M.A.;
et al. WNT1-induced Secreted Protein-1 (WISP1), a Novel Regulator of Bone Turnover and Wnt Signaling. J. Biol. Chem.
2015, 290, 14004–14018. [CrossRef]

60. Jiang, J.; Zhao, G.; Lyons, K.M. Characterization of bone morphology in CCN5/WISP5 knockout mice. J. Cell Commun. Signal
2018, 12, 265–270. [CrossRef]

61. Kutz, W.E.; Gong, Y.; Warman, M.L. WISP3, the gene responsible for the human skeletal disease progressive pseudorheumatoid
dysplasia, is not essential for skeletal function in mice. Mol. Cell Biol. 2005, 25, 414–421. [CrossRef]

62. Nishida, T.; Kubota, S.; Nakanishi, T.; Kuboki, T.; Yosimichi, G.; Kondo, S.; Takigawa, M. CTGF/Hcs24, a hypertrophic
chondrocyte-specific gene product, stimulates proliferation and differentiation, but not hypertrophy of cultured articular
chondrocytes. J. Cell Physiol. 2002, 192, 55–63. [CrossRef] [PubMed]

63. Janune, D.; Kubota, S.; Nishida, T.; Kawaki, H.; Perbal, B.; Iida, S.; Takigawa, M. Novel effects of CCN3 that may direct the
differentiation of chondrocytes. FEBS Lett. 2011, 585, 3033–3040. [CrossRef]

64. Leu, S.J.; Lam, S.C.; Lau, L.F. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1
in human umbilical vein endothelial cells. J. Biol. Chem. 2002, 277, 46248–46255. [CrossRef] [PubMed]

65. Shimo, T.; Nakanishi, T.; Nishida, T.; Asano, M.; Kanyama, M.; Kuboki, T.; Tamatani, T.; Tezuka, K.; Takemura, M.;
Matsumura, T.; et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular
endothelial cells in vitro, and angiogenesis in vivo. J. Biochem. 1999, 126, 137–145. [CrossRef]

66. Lin, C.G.; Chen, C.C.; Leu, S.J.; Grzeszkiewicz, T.M.; Lau, L.F. Integrin-dependent functions of the angiogenic inducer NOV
(CCN3): Implication in wound healing. J. Biol. Chem. 2005, 280, 8229–8237. [CrossRef] [PubMed]

67. Nakanishi, T.; Nishida, T.; Shimo, T.; Kobayashi, K.; Kubo, T.; Tamatani, T.; Tezuka, K.; Takigawa, M. Effects of CTGF/Hcs24,
a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture.
Endocrinology 2000, 141, 264–273. [CrossRef] [PubMed]

68. Gupta, R.; Hong, D.; Iborra, F.; Sarno, S.; Enver, T. NOV (CCN3) functions as a regulator of human hematopoietic stem or
progenitor cells. Science 2007, 316, 590–593. [CrossRef]

69. Ishihara, J.; Umemoto, T.; Yamato, M.; Shiratsuchi, Y.; Takaki, S.; Petrich, B.G.; Nakauchi, H.; Eto, K.; Kitamura, T.; Okano, T.
Nov/CCN3 regulates long-term repopulating activity of murine hematopoietic stem cells via integrin alphavbeta3. Int. J. Hematol.
2014, 99, 393–406. [CrossRef]

70. Kolesnikova, T.V.; Lau, L.F. Human CYR61-mediated enhancement of bFGF-induced DNA synthesis in human umbilical vein
endothelial cells. Oncogene 1998, 16, 747–754. [CrossRef]

71. Vincent, T.; Hermansson, M.; Bolton, M.; Wait, R.; Saklatvala, J. Basic FGF mediates an immediate response of articular cartilage
to mechanical injury. Proc. Natl. Acad. Sci. USA 2002, 99, 8259–8264. [CrossRef]

72. Tang, X.; Muhammad, H.; McLean, C.; Miotla-Zarebska, J.; Fleming, J.; Didangelos, A.; Önnerfjord, P.; Leask, A.; Saklatvala, J.;
Vincent, T.L. Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix
sequestration and activation of latent TGFβ. Ann. Rheum. Dis. 2018, 77, 1372–1380. [CrossRef]

73. Guillon-Munos, A.; Oikonomopoulou, K.; Michel, N.; Smith, C.R.; Petit-Courty, A.; Canepa, S.; Reverdiau, P.; Heuzé-Vourc’h, N.;
Diamandis, E.P.; Courty, Y. Kallikrein-related peptidase 12 hydrolyzes matricellular proteins of the CCN family and modifies
interactions of CCN1 and CCN5 with growth factors. J. Biol. Chem. 2011, 286, 25505–25518. [CrossRef]

74. Nishida, T.; Kubota, S.; Aoyama, E.; Janune, D.; Maeda, A.; Takigawa, M. Effect of CCN2 on FGF2-induced proliferation and
MMP9 and MMP13 productions by chondrocytes. Endocrinology 2011, 11, 4232–4241. [CrossRef]

75. Abd El Kader, T.; Kubota, S.; Anno, K.; Tanaka, S.; Nishida, T.; Furumatsu, T.; Aoyama, E.; Kuboki, T.; Takigawa, M. Direct
interaction between CCN family protein 2 and fibroblast growth factor 1. J. Cell Commun. Signal 2014, 8, 157–163. [CrossRef]

76. Aoyama, E.; Kubota, S.; Takigawa, M. CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling.
FEBS Lett. 2012, 586, 4270–4275. [CrossRef]

77. Kaasbøll, O.J.; Gadicherla, A.K.; Wang, J.H.; Monsen, V.T.; Hagelin, E.M.V.; Dong, M.Q.; Attramadal, H. Connective tissue
growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J. Biol. Chem. 2018, 293, 17953–17970.
[CrossRef]

78. Kubota, S.; Eguchi, T.; Shimo, T.; Nishida, T.; Hattori, T.; Kondo, S.; Nakanishi, T.; Takigawa, M. Novel mode of processing and
secretion of connective tissue growth factor/ecogenin (CTGF/Hcs24) in chondrocytic HCS-2/8 cells. Bone 2001, 29, 155–161.
[CrossRef]

http://doi.org/10.1016/j.bone.2013.11.010
http://doi.org/10.1186/1471-213X-8-18
http://doi.org/10.1371/journal.pone.0071156
http://doi.org/10.1074/jbc.M114.628818
http://doi.org/10.1007/s12079-018-0457-3
http://doi.org/10.1128/MCB.25.1.414-421.2005
http://doi.org/10.1002/jcp.10113
http://www.ncbi.nlm.nih.gov/pubmed/12115736
http://doi.org/10.1016/j.febslet.2011.08.024
http://doi.org/10.1074/jbc.M209288200
http://www.ncbi.nlm.nih.gov/pubmed/12364323
http://doi.org/10.1093/oxfordjournals.jbchem.a022414
http://doi.org/10.1074/jbc.M404903200
http://www.ncbi.nlm.nih.gov/pubmed/15611078
http://doi.org/10.1210/endo.141.1.7267
http://www.ncbi.nlm.nih.gov/pubmed/10614647
http://doi.org/10.1126/science.1136031
http://doi.org/10.1007/s12185-014-1534-x
http://doi.org/10.1038/sj.onc.1201572
http://doi.org/10.1073/pnas.122033199
http://doi.org/10.1136/annrheumdis-2018-212964
http://doi.org/10.1074/jbc.M110.213231
http://doi.org/10.1210/en.2011-0234
http://doi.org/10.1007/s12079-014-0232-z
http://doi.org/10.1016/j.febslet.2012.10.038
http://doi.org/10.1074/jbc.RA118.004559
http://doi.org/10.1016/S8756-3282(01)00492-6


Int. J. Mol. Sci. 2022, 23, 8592 14 of 14

79. Keenan, C.M.; Ramos-Mucci, L.; Kanakis, I.; Milner, P.I.; Leask, A.; Abraham, D.; Bou-Gharios, G.; Poulet, B. Post-traumatic
osteoarthritis development is not modified by postnatal chondrocyte deletion of Ccn2. Dis. Models Mech. 2020, 13, dmm044719.
[CrossRef]

80. Burt, P.M.; Xiao, L.; Doetschman, T.; Hurley, M.M. Ablation of low-molecular-weight FGF2 isoform accelerates murine osteoarthri-
tis while loss of high-molecular-weight FGF2 isoforms offers protection. J. Cell Physiol. 2019, 234, 4418–4431. [CrossRef]

81. Elseoudi, A.; Nishida, T.; Mizukawa, T.; Hattori, T.; Kawata, K.; Taha, E.A.; Takigawa, M.; Kubota, S. Bipartite regulation of
cellular communication network factor 2 and fibroblast growth factor 1 genes by fibroblast growth factor 1 through histone
deacetylase 1 and fork head box protein A1. J. Cell Commun. Signal 2021, 15, 81–91. [CrossRef] [PubMed]

82. Lam, E.W.; Brosens, J.J.; Gomes, A.R.; Koo, C.Y. Forkhead box proteins: Tuning forks for transcriptional harmony. Nat. Rev. Cancer
2013, 13, 482–495. [CrossRef] [PubMed]

83. Uchii, M.; Tamura, T.; Suda, T.; Kakuni, M.; Tanaka, A.; Miki, I. Role of fibroblast growth factor 8 (FGF8) in animal models of
osteoarthritis. Arthritis Res. Ther. 2008, 10, R90. [CrossRef] [PubMed]

84. Chen, H.; Cui, Y.; Zhang, D.; Xie, J.; Zhou, X. The role of fibroblast growth factor 8 in cartilage development and disease. J. Cell
Mol. Med. 2022, 26, 990–999. [CrossRef]

85. Iwafuchi, M.; Cuesta, I.; Donahue, G.; Takenaka, N.; Osipovich, A.B.; Magnuson, M.A.; Roder, H.; Seeholzer, S.H.; Santisteban, P.;
Zaret, K.S. Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core
histones. Nat. Genet. 2020, 52, 418–427. [CrossRef]

86. Shin, Y.; Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 2017, 357, eaaf4382. [CrossRef]
87. Henninger, J.E.; Oksuz, O.; Shrinivas, K.; Sagi, I.; LeRoy, G.; Zheng, M.M.; Andrews, J.O.; Zamudio, A.V.; Lazaris, C.;

Hannett, N.M.; et al. RNA-Mediated Feedback Control of Transcriptional Condensates. Cell 2021, 184, 207–225. [CrossRef]
88. Onoguchi-Mizutani, R.; Akimitsu, N. Long noncoding RNA and phase separation in cellular stress response. J. Biochem.

2022, 171, 269–276. [CrossRef]
89. Lu, H.; Yu, D.; Hansen, A.S.; Ganguly, S.; Liu, R.; Heckert, A.; Darzacq, X.; Zhou, Q. Phase-separation mechanism for C-terminal

hyperphosphorylation of RNA polymerase II. Nature 2018, 558, 318–323. [CrossRef]

http://doi.org/10.1242/dmm.044719
http://doi.org/10.1002/jcp.27230
http://doi.org/10.1007/s12079-020-00600-4
http://www.ncbi.nlm.nih.gov/pubmed/33398720
http://doi.org/10.1038/nrc3539
http://www.ncbi.nlm.nih.gov/pubmed/23792361
http://doi.org/10.1186/ar2474
http://www.ncbi.nlm.nih.gov/pubmed/18699993
http://doi.org/10.1111/jcmm.17174
http://doi.org/10.1038/s41588-020-0591-8
http://doi.org/10.1126/science.aaf4382
http://doi.org/10.1016/j.cell.2020.11.030
http://doi.org/10.1093/jb/mvab156
http://doi.org/10.1038/s41586-018-0174-3

	Interplay by the Members of Two Distinct Families of Proteins in Cartilage 
	FGF Family 
	FGFs in Cartilage 
	CCN Family 
	CCNs in Cartilage 
	Molecular Interaction between FGFs and CCNs 
	FGF–CCN Collaboration in Cartilage 
	FGF–CCN Genetic Interaction in Chondrocytes 
	Mechanism of the Integrated FGF–CCN Regulation in Chondrocytes 
	Conclusions 
	References

