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In contrast to the progress in the research on physiological disorders relating to shelf life in fruit crops, it
has been difficult to non-destructively predict their occurrence. Recent high-tech instruments have gradually
enabled non-destructive predictions for various disorders in some crops, while there are still issues in terms
of efficiency and costs. Here, we propose application of a deep neural network (or simply deep learning) to
simple RGB images to predict a severe fruit disorder in persimmon, rapid over-softening. With 1,080 RGB
images of ‘Soshu’ persimmon fruits, three convolutional neural networks (CNN) were examined to predict
rapid over-softened fruits with a binary classification and the date to fruit softening. All of the examined
CNN models worked successfully for binary classification of the rapid over-softened fruits and the controls
with > 80% accuracy using multiple criteria. Furthermore, the prediction values (or confidence) in the binary
classification were correlated to the date to fruit softening. Although the features for classification by deep
learning have been thought to be in a black box by conventional standards, recent feature visualization
methods (or “explainable” deep learning) has allowed identification of the relevant regions in the original
images. We applied Grad-CAM, Guided backpropagation, and layer-wise relevance propagation (LRP), to
find early symptoms for CNNs classification of rapid over-softened fruits. The focus on the relevant regions
tended to be on color unevenness on the surface of the fruit, especially in the peripheral regions. These
results suggest that deep learning frameworks could potentially provide new insights into early physiological
symptoms of which researchers are unaware.
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Introduction
Shelf life is an important factor determining the qual‐

ity of fruit crops. To date, breeding of new cultivars tol‐
erant to over-ripening pathways, such as apple, tomato,
or melon, and development of genetically modified
crops, have contributed to the prolongation of shelf life
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(Smith et al., 1990; Atkinson et al., 2012). In addition
to these genetic improvements, control of environmen‐
tal conditions and artificial chemicals, such as storage
in fine-tuned, low temperature controlled or modified
atmospheres (CA or MA, respectively) (Brackmann
et al., 1993; Park et al., 2018), 1-methylcyclopropene
(1-MCP) treatment (Kubo et al., 2003), or layer-by-
layer (LBL) edible coating treatments (Ribeiro et al.,
2007), have successfully achieved longer shelf life and
maintained high quality. On the other hand, non-
destructive prediction of shelf life (or internal traits as a
wider concept) has also been highly anticipated. For
instance, application of acoustic technology (Zude
et al., 2006; Suzuki et al., 2015) or an electronic nose
technique (Gomez et al., 2008), have been proposed for
the prediction of shelf life in horticultural crops,
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although costs for the instruments and detection time
remain big issues in terms of actual application. Fur‐
thermore, shelf life is dependent not only on natural
maturing behavior, but also on stresses caused by inter‐
nal disorders or injuries (Nakano et al., 2001). The lat‐
ter case often appears as rapid over-softening, of which
the physiological features are distinct from natural
maturation (Fig. 1A).

Persimmon is a major fruit crop, especially in East
Asia. Its shelf life depends on both environmental (or
storage conditions) and genetic (or cultivar) factors.
Especially, in some early maturing cultivars, rapid over-
softening is becoming a big issue. Rapid over-softening
in persimmon, which occurs on trees or within approx.
10 days after harvest, causes severe water-soaked
patches in the fruit flesh, resulting in the loss of mar‐
ketability (Fig. 1A). This disorder is also often induced
after de-astringency treatments, which are indispensable
for the marketing of astringent cultivars; these cultivars
account for the majority of marketed persimmon (Akagi
et al., 2011). However, it is extremely difficult to pre‐
dict rapid over-softening from outer appearances at har‐
vest visually (Fig. 1B), even for experts with decades of
experience. Furthermore, the mechanism behind this
disorder remains little understood. Hence, the develop‐
ment of techniques that identify symptoms (or indexes)
of rapid over-softening in persimmon that can predict
this disorder, would contribute not only to the selection
of fruits with long shelf life, but also to insights into its
physiological mechanisms.

Fig. 1. Appearances of the normal and rapid over-softened persim‐
mon fruits and the date to softening distributions. A. Typical
conditions of the rapid over-softened persimmon fruits, in
which the epicarp becomes reddish and the pericarp has a melt‐
ing texture. B. Outer appearances of the normal and rapid over-
softened fruits used for the deep learning in this study. At
glance, it is difficult to distinguish them. C, D. Two criteria for
the rapid-softened (positive, red) and control (negative, dark
green) fruits in the distribution of the days to fruit softening
(see Materials and Methods for details).

Recently, deep neural networks (or simply “deep
learning”), also known as artificial intelligence (AI),
has made strong progress in image diagnosis. One key
point has been the development of convolutional neural
networks (CNN, LeCun et al., 2015) that allow dramat‐
ic improvements in performance. A simple 8-layer
CNN (AlexNet: Krizhevsky et al., 2012) won the image
classification task at the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012, and thereafter
the winner of ILSVLC 2015, a CNN with 152-layers
named ResNet (He et al., 2016), exceeded human stan‐
dards. Recent free CNNs have become available with
very simple/right RGB images captured from a normal
camera. They can use ambiguity or multiple features for
their assessments, which is ideal for the diagnosis of
symptoms derived from multi-aspect reactions in
plants. In the agricultural field, the application of CNNs
has been proposed mainly in image diagnosis of stress
and disease in crops (Sladojevic et al., 2016; Singh
et al., 2018), or combinations of object recognition and
classification (Sa et al., 2016; Ponce et al., 2019; Ni
et al., 2020; Osako et al., 2020). CNNs could also
assess internal traits of fruits that are not directly
observable from the outer appearance in blueberry with
hyper-spectrum images (Wang et al., 2018), and per‐
simmon with normal RGB images (Akagi et al., 2020;
Masuda et al., 2021). Although the features of deep
neural networks have been unconfirmed, recent tech‐
niques for CNN backpropagations, such as Guided
backpropagation, Layer-wise relevance propagation
(LRP) (Bach et al., 2015), Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al.,
2016), and their derivatives (Iwana et al., 2019), known
as “explainable AI (X-AI)”, have allowed visualization
of featured regions in original images. In other words,
their application can provide insights into regions with
symptoms (or indexes) for the objective traits.

Here, using an early maturing persimmon cultivar,
‘Soshu’, we attempted to apply multiple explainable
CNNs to simple RGB fruit images captured with a nor‐
mal camera to develop platforms to predict rapid over-
softening and shelf life in persimmon fruit and to
characterize any symptoms.

Materials and Methods

Assessment of rapid over-softening in ‘Soshu’ persim‐
mon

A total 1,080 ‘Soshu’ fruits were harvested from 6–7
years old trees planted in Fukuoka Agricultural and
Forestry Research Center (N33.49873, E130.56339), at
the same fully mature stage (skin color chart = 6), in
Oct 2019. The RGB images (2992 × 2000 pixels) from
the fruit apex side were taken at uniform distance, light,
and background conditions, using a Nikon D5200 (digi‐
tal camera), immediately after harvest. The dates for
fruit softening at room temperature after the harvest
were recorded as the index of shelf life. According to
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Sugiura et al. (2012), fruits that did not return to dent
when touched were classified as over-softening.

Deep learning model construction
The flow for deep learning binary classification and

quantitative regression of rapid over-softening is given
in Figure 2. For binary classification by CNNs, we pre‐
pared two image datasets. Dataset 1 consisted of fruits
softened in 10 days as positive samples, and the remain‐
ing fruits (> 10 days for softening) as negative samples
(Fig. 1C). Dataset 2 consisted of fruits that softened
earlier and later than 30% of all fruits among the posi‐
tive and negative samples, respectively (Fig. 1D). For
regression tests by CNNs, Dataset-1 and Dataset-2 were
annotated with the actual dates showing fruit softening.

For image processing, all the images were resized to
224 × 224 pixels, and augmented by vertically and hori‐
zontally flipping, rotating, and adjusting brightness with
the ImageDataGenerator function in Keras <https://
keras.io/>. In the binary classification, we randomly
selected 75% of images for training and 25% for vali‐
dating. Three representative CNNs, VGG16 (Simonyan
and Zisserman, 2014), InceptionsV3 (Szegedy et al.,
2016), and ResNet50 (He et al., 2016) were implement‐
ed in Keras 2.2.4, and their fully-connected layer was
customized for binary classification. For pretraining,
each model was weighted with the ImageNet dataset
<http://www.image-net.org/>. For the basic setting of
the models, we examined four solvers (“SGD”,
“Adam”, “Nadam”, and “RMSprop”), and learning

Fig. 2. Schematic flow of the deep learning frameworks used in
this study. A total of 1,080 ‘Soshu’ fruits were applied to both
the classification and regression tasks with CNNs. In the classi‐
fication task, the samples were classified into binary categories,
rapid-softened (positive) and control (negative) fruits, in the
two criteria (Fig. 1C, D). Thereafter, backpropagation of the
trained CNNs could clarify the regions relevant to the classifi‐
cation, which could provide potential symptoms recognized by
CNNs. In the regression task, with the predicted and observed
date to fruit softening, we further examined the regressions
trends.

rates (0.1–0.0001), and finally adopted SGD as the
solver and 0.001 as the learning rate with categorical
cross-entropy for the loss function. We examined 5–100
epochs to determine the optimized epochs for each
model. To compensate for the class imbalance (or bias
in the positive and negative sample numbers), the class
weight option was applied in Keras.

For regression by CNNs, we firstly selected 10% of
images randomly for testing, then the remaining parts
were randomly separated into 70% for training and 30%
for validating. Xception (Chollet, 2017) was imple‐
mented in Keras 2.2.4, and the fully-connected layer
was customized to evaluate the Root Mean Squared
Error (RMSE) against fruit softening dates. The model
was pre-trained with the ImageNet dataset. For the
basic setting of the model, we adopted “SGD” as the
solver and a learning rate of 0.001. We examined 20–
100 epochs to determine the optimized epochs. All
models ran on Ubuntu 18.04 (DeepStation DK1000,
16GB RAM, GPU = 1).

Evaluation of trained CNN model performance
For binary classification, the performance of the

trained models was evaluated with the Student’s t-test
for the distribution of predictions between rapid over-
softened (positive) and control (negative) samples, con‐
fusion matrix, ROC-AUC values, Precision-Recall
curve, and the F1-score in the test samples. For the con‐
fusion matrix and F1-score, the threshold prediction
value was set as 0.5. The distribution of the prediction
values in the binary classification was also examined
for the potential association with the softening dates by
Pearson’s product-moment correlation analyses. For
regression, Pearson’s momentum correlation coeffi‐
cients between the predicted and actual dates of fruit
softening were evaluated.

Feature visualization in CNNs
Based on a previous report (Akagi et al., 2020), we

applied three feature visualization methods, Grad-CAM
(Selvaraju et al., 2016), Guided backpropagation
(Springenberg et al., 2014), and Layer-wise Relevance
Propagation (LRP, Bach et al., 2015), to the trained
VGG16 model in the binary classification, which
showed the best performance among the models used in
this study (see Results section later). Briefly, we imple‐
mented Grad-CAM to find the high-impact regions
in the feature map at the last convolutional layer
(conv3_block3 in VGG16). The implementation and
characteristics of these feature visualization methods
using the iNNvestigate library (Alber et al., 2019) are
available at <https://github.com/uchidalab/softmaxgradient-
lrp> and Akagi et al. (2020). The extracted features
were localized on the original image as heatmaps.
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Results
Distribution of softening days and definition of rapid
over-softening

The softening days were distributed continuously
from 1 to 30 days (Fig. 1C, D). This was due to merg‐
ing of the distributions of rapid over-softening as a kind
of disorder, and normal softening, as a measure of mat‐
uration. It is difficult to qualitatively distinguish rapid
over-softening from the distribution. Here, considering
the distribution of softening days and empirical criteria
(Nakano et al., 2001), we defined the fruits that soft‐
ened in 10 days as “rapid over-softening” for Dataset 1,
although this also included some fruits without dis‐
orders, but that matured early. Dataset 2 was for a sim‐
ple comparison of each 30% of the earlier and later
softened fruits, to exclude any effects of the middle
ambiguously softened samples.

Prediction of rapid over-softening and shelf life
For binary classification, all three applied CNN mod‐

els, VGG16, Resnet50, and InceptionV3, showed statis‐
tically significant classification performance for both
Dataset 1 and Dataset 2 (Fig. 3A, B, accuracy = ~87.0%
in the test samples, F1-score = ~0.85, ROC-AUC value 
= ~0.845). We could not detect substantial or consensus
differences in performance between the two datasets.
Of the three CNN models, VGG16, which has the sim‐
plest layer structure of the three, achieved the best per‐
formance, reaching 87.0% for accuracy, and 0.85 for
the F1-score in Dataset 1 (Fig. 3A). The VGG16 model
also achieved better generalization performance than
the other two models, in which both accuracy and loss
exhibited only small gaps between the training and vali‐
dation data sets in 20–40 epochs. Further examination
of the classification ability of VGG16, a confusion
matrix, and distribution of the prediction values are
shown in Figure 3C and 3D, respectively. They were
consistent with the results of ROC curve analysis and
suggested that Dataset 2 may work better for actual pre‐
diction of rapid softening, although the statistical values
showed no substantial differences between the two
datasets (P = 8.04e−13 and 2.30e−12 for the prediction
distribution in Dataset 1 and 2, respectively).

Regression tests with the Xception model showed
statistically significant performance with both Dataset 1
and 2 (RMSE (unit: days) = 6.2 and 7.8, respectively),
while correlations between the predicted and observed
softening days were not considered adequate for actual
estimation of shelf life (Fig. 4A, r = 0.242 and 0.228 for
Dataset 1 and 2, respectively). On the other hand, in
previous reports to predict internal disorders or seed‐
lessness (Akagi et al., 2020; Masuda et al., 2021), pre‐
diction values output from binary classification were
correlated to the degree of disorders or seed numbers.
Consistent with these results, the prediction values in
the binary classification of rapid over-softening (here, 0

and 1 for positive and negative, respectively) showed
substantially higher correlations to the over-softening
days than those with the regression model (Fig. 4B,
r = 0.422 and 0.477 for Dataset 1 and 2, respectively).
In a comparison of the datasets, Dataset 2, which was
applied to the earlier and later 30% of all samples,
showed a higher correlation with the same test samples
(P = 0.107).

Visualization of features to predict rapid over-softening
We applied three feature visualization methods,

Grad-CAM, Guided backpropagation, and LRP, to the
trained VGG16 model, for the 270 testing images with
various shelf lives (Fig. 5A). They all tended to exhibit
high relevance in the fruit peripheral regions (or con‐
tours), in which persimmon fruits with calyx-end crack‐
ing, an internal disorder, also showed strong relevance
in feature visualization (Akagi et al., 2020). Among the
three methods, Grad-CAM and Guided backpropaga‐
tion tended to show wide relevance regions, including
glossed areas, while LRP showed very narrow regions
for relevance. This difference may be due to the fact
that Grad-CAM and Guided backpropagation are both
gradient-based visualization methods (Springenberg
et al., 2014; Selvaraju et al., 2016), while LRP reveals
the input pixels that are highly relevant to the results by
decomposing the class likelihood into the input pixels
(Bach et al., 2015). Here, we especially focused on the
features surrounding the fruit apex, for which physio‐
logical signals were easier to access with microscopic
analysis than in the peripheral region. Closing-up of the
relevant regions in the three methods consistently tend‐
ed to show color unevenness or a coarse texture on fruit
skin (Fig. 5B for a representative). Note that the color
or texture patterns in the relevant region were quite
varied, so it was difficult to define a consensus visual
feature.

Discussion

Rapid over-softening was thought to show few visi‐
ble symptoms in terms of outer appearance at harvest
(as given in Fig. 1B). Our results suggested that, even
in normal RGB images only from the apex side, certain
features indicating rapid over-softening appear at har‐
vest, and these could be captured with our fine-tuned
CNNs with up to 88.4% accuracy. Even so, it may be
possible to improve the prediction performance,
although we adequately examined the parameters for
the training models. The remaining issues are not large‐
ly due to the model frameworks, but to the physio‐
logical (or biological) characteristics of rapid over-
softening. First, we used only images from the fruit
apex side, although the opposite calyx side could also
include informative features. Persimmon fruit softening
is thought to be triggered via physiological reactions in
the calyx (Itamura et al., 1991; Nakano et al., 2002).
Hence, multi-input CNNs (Abbasi et al., 2019) with
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both apex and calyx side images would archive higher
performance. Second, in terms of physiological defini‐
tions, we could not perfectly distinguish rapid over-
softening and normal maturation in the binary
categories, as shown in Figure 1C and 1D, in which the
days to softening distributed continuously. In other
words, our positive samples may include multiple phys‐

iological reactions to earlier softening that could con‐
fuse feature extraction. On the other hand, CNN models
trained with rapid over-softening could be applied to
shelf life regression for all samples, implying that com‐
mon visual features would work for the prediction of
persimmon fruit softening. This is supported by physio‐
logical reactions in rapidly softened and normally

Fig. 3. Classification abilities of the three CNNs with the two rapid-softening criteria. A. Prediction accuracy (in training and testing), and F1
score in the classifications with VGG16, Resnet50, and InceptionV3, in Dataset 1 and 2, respectively. The F1 score was calculated as the
harmonic mean of precision and recall with a threshold prediction value = 0.5. B. ROC curves, ROC-AUC values, and PR curves and the
classifications with each model. Although ROC curves (blue lines) in any model were apart from the chance line (in red) (ROC-AUC value
> 0.5), VGG16 exhibited relatively better performance both in Dataset 1 and 2. C, D. Comparison of the classification abilities of Dataset 1
and Dataset 2 with the VGG16 model. Datasets 1 and 2 showed no substantial differences in terms of significance, the confusion matrix (C)
and distribution of the prediction values (or confidence) (D) suggested that Dataset 2 would be better for practical use.
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matured persimmon fruits, in which ethylene produc‐
tion is a common key factor that initiates softening
(Nakano et al., 2001, 2002; Wang et al., 2017).

Conventional (or past) deep learning frameworks
were not able to explain the reason for the prediction,
while more recent explainable AI methods could visual‐
ize the features for rapid over-softening in this study.
Although the patterns of features were not consistent
among the samples, the relevant regions tended to
localize in the peripheral region, in which persimmon
fruits with calyx-end cracking, an internal disorder, also
showed strong relevance in feature visualization (Akagi
et al., 2020). Furthermore, the featured region often

exhibited color unevenness, which was also consistent
with the features in calyx-end cracking. Rapid over-
softened persimmon fruits, especially following de-
astringency treatment, become partially or fully reddish
and rapidly produce a large amount of ethylene (Ortiz,
2005; Nakatsuka et al., 2011; Wang et al., 2017). These
facts together suggest that the featured color uneven‐
ness in this study could be an index of stresses and
micro-softening. Subsequently, the resultant ethylene
signals rapidly spread to cause whole fruit softening.
This development of explainable AI allows featured
region-specific physiological analyses in “potentially
rapid softened” fruits, before actual softening. In com‐

Fig. 4. Regression of the days to fruit softening. A. Correlations between the observed days to softening and the days predicted from the CNN
regression model. B. Correlations between the observed days to softening and the prediction values (or confidence) for the binary classifica‐
tion. In both panels, Dataset 1 and Dataset 2 are shown in light blue and pink, respectively.

Fig. 5. Feature visualization of the rapid-softening classification. A. Feature visualization of the four fruits with various softening terms. The
prediction values (or confidence) for the positive and negative classes are given on the left side of the original images. For the Grad-CAM
and Guided backpropagation, the features for the predicted class are given, while LRP shows features for the positive (or rapid-softening)
class. B. Closing up of the fruitlet surface in the regions with high relevance to the positive class in Grad-CAM (red) and without high rele‐
vance (dark green). The highly relevant regions tended to exhibit severe color unevenness.
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bination with the explainable AI technique, “featured
region-specific” histological or transcriptomic analyses
would shed light on incipient physiological reactions
related to the symptoms of rapid fruit softening.

Conclusion
Our application of deep learning with three CNN

models could successfully classify rapid over-softening
fruits with high accuracy from only 1,080 normal pic‐
ture images of the outer appearance. The prediction val‐
ues in the classification were correlated to the days to
fruit softening; this could allow prediction of the fruit
shelf life in persimmon. Feature visualization for the
classification found potential symptoms of the rapid-
softening on the surface of the fruits, which tended to
be located on regions with subtle color unevenness in
the peripheral regions. These results suggested that
explainable deep learning can be a useful tool for pre‐
dicting the occurrence of disorders that even experts
cannot detect, and potentially could provide new
insights into the physiological interpretations of these
disorders.
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