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Abstract: Peptides are promising molecular-binding elements and have attracted great interest in
novel biosensor development. In this study, a series of peptides derived from odorant-binding
proteins (OBPs) were rationally designed for recognition of SARS-CoV-2-related volatile organic
compounds (VOCs). Ethanol, nonanal, benzaldehyde, acetic acid, and acetone were selected as
representative VOCs in the exhaled breath during the COVID-19 infection. Computational docking
and prediction tools were utilized for OBPs peptide characterization and analysis. Multiple parame-
ters, including the docking model, binding affinity, sequence specification, and structural folding,
were investigated. The results demonstrated a rational, rapid, and efficient approach for designing
breath-borne VOC-recognition peptides, which could further improve the biosensor performance for
pioneering COVID-19 screening and many other applications.

Keywords: rational design; odorant-binding protein; peptide; SARS-CoV-2; volatile organic com-
pounds; computational tools

1. Introduction

As of 2022, the COVID-19 pandemic has lasted for more than two years, resulting in
enormous worldwide damages and crises. The world population has suffered from this
dangerous and unpredictable viral disease due to insufficient preparation, a combination
of a lack of rapid screening and detection, and low availability of therapeutic drugs and
highly efficient vaccines. The new disease has challenged our current knowledge and
techniques and forced us to acquire vital information faster and more accurately. Scientists
and engineers have focused on developing portable polymerase chain reaction (PCR)
devices, test kits, vaccines, and virus-inactivation instruments to end the pandemic and
return life to normal as soon as possible [1–4]. Since the pandemic, numerous transducers
and receptors have been identified for SARS-CoV-2 detection [5–9]. SARS-CoV-2 virus,
nucleic acids and antigens are usually recognized as diagnostic indicators. Recently, the
SARS-CoV-2-related breath samples were explored as novel biomarkers. The U.S. Food
and Drug Administration (FDA) has authorized the very first emergency approval for
diagnostic COVID-19 assays using breath-borne volatile organic compounds (VOCs) [10].

Insect odorant-binding proteins (OBPs) have an outstanding ability to recognize various
kinds of VOCs [11–15]. Although expressed at high levels in insects, these OBPs have not
been fully characterized and developed as biosensors owing to difficulties in their struc-
tural identification and high-cost synthesis. Short-chain peptides have been designed as
promising molecular recognition elements and utilized in biosensors for detecting a range
of targets, including proteins, viruses, bacteria, and small molecules [16–19]. Phage-display
library technology is a widely approach used for peptide synthesis and selection for ligand–
molecule binding with random amino acid sequences [20,21]. Many studies have focused
on the rational or computational design of specific peptides for small ligand molecule
recognition [22–26]. In our previous investigation, a small-molecule-binding peptide de-
rived from a complementary determining region (CDR) in a monoclonal antibody was
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rationally designed to detect nitroaromatic compounds with high sensitivity and selectiv-
ity [19,27]. Furthermore, when coupled with single-walled carbon nanotubes (SWCNT),
the peptide-SWCNT hybrid material offers more improved properties [20,28].

Therefore, in this study, robust computational docking and prediction tools were used
to identify and characterize OBPs and peptides. We aimed to apply computational tools to
identify the structural properties of OBPs-ligand and rationally design the SARS-CoV-2-
related VOC-recognition peptides derived from insect OPBs for pioneering biosensor de-
velopment.

2. Results

Based on recent literature, five representative SARS-CoV-2-related VOC biomarkers,
ethanol, nonanal, benzaldehyde, acetic acid, and acetone from exhaled breath samples,
were selected [17,29–32]. The structures of these VOC biomarkers are shown in Figure 1.
In addition, the information and properties of each VOC ligand, including the molecular
weight, odor description, and vapor pressure, are summarized in Table 1.
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nonanal C9H18O 142.24 Orange-rose odor 0.37 147 

benzaldehyde C7H6O 106.12 Odor resembling oil of bitter 
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Figure 1. Structure of SARS-CoV-2-related VOC biomarker.

Table 1. Summary of representative SARS-CoV-2-related VOC ligand.

VOC Ligand Molecular
Formula

Molecular Weight
(g/mol) Odor Description Vapor Pressure

(mmHg)
Flash Point

(◦F)

ethanol C2H6O 46.07 Weak, ethereal, vinous odor 59.27 57.2
nonanal C9H18O 142.24 Orange-rose odor 0.37 147

benzaldehyde C7H6O 106.12 Odor resembling oil of bitter
almond 1.27 145

acetic acid C2H4O2 60.05 Sour, vinegar-like odor 15.73 103
acetone C3H6O 58.08 Fruity odor 231.53 1.42

Three-dimensional structures of four insect OBPs were obtained from RCSB Pro-
tein Data Bank (PDB). One insect OBP was obtained from the mosquitoes OBP database
with identified amino acids sequence information. Anopheles gambiae AgamOBP20 (PDB
ID:3VB1) was used for acetic acid binding, AgamOBP22a (PDB ID:3L4L) for benzaldehyde
recognition; and AgamOBP47 (PDB ID:3PM2) for acetone binding. Aedes aegypti Aae-
gobp39 were used for nonanal recognition, and the OBP LUSH from Drosophila melanogaster
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(PDB ID:1OOF) was selected for specific ethanol binding, respectively. Figure 2 shows
the docking and visualization results for OBP AgamOBP20 in the open stage with the
acetic acid–ligand complex. We found that the GLU25 and GLU26 amino acids played a
very important role in forming the hydrogen bonds (with a distance of 3.2 Å). In contrast,
ALA24 formed hydrophobic interactions with acetic acid based on the binding residues
identification and interaction analysis (Figure 2a–c). The ALA-GLU-GLU amino acids
sequence was identified as a binding site for the recognition of acetic acid. LUSH, a non-
enzyme protein, specifically bonds to alcohol (Figure 3a). Strong hydrogen bonds (polar
contacts) were formed between ethanol and SER52 and THR 57 amino acids (with distances
of 2.9 Å and 2.7 Å) (Figure 3b,c). However, THR48 was not included in the AutoDock
model after the prediction results were compared with the experimental analysis [33]. A
group of amino acids (polar and non-polar contacts) comprised a hydrophobic pocket in
the chain A of LUSH (Figure 3a,c; Table S1). The 2D ligand–protein interaction diagrams
displayed a network of ethanol-binding sites (Figure 3d). As such, a nine-amino-acid
oligopeptide sequence (SER-ALA-THR-VAL-PHE-VAL-THR-PHE-TRP) that specifically
recognizes ethanol was identified in the LUSH protein. The benzaldehyde-OBP complex
model was investigated, and the binding residues were revealed (Figure 4 and Table S2)
using the same approach. Hydrogen bonds formation by VAL63 (3.0 Å),and the π stacking
between PHE125 and benzaldehyde were also observed (with a distance of 5.3 Å, angle
74.7◦). This feature relates to the fact that the aromatic amino acids TRP, PHE, or TYR
always play a key role in interactions with aromatic ligands.
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AgamOBP47 belongs to the C-plus class of OBPs. As it is a novel type of OBPs, with a
longer sequence than classical OBPs, it provides a shallow channel with sufficient space to
accommodate the odorant ligands. The ligand-binding site of AgamOBP47 located between
the core and the additional domains were demonstrated in the experimental results. The
X-ray structure of AgamOBP47 was used for acetone–ligand docking. All docking and all
required parameters were performed using Autodock Vina. A docking grid box, measuring
52 × 42 × 58 in the x-, y-, and z- directions, was set (Figure 5a). The nine docking poses,
and mode ranking scores are shown in Figure 5b,c and Figure S2, respectively. Docking
mode 1, with a more favorable affinity (−3.1 kcal/mol) than the other models, was chosen
as the best docking mode for further analysis based on the docking calculations. The
binding pocket and amino acid residues were visualized (Figure 5d–f and Table S3). Twelve
amino acids around the acetone ligand forming hydrogen bonds (LEU24 and VAL25) and
hydrophobic interactions were selected as polypeptide sequences for acetone binding.
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Aedes aegypti Aaegobp39 is a strong aldehyde-binding mosquito OBPs (Figure S1).
However, the crystal structure of Aaegobp39 was not identified. The machine learning-
based approach AlphaFold has been reported as a highly precise prediction tool for protein
structure compared with the conventional methods including X-ray and cryogenic elec-
tron microscopy (cryo-EM) [34,35]. Based on the sequence information (Figure S1), the
prediction model of the nonanal-binding protein Aaegobp39 is displayed in Figure 6. The
prediction shows high model confidence in the predicted local-distance difference test
(pLDDT) and low residue-predicted-aligned error (PAE). This indicates high accuracy
in relation to the OBP structure, making it suitable for nonanal docking. The docking
parameter files were set, and the grid box dimensions were 52 × 42 × 58 in the x-, y-, and
z-directions (Figure 7a). Nine docking positions were obtained (Figures 7b and S3). The
docking model ranking is shown in Figure 6c. Mode 1, with an affinity for nonanal of −4.4
kcal/mol, was considered the best mode for the ligand–Aaegobp39 complex. Analyzing the
3D visualization docking results and predictions in Figure 7d–g and Table S4, no hydrogen
bonds were formed, and the hydrophobic interaction played an important role in nonanal
binding. The 21-amino acid peptide was selected as the final nonanal-binding residue
based on pocket characterization and distance measurement.
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Colab; (b) Model confidence; (c) The general the predicted local-distance difference test (pLDDT)
for intra-domain confidence; (d) Predicted aligned error (PAE) for determining between domain or
between chain confidence.
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Table 2 summarizes the properties of the VOC–ligand binding peptides. Structures
exhibiting grand average of hydropathicity (GRAVY) scores above 0 were considered
hydrophobic peptides.

Table 2. The properties of the peptide derived from insect OBPs.

VOC Ligand Peptide Sequence Molecular Weight
(g/mol) Theoretical pI GRAVY Instability Index

nonanal TIAATLTILAALVSAANVFFF 2154.58 5.19 1.981 18.70
benzaldehyde VRGLLYVNAYAFLY 1661.96 8.47 0.993 20.14

acetone TPFLVFVVYLFL 1457.82 5.18 2.400 18.93
ethanol SATVFVTFW 1057.21 5.24 1.411 13.17

acetic acid AEE 347.32 - - -

The theoretical pI, grand average of hydropathicity (GRAVY) and instability index were canulated by SWISS-
MODEL ProtParam tool (https://swissmodel.expasy.org/, accessed on 3 December 2021).

An instability index value of less than 40 was considered to indicate a stable structure.
Thus, the calculation results indicated that the binding peptides for nonanal, benzaldehyde,
acetone, and ethanol were stable, whereas the acetic acid sequence was too short for
prediction. The five best models (representatives of the five best clusters) for peptide
structure prediction using PEP-FOLD were generated in the alpha helix, coil, or extended
structural conformation (Figures 8 and S4) [36–38]. According to the clustering score
reports (Tables S5–S8), Model 1 was selected as the best for the predicted peptide structures.
Furthermore, the helical nonanal-binding peptide structure was predicted by AlphaFold,
similar to model 4 generated by PEP-FOLD (Figure S5). The results showed that different
peptide sequences revealed different conformational states that may contribute to VOC-
binding sensitivity and specific selectivity.

https://swissmodel.expasy.org/
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3. Discussion

Peptides mimicking OBPs are considered promising method and are widely used in
biosensing research. In contrast to phage display for peptide screening, rational design
of VOC-binding peptides derived from insect OBPs could be an efficient approach for
sensing-element synthesis. Although the core binding residues have been included in the
sequence of each peptide, the length of the peptide sequence may need further analysis by
molecular dynamics simulation and calculations for optimization and the experimental
results. The use of powerful computational tools and machine learning approaches could
further pave the way for specific peptide design and for SARS-CoV-2-related VOC sensor
device development. Several previous investigations have demonstrated the validity of
this approach in experimental analysis [39,40]. Furthermore, cyclic peptides or peptide
matrixes having a novel conformation may be designed by adding a cysteine amino acid to
form disulfide bonds and thereby improve the affinity of the target VOCs. Specifically, three
phenylalanine (F) amino acids in the nonanal-binding sequence may form π–π interactions
with the SWCNT that could improve recognition performance. Moreover, a peptide-
array-based analysis platform coupled with machine-learning algorithms may enhance
discrimination ability.

4. Materials and Methods

The properties of five VOC biomarkers: ethanol, nonanal, benzaldehyde, acetic acid,
and acetone were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov, accessed
on 3 December 2021). Four insect OBPs with 3D crystal structures (three-dimensional
structure), AgamOBP20 (PDB ID:3VB1), AgamOBP22a (PDB ID:3L4L), AgamOBP47 (PDB
ID:3PM2), and LUSH (PDB ID:1OOF) were obtained from the RCSB Protein Data Bank
(PDB). Aedes aegypti Aaegobp39 was obtained from the OBP database of mosquitoes with
amino acid sequence information. The protein structure of Aaegobp39 was predicted using
AlphaFold Colab (DeepMind, Alphabet Inc., Mountain View, CA, USA). AutoDock Vina
(version 1.1.2), an open-source program provided by the Molecular Graphics Lab at The
Scripps Research Institute (San Diego, CA, USA), was used for ligand–protein complex
model docking. PyMOL 2.5 (professional version, Schrödinger, LLC, New York, NY, USA)

https://pubchem.ncbi.nlm.nih.gov
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was used to visualize the docking results and identify binding residues. The binding-pocket
position was predicted using the online server ProteinsPlus (DoGSiteScorer), provided
by the ZBH Center for Bioinformatics (https://proteins.plus, accessed on 3 December
2021). 2D ligand–protein interaction diagrams were generated using the LigPlot+ software
(European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
Cambridgeshire, UK). The peptide conformation was predicted using the PEP-FOLD3 and
RPBS Web Portal platform, which is developed by the Institut Pasteur Biology IT Center
and the Ressource Parisienne en Bioinformatique Structurale. The peptide properties,
including the theoretical pI, grand average of hydropathicity (GRAVY), and instability
index, were calculated using the SWISS-MODEL ProtParam tool.

5. Conclusions

Insect OBPs are well-known for their outstanding odorant recognition abilities. How-
ever, the use of OBPs as sensing elements remains a challenge. In this study, the rational
design of peptides derived from insect OBPs for COVID-19 breath-borne VOC recognition
was performed. The short-chain fragments derived from the binding pocket of the insect
OPBs were investigated, and the ligand–OBPs interaction mechanism was clarified by
computational visualization. As expected, non-covalent interactions, including hydro-
gen bonds, π stacking, and hydrophobic interactions were observed between the VOC
ligands and insect OBPs. Furthermore, the peptide sequences for five representative VOCs
were determined, and their conformations were predicted. The approach addressed here
may drive or accelerate the development process of a biosensor developed for pioneering
SARS-CoV-2 diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27123917/s1, Figure S1: The free binding energy of
mosquito classic and Plus-C OBPs corresponding to the nonanal ligand [41]. Figure S2: Nine
docking models of AgamOBP47 and ligand acetone complex. Figure S3: Nine docking models
of Aaegobp39 and the nonanal ligand complex. Figure S4: Local structure prediction profile for
TIAATLTILAALVSAANVFFF (a), VRGLLYVNAYAFLY (b), TPFLVFVVYLFL (c), and SATVFVTFW
(d). The profile is presented using the following color code: red: helical, green: extended, blue:
coil. Figure S5: (a) Prediction results of nonanal-binding peptide by AlphaFold Colab; (b) Model
confidence; (c) In general, the predicted local-distance difference test (pLDDT) for intra-domain
confidence; (d) Predicted aligned error (PAE) for determining between-domain or between-chain
confidence; (e) peptide helix predicted by AlphaFold; (f) peptide helix predicted by PEP-FOLD3;
Tables S1–S4: Prediction reports of the binding pocket for ligand and amino acid composition for
four ligands. Tables S5–S8: PEP-FOLD clustering reports for each peptide sequence.
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