

Fig 1. Cartilage and bone staining to reveal limb skeletal structures.

A-I, L-R, left or right lateral views of limb and girdle regions (at E18.5) are shown. Cartilage is stained with Alcian blue and bone is stained with Alizarin red. A, B, type I #4_18 embryo.
C, D, type I/II #46 embryo. E-I, type II #33 embryo. L-O, type II #14 embryo. P-R, type III #12 embryo. J, K, Lateral views of type II #14 embryo are shown. Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; il, ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp, spine; st, stylopod t, tibia; u, ulna; ze, zeugopod. Scale bars: 1 mm.

Fig 2. Genomic analysis of the Fgf10-CRISPR F0 embryos at E16.5 as revealed by deep sequencing.

Type

	WT	# of	reads 9188	% of reads 100	indel 0	In-/Out- of WT	frame	196-Lys	201-His	sequence ProArgArgGlyGlnLysThrArgArgLysAsnThrSerAlaHisPheLeu CCCA <mark>GGAGAGGACAAAAACAAGA</mark> AGGAAAAACACCTCTGCTCACTTCCCC	Туре WT
E16.5	#1	# of	reads 494	<pre>% of reads 27.76840922</pre>	indel 0	In-/Out- of	frame	196-Lys	201-His	Sequence CCCAGGAGAGACAAAAAACAAGAAGAAAAACACCTCTGCTCACTTCCTC	Type III
			407	22.87802136	-8	Out				CCCAGGAGAGAGACAAAAGGAAAAACACCTCTGCTCACTTCCTC	
			327	18.38111298	+4	Out				CCCAGGAGAGGACAAAAAAAAAAAGGAAGAAGGAAAAAACACCTCTGCTCACTT	
			268	15.06464306	+1	Out				NCCAGGAGAGGACAAAAAACAAAGGAAGGAAAAACACCTCTGCTCACTTCCT	
			268	15.06464306	+9	In		+	+	CCCAGGAGAGGACAAAAAANGAAGGAAAAAAGAAGGAAAAAACACCTCTGCT	
			15	0.84317032	-2	Out				CCCAGGAGAGGACAAAAAAAGAAGGAAAAACACCTCTGCTCACTTCCTC	
	#2		5019	38.83472609	C	WT				CCCAGGAGAGGACAAAAAACAAGAAGGAAAAACACCTCTGCTCACTTCCTC	ш
			3950	30.5632931	-4	Out				CCCAGGAGAGGACAAAAAGAAGGAAAAACACCTCTGCTCACTTCCTC	
			2904	22.46982358	-28	Out				CCCAGGAGAGGACAAAAAAACATC	
			1051	8.132157227	-6	In		+	+	CCCAGGAGAGGGACAAAAAAGGAAAAACACCTCTGCTCACTTCCTC	
	#3		2929	34 49941107	_15	Tn		_		CCC & CC & CC & C & A & A	ш
			1550	10 2002200	-13	LII PART		-			
			1552	10.12000204		WT					
			1104	13.13898704	4+222	Out				CCCAGGAGAGGACAAAAGAAGGAAAAACACCCCTCTGCTCACTTCCTC CCCAGGAGAGGACAAAAACACCAGCAGCAGCAGTGGAGTAGAGGCATCTGGAGC	
			604	7 114252061	-4+332	Juc		+	+		
			384	/ 522068108	+1				1		
			377	4.440518257	-14	Out				CCCAGGAGAGAGAGAAAAA	
			011	11110010207		040					
	#4		172	66.92607004	+1	Out				CCCAGGAGAGGACAAAAAAAAAAAAAGAAGGAAAAAACACCTCTGCTCACTTCCT	11
			75	29.18287938	0	WT				CCCAGGAGAGGACAAAAAAACAAGAAGGAAAAAACACCTCTGCTCACTTCCTC	
			5	1.945525292	-13	Out				CCCAGGAGAGGACAAAAAACACCTCTGCTCACTTCCTC	
			3	1.167315175	-7	Out				CCCAGGAGAGGACAAAAAGGAAAAACACCTCTGCTCACTTCCTC	
			2	0.778210117	-3	In		+	+	CCCAGGAGAGGACNAAAAAGAAGGAAAAACACCTCTGCTCACTTCCTC	
	#5		1106	22 02205007	-12	011				CC3CC3CC3C3C333333C3	
			1025	22.17174005	-13	Out					·
			994	21 5011897	-10	Out					
			675	14 6009085	-14	Out					
			401	8 674021198	-10	Out				CCCACCACCACCACAAAAA	
			214	4 629028769	-10	5 Guc				CCCACCACCACCACAAAAAACACCCTCTCCCTCCTCCTCC	
			208	4.499242916	-1	Out				CCCAGGAGAGGACAANNANNA-GAAGGAAAAACACCTCTGCTCACTTCCTC	
	47										
	#1		3879	44.20512821	-7	Out				CCCAGGAGAGGACAAAAAGGAAAAACACCTCTGCTCACTTCCTC	1
			3110	35.44159544	-13	Out				CCCAGGAGAGGACAAAAAACACCTCTGCTCACTTCCTC	
			1068	12.17094017	-3	In		+	+	CCCAGGAGAGGACAAAAAAGAAGGAAAAACACCTCTGCTCACTTCCTC	
			718	8.182336182	+9	In		+	+	CCCAGGAGAGGACAAAAAACAAGNAAAAACTGTAGGAAAAACACCTCTGCT	
	#8		1585	26.94203638	+1	Out				CCCAGGAGAGGACAAAAAACAAAGGAAAAAACACCTCTGCTCACTTCCT	Ш
			1483	25.2082271	0	WT				CCCAGGAGAGGACAAAAAACAAGAAGGAAAAAACACCTCTGCTCACTTCCTC	
			1419	24.12034676	-3	In		+	+	CCCAGGAGAGGACAAAAAAGAAGGAAAAACACCTCTGCTCACTTCCTC	
			1396	23.72938977	-6	In		+	+	CCCAGGAGAGGACAAAGAAGGAAAAACACCTCTGCTCACTTCCTC	
	#9		1193	45.01886792	-1	Out				CCCAGGAGAGGACAAAAAACA-GAAGGAAAAACACCTCTGCTCACTTCCTC	1
			1065	40.18867925	-30	In		-	+	CCCAGGAGAGCTCACTTCCTC	
			301	11.35849057	-33	In		-	+	CCCTCTGCTCACTTCCTC	
			91	3.433962264	+1	Out				CCCAGGAGAGGACAAAAAACAAAGGAAAAACACCTCTGCTCACTTCCT	
	#11		3304	79.40398943	-13	Out				CCCAGGAGAGGACAAAAAACACCTCTGCTCACTTCCTC	Ш
			857	20.59601057	0	WT				CCCAGGAGAGGACAAAAAACAAGAAGGAAAAACACCTCTGCTCACTTCCTC	

The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent motif sequence is shown in blue. Insertion and deletion sequences are shown in red.

Fig 3. Deduced amino acids for in-frame mutations after deep sequencing.

WT		MWKWILTHCASAFPHLPGCCCCFLLLFLVSSFPVTCQALGQDMVSQEATNCSSSSSSFSSPSSAGR HVRSYNHLQGDVRWRRLFSFTKYFLTIEKNGKVSGTKNEDCPYSVLEITSVEIGVVAVKAINSNYY LAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAP <u>RRGQKTR</u> R <mark>K</mark> NT SA <mark>H</mark> FLPMTIQT*	Phenotype
#1	-9	MWKGAPRRGQK <mark>RKEK</mark> RR <mark>K</mark> NTSA <mark>H</mark> FLPMTIQT*	Туре ш
#2	-6	MWKGAPRRGQKRKNTSAHFLPMTIQT*	Туре ш
#3	-15	MWKGAPRRGQNTSAHFLPMTIQT*	Туре п
	+3	MWKGAPRRGQKTPRWKNTSAHFLPMTIQT*	
#4	-3	MWKGAPRRGXK-RRKNTSAHFLPMXIQT*	Туре п
#7	-3	MWKGAPRRGQK-RR <mark>K</mark> NTSA H FLPMTIQT*	Туре I
	+9	MWKGAPRRGQKTRKNCR <mark>K</mark> NTSAHFLPMTIQT*	
#8	-3	MWKGAPRRGQK-RRKNTSA <mark>H</mark> FLPMTIQT*	Туре ш
	-6	MWKGAPRRGQRRKNTSAHFLPMTIQT*	
#9	-30	MWKGAPRRAHFLPMTIQT*	Туре I
	-33	MWKGAPSAHFLPMTIQT*	
#11	-12	MWKGAPRRGQKNTSAHFLPMTIQT*	Туре п

Wild type (WT) sequences are shown on the top. The embryo (E16.5) number (#), nucleotide number of small insertion (+) or deletion (-) (Indels) are shown on the left. Classified "types" are shown on the right. Amino acids corresponding to the guide RNA sequence are underlined. Deleted and altered amino acids are indicated in red.

Fig 4. Schematic representation of genomic analysis of *Fgf10*-CRISPR F0 embryos at E16.5 by deep sequencing.

A, percentage of total reads for the *Fgf10* crispants. wt, wild type *Fgf10* target nucleotide sequence; in, in-frame mutations by small insertion or deletion; out, frameshift mutations. Among in-frame mutations, the percentage of those that preserve the codons for Lys196 and His201 is shown in green, while the percentage that eliminate either of them is shown in yellow. **B**, percentage of wild type and in-frame mutations in which nucleotides for both Lys196 and His201 are retained: $8.3 \pm 6.2\%$ for type I, $25.3 \pm 2.7\%$ for type II, and $54.3 \pm 9.5\%$ for type III. Data are presented as means \pm SEM. **p*<0.01 (*p*=0.008).

Fig 5. Limb phenotypes and lung histology of *Fgf10*-CRISPR F0 embryos at E16.5.

Representative embryos are shown for wild type (WT), type I (embryo #7), type II (#3), and type III (#1). **A–D**, transverse section of the embryonic chest region. **E–H**, close-up of the embryonic lung (boxed area) shown in (**A–D**), respectively. Asterisks show putative terminal tubules in the lung. I, the number of lung terminal tubules per unit area.

In type I and type II embryos, there is a significant decrease in the number compared with that of wild type. Data are presented as means \pm SEM. Source data are available in Table 3. Ac, accessory lobe; Ca, caudal lobe; Cr, cranial lobe; L, left lobe; Mi, middle lobe. Scale bars: 500 µm in (**A–D**), and 100 µm in (**E–H**).

Fig 6. Immunohistochemistry of the lung in type II and type III *Fgf10*-crispants and wild type embryos at E18.5.

Representative data are shown. Nuclei are stained with Hematoxylin. A-C, Localization of Surfactant protein C (SPC) (alveolar type 2 epithelial cells) is indicated by brown staining. D-F, close-up of the boxed area shown in (A–C), respectively. G-I, negative control, using normal rabbit IgG instead of anti-SPC antibody. Scale bars: 100 μ m in (A-C); 50 μ m in (D-I). J, K, the number of SPC-positive cells in type III embryos is correlated to the percentage of functional *Fgf10* genotypes in limb (J) or neck DNA (K). L, the number of SPC-positive cells in type III embryos is not to correlated to their weight (K). Source data for (J-L) are available in Table 1. M, Schematic drawings to show percentage of total reads for the type III *Fgf10* crispants. wt, wild type *Fgf10* target nucleotide sequence; in, in-frame mutations by small insertion or deletion; out, out-of-frame mutations. Among in-frame mutations, the percentage of those that preserve the codons for Lys196 and His201 is shown in green, while the percentage that eliminate either of them is shown in yellow.