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Lattice Boltzmann model for capillary interactions between particles
at a liquid-vapor interface under gravity
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A computational technique based on the lattice Boltzmann method (LBM) is developed to simulate the
wettable particles adsorbed to a liquid-vapor interface under gravity. The proposed technique combines the
improved smoothed-profile LBM for the treatment of moving solid particles in a fluid and the free-energy
LBM for the description of a liquid-vapor system. Five benchmark two-dimensional problems are examined:
(A) a stationary liquid drop in the vapor phase; a wettable particle adsorbed to a liquid-vapor interface in (B)
the absence and (C) the presence of gravity; (D) two freely moving particles at a liquid-vapor interface in the
presence of gravity (i.e., capillary flotation forces); and (E) two vertically constrained particles at a liquid-vapor
interface (i.e., capillary immersion forces). The simulation results are in good quantitative agreement with
theoretical estimations, demonstrating that the proposed technique can reproduce the capillary interactions
between wettable particles at a liquid-vapor interface under gravity.
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I. INTRODUCTION

Solid particles adsorbed to liquid-fluid (i.e., liquid or
gas) interfaces exhibit varied dynamics because of cap-
illary interactions. These generate unique structures via
the self-assembly of particles [1–3], and have attracted
considerable interest. In industrial fields, the behavior of
capillary-interacting particles makes it difficult to control
manufacturing processes that treat a solid-liquid-fluid ternary
system, such as drying colloidal fluids [4] and particle-
stabilized emulsions [5] and foams [6]. To date, the capillary
interactions between particles have been extensively investi-
gated both experimentally and theoretically, and theoretical
expressions have been derived for the capillary forces act-
ing on two particles in a mechanically equilibrated state [7].
However, it is rather difficult to consider the hydrodynamic
effects and the multibody effects on the capillary forces. Thus,
numerical simulations are increasingly used as an effective
approach for studying multiparticle dynamics in such ternary
systems [8,9].

The lattice Boltzmann method (LBM) [10,11] is a good
tool for studying complex fluid systems [12]. Although nu-
merical simulations based on the LBM have been used to
efficiently simulate the flow dynamics involving movable
solid particles or colloids [13–16], it remains challenging
to reproduce systems in which solid particles are suspended
and/or adsorbed to the liquid-fluid interfaces in multiphase
and/or multicomponent fluids. Therefore, various techniques
that combine the solid-liquid models with multiphase and/or
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multicomponent LBM models have been developed [17–21].
To the best of our knowledge, only a few LB studies [18,21]
have presented the force-distance profiles for the capillary
forces between movable solid particles at interfaces and com-
pared them with exact theoretical estimations. These models
treat two-phase fluids with no density contrast.

In our recent study [22], we proposed a technique that com-
bines the improved smoothed-profile LBM (iSPLBM) [23]
for the treatment of moving solid-fluid boundaries and the
free-energy LBM for the description of the dynamics of a
binary fluid mixture, where the two immiscible fluids have
the same density [24]. Within the framework of the free-
energy approach [25,26], the majority of the previous models
adopt the wetting boundary condition for solid walls based
on Cahn’s theory [27,28]. In contrast, we employed an alter-
native wetting boundary condition [29] for the moving solid
particles. In our model, the order parameter distinguishing the
two fluids is constrained within the solid domain, and the two-
phase flow around the solid object develops naturally to satisfy
the wettability conditions of the solid surface. Because of the
good compatibility between the iSP method and free-energy
LBM, our technique accurately and stably simulates the com-
plex particle dynamics at liquid-liquid interfaces without a
substantial increase in computational time. As a result, our
simulation results for capillary interactions were generally in
good quantitative agreement with the theoretical estimations
[22]. As a next step, it is necessary to extend this technique to
systems in which the two fluids have different densities, which
are observed more generally.

In this study, a one-component, two-phase fluid system,
i.e., a liquid-vapor system, involving wettable solid particles
is considered. We develop a numerical model that combines
the iSP method with the free-energy model proposed by

2470-0045/2022/105(4)/045316(15) 045316-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8820-2533
https://orcid.org/0000-0002-8654-0854
https://orcid.org/0000-0002-8488-8435
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.045316&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevE.105.045316


MINO, TANAKA, NAKASO, GOTOH, AND SHINTO PHYSICAL REVIEW E 105, 045316 (2022)

FIG. 1. Schematic illustration of a circular solid particle trapped
at the interface between a liquid of density ρL and a vapor of density
ρV. The order parameter � distinguishes the solid particle domain
(� = 1) from the fluid domain (� = 0). The density of the artificial
fluid filling the solid particle domain, ρS, is tuned to represent the
particle wettability. Note that ρS is generally different from the real
mass density of the particles, ρP.

Swift et al. [25] for the simulation of capillary interactions
between wettable particles at the liquid-vapor interface. To
calculate the capillary interactions accurately, it is essen-
tial to carefully consider the gravitational and hydrodynamic
forces acting on the artificial fluid within the solid particle
domain. The proposed model is applied to five benchmark
two-dimensional problems: (A) a stationary liquid drop in a
vapor phase; a wettable particle adsorbed to a liquid-vapor
interface in (B) the absence and (C) the presence of gravity;
(D) two freely moving particles at a liquid-vapor interface in
the presence of gravity; and (E) two vertically constrained par-
ticles at a liquid-vapor interface in the presence of gravity. The
results of these simulations are compared with the theoretical
estimations.

II. SIMULATION MODEL

We consider a system in which NP solid circular particles
are trapped at the interface between a liquid with a density of
ρL and a vapor with a density of ρV under gravity, as shown
in Fig. 1. The order parameter � distinguishes the solid par-
ticle domain (� = 1) from the fluid domain (� = 0). In our
previous study [22], an additional order parameter was used
to represent the two fluids [24], and the constrained value of
the order parameter within the particle domain determined the
particle wettability. However, in the present model, where the
liquid and vapor phases are distinguished by density values
[25], the density ρS of the artificial fluid filling the solid parti-
cle domain must be tuned to represent the particle wettability.
Note that the tuned density of the artificial fluid ρS is generally
different from the real mass density of the particles ρP.

A. Improved smoothed-profile method

In the conventional SP method [16,30], the internal and
interfacial domains of solid particles are filled with an
artificial fluid. Our previous model assumed that the physical

properties (i.e., density and viscosity) are the same as in the
host fluid, which is valid for systems in which particles exist in
a mixture of two fluids having the same density and viscosity
[22]. However, in the present model, the physical properties
of the artificial fluid filling the solid particle domains vary
according to the wettability of the particles.

Over the computational domain, including the internal and
interfacial domains of solid particles, the hydrodynamics of
the fluid [31] is described by the continuity equation and the
modified momentum equation:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇ · P + ∇ · {η[∇u + (∇u)T]}

+ ρg + ρ� f P, (2)

where ρ is the fluid density; u is the flow velocity; P is the
modified pressure tensor, through which the thermodynamic
properties of the system enter the hydrodynamic description
[25]; η is the viscosity; and g is the gravitational acceleration.
The term ρ� f P represents the body force that enforces the no-
slip conditions on rigid particle surfaces. In this study, these
calculations were conducted within the LBM framework, as
described in Sec. II B.

The translational and rotational motions of the kth circular
particle (k = 1, 2, . . . , NP) are described by the Newton-
Euler equations:

dX k

dt
= V k, (3)

Mk
dV k

dt
= FH

k + FP
k + FG

k , (4)

Ik · d�k

dt
= NH

k , (5)

where X k , V k , �k , Mk , and Ik are the center-of-mass position,
translational velocity, rotational velocity, mass, and inertial
tensor of the kth particle, respectively. The terms FH

k and
NH

k are the hydrodynamic force and torque, respectively, and
FP

k is the force that prevents the particles from overlapping
with each other. In the present study, FP

k was represented by
the repulsive part of the Lennard-Jones potential for particle-
particle and particle-wall direct interactions [30]. The term
FG

k represents the gravitational force and must be expressed
as FG

k = Mk (1 − ρS/ρP)g, which considers the gravitational
force acting on the artificial fluid with a density of ρS inside
the kth particle, as described in Sec. II C.

The original sharp interfaces between the solid particles
and the host fluid are replaced by diffuse interfaces with a
finite thickness of ξSP, as shown in Fig. 1. The existence of
particles is expressed as a continuous field over the computa-
tional domain:

�(x, t ) =
NP∑

k=1

�k (x, t ), (6)

where �k (x, t ) is the smoothed-profile function for the kth
particle at Eulerian lattice node x and time t . This function
is defined such that its profile continuously changes from
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�k = 1 (particle-side domain) to �k = 0 (fluid-side domain)
within the interfacial domain. In this paper, �k is defined as

�k (x, t ) = s(Rk − |x − X k (t )|),

s(x) =
⎧⎨
⎩

0, x < −ξSP/2
1
2

[
sin

(
πx
ξSP

) + 1
]
, |x| � ξSP/2,

1, x > ξSP/2,

(7)

where Rk is the radius of the kth particle.
Using the particle field �(x, t ), the particle velocity field

uP(x, t ) is defined as

�(x, t )uP(x, t )=
NP∑

k=1

�k (x, t )[V k (t )+�k (t )×{x − X k (t )}].
(8)

The total (fluid + particle) velocity field u(x, t ) is then ex-
pressed as

u(x, t ) = (1 − �)uF + �uP = uF + �(uP − uF). (9)

To derive the evolution of the total velocity u, we solve for
the fluid velocity uF [30]. The total velocity is predicted to
be u∗ = uF without the body force term ρ� f P. To enforce
Eq. (9) and the solid-fluid impermeability condition, the time-
integrated body force is calculated as

∫ t+�t

t
ρ� f Pdt ′ =ρ�(x, t+�t )[uP(x, t+�t )−u∗(x, t+�t )].

(10)
Correcting u∗ with the body force gives the total velocity field
u(x, t + �t ).

In the iSP method [23], the hydrodynamic force FH
k and

torque NH
k acting on the kth particle at time t are calculated

based on the momentum exchange between the particle and
host fluid during the time interval �t :

FH
k (t ) = FH,tot

k (t ) + FH,in
k (t ), (11)

NH
k (t ) = NH,tot

k (t ) + NH,in
k (t ), (12)

where FH,tot
k and NH,tot

k are the hydrodynamic force and torque
calculated using the volume integral of the body force over the
kth particle volume [30]:

FH,tot
k (t ) = −

∫
	k (t )

ρ�k f P(x, t )dx, (13)

NH,tot
k (t ) = −

∫
	k (t )

[x − X k (t )] × ρ�k f P(x, t )dx, (14)

in which 	k (t ) represents the domain for the kth particle with
�k (x, t ) > 0 at time t . Note that FH,tot

k and NH,tot
k contain the

force and torque that compel the velocity of the artificial fluid
inside the kth particle to be consistent with the translational
and rotational velocities of the particle, respectively. There-
fore, for calculations of the actual hydrodynamic force FH

k

and torque NH
k , FH,tot

k and NH,tot
k must be compensated with

the force and torque that compel the velocity of the artificial
fluid inside the particle, respectively. This compensation force

FH,in
k and torque NH,in

k can be calculated simply using the time
derivatives of the linear and angular momenta:

FH,in
k (t ) = ρS

ρP
Mk

dV k (t )

dt
, (15)

NH,in
k (t ) = ρS

ρP
Ik · d�k (t )

dt
. (16)

By considering the effect of the internal fluid mass, the iSP
method calculates the hydrodynamic force and torque more
precisely, resulting in stable and accurate computations of the
particle motions in various scenarios. A detailed description
of the iSP method can be found in Ref. [23].

One famous method conceptually similar to the SP method
is the fluid particle dynamics (FPD) method [32], which mim-
ics the solid particle by a liquid droplet with a very high
viscosity. This treatment for the solid particle is not so com-
patible with the LBM, because the LBM basically requires
special techniques for stable calculations of two-phase fluids
with a large viscosity contrast. Consequently, we have used
the SP method for the treatment of moving solid particles
within the LBM framework.

B. Free-energy lattice Boltzmann method

To simulate liquid-vapor two-phase flows, the free-energy
LBM proposed by Swift et al. [25] is employed, with a
correction to ensure Galilean invariance [33]. Hereafter, we
use the dimensionless variables that are defined based on the
characteristic length L0, flow speed U0, imaginary particle
speed c, timescale t0 (=L0/U0), and reference density ρ0.

We describe the bulk properties of the fluids far away from
solid particles through a Landau free-energy functional:

F =
∫ [

f0(ρ, T ) + κ

2
|∇ρ|2

]
dx, (17)

where f0(ρ, T ) is the bulk free-energy density and T is the
temperature. The second term gives the excess free-energy
density stored at the liquid-vapor interface, and κ is a constant
related to the interfacial tension.

The bulk free-energy density can be conveniently ex-
pressed as [27,31]

f0(ρ, T ) = pc(νρ + 1)2(ν2
ρ − 2νρ + 3 − 2βτw

)
, (18)

where νρ = (ρ − ρc)/ρc; τw = (Tc − T )/Tc; and pc, ρc, and
Tc are the critical pressure, density, and temperature, re-
spectively. β is a constant that can be tuned to control the
liquid-vapor density ratio. For T < Tc, there are two coexist-
ing phases with densities of ρL = ρc(1 + √

βτw) and ρV =
ρc(1−√

βτw). Equation (18) provides the following liquid-
vapor interface profile:

ρ int = ρc

[
1 +

√
βτw tanh

(
x′

√
2ξLV

)]
, (19)

where x′ is the coordinate normal to the interface, which is
positioned at x′ = 0, and ξLV is the width of the liquid-vapor
interface, defined as

ξLV =
√

κρc
2

4βτw pc
. (20)
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The interfacial tension σLV is obtained by

σLV = κ

∫ ∞

−∞

(
∂ρint

∂x′

)2

dx′

=
√

2κ pc(βτw)3/2ρc

∫ 1

−1

(
1 − χint

2
)
dχint

= 4

3

√
2κ pc(βτw)3/2ρc, (21)

where χint ≡ (ρint − ρc)/(ρL − ρc).
The pressure tensor for a liquid-vapor system is given by

Pαβ =
(

p0 − κρ∇2ρ − κ

2
|∇ρ|2

)
δαβ + κ

∂ρ

∂xα

∂ρ

∂xβ

, (22)

p0 = ρ
∂ f0

∂ρ
− f0 = pc(νρ + 1)2

(
3ν2

ρ − 2νρ + 1 − 2βτw
)
,

(23)

where the subscripts α and β represent the Cartesian coordi-
nates (α, β = x, y), and the summation convention is applied
to α and β. Equation (23) is the equation of state of the fluid,
and p0 can be interpreted as the bulk pressure far from the
interface, where the gradient terms are zero.

In this study, the two-dimensional nine-velocity (D2Q9)
model is used. The physical space of interest is divided into a
square lattice, and the fluid flow is represented by a collection
of imaginary fluid particles with nine velocity vectors ci [=
(0, 0), (±1, 0), (0,±1), and (±1,±1) for i = 1, 2, . . . , 9].
The particle distribution function fi(x, t ) with velocity ci at
lattice site x and time t evolves as follows:

fi(x + ci�x, t + �t ) = fi(x, t ) − 1

τ

[
fi(x, t ) − f eq

i (x, t )
]
,

for i = 1, 2, . . . , 9, (24)

where f eq
i is the local equilibrium distribution function, τ

is the dimensionless single relaxation time, �x is the spac-
ing of the square lattice, and �t is the time step during
which the particles travel across the lattice spacing. Note
that �t = Sh�x, where Sh denotes the Strouhal number,
Sh = L0/(t0c) = U0/c. The physical variables are related to
the distribution functions by

ρ(x, t ) =
9∑

i=1

fi(x, t ), (25)

u(x, t ) = 1

ρ(x, t )

9∑
i=1

ci fi(x, t ). (26)

The equilibrium distribution function is written as [33]

f eq
i (x, t ) = Hiρ + Fi

[
(p0 − κρ∇2ρ ) + 2ωuγ

∂ρ

∂xγ

]

+ Eiρ

[
3uαciα − 3

2
u2 + 9

2
uαuβciαciβ

]

+ EiGαβciαciβ, (27)

with

H1 = 1, H2−9 = 0,

F1 = −5/3, F2−5 = 1/3, F6−9 = 1/12,

E1 = 4/9, E2−5 = 1/9, E6−9 = 1/36, (28)

and

Gαβ = 9

2

[
κ

∂ρ

∂xα

∂ρ

∂xβ

+ ω

(
uβ

∂ρ

∂xα

+ uα

∂ρ

∂xβ

)]

− 9

4

[
κ

∂ρ

∂xγ

∂ρ

∂xγ

+ 2ωuγ

∂ρ

∂xγ

]
δαβ, (29)

where the parameter ω is needed to recover Galilean invari-
ance, the subscript γ represents the Cartesian coordinates
(γ = x, y), δαβ is the Kronecker delta, and the summation
convention is applied to α, β, and γ .

The derivatives in Eqs. (27) and (29) are computed using
the finite difference schemes,

∂ρ

∂xα

≈ 3

�x

9∑
i=2

Eiciαρ(x + ci�x), (30)

∇2ρ ≈ 6

(�x)2

9∑
i=2

Ei[ρ(x + ci�x) − ρ(x)], (31)

which improve the stencil isotropy of the numerical deriva-
tives, resulting in a reduction in spurious velocities [34].

The relaxation parameter τ is related to the dimensionless
kinematic viscosity according to

ν = 1

3

(
τ − 1

2

)
�x, (32)

and the parameter needed to recover Galilean invariance [33]
is given by

ω = 1

3

(
τ − 1

2

)
�x. (33)

In the presence of an external body force f (x, t ), the evo-
lution of the particle distribution function fi(x, t ) [Eq. (24)]
is calculated by a fractional step approach. The intermediate
value of fi without the body force, denoted by f ∗

i , is calculated
as

f ∗
i (x + ci�x, t + �t ) = fi(x, t ) − 1

τ

[
fi(x, t ) − f eq

i (x, t )
]
.

(34)
Then, fi is obtained by correcting f ∗

i with the body force
as

fi(x, t + �t ) = f ∗
i (x, t + �t ) + 3�xEici · f (x, t + �t ).

(35)

C. Coupling between the iSP method and free-energy LBM

To couple the iSP method with the free-energy LBM, the
wettability of the solid particle surface is represented using
the method of Ref. [22], in which the compositional order
parameter for the immiscible two-phase fluid is constrained at
the particle domain defined in the SP algorithm to represent
the wettability of a particle surface. In the present model,
because one component is treated without the compositional
order parameter, the density of the artificial fluid at the particle
domain must be constrained to ρS (ρV � ρS � ρL) (Fig. 1).
The free-energy functional of Eq. (17) is thus replaced by

F =
∫ [

f0(ρ, T ) + κ

2
|∇ρ|2 + κS

2
�′(ρ − ρS)2

]
dx, (36)
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where the additional third term in the integral contains a
positive parameter κS and the modified particle field function
�′(x, t ) to represent the wettability of a particle surface. In-
stead of using Eqs. (6) and (7), the field �′(x, t ) is calculated
as follows:

�′(x, t ) =
NP∑

k=1

�′
k (x, t ), (37)

�′
k (x, t ) = s[Rk − |x − X k (t )| − ξSP/2], (38)

where s(x) is identical to that in Eq. (7). Note that κS must
be sufficiently large for the free-energy density inside the par-
ticles (�′ = 1) without an interface, f0(ρ, T ) + κS

2 (ρ − ρS)2,
to exhibit a single-well profile with a minimum at ρ ≈ ρS.

In the presence of particles, the pressure tensor Pαβ

[Eq. (22)] must be replaced by

Pαβ =
(

pS
0 − κρ∇2ρ − κ

2
|∇ρ|2

)
δαβ + κ

∂ρ

∂xα

∂ρ

∂xβ

, (39)

pS
0 = ρ

∂

∂ρ

[
f0 + κS

2
�′(ρ − ρS)2

]

−
[

f0 + κS

2
�′(ρ − ρS)2

]
= p0 + κS

2
�′(ρ2 − ρS

2).

(40)

The equilibrium distribution function in Eq. (27) is then cal-
culated with pS

0 instead of p0. When the above modification is
introduced, the fluid density exhibits a value of ρ ≈ ρS within
the particle domain and seamlessly changes to the original
value of ρ for the host fluid outside the particle domain (i.e.,
ρL or ρV). Consequently, the motion of contact points (in the
two-dimensional system), where the three phases of the solid
particles and liquid and vapor meet, is represented thermody-
namically.

The interfacial tensions between the solid surface and the
liquid and vapor, σSL and σSV, respectively, can be obtained in
the same manner as σLV [Eq. (21)]:

σSL =
√

2κ pc(βτw)3/2ρc

3
(2 − 3χS + χS

3), (41)

σSV =
√

2κ pc(βτw)3/2ρc

3
(2 + 3χS − χS

3), (42)

where χS ≡ (ρS − ρc)/(ρL − ρc) represents the affinity of the
solid surface for the fluids; as χS approaches 1, the surface
affinity for the liquid increases, while as χS approaches −1,
the surface affinity for vapor increases. The equilibrium con-
tact angle of a solid surface against liquid in the vapor phase,
αth, is theoretically calculated by Young’s law:

cos αth = σSV − σSL

σLV
= χS

2
(3 − χS

2). (43)

Finally, note the gravitational force term in Eq. (4). In our
previous model [22], the gravitational force acting on the fluid
was neglected, which is acceptable for isodense two-phase
fluid systems. However, when treating a two-phase fluid with
a density contrast under gravity, the gravitational force acting
on the fluid cannot generally be neglected. Such a situation
requires special care of the gravitational force acting on the

artificial fluid at the particle domain as well as the host fluid.
In the iSP algorithm, the gravitational force acting on the arti-
ficial fluid of density ρS inside the kth particle, Mk (ρS/ρP)g, is
naturally included in the exact hydrodynamic force acting on
the kth particle, FH

k (t ), and must be compensated in Newton’s
equation, as described in Eq. (4). Without this treatment, mov-
able particles exhibit unphysical behavior, leading to unstable
calculations.

D. Computational procedure

At the initial step (t = 0), X k (0), V k (0), �k (0), �(x, 0),
ρ(x, 0), and u(x, 0) are assigned, and fi(x, 0) is assumed to be
f eq
i (x, 0), while FH

k (t ) and NH
k (t ) are assumed to be zero. It is

also assumed that X k (t ), V k (t ), �k (t ), �(x, t ), ρ(x, t ), u(x, t ),
and fi(x, t ) are known immediately prior to being updated at
time t + �t . The computational procedure is described below.

Step 1. With the forces and torques at time t , V k (t + �t )
and �k (t + �t ) are calculated using Eqs. (4) and (5) through
a first-order explicit Euler scheme:

V k (t + �t ) = V k (t ) + �t

Sh
Mk

−1
[
FH

k (t ) + FP
k (t ) + FG

k (t )
]
,

(44)

�k (t + �t ) = �k (t ) + �t

Sh
Ik

−1 · NH
k (t ). (45)

The center-of-mass position X k (t + �t ) is updated using
Eq. (3) using a Crank-Nicolson scheme:

X k (t + �t ) = X k (t ) + �t

2Sh
[V k (t ) + V k (t + �t )]. (46)

Step 2. Fields �(t + �t ) and uP(t + �t ) are calcu-
lated using Eqs. (6)–(8) with X k (t + �t ), V k (t + �t ), and
�k (t + �t ).

Step 3a. f ∗
i (x, t + �t ) is calculated using Eq. (34) and

Eqs. (27)–(29) with pS
0 calculated using Eq. (40), and then

the intermediate values ρ∗(x, t + �t ) and u∗(x, t + �t ) are
calculated using Eqs. (25) and (26):

ρ∗(x, t + �t ) =
9∑

i=1

f ∗
i (x, t + �t ), (47)

u∗(x, t + �t ) = 1

ρ∗

9∑
i=1

ci f ∗
i (x, t + �t ). (48)

The body force ρ∗� f P(x, t + �t ) is calculated using
Eq. (10):

ρ∗� f P(x, t + �t ) = ρ∗�(x, t + �t )
Sh

�t
[uP(x, t + �t )

− u∗(x, t + �t )]. (49)

Step 3b. fi(x, t + �t ) is calculated using Eq. (35) as fol-
lows:

fi(x, t+�t ) = f ∗
i (x, t+�t ) + 3�xEici · ρ∗� f P(x, t + �t ).

(50)
Then, ρ(x, t + �t ) and u(x, t + �t ) are calculated using
Eqs. (25) and (26), respectively.
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TABLE I. Parameters of simulated systems.

System NP R/�x α1 α2 ρ∗
P1(= ρP1−ρc

ρL−ρc
) ρ∗

P2 L/�x (q�x)−1 Bo (Lx/�x) × (Ly/�x)

A 0 120 × 120a

B 1 5–20 15°–165° 2.0 200 × 100b

C 1 10 45°, 90°, 135° −2.0–5.3 14.1 0.50 400 × 100c

D.1 2 10 45°, 90°, 135° =α1 2.0 2.0 24–80 14.1 0.50 400 × 100d

D.2 2 10 45°, 90°, 135° =α1 −2.0 −2.0 24–80 14.1 0.50 400 × 100d

D.3 2 10 135° 45° 2.0 −2.0 24–80 14.1 0.50 400 × 100d

D.4 2 10 90° =α1 2.0, 5.0 =ρ∗
P1 40 14.1 0.50 400 × 100d

E 2 10 45°, 90°, 135° =α1 2.0 2.0 40 14.1 0.50 400 × 100e

aA circular drop of liquid with a radius of Rd = (10–50)�x was placed at the center of a simulation cell represented by the 120 × 120 lattice
nodes at x = (k�x, l�x) for k, l = 1, 2, …, 120 (i.e., Lx = Ly = 120�x), and the other region was filled with a host fluid in the vapor phase.
The periodic boundary condition was applied in all directions at x = �x and Lx and y = �x and Ly.
bThe region containing the fluid and single particle was represented by the 200 × 100 lattice nodes at x = (k�x, l�x) for k = 1, 2, …, 200
and l = 1, 2, …, 100 (i.e., Lx = 200�x and Ly = 100�x). The lower and upper halves of the simulation cell outside the particle domain were
filled with liquid and vapor, respectively. The lower substrate at y = 0 had a density of ρL (χS = 1), while the upper substrate at y = Ly + �x
had a density of ρV (χS = −1). The halfway free-slip boundary condition was imposed on the fluid-side nodes at y = �x and Ly next to the
solid-side nodes. The periodic boundary condition was applied on the sides at x = �x and Lx .
cSame as footnote b, but with Lx = 400�x.
dSame as footnote c, but for a two-particle system.
eSame as footnote d, but the area fraction of the liquid phase ranged from 0.4 to 0.6.

Step 4. FH,tot
k (t + �t ) and NH,tot

k (t + �t ) are calculated us-
ing Eqs. (13) and (14), respectively, with Eq. (49) as follows:

FH,tot
k (t + �t ) = − Sh

�t

∑
x∈	all

ρ∗�k f P(x, t + �t )(�x)2,

(51)

NH,tot
k (t + �t ) = − Sh

�t

∑
x∈	all

[x − X k (t + �t )]

× ρ∗�k f P(x, t + �t )(�x)2, (52)

where 	all is the entire domain of the system. FH,in
k (t + �t )

and NH,in
k (t + �t ) are calculated using Eqs. (15) and (16) as

FH,in
k (t + �t ) = ρS

ρP
Mk Sh

V k (t + �t ) − V k (t )

�t
, (53)

NH,in
k (t + �t ) = ρS

ρP
Ik · Sh

�k (t + �t ) − �k (t )

�t
, (54)

respectively. Finally, FH
k (t + �t ) and NH

k (t + �t ) are calcu-
lated using Eqs. (11) and (12), respectively.

III. RESULTS AND DISCUSSION

To test the performance of the proposed model, we consid-
ered five benchmark problems: (A) a stationary liquid drop in
a vapor phase; a wettable particle adsorbed to a liquid-vapor
interface in (B) the absence and (C) the presence of gravity;
(D) two freely moving particles at a liquid-vapor interface in
the presence of gravity (i.e., capillary flotation forces); and (E)
two vertically constrained particles at a liquid-vapor interface
in the presence of gravity (i.e., capillary immersion forces).
Systems C–E, which consider nonzero gravity [g = (0, −g)],

can be characterized by the Bond number Bo and the capillary
length q−1, which are defined as [35,36]:

Bo = q2R2, (55)

q−1 =
√

σLV

(ρL − ρV)g
. (56)

For Bo 
 1, the capillary forces are dominant, while for
Bo � 1, gravity is the dominant force. The results obtained
from the LB simulations were compared with the theoretical
estimations. The theoretical descriptions for systems C–E are
provided in the Appendix.

The details of the five systems are summarized in Table I,
where NP is the number of particles, R is the radius of a
particle, α is the equilibrium contact angle of a particle against
liquid in vapor, and ρ∗

P is the relative particle density, defined
as

ρ∗
P = ρP − ρc

ρL − ρc
. (57)

The size of the simulation cell Lx × Ly for system A was set
such that the periodic boundary conditions hardly affected the
behavior of a stationary drop. For systems B–E, the horizontal
length Lx was set to be much larger than the capillary length,
and the vertical length Ly was set such that the boundary
conditions at the lower and upper walls barely influenced the
behavior of the particle(s) at the mechanically equilibrated
state.

The following parameters were fixed throughout the
present calculations, although it is possible to improve the
calculation accuracy by tuning the parameters according to
each benchmark problem. Constant values of �x and �t were
used, giving a constant Strouhal number Sh (=�t/�x). The
thickness for the SP function of Eq. (7) was set to ξSP =
2�x to guarantee satisfactory accuracy in reproducing the
hydrodynamic force acting on a particle [23]. The parameters
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FIG. 2. Pressure difference �P between the internal and exter-
nal regions of a circular liquid drop as a function of its inverse
radius R−1

d for system A (see Table I). The filled circles represent
the simulation results, and the solid line represents the theoretical
estimations based on Laplace’s law [Eq. (58)] with interfacial tension
of σLV = (7.67 × 10−4)�x.

determining the bulk free-energy density of Eq. (18) were set
to βτw = 0.03, κ = 0.004(�x)2, pc = 0.125, and ρc = 3.5
[31], resulting in liquid and vapor densities of ρL = 4.11 and
ρV = 2.89, respectively, and giving an interfacial tension at
the liquid-vapor interface of σLV = (7.67 × 10−4)�x and the
interfacial width of ξLV = 1.81�x. The effective thickness of
the interfacial profile expressed by Eq. (19) should be con-
sidered as 4.164ξLV(=7.54�x) according to Ref. [37]. The
relaxation time for fi in Eq. (34) was set to τ = 0.8. The
parameter constraining the density of the artificial fluid at the
particle domain to be ρS through the free-energy functional of
Eq. (36) was set to κS = 0.01.

A. Single stationary liquid drop in the vapor phase

Let us consider system A in Table I, where a circular liquid
drop with a radius of Rd in vapor was simulated. Figure 2
shows the pressure difference �P between the internal and ex-
ternal regions of the drop as a function of R−1

d . The simulation
results are in good quantitative agreement with the theoretical
estimation based on Laplace’s law with the interfacial tension
given by Eq. (21), σLV = (7.67 × 10−4)�x:

�Pth = σLV

Rd
. (58)

This result demonstrates that the present two-phase LBM
solver with the above parameters can accurately represent a
liquid-vapor interface.

B. Single particle adsorbed to the liquid-vapor interface
in the absence of gravity

System B in Table I was used to investigate the wettabil-
ity of a particle surface for a liquid-vapor fluid. A particle
adsorbed to the liquid-vapor interface was simulated in the
absence of gravity. A circular particle of radius R, mass den-
sity ρP, and wettability χS was initially placed at the center
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FIG. 3. Simulation results (filled circles) and theoretical esti-
mations (solid line) for system B (see Table I): the values of
cos α(=h/R), where h is the downward distance from the liquid-
vapor interface to the center of the particle, as shown in the inset,
as a function of the affinity parameter χS defined by Eq. (43) for
R = 5�x, 10�x, 15�x, and 20�x.

of the simulation cell, and then allowed to move toward a
mechanically equilibrated position.

At the mechanically equilibrated state, the liquid-vapor
interface capturing the wettable particle is not deformed, but
remains horizontally flat because of the absence of gravity.
The contact angle α of the particle is given by

cos α = h

R
, (59)

where h is the downward distance from the liquid-vapor inter-
face to the center of the particle, as shown in the inset of Fig. 3.
Throughout this paper, the spatial location of the interface is
defined as a series of positions giving ρ(x) = (ρL + ρV)/2.

Figure 3 shows cos α as a function of the affinity pa-
rameter χS for a particle with four different radii (R = 5�x,
10�x, 15�x, and 20�x), demonstrating that the simulation
results agree well with the theoretical estimation given by
Eq. (43). Although the discrepancies between the simulation
results and theoretical values appear as χS approaches ±1,
especially for the case of R = 5�x, they are significantly
reduced by employing the larger particles (namely, the resolu-
tion of a particle). This result is explained by the requirement
for the particle radius, R > max(4.164ξLV, ξSP) = 7.54�x.
Henceforth, in this study, the particle size is set to R = 10�x
judging from a balance between the computational accuracy
and efficiency. Our model can represent a wide range of wet-
tability values on the particle surface by tuning the affinity
parameter χS.

C. Single particle adsorbed to the liquid-vapor interface
in the presence of gravity

We now consider system C in Table I, where a wettable
particle is trapped at a liquid-vapor interface in the pres-
ence of gravity. A circular particle of radius R, mass density
ρP, and contact angle α was initially placed at the center
of the simulation cell, and then allowed to move toward a
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FIG. 4. Downward distance from the interface to the particle
center, h/R, as a function of the relative particle density ρ∗

P [Eq. (57)]
for system C (see Table I). The filled symbols and lines represent
the simulation results and theoretical estimations, respectively, for
contact angles of α = 45◦, 90◦, and 135◦. The plots corresponding to
cases in which the particle separates from the liquid-vapor interface
and falls down are depicted at the bottom of the graph.

mechanically equilibrated position, in which the particle
weight was balanced with the force from the interfacial
tension and the buoyancy force (caused by the asymmetric
hydrostatic pressure). Regardless of particle wettability, for
small relative densities ρ∗

P [Eq. (57)], the liquid-vapor inter-
face around the particle is pushed upward (i.e., liquid level
around the particle is higher than that for a horizontally flat
interface) because the buoyancy force acting on the particle
is greater than its weight. With an increase in ρ∗

P, the upward
distortion reduces to form a horizontally flat liquid-vapor in-
terface, and then the interface becomes distorted downward
(i.e., liquid level around the particle is lower than that for a
horizontally flat interface). Finally, the particle separates from
the interface and falls down.

Figure 4 shows the downward distance from the inter-
face to the particle center at the mechanically equilibrated
state, h, as a function of ρ∗

P for contact angles of α =
45◦, 90◦, and 135◦, where the plots corresponding to cases
in which the particle separates from the liquid-vapor interface
are depicted at the bottom. Regardless of particle wettability,
the downward distance h monotonically decreases with in-
creasing ρ∗

P, and particles with larger values of α remain in
contact with the interface at larger values of ρ∗

P.
In Fig. 4, the simulation results for h are compared with

the theoretical estimations from Eq. (A19) in Sec. 2 of the
Appendix. They agree well with each other over a wide range
of ρ∗

P for every contact angle case. Therefore, our model
can represent the dynamics of a particle adsorbed to the
liquid-vapor interface in the presence of gravity. Note that
accurate and stable computations of the particle motion at the
liquid-vapor interface are impossible without exact treatment
of the gravitational force acting on the artificial fluid within
the particle domain [Eq. (4)].

FIG. 5. (a) A typical snapshot of the simulations for system D
(corresponding to system D.1 with α = 135◦ and L = 28�x) in a
mechanically equilibrated state. (b)–(d) Enlarged snapshots of sys-
tems D.1–D.3 (see Table I) in a mechanically equilibrated state:
(b) system D.1, two heavy (relative to the bulk fluids) particles with
ρ∗

P1 = ρ∗
P2 = 2.0 and (c) system D.2, two light (relative to the bulk

fluids) particles with ρ∗
P1 = ρ∗

P2 = −2.0, where the contact angles are
α1 = α2 = 45◦, 90◦, and 135◦; (d) system D.3, two particles with
ρ∗

P1 = 2.0 and ρ∗
P2 = −2.0, where the contact angles are α1 = 135◦

and α2 = 45◦, respectively. The panels of the left- and right-hand
sides display snapshots at horizontal center-to-center distances of
L = 28�x (≈ 2q−1) and 56�x (≈ 4q−1), respectively.

D. Capillary flotation force: Two freely moving particles at the
liquid-vapor interface in the presence of gravity

Let us consider system D in Table I, where two wettable
particles trapped at a liquid-vapor interface freely move in
the presence of gravity. A typical snapshot of the simulations
in a mechanically equilibrated state is shown in Fig. 5(a)
(corresponding to system D.1 with α = 135◦ and L = 28�x).
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Firstly, we consider three cases: Fig. 5(b) shows system
D.1, consisting of two heavy particles relative to the bulk
fluids; Fig. 5(c) shows system D.2, consisting of two light
particles relative to the bulk fluids; and Fig. 5(d) shows system
D.3, consisting of one heavy particle and one light particle.
Two circular particles of radius R and mass density ρPi were
initially placed with a contact angle of αi (i = 1 or 2) on a
flat liquid-vapor interface such that their horizontal center-
to-center distance was L (<Lx/2). The two particles were
then allowed to move in the vertical direction under gravity
toward their mechanically equilibrated positions, in which the
particle weight was balanced with the buoyancy force (from
the asymmetric hydrostatic pressure) and the force caused by
interfacial tension.

Figures 5(b) and 5(c) show snapshots of systems D.1
and D.2, respectively, with contact angles of α1 = α2 = 45◦,
90◦, and 135◦ at the mechanically equilibrated states, while
Fig. 5(d) shows snapshots of system D.3 at the mechanically
equilibrated states. In Fig. 5, the two horizontal panels cor-
respond to center-to-center distances of L = 28�x (≈ 2q−1)
and 56�x (≈ 4q−1). Regardless of the particle weight com-
bination and interparticle distance, the heavy particles with
ρ∗

Pi = 2.0 push the liquid-vapor interface down, whereas the
light particles with ρ∗

Pi = −2.0 pull it up. This behavior is
determined by the balance between the particle weight and
the buoyancy force acting on the particle.

For systems D.1 [Fig. 5(b)] and D.2 [Fig. 5(c)], the vertical
distance of the particle centers from the liquid-vapor interface
increases in magnitude as the separation distance L decreases.
Furthermore, in system D.1 (resp., D.2), the interface is less
distorted for smaller (resp., larger) contact angles, because
particles with higher (resp., lower) wettability are immersed
more deeply into the liquid (resp., vapor), and are thus subject
to a larger (resp., smaller) buoyancy force. In contrast, for
system D.3 [Fig. 5(d)], the vertical distance of each particle
center from the interface decreases in magnitude as L de-
creases. These results are illustrated quantitatively in Fig. 6(a),
where h = h1 = h2 > 0 for system D.1, h = h1 = h2 < 0 for
system D.2, and h = h1 = −h2 > 0 for system D.3. The sim-
ulation results for h agree well with the theoretical estimations
from Eqs. (A5) and (A12) in Sec. 1 of the Appendix.

In the horizontal direction, the forces created by interfacial
tension and hydrostatic pressure are unbalanced, resulting in
a lateral force between the two particles at the liquid-vapor
interface, Flat , which is referred to as the capillary flotation
force. For every calculation, Flat is presented as a function
of the separation distance L in Fig. 6(b), where the sign of
Flat is defined such that attractive forces have negative values.
The forces are attractive for all values of α in systems D.1
and D.2, whereas they are repulsive for system D.3. In every
system, the forces become stronger with decreasing L, a result
of the increase in the degree of interface distortion around the
particles (Fig. 5). In Fig. 6(b), the simulation results for Flat

are compared with the theoretical estimations from Eq. (A2)
in Sec. 1 of the Appendix, demonstrating that our simulation
results agree well with the theoretical estimations for various
density combinations and particle wettabilities.

The force-distance profile [Fig. 6(b)] is recast as a semilog-
arithmic graph in Fig. 6(c), demonstrating that, regardless of
particle density combination and wettability, the lateral forces

FIG. 6. Simulation results (symbols) and theoretical estimations
(lines) for system D (see Table I): (a) absolute value of downward
distance |h| and (b) capillary flotation force Flat as a function of the
separation distance L for systems D.1 and D.2 with contact angles
of α = 45◦, 90◦, and 135◦, and for system D.3; (c) semilogarithmic
graph obtained from the force-distance profile in (b). In panel (a),
h = h1 = h2 > 0 for system D.1, h = h1 = h2 < 0 for system D.2,
and h = h1 = −h2 > 0 for system D.3. In panel (b), the sign of
Flat is defined such that attractive forces have negative values. In
all panels, the theoretical lines for system D.1 with α = 45◦ and
system D.2 with α = 135◦, for systems D.1 and D.2 with α = 90◦,
and for system D.1 with α = 135◦ and system D.2 with α = 45◦ are
identical.
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TABLE II. Decay lengths λ obtained by fitting the exponential
decay function |F | ∼ exp(−L/λ) to the simulation data for qL > 2.2
in Fig. 6(c).

System α = 45◦ α = 90◦ α = 135◦ α1 = 45◦, α2 = 135◦

D.1 14.1�x 14.0�x 14.1�x
D.2 14.7�x 15.4�x 18.2�x
D.3 15.0�x

decrease exponentially with a decay length of λ. Fitting an
exponential decay function of |F | ∼ exp(−L/λ) to the sim-
ulation data for qL > 2.2, in which the theoretical lines are
approximately |Flat/σLV| ∼ exp(−qL), the decay lengths λ for
all cases are summarized in Table II. The decay lengths λ are
in good agreement with the capillary length of q−1 = 14.1�x,
except for system D.2 with α = 135◦, in which the value of
|Flat/σLV| is relatively small. Therefore, our model can rep-
resent the capillary flotation forces between two particles at
the liquid-vapor interface in the presence of gravity. Note that
discrepancies between the simulations and theoretical results
appear at qL ≈ 1.7. This is likely to have been caused by
the overlap between the two wetting layers formed around
the particles. One simple way to diminish the influence of the
overlap is to use larger particles. More detailed examinations,
as well as improvements to the proposed model, will be the
focus of future work.

As an additional demonstration of the proposed model, we
considered system D.4, where two particles were initially lo-
cated in the vapor phase and then allowed to fall downward in
the presence of gravity. Two circular particles with R = 10�x,
α1 = α2 = 90◦, and relative mass density of ρ∗

P1 = ρ∗
P2 were

initially placed at the vapor phase (y = 70.5�x), where their
horizontal center-to-center distance was L = 40�x. The two
particles were then allowed to move freely in all directions
under gravity.

The snapshots of system D.4 for ρ∗
P1 = ρ∗

P2 = 2.0 and 5.0
are displayed in Figs. 7(a) and 7(b), respectively, and the
trajectories of particles 1 and 2 during 1 × 106 time steps are
depicted in Fig. 7(c). The two particles move downward as in
Fig. 7(c) and push the liquid-vapor interface down (a1, b1). In
the case of ρ∗

P1 = ρ∗
P2 = 2.0, the particles are captured by the

interface to approach each other due to the capillary flotation
force (a2,c) and finally rest at their mechanically equilibrated
positions (a3,c), where the fluid-induced capillary flotation
force FH

k in Eq. (4) is in balance with, horizontally, the direct
particle-particle interaction force FP

k and with, vertically, the
gravitational force FG

k for each particle (k = 1 and 2). On
the other hand, the heavier particles with ρ∗

P1 = ρ∗
P2 = 5.0 are

temporally captured at the liquid-vapor interface during the
time steps from 1.0 × 104 to 13.5 × 104 (b2,c) and eventually
fall away from the interface (b3,c). The interfacial attachment
or detachment behavior of two particles of ρ∗

P1 = ρ∗
P2 = 2.0 or

5.0 is in good agreement with that of a single particle (Fig. 4
for α = 90 ◦). Figure 7(c) demonstrates that the particles move
smoothly in all directions for both cases of ρ∗

P1 = ρ∗
P2 = 2.0

and 5.0. In addition, it was confirmed that the mass conser-
vation for the liquid and vapor phases was satisfied during
the particles’ motion, with negligible errors. Therefore, the

FIG. 7. Simulation results for system D.4 (see Table I), where
two particles initially located in the vapor phase were allowed to
move freely in all directions under gravity. (a), (b) Time series
snapshots for particles with ρ∗

P1 = ρ∗
P2 = 2.0 (a) and ρ∗

P1 = ρ∗
P2 = 5.0

(b). (c) The trajectories of the particles 1 and 2 with ρ∗
P1 = ρ∗

P2 = 2.0
(black open circles) and ρ∗

P1 = ρ∗
P2 = 5.0 (red open triangles) during

1 × 106 time steps, where the positions of the particles are shown
every 5000 time steps.

proposed model can provide stable simulations of particle
dynamics at a liquid-vapor interface under gravity.

E. Capillary immersion force: Two vertically constrained
particles at the liquid-vapor interface in the presence of gravity

Let us consider system E in Table I, where two identi-
cal particles trapped at a liquid-vapor interface are vertically
constrained and move in the horizontal direction only in the
presence of gravity. Although system E is similar to system
D, it exhibits different phenomena. Such a situation can be
seen, for example, when particles are in contact with a solid
substrate covered with a thin liquid film in a vapor phase
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FIG. 8. Snapshots for the simulations of system E (see Table I) with contact angles of (a) α = 45◦, (b) α = 90◦, and (c) α = 135◦ in
mechanically equilibrated state. For every panel, from left to right, the snapshots correspond to downward distances of h < h0, h ≈ h0, and
h > h0, where h0 ≡ R cos α.

[7,38]. Simulations of system E were conducted in the same
way as those of system D, except for the following points.
Two identical circular particles with a radius of R and a
contact angle of α1 = α2 = α were constrained at the vertical
position y = Ly/2 with a horizontal center-to-center distance
of L = 4R. The area fraction of the liquid phase was varied in
the range 0.4–0.6, resulting in different downward distances
h1 = h2 = h at the mechanically equilibrated states.

Figure 8 shows snapshots of particles with α = 45◦
[Fig. 8(a)], 90◦ [Fig. 8(b)], and 135◦ [Fig. 8(c)] at the
mechanically equilibrated states, where the three horizontal
panels correspond to different values of h. Regardless of
contact angle α, the liquid-vapor interfaces around the two
particles remain horizontally flat for h/R ≈ h0/R ≡ cos α =
0.707, 0, and − 0.707 for α = 45◦, 90◦, and 135◦, respec-
tively. The liquid-vapor interfaces deform to be concave
upward and downward for h < h0 (i.e., the liquid level is
lower than that for a horizontally flat interface) and h > h0,
(i.e., the liquid level is higher than that for a horizontally flat
interface), respectively.

In the horizontal and vertical directions, the forces created
by the interfacial tension and the hydrostatic pressure are
unbalanced. This results in a lateral force between the two
particles at the liquid-vapor interface, Flat , which is referred to
as the capillary immersion force, and a vertical force acting
on each of the particles, Fver. The forces Flat and Fver are
displayed as a function of h in Figs. 9(a) and 9(b), respectively.
In Fig. 9(a), for each contact angle α, the lateral force Flat

is almost zero at h ≈ h0, where the interface is horizontally
flat, as shown in the middle panel of Fig. 8. For h < h0 and
h > h0, Flat is an attractive force, and increases with increas-
ing |h − h0|. In contrast, Fver acts upward and monotonically
increases in magnitude with increasing h.

It is apparently unnatural for the vertical force Fver to act
upward regardless of h. However, this is because Fver contains
the buoyancy force from the asymmetric hydrostatic pressure.
As described in Sec. 3 of the Appendix, Fver consists of the
force created by interfacial tension F σ

ver [Eq. (A21)] and the
buoyancy force F b

ver [Eq. (A22)], the theoretical values of
which are displayed in Fig. 9(c). For each contact angle α, F σ

ver
is almost zero at h ≈ h0, where the interface is horizontally
flat, as shown in the middle panel of Fig. 8. For h < h0 and

h > h0, F σ
ver acts downward and upward, respectively, increas-

ing in magnitude with an increase in |h − h0|.
The simulation results for Flat and Fver are compared with

the theoretical estimations (see Sec. 3 of the Appendix) in
Figs. 9(a) and 9(b), respectively. For every contact angle, our
simulation results agree well with the theoretical estimations.
This demonstrates that our model can capture the lateral capil-
lary forces between two particles at the liquid-vapor interface.

IV. CONCLUSION

We have developed a computational method for simulating
wettable particles adsorbed to a liquid-vapor interface under
gravity. The proposed method combines the iSPLBM and
free-energy LBM for a liquid-vapor system. To confirm the
performance of this model, we examined five benchmark two-
dimensional problems.

The capillary flotation forces between two particles were
found to be attractive for two identical heavy or light particles,
but repulsive in the system containing one heavy and one
light particle. These forces became stronger as the separation
distance between the particles decreased because of the larger
distortion of the liquid-vapor interface around the particles.
The capillary immersion forces were found to be attractive
and to increase with increasing curvature of the liquid-vapor
interfaces in the case of a fixed separation distance between
the particles. The simulation results were also shown to be
in good quantitative agreement with theoretical estimations
and to be stable for calculations of dynamics of particles with
various densities around the interfaces.

The proposed method can reproduce the capillary interac-
tions between wettable particles at a liquid-vapor interface
under gravity. This method now can treat the systems with
the small density contrast between the liquid and vapor phases
due to the description of a two-phase fluid with the fundamen-
tal free-energy model proposed by Swift et al. [25]. Recently,
some advanced models were proposed to treat the two-phase
fluid system with large density ratio (e.g., Refs. [39,40])
within the framework of free-energy models. Because our
proposed model is simple and preserves physical and ther-
modynamic consistencies, the methodology of the proposed
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FIG. 9. Simulation results (filled symbols) and theoretical es-
timations (lines) for system E (see Table I) in a mechanically
equilibrated state. (a) Capillary immersion force Flat , (b) vertical
force Fver, and (c) contributions of the interfacial tension, F σ

ver, and
buoyancy force, F b

ver, to the vertical force as a function of h. The lines
in panels (a), (b) represent the theoretical estimations from Eqs. (A2)
and (A20), and the lines for the force from interfacial tension and
the buoyancy force in panel (c) represent the theoretical estimations
from Eqs. (A21) and (A22), respectively.

model can be applied to the advanced models with minor
modifications.
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APPENDIX

Theoretical expressions of the capillary flotation force and
the capillary immersion force were reported in Refs. [35] and
[36], respectively. For the sake of consistency, this Appendix
provides theoretical descriptions of systems C, D.1–D.3, and
E based on these references.

1. Capillary flotation force: Two freely moving particles
at liquid-vapor interface in the presence of gravity

(systems D.1–D.3)

We set systems D.1–D.3 as illustrated in Fig. 10, consisting
of two wettable circular particles i (=1 or 2) with a radius
of R, mass density of ρPi, contact angle of αi, and horizon-
tal center-to-center distance between the particles of L. The
particles float at the liquid-vapor interface in the presence of
gravity. The level of the undisturbed horizontal interface far
from the particles defines the origin of the vertical axis z; r is
the current variable along the horizontal axis.

(a)

(b)

M

h1 C1ʹC1

θ1 θ1ʹα1

α1

ψ1ʹψ1

d
L

C2ʹParticle 1

Particle 2

∞
−∞

ζ(r)
r

z

α2

ψM

M

Hh1

C1ʹ
C1

θ1 θ1ʹα1 α1

ψ1ʹ
ψ1

d
L

C2ʹ

Particle 1 Particle 2

∞−∞

ζ(r)

r

z

FIG. 10. Schematic illustrations of systems D.1–D.3 (see
Table I) in a mechanically equilibrated state, where two freely mov-
ing particles i (=1 or 2) with the same radius of R, relative density of
ρ∗

Pi, contact angle of αi, and a horizontal center-to-center distance
of L float at a liquid-vapor interface in the presence of gravity:
(a) two identical particles (systems D.1 and D.2); (b) two particles
with different mass density and wettability (system D.3). In system
D.3, for the sake of simplification, the heavy particle has ρ∗

P1 and α1

and the light particle has ρ∗
P2 = −ρ∗

P1 and α2 = 180◦ − α1. The other
mathematical symbols are explained in the main text.
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The vertical positions of the center of particle i and the
apex M of the interior meniscus between the particles are hi

and H , respectively. The vertical positions of the three-phase
contact points Ci and C′

i, which are characterized by angles
of θi and θ ′

i , are expressed by hi + R cos θi and hi + R cos θ ′
i ,

respectively. The slope angles of the exterior and interior
menisci are ψi(≡αi + θi − π ) and ψ ′

i (≡αi + θ ′
i − π ), respec-

tively.
Each floating particle is subjected to the gravitational force

(i.e., its weight), the force from the asymmetrical hydrostatic
pressure (i.e., buoyancy force), and the force created by in-
terfacial tension. At the equilibrated state, the vertical force
balance on particle 1 is given by

Bo

[
θ1+θ ′

1+ sin θ1 cos θ1+ sin θ ′
1 cos θ ′

1+
2h1

R
(sin θ1+ sin θ ′

1)

]

= 2[sin (α1 + θ1) + sin (α1 + θ ′
1) + πBoD1], (A1)

where Bo is the Bond number, which is defined by Eqs. (55)
and (56), and D1 ≡ (ρP1 − ρV)/(ρL − ρV). The lateral inter-
action force acting on particle 1, Flat , is expressed by

Flat = −σLV[cos (α1 + θ1) − cos (α1 + θ ′
1)]

−BoσLV

[
1

2

(
sin2θ1 − sin2θ ′

1

) + h1

R
(cos θ ′

1 − cos θ1)

]
.

(A2)

The shape of the interface around the particles obeys the
Laplace capillary equation [7],

d

dr

[
dζ/dr√

1 + (dζ/dr)2

]
= (ρL − ρV)gζ

σLV
, (A3)

where z = ζ (r) is the equation of the deformed fluid interface.
Taking the interface shape ζ and its slope ψ as variables,
Eq. (A3) yields the parametrized form [7]:

−d (cos ψ )

dζ
= q2ζ . (A4)

a. Two identical particles (systems D.1 and D.2)

Two circular particles with the same density, i.e., ρP1 =
ρP2, and the same contact angle, i.e., α1 = α2, are consid-
ered, as shown in Fig. 10(a). In this case, there is a plane
of reflection symmetry midway between the two particles.
After integrating Eq. (A4) from −∞ (ζ = 0, ψ = 0) to
C1 (ζ = h1 + R cos θ1, ψ = ψ1) and from C′

1 (ζ = h1 +
R cos θ ′

1, ψ = ψ ′
1) to M (ζ = H, ψ = 0), we obtain the con-

ditions for interfacial equilibrium:

Bo

(
h1

R
+ cos θ1

)2

= 2[1 + cos (α1 + θ1)], (A5)

Bo

[(
h1

R
+ cos θ ′

1

)2

−
(H

R

)2]
= 2[1 + cos (α1 + θ ′

1)].

(A6)

The solution of Eq. (A4) under the condition ζ = H,

ψ = 0 is

qζ = [(qH )2 + 2(1 − cos ψ )]1/2. (A7)

Combining Eq. (A7) with the relation dζ/dr = − tan ψ leads
to

d (qr)

dψ
= − cos ψ

[(qH )2 + 2(1 − cos ψ )]
1/2 . (A8)

Integrating Eq. (A8) from C′
1 to M yields the dimensionless

horizontal distance between the three-phase lines C′
1 and C′

2
of the interior meniscus:

qd = 2

a

{
(2 − a2)

[
F

(
a,

π

2

)
− F

(
a,

π − |ψ ′
1|

2

)]

− 2

[
E

(
a,

π

2

)
− E

(
a,

π − |ψ ′
1|

2

)]}
, (A9)

where

a2 = 4

4 + (qH )2 . (A10)

In Eq. (A9), F (a, φ) and E (a, φ) are elliptic integrals of the
first and second kind with modulus a and amplitude φ [41].
The center-to-center distance between the two particles is
given by

qL = qd + 2Bo1/2 sin θ ′
1. (A11)

This set of equations is solved numerically as follows.
First, angle θ ′

1 is specified; θ1 and h1 are then calculated by
Eqs. (A1) and (A5) with the condition that h1 + R cos θ1 has
the same sign as ψ1. H is calculated by Eq. (A6) with the
condition that h1 + R cos θ ′

1 has the same sign as ψ ′
1. Finally,

the lateral interaction force Flat , the distance between the
three-phase contact points d , and the center-to-center distance
between the particles L are calculated using Eqs. (A2), (A9),
and (A11), respectively.

b. Two particles with different mass density
and wettability (system D.3)

For the sake of simplification, we consider a heavy par-
ticle with ρ∗

P1 and α1 and a light particle with ρ∗
P2 = −ρ∗

P1
and α2 = 180◦ − α1, as shown in Fig. 10(b). In this case,
the meniscus has an inflection point at M (r = L/2, ζ = 0),
where the meniscus slope ψ = ψM: the meniscus is symmet-
rical with respect to the inflection point, i.e., ψ ′

2 = −ψ ′
1 or

θ ′
2 = 180◦ − θ ′

1 [36].
After integrating Eq. (A4) from −∞ (ζ = 0, ψ = 0)

to C1 (ζ = h1 + R cos θ1, ψ = ψ1) and from C′
1 (ζ = h1 +

R cos θ ′
1, ψ = ψ ′

1) to M (ζ = 0, ψ = ψM), we obtain the
conditions for interfacial equilibrium:

Bo

(
h1

R
+ cos θ1

)2

= 2[1 + cos (α1 + θ1)], (A12)

Bo

(
h1

R
+ cos θ ′

1

)2

= 2[cos ψM + cos (α1 + θ ′
1)]. (A13)

The solution of Eq. (A4) under the condition ζ = 0, ψ =
ψM is

qζ = 2[cos2(ψM/2) − cos2(ψ/2)]1/2. (A14)
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Combining Eq. (A14) with the relation dζ/dr = − tan ψ

leads to

d (qr)

d (ψ/2)
= − 1 − 2sin2(ψ/2)

[cos2(ψM/2) − cos2(ψ/2)]
1/2 . (A15)

Integrating Eq. (15) from C′
1 to M yields the dimensionless

horizontal distance between the three-phase contact points C′
1

and C′
2 of the interior meniscus:

qd = 2

[
F

(
b,

π

2

)
− F (b, φ′

1)

]
− 4

[
E

(
b,

π

2

)
− E (b, φ′

1)

]
,

(A16)

where

b = cos (ψM/2), sin φ′
1 = cos (ψ ′

1/2)

cos (ψM/2)
. (A17)

The center-to-center distance between the two particles L is
given by Eq. (A11).

This set of equations is solved numerically as follows.
First, angle θ ′

1 is specified; θ1 and h1 are then calculated by
Eqs. (A1) and (A12) with the condition that h1 + R cos θ1 has
the same sign as ψ1. ψM is calculated by Eq. (A13) with the
condition that h1 + R cos θ ′

1 has the same sign as ψ ′
1. Finally,

the lateral interaction force Flat , the distance between the
three-phase contact points d , and the center-to-center distance
between the particles L are calculated using Eqs. (A2), (A16),
and (A11), respectively.

2. Single particle adsorbed to liquid-vapor interface
in the presence of gravity (system C)

For a theoretical description of an isolated circular particle,
we can consider the situation in which the center-to-center
distance between the particles is infinite; θ1 = θ ′

1 = θ0 and
H = 0. Incorporating these values into Eq. (A1) leads to

Bo

[
θ0+ sin θ0 cos θ0+2h

R
sin θ0

]
= 2 sin (α + θ0) + πBoD,

(A18)
and in the same manner, Eqs. (A5) and (A6) reduce to

Bo

(
h

R
+ cos θ0

)2

= 2[1 + cos (α + θ0)]. (A19)

These equations are solved numerically, establishing the re-
lations between the density parameter D and the vertical
position of the center of the isolated particle h.

3. Capillary immersion force: Two vertically constrained
particles at liquid-vapor interface in the presence of gravity

(system E)

As shown in Fig. 10(a), system E consists of two identical
particles with a radius of R, a contact angle of α1 = α2, and a
horizontal center-to-center distance between the particles of L.
The particles are constrained at the same vertical position, and
hi, H , θi, θ ′

i , ψi, and ψ ′
i (i = 1 or 2) are defined in the same

fashion as for system D. Hence, the formal expressions for
system E are the same as those for system D [e.g., Eqs. (A2),
(A5), (A6), and (A9)–(A11)], except for several expressions
described below.

The lateral force Flat acting on each particle is given by
Eq. (A2), while the vertical force balance [Eq. (A1)] is re-
placed with an equation for the vertical force acting on the
particle:

Fver = −BoσLV

2

[
θ1 + θ ′

1 + sin θ1 cos θ1 + sin θ ′
1 cos θ ′

1

+ 2h

R
(sin θ1 + sin θ ′

1)

]
+ σLV[sin (α + θ1)

+ sin (α + θ ′
1)] − πR2ρVg, (A20)

where Fver > 0 and Fver < 0 represent the downward and up-
ward forces on each particle, respectively.

With the constant center-to-center distance of L, forces
Flat and Fver are numerically obtained as a function of the
vertical position of the central axis of the particles h1. When
h1 is specified, θ1 is calculated by Eq. (A5) with the condition
that h1 + R cos θ1 has the same sign as ψ1. If the value of θ ′

1
is assigned, H is calculated by Eq. (A6) with the condition
that h1 + R cos θ ′

1 has the same sign as ψ ′
1, and the distance

between the three-phase contact points d and the center-to-
center distance between the particles L are calculated from
Eqs. (A9) and (A11), respectively. Therefore, θ ′

1 is iteratively
determined so that the resultant L converges to the set value.
After successful convergence, the lateral force Flat and the
vertical force Fver are calculated with Eqs. (A2) and (A20),
respectively. From Eq. (A20), the contribution of the interfa-
cial tension to the vertical force, F σ

ver, is calculated as

F σ
ver = σLV[sin (α + θ1) + sin (α + θ ′

1)], (A21)

and the buoyancy force F b
ver is calculated as

F b
ver = −BoσLV

2

[
θ1 + θ ′

1 + sin θ1 cos θ1 + sin θ ′
1 cos θ ′

1

+ 2h

R
(sin θ1 + sin θ ′

1)

]
− πR2ρVg. (A22)
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