
1. Introduction
Intraplate-basaltic volcanism was widespread throughout Southeast (SE) Asia during the Cenozoic (Figure 1; 
Flower et al., 1998). Vietnam is located at the southeastern edge of SE Asia (Figure 1a) and represents the most 
volcanically active field on the Indochina Peninsula (Figure 1b; Flower et al., 1998). The upwelling of hot asthe-
nospheric materials, revealed by seismic tomography (Huang et al., 2015), is considered to be a primary cause of 
the volcanism in this region.

Lithospheric thinning, induced by the collision of the Indo-Australian plate and Eurasian plate, has long been 
proposed as a cause of asthenospheric upwelling (Flower et al., 1998; Hoang et al., 1996; Hoang & Flower, 1998). 
In this model, the asthenospheric upwelling is confined to the uppermost mantle, and the isotopic variability of 
Vietnamese basalts is due to the various extents of interaction between asthenosphere-derived melts and the 
overlying lithosphere (Hoang et al., 1996; Hoang & Flower, 1998). Instead, recent studies argued that astheno-
spheric upwelling was derived from deeper regions, for example, the core-mantle boundary (An et al., 2017; 
Hoang et al., 2018; Wang et al., 2013; Yan et al., 2018). This model ascribes the isotopic variability of Viet-
namese basalts to the intrinsic heterogeneity of the asthenosphere (An et al., 2017). Hoang et al. (2018) argued 
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that asthenospheric upwelling is centered on Hainan Island (seismically detected as the Hainan plume; Montelli 
et al. [2006]), and thus the geochemistry of Vietnamese basalts shows lateral variation with distance from the 
island. However, the effect of the Hainan plume remains elusive, for example, estimates of the mantle potential 
temperature for the production of basaltic magmas in Vietnam (Tp = 1470–1490°C; An et al. [2017]) are lower 
by 50°C or more than that estimated for Hainan basalts (1540°C; Wang et  al.,  2012). Instead, the estimated 
temperatures for Vietnam are rather similar to recent estimates of Tp for ambient upper mantle (1400–1460°C; 
Putirka [2016]; Sarafian et al. [2017]).

As an alternative to the two conventional models outlined above, another model deduced from numerical experi-
ments was proposed to explain the intraplate volcanism (Dasgupta & Mandal, 2022; Lyu et al., 2019). The models 

Figure 1. (a) Plate configuration in east Asia. (b) Map of Indochina Peninsula showing distribution of Cenozoic mafic 
volcanic rocks. Ages of volcanic rocks (by K-Ar and  40Ar/ 39Ar methods) from each volcanic field are shown in parenthesis 
(data source: this study; An et al., 2017; Barr & Macdonald, 1981; Ho et al., 2000; Le et al., 2019; Lee et al., 1998; Rangin 
et al., 1995; Sieh et al., 2020; Wang et al., 2012).
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explain how dense oceanic lithosphere, subducted to the mantle transition zone (MTZ), can induce astheno-
spheric upwelling from the MTZ without elevating temperature. In the other areas adjacent to SE Asia, intraplate 
basaltic volcanism had occurred contemporaneously, including in Northeast Asia, and Eastern Australia and 
Zealandia. Petrologic and geochemical characteristics of these basalts show evidence that is consistent with this 
scenario (e.g., Kuritani et al., 2011; Mather et al., 2020; Nakamura et al., 1986, 1985; Sakuyama et al., 2013). 
Given that the recent seismic data detected stagnant slabs that are widely distributed within the SE Asian mantle 
(Huang et al., 2015; Yu, Gao, et al., 2017), these examples may be analogous to intraplate volcanism in the Indo-
china Peninsula. Therefore, it is important to assess this model further.

In this study, the K-Ar ages, major- and trace-element abundances, and Sr-Nd-Pb isotopic compositions of Ceno-
zoic basalts are investigated across all of Vietnam. These data are combined with published geochemical data 
and used to address the possible scenarios and elaborate a new model for the origin of Vietnamese volcanism.

2. Geological Settings and Samples
Southeast Asia is surrounded by convergent plate margins (Figure 1a). The Indo-Australian plate is subducting in 
the southwest of SE Asia and the Philippine Sea plate is subducting in the east of SE Asia. The leading edge of the 
Indo-Australian plate reaches the MTZ beneath the southern part of the Indochina Peninsula (Huang et al., 2015; 
Pesicek et  al.,  2008; Yu, Gao, et  al.,  2017). The Philippine Sea plate is shallowly subducting (100–400 km) 
beneath the Philippines archipelago (Fan & Zhao, 2019; Wu et al., 2016). More than 4000-km to the east, the 
Pacific plate is subducting beneath the Philippine Sea plate, and its leading edge reaches the MTZ beneath the 
northern Indochina Peninsula (Fukao & Obayashi, 2013; Yu, Gao, et al., 2017; Zhao et al., 2021).

The basement terranes of the Indochina Peninsula are mainly comprised of a continental block (Indochina block) 
bordered by strike-slip faults or suture zones (Figure 1b). The Indochina block is a fragment of Gondwanaland 
and was extruded from the northwest by the collision of the Indo-Australian plate and Eurasian plate during 
55–50 million years ago or Ma (Hall, 2002; Metcalfe, 2013). The upper crust of the block is dominantly composed 
of Proterozoic felsic rocks (granulites, gneisses, and granites; Lan et al. [2003]). In Southern Vietnam, the upper 
crust, capped by Cenozoic basalts, also contains Cretaceous granitic rocks (Nguyen, Satir, Siebel, Vennemann, 
& Van Long, 2004; Nguyen, Satir, Siebel & Chen, 2004). A receiver function analysis suggests that the crust 
beneath Central Vietnam has an overall felsic composition, whereas that beneath Southern Vietnam has a layered 
structure of felsic and mafic compositions in the upper and lower parts, respectively (Yu, Hung, et al., 2017). 
Details about the basement geology and lithology are given in Text S1 in Supporting Information S1.

Following the continental collision, the oceanic lithosphere of the Indo-Australian plate began to subduct and led 
to the spreading of a marginal sea basin, the East Vietnam Sea/South China Sea (EVS/SCS) at c. 30 Ma (Clift 
et al., 2008). Subsequently, basaltic volcanism began in subaerial regions of the Indochina Peninsula and adja-
cent regions, including Hainan, Laos, Thailand, Cambodia, and Vietnam (Figure 1b; Barr & Macdonald, 1981; 
M. F. J. Flower et al., 1992, Flower et al., 1998; Y.-Q. Li et al., 2020; Sieh et al., 2020; Wang et al., 2012; Yan 
et  al.,  2018; Zhou & Mukasa,  1997). Seamounts in the EVS/SCS, dated at 11–0.4  Ma, are also products of 
concurrent volcanic activity (Kudrass et al., 1986; Tu et al., 1992; Yan et al., 2008).

Vietnam has been the most volcanically active field of the Indochina Peninsula, having produced lava plateaus 
with an aerial extent of 23,000 km 2 (Hoang et al., 1996, 2013; Hoang & Flower, 1998). Thirteen volcanic fields 
are recognized in Vietnam (Figure 1b; Lee et al. [1998]); Dien Bien Phu, Phu Quy (or Nghia Dan), Khe Sanh, 
Con Co Island, Quang Ngai, and Ly Son Island (or Re Island), Kong Plong, Pleiku, Song Cau, Buon Ma Thuot, 
Phuoc Long, Dalat, Xuan Loc, and Phu Quy Island and Ile des Cendres from north to south. Of the 13 volcanic 
fields, 8 were surveyed and 70 mafic volcanic rocks were collected (Figure  1 and Figure S1 in Supporting 
Information S1).

The EVS/SCS was also volcanically active during the Cenozoic. Eruptions of basalts occurred during c. 
30 to 16 Ma in axial zones and c. 20 to 0.5 Ma in off-axis zones (C.-F. Li et al., 2014; Tu et al., 1992; Yan 
et al., 2008, 2015; Zhang, Luo, et al., 2018, 2018b). The major- and trace-element abundances and Sr-Nd isotope 
compositions of basalts collected by the International Ocean Discovery Program (IODP) Expedition 349 from the 
site U1431 (n = 7) and the site U1433 (n = 3), were analyzed. The basalts represent magmas erupted at spreading 
centers at different locations and periods.
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3. Analytical Methods
Major- and trace-element and Sr-Nd-Pb isotope analyses and K-Ar dating were performed at the Pheasant Memo-
rial Laboratory, Institute for Planetary Materials, Okayama University at Misasa (Nakamura et al., 2003). Whole-
rock samples were crushed by a jaw crusher into fragments, and those of 5–10 mm size were hand-picked. To 
avoid the artificial loss or gain of specific phenocryst phases, fragments <5 mm were excluded. Visible xenoliths 
and xenocrysts were also removed. Selected fragments were cleaned by ultrasonication in de-ionized water, and 
dried in an oven at 110°C overnight. Dried fragments were then pulverized using an alumina ceramic puck 
mill. Major-element concentrations and Ni and Cr contents were determined by X-ray fluorescence spectrometry 
(XRF) with a Philips PW2400 instrument, using lithium tetraborate glass beads (1:10 ratio of sample and flux) as 
outlined in T. T. Nguyen et al. (2020). Loss on ignition (LOI) was obtained by the gravimetric method; samples 
were heated at 1000°C in a furnace (>4 hr), and weight loss or gain values were measured using a balance. 
Trace-element concentrations were determined by inductively coupled plasma mass spectrometry (ICPMS) with 
instruments Agilent 7500cs and Thermo Scientific iCAP TQ instruments. The procedures of sample decom-
position and the determination of elemental abundances follow Yokoyama et al. (1999), Tanaka et al. (2003), 
Makishima and Nakamura (2006), and Lu et al. (2007). All analyses were duplicated, and the relative difference 
between them are better than 1% for major elements and 3% for trace elements [except for B (<5%, ICPMS), Be 
(<9%, ICPMS), Cr (<5%, XRF), Ni (<5%, XRF), Cs (<6%, ICPMS) and Ta (<5%, ICPMS)], respectively.

Strontium, Nd, and Pb isotopic compositions were analyzed by a thermal ionization mass spectrometry in a static 
multi-collection mode (with Thermo Scientific TRITON and TRITON Plus instruments). Separation procedures 
for Sr, Nd, and Pb follow Yoshikawa and Nakamura (1993), Nakamura et al. (2003), and Kuritani and Naka-
mura (2002), respectively. Samples for isotopic analyses were leached in 6 M HCl (100°C, 6 hr) to minimize the 
effect of contamination. Instrumental mass bias was internally corrected for Sr and Nd, using  86Sr/ 88Sr = 0.1194 
and  146Nd/ 144Nd = 0.7219, respectively. The  87Sr/ 86Sr and  143Nd/ 144Nd ratios of samples are reported relative to 
NIST SRM 987  87Sr/ 86Sr = 0.710250 and La Jolla  143Nd/ 144Nd = 0.511860, respectively. Instrumental mass bias 
during Pb isotope analysis was corrected by the double-spike method (Kuritani & Nakamura, 2003). The NIST 
SRM 981, analyzed during this study, yields  206Pb/ 204Pb = 16.9422 ± 0.0017,  207Pb/ 204Pb = 15.4997 ± 0.0019, 
and  208Pb/ 204Pb = 36.7270 ± 0.0043 (2σ, n = 24). The compiled Sr, Nd, and Pb isotope data are also normalized 
relative to these reference materials. The external reproducibilities (2σ) of Sr, Nd, and Pb isotope analyses are 30, 
50, and 100 ppm, respectively, based on repeated analyses of the reference standard materials (JB-2 for Sr and 
Nd, and JB-3 for Pb, see Table S1).

The K-Ar ages were obtained by analyses of Ar abundance by a noble gas mass spectrometer (Micromass 
VG5400) and K abundance by a flame photometer (Shimadzu AA-6200) following T. T. Nguyen et al. (2020). 
Groundmass fractions were used for both K and Ar analyses. Instrumental mass bias during Ar isotopic analysis 
was externally corrected using reference air. All analyses were duplicated. Details of analytical procedures can be 
found in Text S2 in Supporting Information S1.

4. Results
Results of geochronological and geochemical analyses are summarized in the Supporting Information (Tables 
S1–S4 in Supporting Information S1), which includes K-Ar ages (n = 19), major-element abundances (n = 70), 
trace-element abundances (n = 49), and Sr-Nd-Pb isotopic compositions (n = 38) for subaerial samples. Addi-
tionally, major- and trace-element abundances, and Sr-Nd isotopic compositions of the seafloor basalts from the 
EVS/SCS (n = 10) are also reported.

4.1. Petrography

Mafic volcanic rocks in the studied area are classified into either alkaline or sub-alkaline series based on whole-
rock major-element compositions and normative mineral compositions (Figure 2a and Table S2 in Supporting 
Information S1). Irrespective of rock series, most rocks show aphyric to sparsely-phyric textures with <10 vol% 
phenocrysts consisting of olivine (<10 vol%), clinopyroxene (<5 vol%), and plagioclase (<15 vol%) (Figure S2 
in Supporting Information S1). Alkaline rocks have less abundances of plagioclase phenocrysts (<5 vol%) than 
sub-alkaline rocks in the same volcanic field. Sub-alkaline rocks are generally phyric (2–10 vol% phenocryst), 
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and those from Phuoc Long and Xuan Loc are porphyritic with 10–15 vol% plagioclase. Detailed petrographic 
descriptions for each volcanic field are provided in Supporting Information S1 (Text S3 and Figure S2 in Support-
ing Information S1).

Figure 2. Major-element (in wt%) and Cr Ni (in ppm) concentrations plotted against SiO2 (in wt%). The dashed line in (a) divides samples into the alkaline and 
sub-alkaline series (Irvine & Baragar, 1971). Open and filled symbols indicate sub-alkaline (SAB) and alkaline series (ALK), respectively, which are classified by 
normative mineral compositions (CIPW, Table S2). Literature data are from An et al. (2017), Hoàng et al. (2013), Hoang et al. (1996, 2019), and Hoang et al. (2018).
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4.2. K-Ar Ages

Previous studies reported ages as old as 15 Ma for mafic volcanic rocks in plateaus (Phuoc Long and Dalat) in 
Southern Vietnam (Lee et al., 1998). The younger eruptions mainly occurred in the volcanic fields closer to the 
coast of Vietnam (e.g., Con Co, Ly Son, Xuan Loc, and Iles des Cendres). It is also noted that the volcanism 
in Central Vietnam had been active for a prolonged period (15 Myrs). The obtained K-Ar ages (Table S3 in 
Supporting Information S1) range from 7.55 Ma to 0.03 Ma, which falls within the range of previously published 
dates by the  40Ar/ 39Ar method (Lee et al., 1998) and the K-Ar method (An et al., 2017; Barr & Macdonald, 1981; 
Hoang et al., 2019; Koszowska et al., 2007; Le et al., 2019; Rangin et al., 1995). Although our data do not span 
the whole range of ages, the studied samples cover most of the individual volcanic fields from north to south and 
represent the major volcanic activity in Vietnam in the last 10 Myrs. Details of the ages and volcanic history of 
each volcanic field are described in Text S4 and Figure S3 in Supporting Information S1.

4.3. Major and Minor Elements

Normative mineral classification of the rock series (Table S2 in Supporting Information S1) is generally consist-
ent with the classification by a total alkali-silica (TAS) diagram (Figure 2a; Irvine & Baragar, 1971). Given that 
most of the studied samples have a SiO2 abundance lower than 52 wt% (anhydrous basis), we refer to them as 
(alkaline or sub-alkaline) basalts. They have Mg # [≡ 100 × Mg/(Mg + Fe 2+) in molar] < 69 [where Fe 2+/Fetotal 
(molar) = 0.85] and Cr < 600 ppm (Figures 2k and 2l); these values are lower than those of primitive basalt 
magmas (Mg #  >  70 and Cr  >  1,000 ppm; Green,  1973). Alkaline basalts have higher abundances of Al2O3 
(Figure 2c), Na2O (Figure 2h), and K2O (Figure 2i) than sub-alkaline basalts at a given SiO2 in general. Major-el-
ement compositions of alkaline and sub-alkaline basalts significantly overlap irrespective of sample locations. 
Exceptions are Na2O, Ni, and Cr. The alkaline basalts from Buon Ma Thuot and Xuan Loc have higher abun-
dances of these elements than the alkaline basalts from Ly Son-Quang Ngai and Pleiku at given SiO2 and MgO 
abundances (Figures 2h, 2k, and 2l).

4.4. Trace Elements

The Vietnamese basalts show enrichments of highly-incompatible elements (e.g., Rb, Th, and light rare-earth 
elements) relative to the primitive mantle values (McDonough & Sun, 1995), and abundance patterns similar to 
those of ocean island basalts (OIB, Figure 3). In general, alkaline basalts have higher abundances of incompat-
ible elements than sub-alkaline basalts in the same volcanic field. It is noted that sample CC16.1 from Con Co 
Island (Figure 3a) displays a striking pattern with depletions of Cs, Rb, and K. With its higher LOI (1.86 wt %), 
depletions of these elements are due to alteration, and hence the sample is excluded in the following discussion.

Vietnamese basalts commonly show a positive anomaly of Sr and a negative anomaly of Pb (Figure 3). The extents 
to which these elements are enriched or depleted are expressed as Sr/Sr* [SrN/(CeN × NdN) 0.5 where subscript N 
denotes normalized element abundance] and (Pb/Ce)N (Figure 4a). The Sr/Sr* and (Pb/Ce)N ratios of the basalts 
are different among the volcanic fields studied here, as was also reported by Hoang et al. (2018). Strontium is 
more enriched in sub-alkaline basalts from the volcanic fields in Southern Vietnam (Buon Ma Thuot, Phuoc 
Long, Xuan Loc, and Phu Quy Island), whereas Pb is more enriched in sub-alkaline basalts from the volcanic 
fields in Central Vietnam (Con Co, Ly Son-Quang Ngai, and Kong Plong; Figure 4a). The extents of Th and Nb 
anomalies are also different among these basalts (Figures 3 and 4b); sub-alkaline basalts in Central Vietnam are 
more enriched and depleted in Th and Nb, respectively, than sub-alkaline basalts in Southern Vietnam. Alkaline 
basalts in Central and Southern Vietnam show similar Sr, Pb, Nb, and Th enrichments. Note that the assemblages 
and abundances of phenocrysts are not systematically different in sub-alkaline basalts from Central and South-
ern Vietnam (Text S3 and Figure S2 in Supporting Information S1). Hence the different extents of enrichments 
or depletions in Sr, Pb, and Th are considered to be intrinsic features of the parental magmas. Trace-element 
compositions of seafloor basalts from the EVS/SCS spreading ridges reveal that two types of parental magmas 
were erupted in this marginal basin (Figure S4 in Supporting Information S1), as was suggested by Zhang, Luo, 
et al. (2018). Basalts from the site U1431 show an abundance pattern similar to N-MORB (Gale et al., 2013), 
except for alkalis (Cs, Rb, and K) and Pb. Enrichments of alkalis are probably due to seafloor alteration. Basalts 
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Figure 3. Trace-element abundances ([Z]) normalized to the primitive mantle (McDonough & Sun, 1995); (a) Con Co, (b) 
Ly Son-Quang Ngai (or LS-QN), (c) Kong Plong, (d) Pleiku, (e) Buon Ma Thuot (or BMT), (f) Phuoc Long, (g) Xuan Loc, 
(h) Phu Quy Island. Red, Central Group; pale blue, Southern Group. Alkaline (ALK) and sub-alkaline (SAB) series are 
denoted as filled and open symbols, respectively. The line denoted as OIB shows the abundance pattern of average intraplate-
oceanic alkaline basalts (Sun & McDonough, 1989).
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from the site U1433 have greater abundances of Ba, Th, U, Nb, Ta, La, and Ce than the basalts from the site 
U1431 (Text S5 and Figure S4 in Supporting Information S1).

4.5. Sr-Nd-Pb Isotopes

The studied basalts show large variations in Sr, Nd, and Pb isotopic compositions (Figure 5), and cover the entire 
range of basalts from previous studies (An et al., 2017; Hoàng et al., 2013; Hoang et al., 1996, 2018, 2019). 
Alkaline and sub-alkaline basalts in the same volcanic fields show isotopic compositions considerably overlap-
ping each other. Instead, the studied basalts show a regional difference (Figures 5b–5d, Figure S5 in Support-
ing Information S1); the basalts from Central Vietnam (13.5–17.2°N; denoted as Central Group) mostly have 
higher  206Pb/ 204Pb ratios than the basalts from South Vietnam (10.5–13.5°N; denoted as Southern Group). The Pb 
isotope data of these two groups, obtained by double-spike methods in this study, appear to form linear arrays with 
different slopes in ( 206Pb/ 204Pb)i-( 207Pb/ 204Pb)i and ( 206Pb/ 204Pb)i-( 208Pb/ 204Pb)i plots (Figures 5c and 5d). Only an 
alkaline basalt deviates from these arrays; that is from Buon Ma Thuot, and has a significantly high  143Nd/ 144Nd 
ratio and low  206Pb/ 204Pb ratio similar to EVS/SCS basalts. The existence of two Pb-isotope arrays becomes less 
clear when data in the previous studies (An et al., 2017; Hoang et al., 1996, 2018, 2019; Hoàng et al., 2013) are 
included in a plot of ( 206Pb/ 204Pb)i-( 207Pb/ 204Pb)i, presumably due to inadequate correction of mass bias effect by 
conventional techniques (e.g., Baker et al., 2004; Pineda-Velasco et al., 2015; Thirlwall, 2000). It should be noted 
that Hoang et al. (2018) divided differently the volcanic field in Vietnam as Central Group, South-Central Group, 
and Southern Group, respectively, based on distinct trace-element characteristics. The borders of these groups are 
located at 14°N (Central vs. South-Central) and 12°N (South-Central vs. Southern), respectively. The South-Cen-
tral Group by Hoang et al. (2018) is a transitional zone of their Central and Southern Groups. The border of our 
Central and Southern Groups, located at 13.5°N, is within this transitional zone.

To substantiate the regional Pb-isotopic difference, we performed the statistics F test to find the likelihood that 
two groups are drawn from the same distribution (the null-hypothesis). Specifically, residual variances of regres-
sion lines in the ( 206Pb/ 204Pb)i-( 207Pb/ 204Pb)i and ( 206Pb/ 204Pb)i-( 208Pb/ 204Pb)i plots are compared between those 
calculated for pooled data and those calculated individually for Central and Southern Groups. If residual vari-
ances of individual regressions are significantly smaller than that for pooled data, the null hypothesis is rejected. 
In other words, the Central and Southern Groups form different isotopic populations. Details about the F test 
are described in Text S6, and the results of F test performed on the Pb isotope data are shown in Table S5 in 
Supporting Information  S1. Comparison of the combined residual sum of squares for individual regressions 
with a pooled regression results in the statistic F values of 25.65 and 13.12 for ( 206Pb/ 204Pb)i-( 207Pb/ 204Pb)i and 

Figure 4. Covariations of trace-element ratios of Vietnamese basalts. (a) (Pb/Ce)N against Sr/Sr* which are calculated as Sr/Sr* = SrN/(CeN × NdN) 0.5, where the 
subscript N indicates normalization to primitive mantle (PM, McDonough & Sun, 1995). (b) (Pb/Ce)N against Th/La. The horizontal and vertical dashed lines denote 
(Pb/Ce)N, Sr/Sr* and Th/La of PM. Abbreviations of the Vietnamese volcanic fields: BMT, Buon Ma Thuot; LS-QN, Ly Son-Quang Ngai.
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Figure 5. Plots of (a) ( 87Sr/ 86Sr)i versus ( 143Nd/ 144Nd)i, (b) ( 206Pb/ 204Pb)i versus ( 143Nd/ 144Nd)i, (c) ( 206Pb/ 204Pb)i versus ( 207Pb/ 204Pb)i, and (d) ( 206Pb/ 204Pb)i versus 
( 207Pb/ 204Pb)i. For comparison, literature data for Cenozoic mafic volcanic rocks in Vietnam and the adjacent regions are also shown; Vietnam (An et al., 2017; Hoang 
et al., 1996, 2018, 2019; Hoàng et al., 2013), Thailand (Mukasa et al., 1996; Yan et al., 2018; Zhou & Mukasa, 1997), Hainan (Wang et al., 2013), EVS/SCS [seamount, 
Tu et al. (1992); Yan et al. (2008); clast, Zhang et al. (2017); seafloor basalts (EVS/SCS-MORB), Zhang, Luo, et al. (2018); Zhang, Sun, et al. (2018)]. Isotopic ratios 
are age-corrected (denoted as subscript i; Table S1). Also shown are isotopic compositions of seamount basalts (denoted as "Indian seamount") from Eastern Wharton 
Basin Volcanic Province (Figure 10a; Hoernle et al., 2011), seafloor basalts in Indian and Pacific Oceans (I-MORB and P-MORB, Gale et al., 2013), and (seafloor) 
sediment (Gasparon & Varne, 1998; Ben Othman et al., 1989; Plank & Langmuir, 1998). Isotopic compositions of peridotite xenoliths in Vietnamese basalts are from 
Anh et al. (2020), Huong and Hoang (2018), and Nguyen and Kil (2020). The circles labeled C1 and C2 are hypothetical end-member components proposed in this 
study to explain isotopic variability in mafic volcanic rocks in Vietnam and the adjacent regions (Text S7 in Supporting Information S1 and Table S6). Data sources 
for the compositions of mantle end-member components are as follows: D-DMM and E-DMM, Workman and Hart (2005), except for  208Pb/ 204Pb of D-DMM that 
is from Salters and Stracke (2004); EM1 and EM2, Zindler and Hart (1986); FOZO, Stracke et al. (2005). Analytical uncertainties of our data are smaller than the 
symbols. ALK and SAB indicate alkaline and sub-alkaline basalts, respectively. NRHL is the Northern Hemisphere Reference Line (Hart, 1984). Abbreviations of the 
Vietnamese volcanic fields: BMT, Buon Ma Thuot; LS-QN, Ly Son-Quang Ngai.
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( 206Pb/ 204Pb)i-( 208Pb/ 204Pb)i relationships, respectively. These values are much greater than the critical F value at 
1% (F = 5.29) or even 0.1% (F = 8.52) significance levels. The null hypothesis probabilities for F values of 25.65 
and 13.12 are 2 × 10 −5 and 0.006%, respectively, indicating that the null hypothesis can be rejected at much better 
than 99% confidence. We also performed an F-test for data from this study and that compiled from the previous 
studies (An et al., 2017; Hoang et al., 1996, 2018, 2019; Hoàng et al., 2013). The statistic F values are 0.34 and 
11.56 for ( 206Pb/ 204Pb)i-( 207Pb/ 204Pb)i and ( 206Pb/ 204Pb)i-( 208Pb/ 204Pb)i relationships, respectively. The critical F 
value at 1% and 0.1% significant levels are 4.7 and 7.2, respectively.

The result holds two important implications: (a) it confirms the existence of two Pb-isotope subpopulations in 
Vietnamese basalts based on the significant statistic F for ( 206Pb/ 204Pb)i-( 208Pb/ 204Pb)i from our data and from the 
literature data and (b) it implies the analytical problem of  207Pb/ 204Pb in the literature data based on significant 
difference in the statistic F for ( 206Pb/ 204Pb)i-( 207Pb/ 204Pb)i from our data (F = 25.65) and from the literature data 
(F = 0.34, i.e., significantly smaller that critical F).

These two groups also show differences in Sr and Nd isotopic compositions (Figures 5a and 5b). The  87Sr/ 86Sr 
ratios of the Central Group basalts extend from 0.7038 to more radiogenic compositions (0.7074), whereas those 
of the Southern Group basalts show a smaller variation and less radiogenic compositions (0.7034–0.7052). 
The  143Nd/ 144Nd ratios are inversely correlated with  87Sr/ 86Sr ratios, and the Central and Southern Group basalts 
apparently form a single linear array. Within the Southern Group, the  143Nd/ 144Nd ratios become more radiogenic 
in basalts from south to north, whereas such spatial variation in  143Nd/ 144Nd ratio is not observed in the Central 
Group.

The Sr and Nd isotopic data of EVS/SCS basalts ( 87Sr/ 86Sr  =  0.7029–0.7032 and  143Nd/ 144Nd  =  0.51298–
0.51309) are comparable to the previously published data (Figure S6 in Supporting Information S1, Table S1; 
Zhang, Luo, et al., 2018; Zhang, Sun, et al., 2018). The EVS/SCS basalts are characterized by lower  87Sr/ 86Sr 
and  206Pb/ 204Pb (17.5–18.6) and higher  143Nd/ 144Nd than those of basalts in subaerial volcanic fields in Vietnam 
(Figures 5a and 5b). Within the EVS/SCS, basalts from different collection sites show a clear isotopic distinction. 
Basalts from the sites U1433 and U1434, located in the central basin of EVS/SCS, show the isotopic composition 
akin to D-DMM (Workman & Hart, 2005) whereas basalts from the Site U1431, located on the seamount (a part 
of Scarborough seamount chain), have the isotopic composition similar to E-DMM (Workman & Hart, 2005).

5. Discussion
We examine possible factors that control the geochemical compositions of mafic volcanic rocks in Vietnam; those 
are (a) post-melting processes that modify geochemical compositions of mantle-derived magmas, (b) melting 
processes which produce a large range of primary magmas with variable compositions, and (c) lithological and 
geochemical characteristics of the sources of parental magmas of the Vietnamese basalts.

5.1. Post-Melting Processes

It is generally expected that mantle-derived magmas react, to some extent, with crustal materials during their 
ascent. The crust of subaerial volcanic fields in Vietnam is dominated by mafic rocks in its lower part, and by 
intermediate and felsic rocks in its upper part (Yu, Y. et al., 2017b). Among these crustal lithologies, upper-crus-
tal felsic rocks are considered to be a dominant assimilant as they have lower solidus (650–900°C; Sawyer 
et al.  [2011]) and higher abundances of incompatible elements (Jiang et al., 2020; Lan et al., 2003; Nguyen, 
Satir, Siebel, Vennemann, & Van Long, 2004; Nguyen, Satir, Siebel & Chen, 2004; Owada et al., 2007; Shell-
nutt et al., 2013). Crustal assimilation cools the magma and leads to crystallization, whereas the latent heat of 
fractional crystallization promotes assimilation. Such positive feedback is governed by mass- and energy-transfer 
processes. We examine such processes using the Magma Chamber Simulator (MCS); the MCS is a mass- and 
energy-balanced, the thermodynamic tool that allows for the investigation of open-system magmatic processes 
(Bohrson et al., 2014, 2020; Heinonen et al., 2020). For the modeling undertaken here, the least differentiated 
alkaline basalts in each volcanic field (Mg # ≥ 58) were chosen as a common parental magma (Figure 6). Two 
possible assimilants are examined; one is a Paleozoic–Mesozoic granitic rock from the Kontum massif in Central 
Vietnam (Text S1 in Supporting Information S1; Jiang et al. [2020]; Lan et al. [2003]; Owada et al. [2007]), and 
the other is a Cretaceous granitic rock from the Dalat zone in Southern Vietnam (Text S1; Nguyen, Satir, Siebel, 
Vennemann, and Van Long [2004]; Nguyen, Satir, Siebel and Chen [2004]; Shellnutt et al. [2013]). The reaction 
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between parental magma and assimilant is assumed to have occurred in the 
crustal magma reservoir (0.2 GPa). The H2O and CO2 contents of the paren-
tal magmas are estimated by the indirect approach (discussed in Section 5.3). 
The temperature of an assimilant before interaction with magma is assumed 
to be 400°C from the crustal geotherm beneath Vietnam (Yu, C. et al., 2017). 
Details of the model inputs are provided in Text S8 and Table S7 in Support-
ing Information S1.

Results of the modeling are shown in Figure  6. The model predicts that 
differentiated magmas evolve to have a large variation in Rb/Sr without a 
significant variation in Sm/Nd (given as solid lines in Figures 6a and 6b). 
The predicted changes in Rb/Sr (0.06–0.90) and Sm/Nd (0.21–0.23) are at 
odds with data obtained for Vietnamese basalts, showing a large variation 
in Sm/Nd (0.20–0.30) and fairly constant Rb/Sr (0.01–0.10). Accordingly, 
the majority of the studied samples do not follow the trend for assimilation. 
We thus consider that the observed compositional variability is an intrinsic 
feature of parental magmas. Below, we discuss the processes that occurred 
at subcrustal depths, that is, lithology of magma sources, melting processes, 
and the variability in the composition of the magma sources.

5.2. Lithology of Magma Sources

Recent studies suggested the presence of mafic lithologies (pyroxen-
ite or eclogite) in the source of parental magmas of basalts in Vietnam 
(An et al., 2017; Hoang et al., 2018) and EVS/SCS (Zhang et al., 2018b). 
These studies examined abundances of major and minor elements in olivine 
phenocrysts; specifically, they noted abundances of Ni higher than, and those 
of Ca and Mn lower than olivines in MORB at given Fo content [≡ 100 × 
Mg/(Mg + Fe) in molar]. Such elemental features have been interpreted as 
evidence that melts equilibrated with an olivine-free, pyroxene- (and garnet-) 
bearing source, that is, pyroxenite (Sobolev et al., 2005).

However, recent experimental studies documented that the partitioning of 
Ni, Ca, and Mn between melt and residual peridotite varies significantly, 
owing to changes in pressure and temperature or residual phase assemblages 
during melting (Matzen et al., 2017). Magmatic processes are also responsi-
ble for the abundances of these elements in olivine: re-equilibration of olivine 
with recharged magma results in the elevation of Ni and the decrease of Mn 
abundances by cation diffusion (Gleeson & Gibson, 2019). Furthermore, an 
increase in the abundance of H2O and CO2 in a magma leads to a decrease in 
the abundance of Ca within olivine due to the combined effect of (a) reduc-
ing Ca activity in the melt by bonding of hydrous or carbonate species on 
Ca-complexes and (b) depletion of Ca in the melt by enhanced clinopyrox-
ene crystallization (Feig et al., 2006; Gavrilenko et al., 2016). It is therefore 
considered that distinct Ni, Ca, and Mn abundances of olivines from those 
in MORBs do not readily indicate that a magma that contains olivines with 
high-Ni, low-Ca or low-Mn abundances was derived from olivine-free mafic 
lithology.

We examined the existing data for major- and minor-element compositions of olivine phenocrysts in the Vietnam-
ese basalts (An et al., 2017; Hoang et al., 2018; Text S9.1 and Figure S7 in Supporting Information S1). The Ni 
abundance of high-Mg olivine phenocrysts (Fo = 88 or greater) ranges from 2000 to 3300 ppm, being well within 
the range of Ni abundance in olivines crystallized from peridotite partial melts (Sobolev et al. [2007]; see Figures 
S7a and S7b in Supporting Information S1). The Ca abundance of olivines is consistent with that estimated from 
the partition coefficient between olivine and melt (D olivine/melt) for hydrous systems (Gavrilenko et al., 2016); a 
magma containing 0–4 wt% H2O or 1–2 wt% CO2 could crystallize olivines with the Ca abundance observed in 

Figure 6. (a) ( 87Sr/ 86Sr)i against Rb/Sr, (b) ( 143Nd/ 144Nd)i against Sm/Nd. 
The AFC (assimilation and fractional crystallization) model was performed 
using the Magma Chamber Simulator (MCS; Bohrson et al., 2014; Bohrson 
et at., 2020; Heinonen et al., 2020). The least differentiated basalts from 
each volcanic field were chosen as parental magmas, and the calculated 
compositions of daughter magmas are shown by black and gray lines. Black 
lines represent the evolution of daughter magmas via assimilantion of a 
granitic rock of the Kontum massif (00041904A; Owada et al., 2007) in 
Central Vietnam. Gray lines represent the evolution of daughter magmas 
via assimilation of a granitic rock of the Dalat zone (SVN7C; Shellnutt 
et al., 2013) in Southern Vietnam. All input parameters used in the model are 
provided in Text S8 in Supporting Information S1 and Table S7. Abbreviations 
of the Vietnamese volcanic fields: BMT, Buon Ma Thuot; LS-QN, Ly 
Son-Quang Ngai.
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phenocrysts in the Vietnamese basalts (Figure S7d in Supporting Information S1). These H2O and CO2 abun-
dances are consistent with those estimated by the other independent approaches (discussed in Section 5.3).

Another recent study (Qian et al., 2021) also found geochemical characteristics which support the insignificant 
role of a pyroxenite source for the basalts from EVS/SCS seamounts. The study reported that olivine phenocrysts 
in basalts from EVS/SCS seamounts have a Ni abundance lower than those in Vietnamese basalts, but comparable 
to those found in MORB, yet the basalts from these two regions share common trace-element and isotopic char-
acteristics. They simply attributed the higher Ni abundances and lower Mn abundances of olivine phenocrysts in 
Vietnamese basalts to high-pressure melting of a magma source and subsequent low-pressure crystallization of a 
magma (Matzen et al., 2017). Higher-pressure melting leads to the production of primary magma with higher Mg, 
higher Ni, and lower Mn abundances than those produced at lower pressure. Subsequently, such a magma ascends 
to a shallow level and crystallizes olivine phenocrysts. At that depth, olivine phenocrysts sequester more Ni and 
less Mn due to increasing 𝐴𝐴 𝐴𝐴

olivine∕melt

Ni
 and decreasing 𝐴𝐴 𝐴𝐴

olivine∕melt

Mn
 with decreasing pressure (Matzen et al., 2017). 

Consequently, olivine phenocrysts in Vietnamese basalts that erupted on thicker lithosphere could have higher 
Ni and lower Mn abundances than olivine phenocrysts in EVS/SCS seamounts where the lithosphere is thinner.

An et  al.  (2017) argued that major-element compositions of Vietnamese basalts, corrected for the effect of 
fractional crystallization, fall within the range of experimental melts from silica-deficient eclogite (Dasgupta 
et al., 2010). However, the calculated compositions in An et al. (2017), as well as the compositions calculated for 
our samples (see Section 5.3), are also well within the range of melts produced by partial melting of peridotite 
(Text S9.2 and Figures S8 and S9 in Supporting Information S1). We also examined whole-rock major-element 
characteristics by the approach of Yang et al. (2019) who defined the parameter called FCKANTMS which allows 
the origin of melts to be determined. The FCKANTMS is an acronym for the oxide components used to derive 
this parameter (FeO, CaO, K2O, Al2O3, Na2O, TiO2, MgO, and SiO2). For its derivation, log ratio transformation 
is employed [ln(FeO/CaO), ln(K2O/Al2O3), ln(TiO2/Na2O), ln(Na2O/K2O), ln(Na2O/TiO2) and ln(MgO/SiO2)], 
and then these log ratios are summed after multiplying empirical factors. The empirical factors are defined so as 
to adjust the FCKANTMS value for fertile-peridotite melts to be 0. It is noted that the FCKANTMS value is little 
affected by olivine fractionation. Whereas, this value significantly increases by removal of clinopyroxene from a 
melt. In other words, a primary basalt with the FCKANTMS value ≫≫ 0 is considered to have been derived from 
a mafic lithology (e.g., pyroxenite). Yang et al. (2019) gave the threshold values of 0.05 ± 0.10 for discrimination 
of peridotite versus transitional (olivine-rich mafic) lithology and 0.37 ± 0.08 for discrimination of transitional 
lithology versus (olivine-poor) mafic lithology. The latter threshold value marks the upper limit of FCKANTMS 
for melts of peridotitic sources.

The Vietnamese basalts (samples with MgO >8 wt%) yield an average FCKANTMS value of 0.27 (ranging 
from −0.04 to 0.50) and the majority of these samples have FCKANTMS values lower than 0.37 (Figure S9c 
in Supporting Information S1). This result suggests that the source of the Vietnamese basalts is dominated by 
olivine-bearing mafic to ultramafic lithology. There is no convincing evidence for the significant contribution 
of an olivine-free lithology (eclogite or silica-excess pyroxenites) in the production of basaltic magmas in Viet-
nam. We agree with the statement of Matzen et al. (2017): “the standard (and far simpler and better constrained) 
reference model based on partial melting of fertile peridotite as a dominant process contributing to basaltic melt 
worldwide”. In the next section, we apply a thermobarometric approach, based on experimental peridotite melt-
ing, to Vietnamese basalts, which can yield reliable estimates of melting conditions.

5.3. Melting Processes

Experimental studies demonstrated that melting of mafic or ultramafic rocks in the mantle produce melts with 
variable compositions under a range of pressures (P) and temperatures (T) (e.g., Hirose,  1997; Hirschmann 
et al., 2003). Hence the P-T conditions of melting can be examined by inverse modeling using the major-element 
composition of primitive basaltic rocks.

We applied the following approaches: (a) select the samples with minimal fractional crystallization, (b) correct 
the effect of fractional crystallization and estimate the primary magma compositions, and (c) apply thermoba-
rometry. For Approach 1, the least differentiated samples with a liquidus phase of only olivine were selected 
based on CaO/Al2O3 ratios (Figure S8 in Supporting Information S1). The majority of basalts with MgO >7.5 
wt% have CaO/Al2O3 ratios falling within the range of experimental peridotite melts (Condamine et al., 2016; 
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Davis et  al., 2011; Davis & Hirschmann, 2013; Falloon & Danyushevsky, 2000; Hirose & Kawamura, 1994; 
Hirose & Kushiro, 1993, 1998; Kushiro, 1996; Pickering-Witter & Johnston, 2000; Walter, 1998), indicating that 
the basalts were affected minimally by crystallization of clinopyroxene and plagioclase (e.g., Liu et al., 2015). 
To further avoid the spurious influence of fractionation correction, we selected rocks with MgO >8 wt%. For 
Approach 2, equilibrium olivine was incrementally added until the melt compositions reached equilibrium with 
the mantle containing olivine with Fo [≡ 100 × Mg/(Mg + Fe 2+)] = 90. The use of Fo = 90 is supported by 
analysis of most magnesian olivine found as phenocrysts in Vietnamese basalts (An et  al.,  2017). The Fe 2+/
Fetotal in the melt is assumed to be 0.85 based on H2O abundances (see below) and an empirical function by 
Kelley and Cottrell (2009), and (Fe 2+/Mg)olivine/(Fe 2+/Mg)melt is assumed to be 0.3 (Blundy et al., 2020; Roeder 
& Emslie, 1970).

For Approach 3, we applied the algorithms of Putirka (2008), Lee et al. (2009), Herzberg and Asimow (2015), 
and Plank and Forsyth (2016). Volatile effects on depression or elevation of solidi of magma sources are also 
taken into consideration. The abundance of H2O in primary magma is estimated to be 0.47–2.0 wt % [mean 1.08 
(±0.37, 1σ) wt%] from the Ce abundance of calculated primary magmas and the H2O/Ce ratio is assumed to be 
200 (Dixon et al.  [2002]; see also Text S10 in Supporting Information S1). Uncertainty of H2O estimation is 
30%. The higher H2O abundances (1.5–2.0 wt%) are obtained for primary magmas of strongly alkaline basalts 
from Pleiku (KT05 and KT06) and Xuan Loc (XL01 and XL02). An et al.  (2017) also obtained similar H2O 
abundances (1.9–2.0 wt%) for Xuan Loc basalts. It is noted that these basalts show overall enrichments of incom-
patible trace elements (e.g., high Ce/Yb), probably due to a smaller degree of partial melting (discussed below).

Another major volatile may be CO2 which also affects calculated P and T (Dasgupta et  al.,  2013; Plank & 
Forsyth, 2016). We used the empirical equation of Plank and Forsyth (2016) for the correction of the estimated T:

Δ𝑇𝑇CO2
=

SiO2 − 50.3

0.12 × (−1.067)
 (1)

where ΔTCO2 represents the deviation of calculated T for a volatile-free basis, and SiO2 is its abundance in 
primary magma (in wt%). It is noted that this empirical relationship is applicable to a P-T range of 2–3 GPa. We 
exclude the results for Xuan Loc basalts since P > 3 GPa. The ΔTCO2 for parental magmas of Vietnamese basalts 
are estimated to be 16–35°C with the estimated CO2 = 2.2–4.5 wt% (Text S10 and Figure S10 in Supporting 
Information S1). Uncertainty of CO2 estimation is 30%. The CO2 abundances estimated by this approach are 
significantly higher than those obtained by whole-rock analyses (<2 wt%; Hoang et al.  [1996]), possibly due 
to the loss of CO2 through degassing during eruptions (Dixon et al., 1997). This inference is supported by the 
consistency between the estimated CO2 abundances in primary magmas based on the extent of SiO2 deficit 
(CO2 = 2.2–4.5 wt%) and Ba-Nb abundances in the calculated primary magmas (CO2 = 1.6–4.9 wt%; Text S10 
in Supporting Information S1).

When using the thermometer of Herzberg and Asimow (2015), P by Plank and Forsyth (2016)'s barometer was 
used, and solidus depression by H2O follows Putirka (2016). Results of the calculation are summarized in Figure 
S11 in Supporting Information S1 and Table S8, showing the overall consistency of P-T estimates by different 
algorithms within ±0.15 GPa and ±35°C. The pressures are lowered by 0.01–0.41 GPa (mean 0.15 GPa) while 
the melting temperatures are also lowered by 18–53°C (mean 37°C) for melting of the source that contains H2O 
and CO2. Since the estimated P and T are mutually related, the difference in P and T for the cases of volatile-bear-
ing and volatile-free options are 0.02 GPa and 16°C, respectively.

The estimated P-T conditions form a broad continuous array above the dry solidus of peridotite (Hirschmann, 2000), 
and follow an adiabatic gradient of partially-molten peridotite (Tp = 1450°C, Figure 7; Katz et al. [2003]). This 
result indicates that the parental magmas of Vietnamese basalts were extracted from the adiabatically upwelling 
mantle at various depths; in general, parental magmas of sub-alkaline basalts were segregated at shallower depths 
than parental magmas of alkaline basalts. There is no clear difference in melting P-T for parental magmas from 
different volcanic fields. The mantle potential temperatures (Tp) were estimated using an adiabatic gradient of 
solid peridotite (Katz et al., 2003), to be 1380–1490°C with a median Tp = 1440°C (Figure 7), consistent with 
the results of previous studies (Tp = 1440–1490°C; An et al. [2017]; Hoang & Flower [1998]). The Tp for the 
Vietnamese basalts partially overlaps with those for Hainan basalts, but the mean Tp of Hainan basalts is higher 
by 100°C than Tp calculated for this volcanic field (Wang et al., 2012). It should be noted that Tp of Vietnamese 
basalts does not show a clear correlation with latitude (Figure S12 in Supporting Information S1), suggesting that 
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the thermal (and chemical) influence of the Hainan plume is unlikely to be the main cause of the volcanism in 
Vietnam.

We further examine the melting process by trace-element modeling using the REEBOX PRO by Brown and 
Lesher (2016). The REEBOX PRO is a forward-modeling program that simulates the adiabatic decompression 
melting of mantle rocks. Input parameters have options of lithologies and compositions of magma sources, P-T 
condition in relation to lithospheric thickness and Tp, and physical form of melting regime. We assume two 
end-member models with different source lithologies; (a) peridotite with a trace-element composition of depleted 
mid-ocean ridge basalt (MORB) mantle (D-DMM, Workman & Hart [2005]) and (b) silica-deficient pyroxenite 
(MIXG1; Hirschmann et al. [2003]; Kogiso et al. [2003]) with a trace-element composition of the normal MORB 
(N-MORB; Gale et al. [2013]). The water content in the source is also a critical parameter. The possible range 
of water in a peridotite is 100–700 ppm based on H2O in primary magmas and the partition coefficient of H2O 
between mantle rock (peridotite or pyroxenite) and melt (𝐴𝐴 𝐴𝐴

solid∕melt

H2O
= 0.008 , Hirschmann [2006]). The mantle 

potential temperature for modeling is constrained by the result of thermobarometry (Tp = 1450°C, Figure 7). The 
average lithosphere thickness beneath Vietnam is from seismic studies (60 km, Ball et al. [2021]). The geometry 
of the melting regime is assumed to be an active residual mantle column, such as that described by Langmuir 
et al. (1992). The input parameters for the modeling are summarized in Table S9 and the results of modeling are 
shown in Figure 8.

The majority of the Vietnamese basalts can be explained by the melting of peridotite with various H2O abun-
dances (100–700 ppm), consistent with the inference that peridotite is predominant as a source of magma based 
on major-element compositions. Exceptions are those for the basalts from Phu Quy Island, Xuan Loc, and Pleiku. 
They have Dy/Yb and La/Yb ratios higher than melts produced from peridotite with a melting degree (F) of 
0.5%–2%. We consider that the source of magmas could contain a subordinate amount of eclogite (or other mafic 

Figure 7. Pressure (P) and temperature (T ) of melting for production of Vietnamese basalts, calculated by the algorithms of 
Plank and Forsyth (2016) and Putirka (2008). Data used for P-T calculation are major-element compositions of the basalts by 
this study and previous studies (same as in Figure 5). The uncertainty of the estimated pressure and temperature are ±0.15 
GPa and ±35˚C, respectively. For comparison, the pressure-temperature condition of melting for production of Hainan 
basalts are shown (Wang et al., 2012). The dry solidus of peridotite, shown by a thick black line, is from Hirschmann (2000). 
Pressure-temperature gradients of solid and melting peridotites, calculated after Katz et al. (2003), are also shown. The 
adiabatic gradient of solid peridotite is used to calculate mantle potential temperatures (Tp). The horizontal dashed line 
labeled LAB denotes the depth of lithosphere-asthenosphere boundary beneath SE Asia (Ball et al., 2021).
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rocks, such as pyroxenite). In summary, Vietnamese basalts were tapped from the sources at different depths in 
the mantle consisting of various mafic/ultramafic lithologies. Below, we discuss the origin of these lithologies of 
magma sources using the Sr, Nd and Pb isotopic compositions of Vietnamese basalts.

5.4. Isotopic Characteristics of Magma Sources

The variations in the Sr-Nd-Pb isotopic compositions of Vietnamese basalts are significantly large. The signal-
to-noise ratio (S/N), defined as (σ 2obs/σ 2err – 1) 1/2 where σobs is the observed isotopic variability and σerr is the 
analytical uncertainty, is much greater than unity; 29 for  87Sr/ 86Sr, 6 for  143Nd/ 144Nd, 95 for  206Pb/ 204Pb, 34 
for  207Pb/ 204Pb, and 74 for  208Pb/ 204Pb. Given that the isotopic ratios are unaffected by melting, a reasonably 
large S/N supports the involvement of multiple end-member components in the source of the parental magmas 
of Vietnamese basalts (Figure 5 and Table S6 in Supporting Information S1). One of these end-member compo-
nents is represented by basalt in Buon Ma Thuot and EVS/SCS basalts. Some EVS/SCS basalts from the sites 
U1433 and U1434 show Sr-Nd-Pb isotope compositions comparable to D-DMM of Workman and Hart (2005). 
Major- and trace-element compositions of these EVS/SCS basalts are also well within the range of global normal 
(N)-MORBs (Qian et al., 2021; Zhang, Luo, et al., 2018; Figure S4 in Supporting Information S1). EVS/SCS 
basalts from the site U1431 plot on a radiogenic extension of Pb-isotopic array formed with those from the sites 
U1433 and U1434 (Figure 5). The observed isotopic variations in EVS/SCS are interpreted as the mixing of two 
end-member components. Zhang, Luo, et al. (2018) attributed compositional variations of EVS/SCS basalts to 
the mixing of melts derived from the mantle similar to the source of N-MORB and that from the lower continental 
crust (LCC), whereas Qian et al. (2021) ascribed it to mixing of melts derived from mantle similar to the source 
of N-MORB and that from recycled young oceanic crust. In either scenario, the isotopically-depleted source is 
considered to represent the uppermost asthenospheric mantle dominated by refractory peridotite.

Subaerial basalts in Vietnam demonstrate involvement of the other two end-member components, similar in 
composition to EM1 and EM2 (Zindler & Hart, 1986); the former largely contributes to the Southern Group 
basalts, while the latter contributes to the Central Group basalts. In other words, regional variation in the isotopic 
compositions of Vietnamese basalts is dominantly controlled by relative contributions of EM1-and EM-2-like 

Figure 8. Dy/Yb versus La/Yb of the least differentiated Vietnamese basalts (MgO >7.5 wt% or Mg# > 57). Compositions 
of melts from peridotite (gray lines) with various amount of H2O (0–700 ppm) and anhydrous pyroxenite MIX1G (the purple 
line) at Tp = 1450°C were calculated using the REEBOX PRO (Brown & Lesher, 2016). All the parameters used for modeling 
are listed in Table S8. Sources of the literature data for basalts from Vietnam are the same as in Figure 5. The abundances of 
La, Dy and Yb of peridotite are referenced to D-DMM of Workman and Hart (2005) and those of pyroxenite are referenced to 
N-MORB of Gale et al. (2013).
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sources. It has been suggested that EM1-and EM2-like sources have also contributed to Cenozoic basalts in other 
regions of East Asia (Choi et al., 2008; Flower et al., 2001). Below, we examine the origins of EM1-and EM2-like 
end-member components having contributed to basaltic magmatism in Vietnam.

The lithospheric origin of EM1-and EM2-like components (Hoang et  al.,  1996) is ruled out as the isotopic 
compositions of lithosphere-derived xenoliths in Vietnamese basalts are distinctly different from the compo-
sitions postulated for these end-member components (Figure 5; Anh et al., 2020; Huong & Hoang, 2018; C. 
Nguyen & Kil, 2020). Alternatively, subducted sediments have been considered sources of EM1 and EM2-like 
components (Kuritani et al., 2011). Sediments are generally enriched in Rb, Pb, U, and Th (Plank, 2005; Plank 
& Langmuir, 1998) and have variable Rb/Sr, U/Pb, and Th/U ratios due to subsequent diagenesis or subduction 
metamorphism. Accordingly, subducted sediments could have evolved to possess EM1-or EM2-like isotopic 
signatures (Stracke et al., 2003). The Southern Group basalts with EM1-like isotopic features do not have elevated 
Pb/Ce and Th/La (Figure  4). Instead, they show Nb enrichment, which is a contrasting feature to sediments 
(Figure 3). Hence, their origin from sediment recycling is unlikely.

We noted that the Southern Group basalts exhibit enrichments of Sr (Figures 3 and 4), although these basalts do 
not show accumulation of plagioclase phenocrysts (Section 4.1). Such features are referred to as “ghost plagi-
oclase signature” and the magmas with this signature are attributed to the melting of mafic lithologies that had 
plagioclase as a major constituent in their protoliths (e.g., gabbro; Gasperini et al., 2000; Sobolev et al., 2000). 
It has been proposed that a significant amount of gabbroic rocks, in the form of oceanic plateaus or seamounts 
(Cloos,  1993), have been subducted into the mantle, and contributed to intraplate magmatism (Gasperini 
et  al.,  2000). We consider that subducted seamounts in the Indo-Australian plate are the source of EM1-like 
components in the Southern Group basalts. Among basalts from seamounts on the Indo-Australian plate, those 
from the Eastern Wharton Basin Volcanic Province have isotopic compositions consistent with the source of the 
EM1-like component (Figures 5 and 10a; Hoernle et al. [2011]). These seamounts are currently migrating toward 
the Indochina Peninsula, suggesting that subducted Indian Oceanic lithosphere may also contain seamounts 
which could have been an EM-1 source for the Southern Group basalts.

A greater contribution of the EM2-like component is found in some basalts of the Central Group (Con Co Island 
and Ly Son-Quang Ngai) as well as basalts in adjacent volcanic fields. It is noted that the EM2-type basalts 
dominantly occur in the northeastern region of the Indochina Peninsula (Northern Vietnam and Hainan) and the 
EVS/SCS (Figure 5; Hoang et al., 1996; Qian et al., 2021; Tu et al., 1992; Wang et al., 2013; Yan et al., 2008; 
Zhang, Luo, et  al.,  2018; Zhang, Sun, et  al.,  2018). This component is characterized by high Pb/Ce and Th/
La ratios (Figure 4) and high time-integrated Rb/Sr and Th/U ratios (Figure 5). We consider that a sediment 
origin for this component best explains such geochemical and isotopic features. The isotopic composition of this 
component, estimated from linear arrays in Sr-Nd-Pb isotopic correlation diagrams for Central Vietnam basalts, 
is well within the range of present-day ocean-floor sediment (Figure 5; Ben Othman et al. [1989]; Gasparon & 
Varne [1998]; Plank & Langmuir [1998]). The earlier studies for the basalts in Central Vietnam (An et al., 2017; 
Hoang et al., 2018) and the other volcanic fields adjacent to Central Vietnam (SE China and EVS/SCS; Y.-Q. Li 
et al. [2020]; Qian et al. [2021]) also estimated a similar composition for this component.

We consider that subducted sediments have been derived from the Pacific Ocean. Y.-Q. Li et al. (2020) suggested 
based on forward modeling that the EM2-like isotopic composition is attained by the storage of Pacific sedi-
ments in the mantle for 100 Myrs or shorter. The volcanic fields in Vietnam are located far (c. 1,800 km) from 
the trench where the Pacific plate is subducting. Nevertheless, transport of the sediment signature to the mantle 
beneath Vietnam is feasible. The metamorphic equivalent of subducted sediment is stable under deep-mantle P-T 
conditions (Irifune et al., 1994). Subducted sediments could survive in the convecting mantle over the time scales 
required for recycling. Several studies have documented the occurrence of mantle-derived magmas with the 
geochemical signature of sediment in the region far from the trench (Kuritani et al., 2011; Murphy et al., 2002).

5.5. Implication for the Origin of Mantle Heterogeneity Beneath Indochina Peninsula

We reaffirm that the isotopic variability of Vietnamese basalts is largely derived from heterogeneity in the astheno-
spheric mantle beneath Vietnam. Recently, Hoang et al. (2018) proposed that mantle heterogeneity beneath Viet-
nam is produced by entrainments of various lithologies present within the subducted Pacific plate into the rising 
Hainan plume. They ascribed spatial variation in the geochemistry of Vietnamese basalts to lateral heterogeneity 
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of the mantle by different amounts of entrainments of sediments, basalts, 
and gabbros, which were disaggregated from the subducted Pacific plate. We 
also reaffirmed that Central Vietnam basalts possess isotopic characteristics 
consistent with the involvement of materials consisting of the subducted 
Pacific plate. However, this scenario cannot solely explain the production 
of basalts with an EM1-isotopic feature, found in Southern Vietnam; neither 
young, subducted basalt nor sediments of the Pacific plate have isotopic 
compositions consistent with an EM1-type source (Figure 5). As discussed 
in Section 5.4, the involvement of materials consisting of the Indo-Australian 
plate can account for the EM-1 isotopic feature of Southern Vietnam basalts 
(Figure 5).

The subduction of two oceanic plates may have produced different isotopic 
provinces in the Indochina Peninsula. We compiled the existing isotope 
data for Cenozoic basalts in the Indochina Peninsula and adjacent regions 
(Figures 5 and 9). Basalts in Northern Vietnam (Hoang et al., 1996), Hainan 
Island (Wang et  al.,  2013), the EVS/SCS (seamount, Tu et  al.,  1992; Yan 
et al., 2008) and Eastern Thailand (e.g., Group II basalts in Khorat Plateau, 
Zhou & Mukasa, 1997; Yan et al., 2018) show isotopic compositions simi-
lar to the Central Group of Vietnamese basalts. Whereas basalts in Western 
Thailand (e.g., Denchai, Lop Buri, and Chanthaburi-Trat basalts; Mukasa 
et al., 1996) and Group I basalts in Khorat Plateau (Zhou & Mukasa, 1997) 
show isotopic compositions similar to the Southern Group of Vietnamese 
basalts. Compositional heterogeneity is thus considered to be extended to 
the mantle beneath the entire Indochina Peninsula. Such large-scale isotopic 
distinction of basalts in the peninsula is interpreted as the surface expression 
of different mantle domains having been formed in response to deep mantle 
upwelling (Figure 9).

Subduction of cold oceanic lithosphere is considered to be a major trigger 
of convection in the hot asthenosphere. Seismic tomography detected high 

seismic velocity anomalies at depths of c. 400–600 km beneath the Indochina Peninsula (Figure 10). Those 
anomalies are interpreted as stagnant slabs of the Indo-Australian plate subducted from the southwest and 
the Pacific plate subducted from the east (e.g., Yu Y. et al., 2017a; Zhao et al., 2021). Numerical modeling 
predicted that bi-vergent subduction of two oceanic lithospheres, mainly consisting of dense mafic rocks, 
induces the convection cells and vigorous upwelling at their interface (Figure 10b; Lyu et al., 2019). We spec-
ulated that this interface could be located in south-central/north-southern Vietnam, consistent with the largest 
eruption volume in this region among volcanic fields (Figure 10a). The convergent rates of the Indo-Australian 
plate and the Pacific plate, relative to trenches, are 5–8 cm yr −1 (Duarte & Schellart, 2016), and the lengths 
of subducted oceanic lithospheres of these plates from trenches to Central Vietnam are 2,000–2,500 km, esti-
mated from seismic tomography (Hua et  al.,  2022). With these variables, we estimate 25–30 Myrs for the 
transport time of oceanic-lithosphere materials (basaltic crust and sediments) to MTZ. Subsequently, these 
crustal materials would have been incorporated in the upwelling mantle flows and reached the melting regions 
beneath Vietnam. Assuming the upwelling velocity of 10–50 km Myr −1 for asthenospheric flow (Dasgupta & 
Mandal, 2022), the storage time of these crustal materials in the mantle is 30–90 Myrs, consistent with the 
estimates (<100 Myrs) by the forward modeling of the isotope evolution of recycled crustal materials (Y.-Q. Li 
et al., 2020). We infer that the isotopic features of these isolated domains have been produced by the subduc-
tion of crustal materials into the mantle since the late Cretaceous. This inference is supported by the plate 
reconstruction model; the Indo-Australian and (paleo) Pacific plates have been subducted into the SE Asian 
mantle since the Cretaceous (insert in Figure 10a; Schellart et al. [2019]).

Figure 9. Spatial isotopic variation in  207Pb/ 204Pb ratios of Cenozoic basalts 
from Indochina Peninsula in SE Asia. Circles denote the localities of basaltic 
samples of this study and previous studies (sources of literature data are 
the same as for Figure 5). Color of circle corresponds to  207Pb/ 204Pb values, 
which indicate relative contributions of EM1 or EM2 sources. The EM1 and 
EM2 sources are considered to have been originated from the subducted 
Indian and Pacific oceanic lithospheres, respectively. Two mantle domains, 
enriched in EM1 or EM2 sources, are roughly divided by the border shown 
as a bold broken line. Ellipses outlined by red and blue dashed lines denote 
distributions of two different isotopic subpopulations (i.e., EM1 and EM2 
types) in Vietnamese basalts, corresponding to Central and Southern Groups, 
respectively.
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6. Conclusion
The conclusion of this study is summarized as:

1.  Intraplate volcanism in SE Asia occurred shortly after cessation of the EVS/SCS and intensively over the last 
10 Myrs (peak at 2 Ma) centralized in south-central Vietnam.

2.  Magmas erupted in Central and Southern Vietnam have likely been produced at sub-lithospheric depths from 
sources dominated by ultramafic peridotite with subordinate mafic/ultramafic lithologies.

3.  Basalts in Central and Southern Vietnam have statistically different isotopic characteristics, owing to the 
involvements of different mantle end-member components; EM1-like source in Southern Vietnam and 
EM2-like source in Central Group basalts, respectively.

4.  The Central Group samples are characterized by highly radiogenic Sr-Pb compositions and enrichments of 
Pb and Th which were likely derived from a source with a contribution of subducted sediment (EM2) that 
originated from the Pacific slab. Whereas the Southern Group samples are characterized by low  143Nd/ 144Nd 
and  207 or 208Pb/ 204Pb, variable  206Pb/ 204Pb and enrichments of Sr and Th. These basalts resemble magmas that 
tapped an enriched mantle (EM1)-like source, and are interpreted as the contribution of seamount segments 
from the Indo-Australian oceanic lithosphere.

Figure 10. Implication for Cenozoic volcanism in SE Asia. (a) Map showing the occurrence of Cenozoic basalts (regions filled by black) in the Indochina Peninsula 
(16–0 Ma; this study; An et al., 2017; Hoang et al., 2019; Hoàng et al., 2013; Lee et al., 1998; Mukasa et al., 1996; Sieh et al., 2020; Yan et al., 2018) and East Vietnam 
Sea (11–0.4 Ma; Kudrass et al., 1986; Tu et al., 1992; Yan et al., 2008). The blue dashed lines with numbers indicate the depth contours of the subducted Indo-
Australian slab in the mantle (100–600 km, Jacob et al., 2014; Pesicek et al., 2008). The red dashed lines indicate where the Pacific slabs reside at given depths (410–
660 or 500–650 km) in western SE Asia (Hua et al., 2022; Wu et al., 2016). An insert shows the simplified tectonic map at c. 50 Ma (redraw after Schellart et al., 2019) 
showing two oceanic plates, the Indo-Australian and Pacific plates, in the southwest and east, respectively, subducted into the SE Asian mantle. (b) Cartoon illustrating 
the formation of isolated, two convecting cells (flow directions are shown by arrows) in asthenosphere, induced by subductions of the Pacific and Indo-Australian plates 
with inward-dipping (10 Ma to recent). Crustal materials of subducted oceanic lithospheres have been entrained into each convecting cells and transported to melting 
regions beneath the volcanic fields (blue triangles, volcanic fields largely contributed from the Indo-Australian slab; red triangles, volcanic fields largely contributed 
from the Pacific slab).
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5.  The new model proposed here is that the subduction of two different oceanic lithospheres transfers heteroge-
neous crustal materials to the deep mantle. Subsequently, dense crustal materials (mafic rocks) induce mantle 
upwelling which incorporates these and the other crustal materials (sediments) back to shallow depths and 
trigger intraplate volcanism in SE Asia.

6.  We infer that south-central Vietnam is the center of mantle upwelling, where two slabs were interfaced in the 
mantle, leading to vigorous ascending mantle flows between two convecting cells and resulting in intensive 
surface volcanism.

Data Availability Statement
The data used in this research are available at the Zenodo open data repository (https://doi.org/10.5281/
zenodo.6387524) and are also provided in the Supporting Information S1. Figures 1 and 10 were prepared using 
GMT (Wessel et al., 2013).
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