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 Abstract 

Greenhouse gases (GHG) from human activities are the main contributor to climate change since the 

mid-20th century. Reducing the release of GHG emissions is becoming a thematic research topic in many 

research disciplines. In the reliability research community, there are research papers relating to reliability 

and maintenance for systems in power generation farms such as offshore farms. Nevertheless, there is 

sparse research that aims to optimise maintenance policies for reducing the GHG emissions from systems 

such as automotive vehicles or building service systems. To fill up this gap, this paper optimises 

replacement policies for systems that age and degrade and that produce GHG emissions (i.e., exhaust 

emissions) including the initial manufacturing GHG emissions produced during the manufacturing stage 

and the emissions generated during the operational stage. Both the exhaust emissions process and the 

failure process are considered as functions of two time scales (i.e., age and accumulated usage), 

respectively. Other factors that may affect the two processes such as ambient temperature and road 

conditions are depicted as random effects. Under these settings, the decision problem is a nonlinear 

programming problem subject to several constraints. Replacement policies are then developed. Numerical 

examples are provided to illustrate the proposed methods.  

Keywords: Maintenance policy; greenhouse gas emissions; condition-based monitoring; two time 

scales; integer nonlinear programming  

1 Introduction 

Many engineering systems, including automotive vehicles and multi-dwelling houses, are faced with a key 

 
1 Suggested citation: Wu, S., Wu, D., Peng, R. (2022) Considering greenhouse gas emissions in maintenance 

optimisation, European Journal of Operational Research. DOI: https://doi.org/10.1016/j.ejor.2022.10.007 
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problem: To balance the trade-off between maintenance price and the greenhouse gas (GHG) emissions. 

The former ensures the system owners’ financial sustainability, and the latter aims to achieve the 

environmental sustainability required by the society. However, the research on the environmental 

sustainability in the reliability community has been surprisingly sparse. 

 In the reliability literature, most of the publications highlight particularly an economical aspect, 

chiefly through minimising the expected cost, in studies such as redundancy allocation (Reihaneh, 

Ardakan & Eskandarpour, 2021), system configuration optimization (Yan, Qiu, Peng, & Wu, 2020), 

maintenance policy optimisation (Gao, Peng, Qu, & Wu, 2020) and warranty policy optimisation (Wang, 

Li & Xie, 2020; Mitra, 2021), to name a few. A global scale considering an ecological element is becoming 

more important in many other research communities. The main reason is the global warming is becoming 

a major issue and problem that requires all research communities to deal with. The nations across the 

world have reached some agreements such as the Kyoto Protocol and the Paris Agreement. To reduce the 

GHG emissions is the aim of the binding targets of the Kyoto Protocol and the Paris Agreement is a 

legally binding international treaty on climate change. This motivates us to incorporate the GHG 

emissions in the optimisation of maintenance policies. 

1.1 Motivating examples 

1.1.1 Automotive cars 

The GHG emissions during manufacturing a product item are said its ‘initial manufacturing 

emissions’. Once a system is manufactured, its manufacturing emissions are fixed. As such, the longer a 

product item will be used, the smaller the expected amount of emissions per unit of usage in its lifetime. 

For example, Berners-Lee and Clark (2010) comment: If you make a car last to 200,000 miles rather than 

100,000, then the emissions for each mile the car does in its lifetime may drop by as much as 50%, because of getting 

more distance out of the initial manufacturing emissions. 

An engineering system may also produce GHG emissions during its operational stage and the 

emissions may worsen with its age. Take automotive vehicles as an example, the exhaust emissions of a 

vehicle depend on a variety of factors including accumulated mileage, its speed (or road type), its age, 

engine size and weight (Ahlvik, 1997). Among these factors, age and accumulated mileage are recorded. 

Kuhns, et al. (2004) suggest that the emissions of particulate matter, carbon monoxide, nitrogen oxide 

(NO) and hydrocarbons per unit of fuel burned from in-use on-road vehicles increase with vehicle age. 
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More specifically, Chen and Borken-Kleefeld (2016) find that NOx unit emissions for some diesel 

automotive vehicles increase with their age and suggest that a deterioration of tailpipe NOx emissions 

over 80,000 km of 22% and 10% for two types of technologies, respectively. Zhang, et al. (2017) concludes 

the trends of the GHG emissions are associated with accumulated mileages. 

Noticeably, Sharma and Chung (2015) believe PM emissions increases more drastically in India than 

in the US with vehicle age. They conclude that the vehicles in India are often poorly maintained …. We believe 

that this faster deteriorating also stems due to lack of effective inspection and maintenance systems. Their 

comments stress maintenance plays a vital role in deterring the GHG emissions. 

1.1.2 Residential buildings 

Without any doubt, there is a huge amount of initial manufacturing emissions (or construction 

emissions) for buildings. 

In addition, residential buildings may need to be heated up or cooled down in hot or cold weather 

conditions. When a building becomes older, hot or cold air may leak from it, and therefore produces 

exhaust GHG emissions. Estiri and Zagheni (2019) find that an overall increasing profile in energy 

consumption by age, controlling for income, local climate, and housing age, type, and square footage in 

the U.S. residential buildings. They also show the growth rate in energy consumption over age is not 

linear. Aksoezen, Daniel, Hassler, and Kohler (2015) suggest that construction age be a non-linear (i.e., 

concave that can be modelled by 𝐸consumption = 𝑎𝑡2 + 𝑏𝑡) indicator for energy consumption. 

Apparently, GHG emissions happen due to energy consumption and maintenance is therefore 

needed. For instance, the UK government makes advice on ways to save energy, including, insulating your 

loft and cavity walls and upgrading your boiler (UK Government 2021). 

1.2 Related work and our methods 

1.2.1 Maintenance policy optimisation and GHG emissions related work 

 From the aforementioned discussion, there is a need to develop maintenance policies for such 

systems. This paper therefore aims to optimise a maintenance policy that considers initial GHG emissions, 

exhaust emissions and system failures due to other reasons. As such, to incorporate the above three 

factors in optimisation of maintenance policies, we need to use the nonlinear programming subject to 

constraints. The exhaust emissions will be modelled by the gamma process and the system failure due to 

other reasons will be modelled by the nonhomogeneous Poisson process (NHPP). 
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There is a bulk of research on optimisation of maintenance policies. The reader is referred to De 

Almeida et al. (2015); Syan and Ramsoobag (2019); de Jonge and Scarf (2020) for literature review, where 

de Almeida et al. (2015) and Syan and Ramsoobag (2019) review multi-criteria models applied for solving 

maintenance optimization problems and de Jonge and Scarf (2020) review more than two hundred papers 

on maintenance modelling and optimization that are published in the period 2001 to 2018. 

In the literature, optimisation of maintenance policies considering the GHG emissions has been 

indirectly investigated. Authors predominately focus on development of maintenance policies for energy 

production systems such as wind turbines (Li & Coolen 2019, Koukoura, Scheu, & Kolios, 2021) and solar 

systems (Choe, Guo, Byon, Jin, & Li, 2016, Sayed, EL-Shimy, El-Metwally, & Elshahed, 2020) and for 

second hand products (Park, Jung, & Park, 2020, Dai, Wei, Wang, He, & He, 2021). It is noted that 

planning maintenance policies for second hand products can certainly save resources and hence the initial 

GHG emissions as manufacturing an item inevitably needs energy (Park, Jung, & Park, 2020, Dai, Wei, 

Wang, He, & He, 2021). 

There is some work using different stochastic processes to model the failure process of a system in 

the literature. For example, Caballe, Castro, Perez, and Lanza-Gutierrez (2015) propose a condition-based 

maintenance strategy for a system subject to two dependent causes of failure: degradation and sudden 

shocks. Dong, Liu, Cao, and Bae (2020) optimises maintenance policies for a nonrepairable item suffering 

from both an internal stochastic degradation process and external random shocks, where the deterioration 

is modelled by the gamma process and the arrival number of external shocks is counted with a NHPP. 

1.2.2 Incorporating multiple time scales 

For a system such as an automotive car or a residential building, it would be desirable to take into 

consideration all three time scale: chronological age, operating time, and cumulated usage. The 

chronological age or chronological time since its last repair can be easily obtained. The operating time of a 

system, however, may not be available. For example, the accumulated usage or mileage of an automotive 

vehicle is normally recorded and shown on its odometer. It should be noted that the operating time is not 

equivalent to the mileage, which is a function of the car speed and operating time. 

We regard the accumulated usage as an external time-varying covariate, which is non-decreasing in 

chronological age 𝑡. An external covariate (see Section 1.3.4 in Cook and Lawless (2007)) is one whose 

values are determined independently of the failure process for that unit, such as an environmental or 
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usage factor. “Non-decreasing” implies that the accumulated usage may stay unchanged during a period 

when a car is not driven. 

In the literature, there are three approaches to analysing the reliability of a system with two time 

scales: age and accumulated usage (Wu 2012). These approaches are bivariate (Wu, 2014; Yera, Lillo, 

Nielsen, Ram_rez-Cobo, & Ruggeri, 2021; Gupta & de Chatterjee, 2017), marginal (Zhu, Lu & Zhang, 

2021), and composite time scale approaches (Gertsbakh & Kordonsky, 1998). It is worth mentioning that 

the bivariate approach proposed by Wu (2014) may model the asymmetric phenomenon between the age 

and usage, where the asymmetric phenomenon means that: if an item’s age is small, its accumulated 

usage is normally small; however, if an item’s age is large, its accumulated usage may not be large. 

Meanwhile, regarding the marginal approach, it is interesting to note that Boulter (2009) fitted real 

datasets and concluded that the relationship between the accumulated vehicle mileage and age is 

described by a quadratic equation 𝑢 = 𝑎𝑡2 + 𝑏𝑡 with 𝑎 < 0, where 𝑢 is the accumulated usage and 𝑡 is 

the chronological age. For example, 𝑎 = −452.02 and 𝑏 = 15,274 for petrol cars with engine capacity < 

1400cc (Boulter (2009); p. 21). In the research area of warranty management, many authors assume that 

there is a linear relationship between the age and the accumulated usage, see Dai et al. (2021), for example. 

This can be true for the early periods of systems as 𝑢 = 𝑎𝑡2 + 𝑏𝑡 can be approximated by a linear function 

𝑢 = 𝑐𝑡 (𝑐 > 0) when 𝑡 is small. 

Regarding the gamma process, Singpurwalla (1995) incorporate environmental stresses in 

degradation modelling and assume the level of stresses is constant. Lawless and Crowder (2004) further 

propose that the scale parameter in a gamma process follows the gamma distribution, which can capture 

the difference between items under study. Other methods on the scale parameter include that the scale 

parameter is assumed to be a function of covariates, which can be variables such as environmental 

stresses. The scale parameter can also be regarded as a function of the accelerated stress and the shape 

parameter is constant (Lawless & Crowder, 2004; Wang, 2009) or a function of environmental covariates 

(Wang, 2009). Additionally, the gamma prorcess has been used in condition-based maintenance from time 

to time ( see Liu, Pandey, Wang & Zhao, 2021; Andersen, Andersen, Kulahci & Nielsen, 2022; Bautista, 

Castro & Landesa, 2022, for example) or modelling degradation processes with random effects (Wang, 

Wang, Hong & Jiang, 2021). 

1.2.3 Our methods and novelty 
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 As above discussed, the operational age of an item is not normally recorded. This paper therefore 

considers the chronological age and accumulated usage, but not the operational age. The marginal and 

composite time scale approaches will be considered, as elaborated in the following.  

 We consider a method that estimates the accumulated usage as a function of the chronological age. 

It then regards the magnitude of the degradation, and the failure intensity function are the functions of 

linear combinations of the chronological age and accumulated usage, respectively. Since there is a need to 

use historical data to estimate the relationship between the chronological age and accumulated usage, the 

drawback of using this method is that the estimated accumulated usage may be biased with a large 

estimation error. Its strength is that a maintenance policy based on this approach can be determined 

simply by the chronological time.  

 We assume a linear combination of the chronological age and accumulated usage as the moderated 

time scale, based on which models are developed. The drawback of using this method is its difficulty in 

management as both the chronological age and accumulated usage must be recorded and monitored, 

based on which both the chronological age and accumulated usage need to be checked when 

implementing the maintenance policy. Its strength is that the models may be more accurate as real data 

are used in modelling and that there is no need to estimate a distribution depicting the joint distribution 

between the chronological age and accumulated usage.  

 It is apparent that the composite time scale approach may lead to a parsimonious model as it has 

fewer parameters than the marginal method. 

The paper will use the gamma process to model the degradation process of the exhaust GHG 

emissions and use the nonhomogeneous Poisson process to model the failure process of the system. It will 

then incorporate other factors such as the amount of the initial GHG emissions. 

Following on the above-discussion, this paper aims to develop a maintenance policy for an item with 

three factors:  

(a) it generates GHG emissions at the operational stage;  

(b) it may fail due to other reasons such as ageing or deterioration; and  

(c) its initial GHG emissions must be considered in modelling.  

To the best of our knowledge, there is little existing research that optimises maintenance policies 

subject to the constraints of initial GHG emissions and exhaust emissions. Furthermore, as 
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aforementioned, methods of incorporating time varying covariates in the gamma process has rarely been 

documented in the literature. In addition, the three methods—composite, marginal and bivariate 

methods—were developed for non-repairable systems, in which only lifetime distributions need to be 

developed. With these considerations, this paper creates novelty. 

1.3 Overview 

 The remainder of this paper is structured as follows. Section 2 provides assumptions and notations 

that will be used in the paper. Section 3 develops models for the deterioration process of the GHG 

emissions and the model of the failure process of the system. Section 4 presents the method to optimise 

the preventive maintenance policies. Section 5 extends the two time-scale scenarios to multiple cases and 

discusses relevant maintenance policies. Section 6 provides numerical examples to illustrate the proposed 

methods. Section 7 concludes the paper and suggests future research. 

2 Notations and assumptions 

 This section makes assumptions and lists notations that will be used in the paper.  

2.1 Assumptions 

This paper makes the following assumptions.  

A1).  The system starts working at time 𝑡 = 0.  

A2).  The particulate matter, carbon monoxide, NO and hydrocarbons are referred to as the GHG.  

A3).  The system has two failure modes: Modes I and II, both of which deteriorate over two scales: 

chronological age and accumulated usage. Mode I is the level of its exhaust GHG emissions 

exceeding a pre-specified threshold, and Mode II is the failure mode due to other reasons. The 

two failure modes are assumed statistically independent. Both failure processes start from time 

𝑡 = 0.  

A4).  The degradation progression of Mode I is observable, but it is not repairable. The level of the 

GHG emissions per unit of time or per unit of usage increases over time and accumulated usage 

and can be modelled by a gamma process. It is assumed that there are two scenarios. In scenario 

1, the level of the GHG emissions is denoted by 𝑋(𝑡, 𝑢), which is the level of the GHG emissions 

at chronological age 𝑡 and accumulated usage 𝑢 and is the sum of 𝑋1(𝑡) and 𝑋2(𝑢), i.e., 

𝑋(𝑡, 𝑢) = 𝑋1(𝑡) + 𝑋2(𝑢), where 𝑋1(𝑡) is the level of deterioration at chronological age 𝑡 and 

𝑋2(𝑢) is the level of deterioration at accumulated usage 𝑢. 𝑋1(𝑡) and 𝑋2(𝑢) are statistically 
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independent. Neither 𝑋1(𝑡) nor 𝑋2(𝑢) can be observed. 𝑋(𝑡, 𝑢), however, is observable. Both 

{𝑋1(𝑡): 𝑡 > 0} and {𝑋2(𝑢): 𝑢 > 0} are gamma processes. In scenario 2, the level of deterioration is 

observed at a composite time scale �̆� = 𝑎1𝑡 + 𝑏1𝑢 and {𝑋(�̆�): �̆� > 0} is a gamma process.  

A5).  The failure progression of Mode II is unobservable. Mode II may experience failures, which can 

be fixed by repair with its effectiveness assumed to be minimal. It is assumed that there are two 

scenarios as well. In scenario 1, the failure intensity 𝜆(𝑡, 𝑢) of Mode II is the sum of 𝜆1(𝑡) and 

𝜆2(𝑢), i.e., 𝜆0(𝑡, 𝑢) = 𝜆1(𝑡) + 𝜆2(𝑢), where 𝜆1(𝑡) is the failure intensity due to ageing and 𝜆2(𝑢) 

is the failure intensity due to usage. In scenario 2, the failure intensity 𝜆(�̃�) of Mode II is an 

increasing function with respect of a moderated time �̃�, which is a linear combination of the 

chronological age 𝑡 and accumulated usage, i.e., �̃� = 𝑎2𝑡 + 𝑏2𝑢, for modelling the failure of 

items. We assume 𝑎2 and 𝑏2 may differ from 𝑎1 and 𝑏1, respectively, as the mechanisms of the 

degradation processes of modes I and II may be different.  

A6).  The system has the initial manufacturing GHG emissions, which is denoted by 𝐸𝐼 and is 

produced during the system’s manufacturing stage.  

A7).  For the sake of convenience in calculation, the system is inspected every 𝜏0 units of time or 

every 𝜐 0 units of usage. That is, the inspection is block-based: for example, an inspection is 

conducted recently because the time approaches 𝜏0, another one may be carried out because the 

accumulated usage approaches 𝜈0. If the system is down (or failed) due to Mode II, minimal 

repair is carried out. If the system is working at the inspection time, the level of GHG emissions of 

Mode I is checked. Replacement is performed once the optimal replacement time interval is 

reached, and several other conditions are met. These conditions include the level of the GHG 

emissions should not be larger than a given threshold, the initial manufacturing GHG emissions 

per unit of time and per unit of usage should not be larger than given thresholds, respectively. 

A8).  The accumulated usage 𝑈 is non-decreasing over time 𝑡.  

A9).  The cost of repair is 𝑐 𝑚 and the cost of a replacement (or, major PM) is 𝑐 𝑅, where 𝑐 𝑅 > 𝑐 𝑚.  

A10).  The time on repair or replacement is negligible.  

 

2.2 Notations 

 For the sake of convenience, some frequently used notations are listed in Table 1.  
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Table 1: Notation table 

  𝑖  index of the failure mode; 𝑖 = 1 for failure mode I and 𝑖 = 2 for failure mode II;  

 𝑇  age of the item under consideration, it is a random variable;  

 𝑈  accumulated usage of the item, it is a random variable;  

 �̆�  composite time scale of failure mode I, it is a random variable;  

 �̃�  composite time scale of failure mode II, it is a random variable;  

 𝑡, 𝑢, �̆�, �̃�  representing observations of 𝑇, 𝑈, �̆� and �̃�, respectively;  

 �̇�  a middle variable, which can be 𝑡 or 𝑢;  

 𝑍  random effect; 

 𝐻(𝑧)  cumulative distribution function (cdf) of 𝑍;  

 𝜏0 time interval between two consecutive inspections;  

 𝜈0 accumulated usage between two consecutive inspections;  

 𝐸𝐼  initial manufacturing emissions;  

 𝑐 𝑅, 𝑐 𝑟, and 

𝑐 𝑚 

cost of replacement (i.e., major PM), minor PM, and minimal repair, respectively  

   

3 The process of the GHG emissions and the lifetime distribution of the system 

This section aims to derive degradation models for Mode I and the failure process models for Mode 

II.  

3.1 Deterioration of the level of exhaust emissions for Mode I 

Let 𝑋𝑖(�̇�) be the deterioration level at chronological time �̇� = 𝑡 (for 𝑖 = 1) and accumulated usage 

�̇� = 𝑢 (for 𝑖 = 2), respectively. Assume that 𝑋𝑖(�̇�) (𝑖 = 1,2) has the following properties:  

a) 𝑋𝑖(0) = 0,  
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b) the increments Δ𝑋𝑖(�̇�) = 𝑋𝑖(�̇� + Δ�̇�) − 𝑋𝑖(�̇�) are independent of �̇�,  

c) Δ𝑋𝑖(�̇�) follows a gamma distribution Gamma(𝛼 𝑖(Δ�̇�), 𝛽𝑖) with shape parameter 𝛼𝑖(Δ�̇�) and scale 

parameter 𝛽𝑖, where 𝛼𝑖(�̇�) is a given monotone increasing function in �̇� (for 𝑖 = 1) and 𝑢 (for 

𝑖 = 2), and 𝛼𝑖(0) = 0.  

 𝑋(�̇�) follows the gamma distribution Gamma(𝛼𝑖(�̇�), 𝛽𝑖) with mean 𝛼𝑖(�̇�)𝛽𝑖 and variance 𝛼𝑖(�̇�)𝛽𝑖
2, 

and its probability density function is given by  

 𝑓(𝑥; 𝛼𝑖(�̇�), 𝛽𝑖) =
𝛽

𝑖

𝛼𝑖(�̇�)

Γ(𝛼𝑖(�̇�))
𝑥𝛼𝑖(�̇�)−1𝑒−𝛽𝑖𝑥1{𝑥>0}, (1) 

where Γ(⋅) is the gamma function: Γ(𝑧) = ∫
∞

0
𝑣𝑧−1𝑒−𝑣𝑑𝑣. 

3.1.1 Marginal approach 

 Since only the chronological age of the system is available, it is more realistic to assume that the 

system does not operate uninterruptedly over time, instead, it operates in an on and off mode. This is true 

for vehicle cars: our cars are not always driven on roads. As such, the system alternates between 

successive on (i.e., driving) intervals and off (i.e., idle intervals), which are denoted by 1 and 0 (suppose 

the system starts in state 1), where 1 represents that the system is at the on state and 0 at the off state. As 

such, the usage process of a car can be modelled by an alternating renewal process. This is very similar to 

boilers in buildings: a boiler may be switched on in cold weather time in a year but it does not work 

uninterruptedly. 

The degradation process is affected by both the chronological time and the accumulated usage. That 

is  

 𝑋(𝑡, 𝑢) = 𝑋1(𝑡) + 𝑋2(𝑢) 

               = 𝑋1(𝑡) + 𝑋2
′ (𝑡) (2) 

 Note that {𝑋2(𝑢), 𝑢 > 0} is a gamma process. But the degradation process 𝑋2
′ (𝑡) due to usage is not 

a gamma process in chronological time as the system may at the off state, during which no degradation is 

caused. As shown in Figure 1, during the off periods, the system is not operating and does not cause the 

system to degrade. The top line in Figure 1 shows the chronological time and the bottom line shows the 

accumulated usage.  
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Figure 1: Relationship between chronological time and accumulated usage 

 We assume the alternating renewal process composed of two processes: the process of on times 

{𝑈𝑛: 𝑛 ≥ 1} and the process of off times {𝑂𝑛: 𝑛 ≥ 1} are independent sequences of i.i.d. nonnegative 

random variables. It is also reasonable to assume that the sequences of pairs {(𝑈𝑛, 𝑂𝑛): 𝑛 ≥ 1} be i.i.d. 

non-negative random vectors. 

Let 𝑌on and 𝑌off denote the time of the system sojourning at the on state and at the off state, 

respectively. Denote the CDF of 𝑌on and that of 𝑌off are 𝑊on(𝑥) and 𝑊off(𝑥), respectively. Note that the 

first bullet in subsection 2.1 assumes the system is on at time 𝑡 = 0. For a fixed 𝑡, let 𝜈on(𝑡) and 𝜈off(𝑡) 

denote the total amount of time the system is on and the total amount of time the system is off during 

(0, 𝑡), respectively. Apparently, 0 ≤ 𝜈off(𝑡) ≤ 𝑡, 0 ≤ 𝜈on(𝑡) ≤ 𝑡, and 𝜈off(𝑡) + 𝜈on(𝑡) = 𝑡. 

Takacs (1957) showed that the distribution function, 𝐺off(𝑥|𝑡), for the amount of time spent in the off 

state is  

 𝐺off(𝑥|𝑡) = 𝑃(𝜈off(𝑡) < 𝑥) = ∑+∞
𝑛=0 𝑊off

(𝑛)
(𝑥)[𝑊on

(𝑛)
(𝑡 − 𝑥) − 𝑊on

(𝑛+1)
(𝑡 − 𝑥)], (3) 

where 𝑊off
(𝑛)

(𝑥) and 𝑊on
(𝑛)

(𝑥) denote the 𝑛-times iterated convolution of the distribution function 𝑊off(𝑥) 

and 𝑊on(𝑥), respectively, 𝑊on
(0)

(𝑥) = 1 and 𝑊off
(0)

(𝑥) = 1 for 𝑥 ≥ 0. 

Then the distribution function, 𝐺on(𝑥|𝑡), for the amount of time spent in the on state is  

 𝐺on(𝑥|𝑡) = 𝑃(𝜈on(𝑡) < 𝑥) 

 = 𝑃(𝑡 − 𝜈off(𝑡) < 𝑥) 

 = 1 − ∑+∞
𝑛=0 𝑊off

(𝑛)
(𝑡 − 𝑥)[𝑊on

(𝑛)
(𝑥) − 𝑊on

(𝑛+1)
(𝑥)]. (4) 

The marginal approach in dealing with modelling on the two time scales in the existing literature 

normally approximates 𝑔on(𝑥|𝑡)(=
𝑑𝐺on(𝑥|𝑡)

𝑑𝑥
) by assuming that 𝑔on(𝑥|𝑡) = 𝑝, where 𝑝 is a constant with 

0 ≤ 𝑝 ≤ 1. See Wang and Su (2016) for example. Apparently, 𝑔on(𝑥|𝑡) derived from Eq. (4) provides a 

more accurate expression than the assumption of 𝑔on(𝑥|𝑡) = 𝑝. The downside of Eq. (4) is its complexity 
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in expression, which makes it difficult to derive an explicit closed-form expression. Nevertheless, in 

practice, thanks to the well-established computational mathematics, it is not difficult to develop numerical 

algorithms when needed. 

As can be seen, the expression of 𝐺on(𝑥) is complicating. For example, Barlow and Hunter (1961) 

give the exact expression of 𝐺off(𝑥) when 𝑊on(𝑥) and 𝑊off(𝑥) are both exponentials: 𝑊on(𝑥) = 1 −

𝑒−𝛿1𝑥 and 𝑊off(𝑥) = 1 − 𝑒−𝛿2𝑥, then, we can derive 𝐺on(𝑥|𝑡):  

 𝐺on(𝑥|𝑡) = 1 − 𝑒−𝛿1𝑥 [1 + √𝛿1𝛿2𝑥 ∫
𝑡−𝑥

0
𝑒−𝛿2𝑦𝑦−1/2𝐼1(2√𝛿1𝛿2𝑥𝑦)𝑑𝑦] 

 = 1 − 𝑒−𝛿1𝑥 [1 + ∑∞
𝑗=0

(𝛿1𝑥)𝑗+1

𝑗!(𝑗+1)!
𝛾(𝑗 + 1, 𝛿2(𝑡 − 𝑥))], (5) 

where 𝐼1(𝑥) is the Bessel function of order 1 for the imaginary argument defined by 𝐼1(𝑥) = ∑∞
𝑗=0

(0.5𝑥)2𝑗+1

𝑗!(𝑗+1)!
. 

Then we can obtain the pdf (probability density function) of 𝐺on(𝑥|𝑡) as follows,  

 𝑔on(𝑥|𝑡) =
𝑑𝐺on(𝑥|𝑡)

𝑑𝑥
 

 = 𝑒−𝛿1𝑥 {𝛿1 − ∑∞
𝑗=0

𝛿1
𝑗+1

𝑥𝑗

𝑗!(𝑗+1)!
[(𝑗 + 1)𝛾(𝑗 + 1, 𝛿2(𝑡 − 𝑥)) − 𝛿2𝑥(𝛿2(𝑡 − 𝑥))𝑗𝑒−𝛿2(𝑡−𝑥)]},(6) 

where 𝛾(𝑠, 𝑥) = ∫
𝑥

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡 is the lower incomplete gamma function. 

In this subsection, we assume that the level of the GHG emissions is observed on the chronological 

time and follows a gamma process. 

Then the distribution function of 𝑋1(𝑡) is given by  

 𝑃(𝑋1(𝑡) < 𝑥) = 𝐹1(𝑥; 𝛼 1(𝑡), 𝛽1) = ∫
𝑥

0
𝑓(𝑣; 𝛼 1(𝑡), 𝛽1)𝑑𝑣 =

𝛾(𝛼 1
(𝑡),𝑥𝛽1)

Γ(𝛼 1
(𝑡))

. (7) 

The distribution function of 𝑋2(𝑢) in the chronological age 𝑡′ given by  

 𝑃(𝑋2′(𝑡) < 𝑥) = 𝐹2(𝑥; 𝛼 2(𝑡), 𝛽2) = ∫
𝑥

0 ∫
𝑡

0
𝑓(𝑣; 𝛼 2(𝑢), 𝛽2)𝑔on(𝑢|𝑡)𝑑𝑢𝑑𝑣. (8) 

Let 𝑇𝐿 be the chronological time at which the level of the GHG emissions exceeds 𝐿. That is,  

 𝑇𝐿 = inf{𝑡(≥ 0)|𝑋1(𝑡) + 𝑋2′(𝑡) ≥ 𝐿}. (9) 

Note that the right hand side of the above equation is 𝑋1(𝑡) + 𝑋2′(𝑡) ≥ 𝐿, instead of 𝑋1(𝑡) + 𝑋2(𝑢) ≥

𝐿. The value 𝑋1(𝑡) + 𝑋2′(𝑡) ≥ 𝐿 has already mapped the accumulated usage onto the chronological time. 

Based on the monotonicity of the gamma process, the distribution of 𝑇𝐿 can be obtained by  

 𝐹𝑇𝐿
(𝑡)𝑃(𝑇𝐿 < 𝑡) 

 = 𝑃(𝑋1(𝑡) + 𝑋2′(𝑡) > 𝐿) 

 = 1 − ∫
𝐿

0
𝐹1(𝐿 − 𝑥; 𝛼 1(𝑡), 𝛽1)𝑓2(𝑥; 𝛼 2(𝑡), 𝛽2)𝑑𝑥, (10) 
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where is a compound symbol for making definitions, and  

 𝑓2(𝑥; 𝛼 2(𝑢), 𝛽2) =
𝑑𝐹2(𝑥;𝛼 2

(𝑡),𝛽2)

𝑑𝑥
= ∫

𝑡

0
𝑓(𝑥; 𝛼 2(𝑢), 𝛽2)𝑔on(𝑢|𝑡)𝑑𝑢. 

3.1.2 Composite time scale approach 

Gertsbakh and Kordonsky (1998) propose a method to aggregate both 𝑡 and 𝑢 to create a single 

composite time scale. Although they use the composite scale to model the probability of failure of an item, 

we borrow this method to model the deterioration level of the exhaust GHG emissions. 

In this method, we regard the single composite time scale as a linear combination of the chronological 

age and the accumulated usage of the system. That is,  

 �̆� = 𝑎1𝑇 + 𝑏1𝑈. (11) 

Assume that the level of the GHG emissions is a gamma process in the single composite time scale 

�̆�(= 𝑎1𝑡 + 𝑏1𝑢), which is denoted by {𝑋(�̆�): �̆� ≥ 0}. That is, 𝑋(�̆�) follows the gamma distribution 

Gamma(𝛼 3(�̆�), 𝛽3) with mean 𝛼 3(�̆�)𝛽3 and variance 𝛼 3(�̆�)𝛽3
2, and its probability density function is 

given by 𝑓(𝑥; 𝛼 3(�̆�), 𝛽3). 

Suppose that the system needs to be replaced if the level of the GHG emissions exceeds a pre-

specified 𝐿. Let �̆�𝐿 be the moderated time at which the level of the GHG emissions exceeds 𝐿. That is 

�̆�𝐿 = inf{𝑡(> 0)|𝑋(�̆�) = 𝐿}. 

Then the distribution function of 𝑋(�̆�) is given by  

 𝑃(�̆�𝐿 < 𝑥) = 𝐹3(𝑥; 𝛼 3(�̆�), 𝛽3) = ∫
𝑥

0
𝑓(𝑣; 𝛼 3(�̆�), 𝛽3)𝑑𝑣 =

𝛾(𝛼 3(�̆�),𝑥𝛽3)

Γ(𝛼 3
(�̆�))

. (12) 

The expected value of 𝑋(�̆�) are 𝐸[𝑋(�̆�)] = 𝛼 3(�̆�)𝛽 and 𝐸[𝑋(�̆�)] = 𝛼 3(�̆�)𝛽2, respectively. 

Denote  

 𝐹𝜎𝐿
(�̆�)𝑃(�̆�𝐿 < 𝐿) =

𝛾(𝛼 3(�̆�),𝐿𝛽3)

Γ(𝛼 3(�̆�))
. (13) 

The above assumes that �̆� = 𝑎1𝑇 + 𝑏1𝑈, one may also consider other functions such as �̆� = 𝛼0𝑇𝑈.  

3.2 Failure process of the system due to Mode II 

Failure mode II is a failure mode due to other causes of failures. A real system is usually composed of 

many components. For such a system, its failures can be due to the failures of different components. The 

failure process of the system can be modelled by a NHPP, as proved by Drenick (1960) and discussed in 

Wu (2021) 

3.2.1 Marginal approach 
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The marginal approach regards that the scale parameter is a function of the accelerated stress, while 

the shape parameter stays constant, and the degradation process is affected by both the operational age 

and the accumulated usage. Unfortunately, the operational age may not be available for analysis. We 

therefore use the chronological age as a covariate. We assume that the failure intensity is given by  

 𝜆(𝑡, 𝑢) = 𝜆1(𝑡) + 𝜆2(𝑢). (14) 

Then the cdf is given by  

 𝐹(𝑡) = 1 − exp {− ∫
𝑡

0
(𝜆1(𝑥) + 𝜆2(𝑥)𝑔on(𝑥|𝑡))𝑑𝑥}. (15) 

3.2.2 Composite time scale approach 

With the composite time scale approach, the moderated life time �̃�2 is expressed by  

 �̃�2 = 𝑎2𝑇 + 𝑏2𝑈. (16) 

Denote 𝜆3(�̃�) as the failure intensity function in respect to �̃�. Then the cdf is given by  

 𝐹(�̃�) = 1 − exp {− ∫
�̃�

0
𝜆3(𝑥)𝑑𝑥}, (17) 

where �̃� = 𝑎2𝑡 + 𝑏2𝑢. 

3.3 Incorporating other external covariates 

Ahlvik et al. (1997) suggest that accumulated mileage, ambient temperature, and road conditions are 

relevant to exhaust emissions. That is, in addition to the accumulated mileage, the level of exhaust 

emissions of a vehicle also depends on other factors including its speed (or road type), its age, engine size 

and weight (Ahlvik, 1997). Since it is not easy to record the ambient temperature and road conditions that 

a vehicle has experienced or will experience, we will add these factors as random effect. These data may 

not be recorded. As such, we assume a variable 𝑍, which represents the random effect. Denote the 

probability density function of 𝑍 by ℎ(𝑧)(=
𝜕𝐻(𝑧)

𝜕𝑧
). 𝐻(𝑧) is usually assumed a gamma distribution 

function.  

3.3.1 Marginal approach 

When the marginal approach is applied, the distribution of 𝑇𝐿 can be obtained by  

 𝑃(𝑇𝐿 < 𝑡) = 𝑃(𝑋1(𝑡) + 𝑋′2(𝑡) > 𝐿) 

 = 1 − ∫
𝐿

0
𝐹1(𝐿 − 𝑥; 𝛼 1(𝑡), 𝛽1)𝑓2(𝑥; 𝛼 2(𝑡), 𝑧𝛽2)ℎ(𝑧)𝑑𝑥𝑑𝑧. (18) 

3.3.2 Composite time scale approach 

When the composite time scale approach is adopted, we use the following model to incorporate the 
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random effect:  

 𝑃(𝑋𝑧(�̇�) > 𝐿) = 𝐹𝜎𝐿,𝑧(�̇�) = ∫
∞

0 ∫
∞

𝐿
𝑓(𝑥; 𝑧𝛼(�̇�), 𝛽)𝑑𝑥𝑑𝐻(𝑧) = ∫

∞

0

𝛾(𝑧𝛼(�̇�),𝐿𝛽)

Γ(𝑧𝛼(�̇�))
ℎ(𝑧)𝑑𝑧. (19) 

4 Maintenance Policies 

For systems such as automotive cars and boilers in buildings, we will adopt the block replacement 

policy, with which the system is always at some scheduled time periodically and repaired upon failure 

between replacements. The block replacement policy is easy to be implemented and widely used in 

government regulations. 

We assume that the repair upon failures between replacements are minimal. That is, such a repair 

will restore the failure system to the time exactly before the failure occurred.  

4.1 Marginal approach 

Then for the marginal approach, we aim to find the PM interval to minimise the expected cost, given 

by  

 𝐸𝑐(𝑇0) =
𝑐 𝑅

+𝑐 𝑚𝐸[𝑁0(𝑇0)]

𝑇0
. (20) 

where 𝐸[𝑁0(𝑇0)] = ∫
𝑇0

0
(𝜆0(𝑥) + 𝜆1(𝑥)𝑔on(𝑥|𝑇0))𝑑𝑥. 

We also need to consider minimising the GHG emissions during the operational stage and the 

amount of the initial manufacturing emissions. Hence, we set the following optimisation objective and 

constraints:  

 

min
𝑇0

 𝐸𝑐(𝑇0)

𝑠. 𝑡. 𝐹𝑇𝐿
(𝑇0) ≥ 𝑔0,

 
𝐸𝐼

𝑇0
≤ 𝑐𝑡 ,

 (21) 

where 𝐹𝑇𝐿
(. ) is from Eq. (10), 𝑔0 may be set to 95%, that is, the probability that the amount of GHG 

emissions will be smaller than the given limit 𝐿 is 95%. The second constraint 
𝐸𝐼

𝑇0
≤ 𝑐𝑡 aims to ensure that 

the initial emissions per unit of time is smaller than a given value.  

Lemma 1 Corresponding to the constrained optimization problem one can find that the optimum 𝑇0
∗ 

satisfying the following conditions  

 𝑐 𝑅 + 𝑐 𝑚 ∫
𝑇0

∗

0
[𝜆0(𝑥) + 𝜆1(𝑥)𝑔on(𝑥|𝑇0

∗)]𝑑𝑥 = 𝑐 𝑚𝑇0
∗(𝜆0(𝑇0

∗) + 𝛿1𝜆1(𝑇0
∗)𝑒−𝛿1𝑇0

∗
), (22) 

 𝐹𝑇𝐿
(𝑇0

∗) ≥ 𝑔0, (23) 

 
𝐸𝐼

𝑇0
∗ ≤ 𝑐𝑡 , (24) 
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 𝜇1(𝐹𝑇𝐿
(𝑇0

∗) − 𝑔0) = 0, (25) 

 𝜇2(
𝐸𝐼

𝑇0
∗ − 𝑐𝑡) = 0, (26) 

 𝜇1, 𝜇2 ≥ 0. (27) 

 Proof. According to the Karush–Kuhn–Tucker theorem (Lange, 2013), the optimisation problem 

shown in Eq. (21) needs to satisfy the condition 
𝜕𝐸𝑐(𝑇0)

𝜕𝑇0
|𝑇0=𝑇0

∗ = 0 and conditions from Eq. (23) to (27). 

Since 𝑔on(𝑇0
∗|𝑇0

∗) = 𝛿1𝑒−𝛿1𝑇0
∗
, 

𝜕𝐸𝑐(𝑇0)

𝜕𝑇0
|𝑇0=𝑇0

∗ = 0 can be rewritten as  

 𝑐 𝑅 + 𝑐 𝑚 ∫
𝑇0

∗

0
[𝜆0(𝑥) + 𝜆1(𝑥)𝑔on(𝑥|𝑇0

∗)]𝑑𝑥 = 𝑐 𝑚𝑇0
∗(𝜆0(𝑇0

∗) + 𝛿1𝜆1(𝑇0
∗)𝑒−𝛿1𝑇0

∗
). (28) 

 This establishes the lemma.  

A government regulation normally requires system owners to preventively maintain their systems on 

a fixed time period, every 6 months, 12 months, etc, but rarely on a period of a floating point number such 

as every 1.323 years. Hence, one may consider the following optimisation objective and constraints:  

 

min
𝑛

 𝐸𝑐(𝑛𝜏 0),

𝑠. 𝑡. 𝐹𝑇𝐿
((𝑛 − 1)𝜏 0) ≥ 𝑔0,

 
𝐸𝐼

𝑛𝜏 0

≤ 𝑐𝑡 .

 (29) 

The objective is to seek 𝑛 to minimise the expected function 𝐸𝑐(𝑛𝜏 0). The first two constraints are 

equivalent to 𝐹𝜎𝐿
((𝑛 − 1)𝜏 0) ≥ 𝑔0, which constrains the level of the exhaust emissions within the pre-

specified value with a given probability 𝑔0; the third constraint 
𝐸𝐼

𝑛𝜏0
≤ 𝑐𝑡 aims to ensure that the initial 

emissions per unit of time is smaller than a given value.  

4.2 Composite time scale approach 

 Then for the composite time scale approach, we obtain the expected cost rate due to the failure of 

Mode II as follows:  

 𝐸𝑐(�̃�) =
𝑐 𝑅

+𝑐 𝑚𝐸[𝑁(�̃�)]

�̃�
, (30) 

where 𝐸[𝑁(�̃�)] = ∫
�̃�

0
𝜆3(𝑥)𝑑𝑥. 

We can therefore set the following objective and constraints:  
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min
𝑇0,𝑈0

 𝐸𝑐(𝑎1𝑇0 + 𝑎2𝑈0),

𝑠. 𝑡. 𝐹𝜎𝐿
(𝑎1𝑇0 + 𝑎2𝑈0) ≥ 𝑔0,

 
𝐸𝐼

𝑇0
≤ 𝑐𝑡 ,

 
𝐸𝐼

𝑈0
≤ 𝑐𝑢,

 (31) 

where 𝐹𝜎𝐿
(. ) is from Eq. (13), 𝑔0 may be set to 95%; the second constraint 

𝐸𝐼

𝑇0
≤ 𝑐𝑡 and the third constraint 

𝐸𝐼

𝑈0
≤ 𝑐𝑢 aims to ensure that the initial emissions per unit of time and that per unit of usage are smaller than 

given values, respectively. 

Then we have  

Lemma 2 The optimum 𝑇0
∗ and 𝑈0

∗ satisfy the following conditions:  

 𝑐 𝑅 + 𝑐 𝑚Λ2(𝑎1𝑇0
∗ + 𝑎2𝑈0

∗) = 𝑐 𝑚(𝑎1𝑇0
∗ + 𝑎2𝑈0

∗)𝜆2(𝑎1𝑇0
∗ + 𝑎2𝑈0

∗), (32) 

 𝐹𝜎𝐿
(𝑎1𝑇0

∗ + 𝑎2𝑈0
∗) ≥ 𝑔0, (33) 

 
𝐸𝐼

𝑇0
∗ ≤ 𝑐𝑡 , (34) 

 
𝐸𝐼

𝑈0
∗ ≤ 𝑐𝑢, (35) 

 𝜇1, 𝜇2, 𝜇3 ≥ 0, (36) 

 𝜇1(𝐹𝜎𝐿
(𝑎1𝑇0

∗ + 𝑎2𝑈0
∗) − 𝑔0) = 0, (37) 

 𝜇2(
𝐸𝐼

𝑇0
∗ − 𝑐𝑡) = 0, (38) 

 𝜇3(
𝐸𝐼

𝑈0
∗ − 𝑐𝑢) = 0, (39) 

Noting that Eq. (32) is obtained from 
𝐸𝑐(𝑎1𝑇0+𝑎2𝑈0)

𝜕𝑇0
= 0 and 

𝐸𝑐(𝑎1𝑇0+𝑎2𝑈0)

𝜕𝑈0
= 0, we can establish a 

similar proof as that in the proof for Lemma 1. 

Similar to the optimisation problem discussed in Section 4.1 on the government regulation 

requirement, we consider discrete maintenance intervals such as 6 months or 12 months. We can then 

minimise the GHG emissions during the operational stage and the initial manufacturing emission. Hence, 

we set the following optimisation problem:  

 

min
𝑛,𝑚

 𝐸𝑐(𝑛𝑤1𝜏 0 + 𝑚𝑤2𝜐 0),

𝑠. 𝑡. 𝐹𝜎𝐿
((𝑛 − 1)𝑤1𝜏 0 + 𝑚𝑤2𝜐 0) ≥ 𝑔0,

 𝐹𝜎𝐿
(𝑛𝑤1𝜏 0 + (𝑚 − 1)𝑤2𝜐 0) ≥ 𝑔0,

 
𝐸𝐼

𝑛𝜏 0

≤ 𝑐𝑡 ,

 
𝐸𝐼

𝑚𝜐 0

≤ 𝑐𝑢,

 (40) 
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where 𝐹𝜎𝐿
(. ) is from Eq. (13), �̃� = 𝑛𝑤1𝜏 0 + 𝑚𝑤2𝜐 0, 𝑤1 and 𝑤2 are weights and 𝑤1 + 𝑤2 = 1. 𝑔0 may 

be set to 95%, that is, the probability that the amount of emissions will be smaller than the given limit 𝐿 

is 95%. The objective is to minimise the expected function min𝑛,𝑚𝐸𝑐(𝑛𝑤1𝜏 0 + 𝑚𝑤2𝜐 0). The first two 

inequality constraints: 𝐹𝜎𝐿
((𝑛 − 1)𝑤1𝜏 0 + 𝑚𝑤2𝜐 0) ≥ 𝑔0 and 𝐹𝜎𝐿

(𝑛𝑤1𝜏 0 + (𝑚 − 1)𝑤2𝜐 0) ≥ 𝑔0), aim to 

seek optimal 𝑚 to confine the level of the exhaust emissions with a given probability 𝑔0; the inequality 

constraint 
𝐸𝐼

𝑛𝜏0
≤ 𝑐𝑡 aims to ensure that the initial emissions per unit of time is smaller than a given value 

and the third constrain 
𝐸𝐼

𝑚𝜈0
≤ 𝑐𝑢 aims to ensure that the initial emissions per unit of usage is less than a 

given value.  

4.3 When Mode I is repairable 

Assumption A4) in Section 2.1 assumes that Mode I is not repairable. This section relaxes this 

assumption and assume that the failures due to Mode I is repairable. To this end, we make the following 

assumptions.  

A11).  Suppose there are two types of preventive maintenance (PM): major and minor, where a major 

PM is a replacement, after which the item is restored to a good-as-new status. The effectiveness of 

a minor PM is assumed in the following assumptions, i.e., A12), A13) and A14).  

A12).  The minor PM actions are executed at fixed intervals 𝑘𝑇1 with 𝑘 = 1,2, … , 𝑁 − 1 and the item 

is replaced at the 𝑁𝑇1. That is, the system undergoes minor PM at successive times 

𝑇1, 2𝑇1, … , (𝑁 − 1)𝑇1. A major PM, which is a replacement, is conducted at 𝑁𝑇1. Minimal repair is 

conducted between minor PMs. After either a minor PM or a major PM, the time in the 

corresponding hazard function or intensity function returns to zero.  

A13).  The effectiveness of a minor PM on Mode I is depicted by the geometric process, which is 

introduced by Lam (1988).  

- When the marginal approach is used, the distribution of 𝑇𝐿 after the 𝑘th minor PM 

becomes 𝐹𝑇𝐿
(𝜂1

𝑘−1𝑡) with 𝜂1 > 1, where 𝐹𝑇𝐿
(𝑡) can be obtained by Eq. (10).  

- When the composite time scale approach is used, the distribution of �̆�𝐿 after the 𝑘th 

minor PM becomes 𝐹𝜎𝐿
(𝜂2

𝑘−1�̆�) with 𝜂2 > 1, where 𝐹𝜎𝐿
(�̆�) can be obtained by Eq. (13).  

A14).  The effectiveness of a minor PM on Mode II is depicted by the model proposed by Nakagawa 

(1988).  
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- When the marginal approach is used, the failure intensity 𝜆𝑘(𝑡, 𝑢) of Mode II after the 𝑘th 

minor PM is the sum of 𝜆1,𝑘(𝑡) and 𝜆2,𝑘(𝑢), i.e., 𝜆𝑘(𝑡, 𝑢) = 𝜆1,𝑘(𝑡) + 𝜆2,𝑘(𝑢), where 

𝜆1,𝑘(𝑡) = 𝜆1(𝑡)𝜌1
𝑘 is the failure intensity due to ageing and 𝜆2(𝑢) = 𝜆2(𝑢)𝜌2

𝑘 is the failure 

intensity due to usage, where 𝜌1, 𝜌2 ∈ (1, +∞).  

- When the composite time scale is used, the failure intensity 𝜆(�̃�) of Mode II after the 𝑘th 

minor PM is 𝜌3
𝑘𝜆(�̃�), where 𝜌3 ∈ (1, +∞).  

A15).  The cost of a minor PM is 𝑐 𝑟 with 𝑐 𝑅 > 𝑐 𝑚 > 𝑐 𝑟.  

4.3.1 Marginal approach 

 For the marginal approach, we aim to find the minor PM interval to minimise the expected cost, 

given by  

 𝐸𝑐(𝑇1) =
𝑐 𝑅

+(𝑁−1)𝑐 𝑟+𝑐 𝑚 ∫
𝑇1

0
∑𝑁

𝑘=1 (𝜆1(𝑡)𝜌1
𝑘+𝜆2(𝑡)𝜌2

𝑘𝑔on(𝑥|𝑇1))𝑑𝑥

𝑁𝑇1
 

 =
𝑐 𝑅

+(𝑁−1)𝑐 𝑟+𝑐 𝑚 ∫
𝑇1

0 (
𝜌1−𝜌1

𝑁+1

1−𝜌1
𝜆1(𝑡)+

𝜌2−𝜌2
𝑁+1

1−𝜌2
𝜆2(𝑡)𝑔on(𝑥|𝑇1))𝑑𝑥

𝑁𝑇1
, (41) 

where, in the numerator, the first term 𝑐𝑅 is the cost of the major PM at time 𝑁𝑇1, the second term, (𝑁 −

1)𝑐 𝑟, is the sum of the cost of the minor PM at 𝑘𝑇1 with 𝑘 = 1,2, . . . , 𝑁 − 1, and the third term is the sum 

of the cost on the minimal repair. 

Similar to Eq. (21), we set the following optimisation objective and constraints:  

 

min
𝑇1

 𝐸𝑐(𝑇1)

𝑠. 𝑡. 𝐹𝑇𝐿
(𝑇1) ∗ 𝐹𝑇𝐿

(𝜂1𝑇1) ∗ … ∗ 𝐹𝑇𝐿
(𝜂1

𝑁−1𝑇1) ≥ 𝑔0,

 
𝐸𝐼

𝑁𝑇1
≤ 𝑐𝑡 ,

 (42) 

where 𝐹𝑇𝐿
(𝑇1) ∗ 𝐹𝑇𝐿

(𝜂1𝑇1) ∗ … ∗ 𝐹𝑇𝐿
(𝜂1

𝑁−1𝑇1), which is the convolution of the cdf’s 𝐹𝑇𝐿
(𝑇1), 𝐹𝑇𝐿

(𝜂1𝑇1), …, 

and 𝐹𝑇𝐿
(𝜂1

𝑁−1𝑇1), is the probability that the sum of the levels of the GHG emissions immediately before the 

𝑁 minor PMs is smaller than 𝐿. 

4.3.2 Composite time scale approach 

 For the composite time scale approach, we aim to find the interval of the minor PMs to minimise the 

expected cost, given by  

 𝐸𝑐(�̃�1) =
𝑐 𝑅

+(𝑁−1)𝑐 𝑟+𝑐 𝑚 ∑𝑁
𝑘=1 ∫

�̃�1
0

𝜌3
𝑘𝜆3(𝑥)𝑑𝑥

𝑁�̃�1
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 =
𝑐 𝑅

+(𝑁−1)𝑐 𝑟+
𝑐 𝑚(𝜌3−𝜌3

𝑁+1)

1−𝜌3
∫

�̃�1
0

𝜆3(𝑥)𝑑𝑥

𝑁�̃�1
, (43) 

The three terms in the numerator in Eq. (43) have similar meanings as those the numerator in Eq. (41). 

Similar to Eqs. (31) and (42), we obtain:  

 

min
𝑇1,𝑈1

 𝐸𝑐(𝑎1𝑇1 + 𝑎2𝑈1),

𝑠. 𝑡. 𝐹𝜎𝐿
(𝑎1𝑇1 + 𝑎2𝑈1) ∗ 𝐹𝜎𝐿

(𝜂2(𝑎1𝑇1 + 𝑎2𝑈1)) ∗ … ∗ 𝐹𝜎𝐿
(𝜂2

𝑁−1(𝑎1𝑇1 + 𝑎2𝑈1)) ≥ 𝑔0,

 
𝐸𝐼

𝑁𝑇1
≤ 𝑐𝑡 ,

 
𝐸𝐼

𝑁𝑈1
≤ 𝑐𝑢.

 (44) 

5 Discussion: Generalizations 

 The above content discussed the scenario when there are two scales, time, and accumulated usage, 

both of which can affect the deterioration process of a failure mode with observable failure progression 

and the failure of the one with unobservable failure progression. A natural extension is to assume that 

there are 𝑛 + 1 failure modes, in which the first 𝑛 failure modes are due to 𝑛 deterioration processes 

and the last one is the one with unobservable failure progression. Under this setting, we can obtain the 

following objective function and constraints:  

 

min
𝑇,𝑈

 𝐸𝑐(𝑇, 𝑈1, 𝑈2, … , 𝑈𝑛),

𝑠. 𝑡. 𝐺(𝑇, 𝑈1, 𝑈2, … , 𝑈𝑛) ≥ 𝑔0,

 
𝐸𝐼

𝑇
≤ 𝑐𝑡 ,

 
𝐸𝐼

𝑈𝑖
≤ 𝑐𝑖 (𝑖 = 1,2, … , 𝑛),

 (45) 

where 𝐸𝑐(𝑇, 𝑈1, 𝑈2, … , 𝑈𝑛) is the objective function with 𝑛 + 1 intervals (i.e., 𝑇, 𝑈𝑖  with 𝑖 ∈ {1,2, … , 𝑛}) 

that needs optimising and 𝐺(𝑇, 𝑈1, 𝑈2, … , 𝑈𝑛) is the quantities with interval constraints, and 𝑖 ∈ {1,2, … , 𝑛}. 

6 Numerical examples 

In this section, we assume 𝜆0(𝑥) = 𝜉01𝜉02𝑥𝜉02−1 and 𝜆1(𝑥) = 𝜉11𝜉12𝑥𝜉12−1. Specifically, we denote 

𝜉01 = 𝜉11 = 0.08, 𝜉02 = 𝜉12 = 2, 𝛿1 = 0.65, 𝛿2 = 0.35 first in the numerical example and conduct some 

comparative analysis later. Let 𝑐 𝑅 = 100, 𝑐 𝑚 = 50, 𝑐𝑝 = 20, and 𝑐𝑡 = 𝑐𝑢 = 10.  

6.1 Marginal approach 

Under the marginal approach, we have,  

 𝐸[𝑁0(𝑡)] 

 = ∫
𝑡

0
(𝜆1(𝑥) + 𝜆2(𝑥)𝑔on(𝑥|𝑡))𝑑𝑥 
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 = 𝜉01𝑡𝜉02 + 𝜉11𝜉12𝛿1
1−𝜉12𝛾(𝜉12, 𝛿1𝑡) 

 − ∫
𝑡

0
𝜉11𝜉12𝑒−𝛿1𝑥 ∑∞

𝑗=0
𝛿1

𝑗+1
𝑥𝑗+𝜉12−1

𝑗!(𝑗+1)!
[(𝑗 + 1)𝛾(𝑗 + 1, 𝛿2(𝑡 − 𝑥)) − 𝛿2𝑥(𝛿2(𝑡 − 𝑥))𝑗𝑒−𝛿2(𝑡−𝑥)]𝑑𝑥.

 (46) 

Substituting 𝐸[𝑁0(𝑡)] from the above equation into Eq. (20), we can obtain 𝐸𝑐(𝑇). The objective 

function is 𝐸𝑐(𝑛𝜏0) and the system owner chooses the optimal 𝑛∗ to minimize the expected cost rate. As 

for the constraints in Eq. (29), we further assume 𝐿 = 20, 𝐸𝐼 = 20, 𝛼1 = 𝛼2 = 2, 𝛽1 = 𝛽2 = 0.5 and 𝜏0 =

0.5. As mentioned, the probability that the amount of emissions is greater than the limit 𝐿 is 95%. In 

effect, we can refine 𝑛 from the constraints to several numbers, where 𝑛 = 8 resulting in the lowest 

expected cost rate, i.e., 𝐸𝑐(𝑛 = 8) = 42.05 < min(𝐸𝑐(𝑛 = 𝑖)), where 𝑖 satisfies 𝐹𝑇𝐿
(𝑇0) ≥ 𝑔0. In other 

words, we have the optimal 𝑛∗ = 8 and the corresponding objective function as 𝐸𝑐(𝑛∗ = 8) = 42.05, two 

decimal places. 

We first alter 𝜏 from 0.5 to 0.25, 1, and 2 to check the impacts of 𝜏 on the optimal 𝑛∗. The results are 

shown in Fig. 2. Note that we use the abbreviation ECR to denote the expected cost rate. It can be easily 

shown in Fig. 2a that 𝑛∗ decreases with 𝜏. This is because with a higher 𝜏 and a fixed 𝑛 and 𝑤1, 

𝐹𝑇𝐿
(𝑛𝜏0) increases, which makes the probability exceeds than the given threshold 𝑔0. Additionally, we 

will obtain equal ECR with same 𝑛𝜏0, as shown in Fig. 2. 

 

We proceed the analysis by conducting comparative analysis on other parameters. When 𝐸𝐼 

increases, it is harder for the system owner to find a value 𝑛 to minimize the objective function due to the 

𝑔0 requirement. Nonetheless, if we could accept a higher 𝑔0, 𝑛∗ will increases, leading to the reduction 

Optimal 𝑛∗ Corresponding ECR 

Figure 2: Optimal 𝑛∗ and corresponding Expected Cost Rate with respect to 𝜏0 
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in the expected cost rate. For instance, if we alter 𝑔0 to 97% while retaining all other parameters the same 

(e.g., 𝜏0 = 0.5), the optimal 𝑛∗ can be obtained by setting 𝑛∗ = 9 and 𝐸𝐶𝑅(𝑛∗ = 9) = 39.69, which is 

5.61% lower than the original expected cost rate. In contrast, if we only accept a lower 𝑔0, e.g., 90%, the 

original solution cannot be employed any more since 𝐹𝑇𝐿
(𝑛∗𝜏0) exceeds the altered threshold. The 

optimal solution thereby goes to 𝑛∗ = 5 and the corresponding ECR equals to 𝐸𝐶𝑅(𝑛∗ = 5) = 53.35, 

which is 26.87% higher than the original value. 

Similarly, if we increase 𝛿2 and decrease 𝛿1 while all other parameters remain the same, it will be 

harder for the system owner to find a value 𝑛 to meet the requirement. In contrast, if we increase 𝛿1 or 

decrease 𝛿2, i.e., updating 𝛿1 = 0.5 and 𝛿2 = 0.5, 𝑛∗ can be chosen to 𝑛∗ = 7 and the corresponding 

expected cost rate can be obtained as 𝐸𝐶𝑅(𝑛∗ = 7) = 46.55, which is 10.7% higher than the original one. 

Besides the previous parameters, the adjustment of the shape parameter in the gamma function also 

has impact on the choice of 𝑛∗. For instance, if we increase 𝛼2, it will be harder for the system owner to 

find such 𝑛∗ to satisfy the requirement. Specifically, if we update 𝛼2 = 4, the system owner is not able to 

find a feasible 𝑛. On the contrary, a higher 𝛼1, i.e., 𝛼1 = 4 triggers to 𝑛∗ = 6 and 𝐸𝐶𝑅(𝑛∗ = 6) = 48.36, 

which is 15.01% higher than the original expected cost rate. Additionally, an augment in 𝐿 will also make 

it easy for identifying 𝑛∗ while a diminish in 𝐿, e.g., 𝐿 = 10 makes it only possible to choose 𝑛∗ = 6, 

resulting in 𝐸𝐶𝑅(𝑛∗ = 6) = 48.36, which is also 15.01% higher than the original case since the alteration of 

𝐿 has no impact on the expected cost rate. 

Having checked the parameters that have impacts on the constraints, we now conduct comparative 

analysis on the objective function. It can be easily derived from the objective function Eq. (29) that 𝑐 𝑅 and 

𝑐 𝑚 positively impact the expected cost rate, similar as the parameters 𝜉01 and 𝜉02. As for 𝜉11 and 𝜉12, 

we show that both of 𝜉11 and 𝜉12 positively impact it. Specifically, if we increase 𝜉11 to 0.5, 𝑛∗ remains 

the same since the constraint is not changed and 𝐸𝐶𝑅 equals to 47.59, which is 13.15% higher than the 

original expected cost rate. Similarly, if we increase 𝜉12 to 3, 𝐸𝐶𝑅 will change to 63.17, which is 50.23% 

higher than the original one. 

6.2 Composite time scale approach 

 Under the composite time scale approach, we have,  

 𝐸[𝑁(𝑡)] = ∫
𝑡

0
𝜆1(𝑥)𝑑𝑥 = 𝜉11𝑡𝜉12 . (47) 

 Substituting 𝐸[𝑁(𝑡)] from the above equation into Eq. (30), we can obtain 𝐸𝑐(𝑇). In effect, the 
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objective function is 𝐸𝑐(𝑛𝑤1𝜏0 + 𝑚𝑤2𝑣0) and the system owner chooses the optimal 𝑛∗ and 𝑚∗ to 

minimize the expected cost rate. As for the constraints in Eq. (40), similar as the analysis on the marginal 

approach, we assume 𝜏0 = 𝑣0 = 1 and 𝐸𝐼 = 20. Since 𝑤1 and 𝑤2 are weights and 𝑤1 + 𝑤2 = 1, we 

solve the optimization problem with a changing 𝑤1 and show the result in Fig. 3. 

 

The figure is symmetric since we assume 𝜏0 = 𝑣0. If 𝑤1 is lager (smaller) than 0.5, i.e., the choice of 

𝑛(𝑚) takes more weight, we have 𝑛∗ > 𝑚∗(𝑛∗ < 𝑚∗) and vice versa. Additionally, if we increase 𝜏0(𝑣0) 

while remaining all other parameters unchanged, the optimal 𝑛∗ (𝑚∗) decreases and vice versa. We 

should further note that there are two empty points in Fig. 3. When 𝑤1 = 0(𝑤1 = 1), the choice of 𝑛(𝑚) 

has no impact on the optimal solution as well as the expected cost rate. Additionally, we should note that 

different combinations of (𝑛∗, 𝑚∗) may result in the same ECR with the same 𝑛𝑤1𝜏0 + 𝑚𝑤2𝑣0. 

Now we take 𝑤1 = 0.8 and 𝑤2 = 0.2 as a benchmark and conduct comparative analysis on other 

parameters. Note that under the given weights, we have 𝑛∗ = 5, 𝑚∗ = 1, and 𝐸𝐶𝑅(𝑛∗, 𝑚∗) = 40.61. When 

𝐿 increases to 30, the updated optimal solution can be given by 𝑛∗ = 6 and 𝑚∗ = 4, where the expected 

cost rate is 40.23 and 0.94% smaller than the original one. In contrast, when 𝐿 decreases to 10, the 

updated optimal solution can be given by 𝑛∗ = 3 and 𝑚∗ = 1, where the expected cost rate is 48.86 and 

20.32% higher than the original one. Similarly, the analysis on the objective function shows that 𝑐𝑅, 𝑐𝑚, 

𝜉11 and 𝜉12 all positively impact the expected cost rate.  

6.3 When Mode I is repairable 

 We have shown the numerical example when Mode I is not repairable. In this subsection, we 

proceed our analysis by assuming Mode I is repairable. Following previous assumptions, we have 𝑐𝑅 >

Optimal 𝑛∗ and 𝑚∗ Corresponding ECR 

Figure 3: Optimal 𝑛∗, 𝑚∗ and corresponding Expected Cost Rate with respect to 𝑤1 
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𝑐𝑚 > 𝑐𝑟 = 10 since the cost of minor PM is usually small. Additionally, we assign 𝜌1 = 1.5 for 

tractability while all other parameters remain the same as previous subsection. As for 𝜂1, we consider two 

scenario where 𝜂1 = 1.1 and 𝜂1 = 1.5 respectively. Using the same methodology to solve the 

optimization problem in Eq. (42) with different constraints, we obtain the optimal 𝑛∗ and corresponding 

expected cost rate in Fig. 4.  

 

Intuitively, Fig. 4 shares the same pattern as Fig. 2 where the optimal 𝑛∗ gradually decreases in 𝜏0. 

The difference between red line and blue dashed line can be ascribed to the impact of 𝜂1. With a higher 

𝜂1 (indicated by the blue dashed line), the constraint on 𝑔0 is more binding, suppressing the possible 

range for 𝑛∗, decreasing the optimal 𝑛∗. However, with 𝜂1, ECR increases as there is additional cost that 

relevant to Mode I repair. On the contrary, with a lower 𝜂1 (indicated by the red line), a higher 𝑛∗ can be 

chosen due to a more flexible constraint. As such, a higher 𝑛∗ is feasible and the ECR increases as well. 

The impacts of other parameters on the optimal 𝑛∗ and ECR remains the same as that when Mode I 

is non-repairable, e.g., a lower 𝐸𝐼 or 𝑔0 increase the optimal 𝑛∗ and leads to the decrease in ECR. 

Furthermore, 𝑐𝑟 positively impacts the ECR as a higher cost on minor PM will lead to the increase in 

expected cost rate. For instance, if we increase 𝑐𝑟 from 10 to 15 when 𝜂1 = 1.1 and 𝜏0 = 0.5, ECR 

increases from 75.07 to 75.47. Differently, if we decrease 𝑐𝑟 from 10 to 5, ECR decreases to 73.47. 

We continue the analyse by solving the optimization problem in Eq. (44). Similarly, we assign 𝜌2 =

𝜌3 = 1.5 and 𝑐𝑟 = 10 and perform the results when 𝜂2 = 1.1 and 𝜂2 = 1.5 respectively in Fig. 5. 

Optimal 𝑛∗ Corresponding ECR 

Figure 4: Optimal 𝑛∗ and corresponding Expected Cost Rate when Mode I is repairable 
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It is not surprisingly that Fig. 5 shares the same pattern as Fig. 3. We should further note that when 

𝑤1 = 0 or 𝑤2 = 0, the optimal 𝑛∗ = 0 or 𝑚∗ = 0 since the selection of them will have no impact on the 

ECR. Similarly, when we increase 𝑐𝑟 from 10 to 15 (while 𝑤1 = 0.8, 𝑤2 = 0.2, 𝜂2 = 1.1 and 𝜏0 = 𝑣0 = 1), 

ECR increases from 78.88 to 79.75. And when we decrease 𝑐𝑟 from 10 to 5, ECR decreases to 78.01. 

Similarly, a relative small 𝜂2 indicates a flexible constraint on 𝑔0, making the possible range for 𝑛∗ and 

𝑚∗ enlarges. Differently, a high 𝜂2 makes the constraint more binding, restricting the selection on 𝑛∗ 

and 𝑚∗. 

Our numerical results illustrate that the proposed model is applicable in reality and is able to provide 

guidance to the system owner in choosing the PM time period and minimizing the expected cost rate, 

considering not only the cost related to failure but also cost related to GHG emissions. Specifically, all 

parameters can be assessed from historical data or other official data released by companies in the same 

field. 

7 Conclusions 

This paper incorporated greenhouse gas (GHG) emissions in scheduling maintenance policies. It took 

the GHG emissions of automotive vehicles as the subject of the research. Aside from relevant costs, three 

factors were considered: the ageing and deterioration of the system, the increasing exhaust GHG 

emissions of the system, and the initial manufacturing emissions. 

This paper then derived maintenance policies for the situations when the level of the GHG emissions 

is the total amount of the particulate matter, carbon monoxide, nitrogen oxide and hydrocarbons. Other 

consideration includes that the minimum amount of those GHG emissions exceeds a pre-specified value. 

Optimal 𝑛∗ and 𝑚∗ Corresponding ECR 

Figure 5: Optimal 𝑛∗, 𝑚∗ and corresponding Expected Cost Rate 
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Another extension can be to consider the combination between the chronological time with a non-

parametric method such as the kernel method or the spline function method. Alternatively, the non-

parametric regression will be on the scale parameter. Time-varying accelerated lifetime models can be 

applied to the scale parameter of the gamma process. This paper assumed that the two failure modes were 

statistically independent, which is for the convenience of derivation of the relevant quantities. Our future 

work will investigate the possibility of relaxing this assumption, use copulas to measure the 

correlationship, derive relevant quantities such as the first hitting time distributions, and then optimise 

maintenance policies.  
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