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Abstract:

Prostate cancer (PC) is the most common cancer in men after non-melanoma skin cancer in the United 

Kingdom (Cancer Research UK, 2019). Current diagnostic methods (PSA, DRE, MRI & prostate biopsy) 

have limitations as these are unable to distinguish between low-risk cancers that do not need active 

treatment from cancers which are more likely to progress. In addition, prostate biopsy is invasive with 

potential side effects. There is an urgent need to identify new biomarkers for early diagnosis and 

prognostication in PC. 

Raman spectroscopy (RS) is an optical technique that utilises molecular-specific, inelastic scattering of 

light photons to interrogate biological samples. When laser light is incident on a biological sample, the 

photons from the laser light can interact with the intramolecular bonds present within the sample. The 

Raman spectrum is a direct function of the molecular composition of the tissue, providing a molecular 

fingerprint of the phenotypic expression of the cells and tissues, which can give good objective 

information regarding the pathological state of the biological sample under interrogation.

We applied a technique of drop coating deposition Raman (DCDR) spectroscopy using both blood 

plasma and sera to see if a more accurate prediction of the presence and progression of prostate cancer 

could be achieved than PSA which would allow for blood sample triage of patients into at risk groups. 

100 participants were recruited for this study (100 blood plasma and 100 serum samples). Secondly, 79 

prostate tissue samples (from the same cohort) were interrogated with the aid of Raman micro-

spectroscopy to ascertain if Raman spectroscopy can provide molecular fingerprint that can be utilised 

for real time in vivo analysis. Multivariate analysis of support vector machine (SVM) learning and linear 

discriminant analysis (LDA) were utilised differently to test the performance accuracy of the 

discriminant model for distinguishing between benign and malignant mean plasma spectra. SVM gave 

a better performance accuracy than LDA with sensitivity and specificity of 96% and 97% respectively 

and an area under the curve (AUC) of 0.98 as opposed to sensitivity and specificity of 51% and 80% 

respectively with AUC of 0.74 using LDA. Slightly lower performance accuracy was also observed when 

blood serum mean spectra analysis was compared with blood plasma mean spectra analysis for both 

machine learning algorithms (SVM & LDA).

Tissue spectral analysis on the other hand recorded an overall accuracy of 80.8% and AUC of 0.82 with 

the SVM algorithm compared to performance accuracy of 75% and AUC of 0.77 with LDA algorithm 

(better performance noted with the SVM algorithm). The small sample size of 79 prostate biopsy tissues 
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was responsible for the low sensitivity and specificity. Therefore, the tissues were insufficient to 

describe all the variances in each group as well as the variability of the gold standard technique.

Conclusion: Raman spectroscopy could be a potentially useful technique in the management of 

Prostate Cancer in areas such as tissue diagnosis, assessment of surgical margin after radical 

prostatectomy, detection of metastasis, Prostate Cancer screening as well as monitoring and 

prognosticating patients with Prostate Cancer. However, more needs to be done to validate the 

approaches outlined in this thesis using prospective collection of new samples to test the classification 

models independently with sufficient statistical power. At this stage only the fluid-based models are 

likely to be large enough for this validation process.
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Chapter 1 -Introduction
Prostate cancer is one of the most frequently diagnosed cancers globally. It accounts for 7.1% of all 

cancers affecting men globally. In the United States of America and the United Kingdom (UK), for 

instance, 

it is the second most commonly diagnosed cancer after melanoma skin cancer. In the UK, 47,500 men 

are diagnosed annually with this disease condition. Therefore, suggesting that 129 men are diagnosed 

with this condition daily throughout the UK. One in every eight men in the UK is diagnosed with prostate 

cancer. It is also the third leading cause of cancer death globally. The mortality rate of this disease has 

increased, with at least one man recorded to die from prostate cancer every 45 minutes in the UK. 

There are about 11.500 deaths In the UK yearly due to prostate cancer. A worldwide assessment of new 

cancer cases was conducted in 2020, and prostate cancer contributed to about 14.1% of the population 

of all new cases of male-related cancers for all ages. As demonstrated in figure 1.1 below.

Fig. 1.1: Estimated number of new cancer cases (worldwide) in 2020 for all ages in males 
(Globocan, 2020).
When prostate cancer incidence was analyzed based on age standardization rate from country to 

country, France and Guadeloupe had the highest figures with 189.1 per 100,000 people. Bhutan 

recorded the lowest incidence of 1.0 per 100,000 people (Ferlay et al., 2019). 

The incidence and mortality rates of prostate cancer are closely related to increasing age, with men 

below 40 having recorded very low incidence and mortality rates. The mean age at the time of diagnosis 
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of prostate cancer is around 66 years globally. Globally, the incidence of men with prostate cancer is 1 

in every 350 men under the age of 50 years (Ibid, 2019). However, the rate of incidence has been shown 

to increase quite significantly after the age of 50. Between 50 and 59, this disease is about 1 in every 

52 men, with a higher incidence for men over 65. 

Globally, prostate cancer accounts for 21.8% of all cancer incidences in men. Nevertheless, the 

mortality rate is only 10%, meaning that most men can live with prostate cancer for the rest of their 

lives if the tumor is indolent.

Fig. 1.2: Males related Cancer incidence and mortality patterns in Europe: Estimates for 
40 countries and 25 major cancers in 2018 (Ferlay et al., 2018).

With the available statistics, one can safely infer that this disease condition has recently become a 

public health concern worldwide. Therefore, there is a need to investigate and explore better diagnostic 

tools to assist in early diagnosis and risk stratification of prostate cancer. A correlation of molecular 

biomarkers with the Gleason Scoring system is necessary for classifying biopsies and blood samples 

from patients on surveillance (Prostate Cancer UK, 2013).
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The primary aim of this study was to measure blood plasma with Raman spectroscopy from individuals 

referred to a prostate biopsy clinic for suspected prostate cancer. Biomarkers measured in the Raman 

spectra correlated with the PSA and the stage and grade of disease found. 

Secondly, it was also necessary to ascertain the usefulness of Raman Spectroscopy as a minimally 

invasive diagnostic tool in assessing real-time, molecular-specific fingerprints of prostate diseases. 

The objective was to provide a more accurate prediction of prostate cancer's presence and progression 

than PSA, enabling blood sample triage of patients into at-risk groups for further investigation.

The lack of reliable assays to identify tumours destined to remain indolent has contributed to 

overtreatment and permanent side effects of treatment for those slow-growing or self-limiting tumours 

that would not cause problems for the patient during their lifetime (Kelloff G.J et al., 2009). 

The practice of watchful waiting (which involves no treatment or specific program of monitoring with 

the plan that palliative treatment would be used if a progressive disease condition develops) and active 

surveillance are alternatives to the overtreatment of indolent tumours with potential side effects.

The main benefit of watchful waiting and active surveillance is that it minimizes the severe side effects 

of urinary incontinence and impotence associated with surgery and radiation therapy. However, the 

disadvantage of active surveillance is that it may miss the window of opportunity for early intervention 

when tumours that seem indolent turn out to be aggressive.

Prostate Specific antigen is present in small quantities of blood serum of men with a healthy prostate. 

However, it is often elevated in the presence of prostate cancer or other prostate disease conditions. 

The reliability of this screening tool has been called to question in recent times due to its low sensitivity. 

Many countries, such as the United Kingdom, have not adopted PSA as a widespread screening tool for 

the early detection of prostate cancer. Since there is no other reliable assay for the early detection of 

prostate cancer and disease progression, it remains the first line of an assay for prostate cancer 

detection.

This thesis will seek to address some of the problems encountered during prostate cancer screening 

and diagnosis to suggest a more accurate diagnostic tool that can be utilized as an addition to existing 

ones in managing prostate cancer. Therefore our research questions will be:
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Firstly, can Raman spectroscopy provide a more accurate prediction of the presence and progression 

of prostate cancer than PSA and allow blood sample triage of patients into at-risk groups?

Secondly, can Raman spectroscopy of prostate tissue provide molecular signatures that may be used 

for real-time in vivo analysis?
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Chapter 2 – Background
 Prostate cancer has been shown in the previous chapter as one of the leading causes of cancer death 

among men, with an increased mortality rate and incidence among those advanced in the age above 

50 years. The lack of reliability of the available screening and diagnostic tools has therefore brought 

about the need to investigate new approaches that will assist in the early detection and characterization 

of this disease condition. In this chapter, we will endeavour to examine prostate anatomy, physiology, 

and histology. After that, prostate cancer and some pre-cancerous conditions related to the prostate 

gland will be discussed. The Gleason grading system and the current diagnostic pathways, including the 

gold standard technique for diagnosis of prostate cancer and prostate-specific antigen, will follow 

subsequently.

2.1. Anatomy, Physiology and Histology
The prostate gland is a firm, elastic gland with the shape of an inverted pyramid located at the base of 

the urinary bladder and is the size of a walnut (Amis, 1994). Five prostatic ducts derived from the 

urogenital sinus are found within the prostate gland, which helps divide the prostate into five distinct 

lobes (the anterior, middle, posterior, left, and right lateral lobes) (Ibid, 1994).
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Fig. 2.1 Prostate anatomy. The transverse slice with the highest diameter and therefore, 
most extensive surface (green line) lies close to the middle cross-sectional plane (blue 
line) but is shifted towards the prostate base. [image copyright: www.paradoja7.com]

The prostate base is attached urinary bladder neck, and the prostatic urethra passes through the middle 

of it, as shown in figure 2.1 above. The apex is the lower and narrow part of the prostate, which is 

covered by the anterior fibromuscular stroma. The apex contacts the superior fascia of the urogenital 

diaphragm and the medial surface of the levator ani muscle. The posterior surface of the prostrate is 

triangular and flat and is in contact with the anterior wall of the rectum. The inferior-lateral surface 

meets the anterior surface as it rests on the levator ani fascia superior to the urogenital diaphragm. A 

thin filmy connective tissue known as Devillier's fascia demarcates the prostate and seminal vesicles 

from the rectum (Aaron LT et al., 2016).
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John McNeal divided the prostate into three main areas based on histological and anatomical 

composition. This non-glandular fibromuscular stroma engulfs the gland and the two glandular zones, 

the peripheral and central zones (McNeal, 1981).

The peripheral zone comprises about 70% of the glandular tissue. It engulfs the distal urethra and spans 

from the apex to the base found in the posterior surface of the gland. Ductal and acinar elements and 

very few interwoven smooth muscles are located in the peripheral zone. Hence, the T2 Weighted MRI 

sequence is often observed as having a high signal intensity. Cancer, chronic prostatitis, and post-

inflammatory atrophy are usually seen in this zone compared to other zones.

The central zone is a cone-shaped structure made up of 25% of the glandular tissue and situated 

between the peripheral and transition zone. It engulfs the ejaculatory ducts and narrows to an apex at 

the verumontanum. The verumontanum is a rounded eminence of the urethral crest within the 

posterior wall of the mid-prostatic urethra, where the ejaculatory ducts enter the urethra. Urologists 

utilize it as a surgical landmark during TURP to locate the urethral sphincter (McNeal, 1981).

The transition zone is made up of 5% of the glandular tissue. Essentially, two small glandular lobules of 

tissue engulf the proximal prostatic urethra immediately above the verumontanum. BPH often occurs 

within the transition zone (Ibid, 1981).

The transition zone is often seen as nodular areas of different signal intensities depending on the 

relative proportion of the glandular and stromal enlargement (Ibid, 1981). Because there are more 

ductal and acinar components and secretions within the epithelial hyperplasia, it is often seen on the 

T2 Weighted MRI sequence as an area of high signal intensity. Since there are more fibrous and 

muscular components within the stromal hyperplasia, lower signal intensity is often observed in the 

regions with stromal hyperplasia on T2 Weighted MR imaging.

2.2. Prostate Cancer:
Tumours in the prostate gland start with a mutation in the normal glandular cells, especially in the 

peripheral basal cells. About 75% of all prostate cancers are found within the peripheral zone, which 

could be palpable by physicians during Digital Rectal Examination (DRE). It is common to see growth 

and multiplication and the spread of the cancerous cells within the prostate gland. These cells could 
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sometimes grow such that the prostatic capsule is broken, resulting in extracapsular extension of the 

tumour. Some tumours in the prostate are organ-confined, while some could spread to the surrounding 

tissues, such as lymph nodes, or other distant organs, such as the liver and bones. Several features 

could easily demonstrate the presence of cancerous cells within the prostate tissue. 

 The infiltrative glandular growth pattern of abnormally enlarged cell nuclei with prominent nucleoli 

and the presence of high-grade Prostatic Intraepithelial Neoplasia could also indicate that some 

cancerous tissue may be present within the prostatic gland (Ibid, 2003). The extracapsular extension 

has shown a minimal correlation with disease aggression (Ibid, 2003). Absent basal cell membrane 

alongside increased mitotic figure, intraluminal crystalloids, and amphophilic cytoplasm are some of 

the possible malignant features (Ibid, 2013)

2.3. Pre- Cancers:
2.3.1. High grade Prostatic Intraepithelial Neoplasia (High grade PIN)
PIN refers to the proliferation of glandular epithelium that shows critical structural abnormality with 

the prostatic ducts and acini (Zhou M, 2018). A PIN is not often detectable by DRE, and it does not result 

in an elevated PSA level either. Cells of high-grade PIN often present with prominent nucleoli with 

severe pleomorphism. Some researchers have shown a 25% chance of detecting prostate cancer in 

patients during a repeat biopsy following a previous diagnosis of high-grade PIN at an initial biopsy (Ibid, 

2018). It has been well-established as pre-cancerous growth and is often seen in 5% of prostate biopsies 

and some radical prostatectomy specimens (Ibid, 2018). Greater prevalence is observed among the 

black population as compared to Caucasians. When High-grade PIN is seen in more than one core 

biopsy, it is recommended that a re-biopsy is carried out within six months with increased sampling of 

the affected site and adjacent area. However, if only one core biopsy is found with High-grade PIN, the 

decision for re-biopsy is often based on the potential risk using clinical, radiological, and laboratory 

findings. It is suggested that no treatment is needed for high-grade PIN whose diagnosis has been 

established only by biopsy alone (Zhou M, 2018).

2.3.2. Proliferative Inflammatory Atrophy (PIA)
Proliferative inflammatory atrophy (PIA) is a lesion in the prostate gland of glandular atrophy, chronic 

inflammation, and epithelial hyperplasia (Angelo M et al., 1999). Prostatic atrophy is often seen as a 

decline in the volume of the already existing glands and stroma. Diffused and focal atrophy are the two 

main types of atrophy (De Marzo AM et al., 1999). In contrast, a diffused atrophy involves a uniform 
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decrease in the circulating androgens and the entire prostate. Focal atrophy, on the contrary, is not 

related to circulating androgens. It often occurs as patches of atrophic epithelium within the 

background of surrounding normal-appearing non-atrophic epithelium (Ibid, 1999). Focal atrophies are 

usually seen within the peripheral zone of the prostate gland and increase in frequency with advancing 

age. Some researchers believe that PIA occurs following a process of infection; toxins or some other 

factors could cause the epithelial tissues in the prostate to become small or inflamed.

Furthermore, the cell in the affected area begins to multiply at a faster rate than the normal cells. 

Although PIA is a benign condition, it sometimes tends to undergo malignant transformation. Therefore 

it is sometimes referred to as a pre-cancerous lesion (Celma A et al., 2014). Due to its genetic instability, 

it can sometimes degenerate into either PIN or carcinoma. The imbalance between proliferation and 

apoptosis and subsequent molecular-biological abnormalities relevant to oxidative stress or malignancy 

could be responsible for this assertion. Cancer development entails a recurrent impairment of tissue 

and resurgence amid highly reactive oxygen and nitrogen species. These reactive molecules, such as 

H₂O₂ and nitric oxide (NO), are often released from the inflammatory cells and can interact with DNA 

in the proliferating epithelium to produce permanent genomic changes such as mutations, deletion, 

and rearrangement (De Marzo AM et al., 1999).

 Although some authors believe there is no association between PIA and PIN, inflammation is often 

connected with atrophic epithelia, resulting in increased proliferation and reduced apoptosis compared 

to normal epithelium. PIA is often seen associated with less aggressive and clinically insignificant 

tumours.

2.3.3. Atypical Small Acinar Proliferation (ASAP)
Atypical small acinar proliferation focuses on small acinar structures formed by atypical epithelial cells 

(Montironi R et al., 2006) having some features of cancer but not all (Koca O et al., 2011). About 5% of 

needle biopsies have been demonstrated to present with ASAP, according to the histopathological 

report (Montironi R et al., 2006). ASAP is used to define glands suspicious of adenocarcinoma, which 

lacks enough evidence of features consistent with the diagnosis of carcinoma (Ibid, 2006). Therefore, 

this term consists of benign lesions that look like cancerous glandular proliferations and tiny malignancy 

foci that contain some but not all features consistent with malignancy. Although some researchers have 

argued that the use of the term ASAP is inappropriate because some urologists still believe that ASAP 
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is synonymous with high-grade prostatic intraepithelial neoplasia, whereas these are two distinct 

entities. Secondly, not all ASAP possess small acinar because there are others with large diameter acinar 

(Ibid, 2006). 

Although ASAP is regarded as a high-risk precursor for prostate cancer, the clinical relevance of these 

lesions is somewhat questionable. There is a 40-50% chance of finding overt prostate cancer on repeat 

biopsy. Therefore the current European Association of Urology guidelines recommends prostate re-

biopsy in all patients with ASAP. 

In a consensus meeting in 2004, sponsored by the World Health Organization, the committee members 

recommended that there was a need to specify if the ASAP is either suspicious or highly suspicious of 

cancer by the pathologist at the point of making their diagnosis (Koca O et al., 2011). The cancer 

detection rates at repeat biopsies have been known to vary between 21% and 51%. Targeting the repeat 

biopsy to the area where ASAP was detected in the previous biopsy had been advised (Koca O et al., 

2011).

2.4. Gleason grading system
The Gleason grading system has been utilized extensively to determine the degree of aggressiveness of 

the tumour. A handy tool (to a large extent) in predicting the prognosis of the disease. It has been well 

established that the higher the Gleason score, the higher the propensity for the tumour to grow and 

metastasize. Gleason's score ranges from 1 to 5, which informs us of how much the cancer cells differ 

from the normal cells, as demonstrated in figure 2.2 below. More often than not, two grades are 

assigned per patient. While the first score is given to the most common cell morphologically, the second 

score is usually given to the next dominant cell. It is also possible to have three patterns in which the 

first score is regarded as the primary pattern while the second is taken as the pattern with the highest 

grade. For example, if the primary pattern is two and the second grade is three, there is a tumour 

pattern of 4. Then the Gleason score would be 2+4=6. The combined Gleason score ranges between 2 

and 10, with the higher numbers indicating a high chance of mortality and a poor outcome for the 

patient. A Gleason score of 2 is regarded as a well-differentiated tumour, while those with a score closer 

to 10 are generally regarded as poorly differentiated tumours. Well-differentiated tumours are often 

low-grade tumours. Intermediate-grade tumours are moderately differentiated, while high-grade 

tumours are often referred to as poorly differentiated tumours.
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Fig. 2.2. Gleason grade score and Grade group score (Chen N Zhou Q, 2016). 

2.5. Current Diagnostic pathways
2.5.1. Gold standard Techniques for detection & diagnosis
Prostate biopsy remains the gold standard technique for the detection of prostate cancer. 

A raised PSA level above the diagnostic threshold of 4 ng/mL, abnormal DRE, or any clinical suspicion 

of prostate cancer such as suspicious lesion on Multiparametric MRI (mpMRI) with Prostate Imaging 

Reporting and Data System 2 (PIRADS2) score of 4 or 5 or family history of prostate cancer will trigger 

the need for a biopsy (Descotes, 2019).

Although PSA is an important screening tool for early detection of prostate cancer, it has been shown 

that it is not prostate cancer-specific since any change in the morphology or biochemistry of the gland 

can trigger a rise in the PSA level (Obort A, Ajadi M, 2013). Clinicians widely utilize DRE in assessing the 

prostate gland to rule out the abnormality within the gland. 
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DRE has high interobserver variability and a poor positive predictive value (PPV) for detecting cancer 

(5-30%). Therefore, it cannot be utilized as a stand-alone screening tool to assess the presence or 

absence of prostate carcinoma.

Since the screening assays have not been very precise in the early detection of a tumour within the 

gland, there is a need for precision and objectivity in the clinical workup of the disease condition.

Due to the multifocal nature of this disease condition, imaging techniques have been instrumental in 

carrying out a total assessment of what goes on within the gland. The advent of the PIRADS2 scoring 

system(Schaudinn et al., 2019) alongside multiparametric MRI has ensured that both structural and 

functional assessment of the gland is carried out during imaging sessions. However, the disadvantage 

of MR imaging concerning prostate cancer diagnosis is that sometimes non-clinically significant 

tumours are detected during routine imaging (Siddiqui MM et al., 2015). Patients with indolent tumours 

can survive for the rest of their lives without any disease-specific mortality.

50-76% of all radical retropubic prostatectomy specimens have more than one focus (multifocal).

 About three hundred and eight participants who underwent radical prostatectomy were recruited for 

the study. Two hundred and six participants were recorded to have multifocal prostate cancer, which 

accounted for 66.9%, which means that about two third of the population had lesions found in more 

than one location. On the other hand, one hundred and two participants had tumour focus in one area, 

which accounted for a third of the total population. Furthermore, when the multifocal lesions were 

assessed closely, 63% had lesions in two locations, while 37% had lesions in three or more areas (Djavan 

B et al., 1999).

Since these lesions are often multifocal, the process of a random sampling of tissues during a biopsy for 

histological assessment could mean that many of the lesions are not picked up during the biopsy. 

However, when tissue samples are harvested, the tissue must be adequately interrogated histologically 

to determine the disease's grade and the clinical outcome based on the character of the tissue.

2.5.2. Prostate Specific Antigen
Prostate Specific Antigen (PSA) is a screening tool, like a mammogram (breast cancer), targeted at early 

detection of prostate cancer which could allow for therapeutic interventions with curative intention. 

Although, there is conflicting information about its benefits in prostate cancer diagnosis. Stamley et al. 

(1987) showed that PSA was elevated for newly diagnosed prostate cancer and those with advancing 
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tumour stage. Their group also demonstrated that the PSA level could go undetectable for patients 

undergoing surgery or radiation therapy. 86% of men with BPH have been shown to have a rising PSA 

level which shows unequivocally that elevated PSA is not only related to prostate cancer, but some 

benign conditions could offer a raised PSA level (Stamey TA et al., 1987). Oesterling JE et al. assessed 

about 101 participants booked for cystoscopy, biopsy, and TURP. Sixty-nine participants were for 

cystoscopy, and thirty-two were for TURP and prostate biopsy.

Interestingly, there was no significant difference between those participants for flexible, rigid 

cystoscopy or the control. However, prostate biopsy instantly elevated serum PSA concentration with 

a median increase of 7.9 ng/mL (P<0.0001). TURP also demonstrated an instant elevation in the serum 

PSA concentration with a median change of 5.9 ng/mL (P<0.001) (Oesterling JE et al., 1993). The average 

time necessary for the PSA concentration to return to a stable level post-biopsy was recorded at 15 

days for prostate cancer patients. However, for those without prostate cancer, it took about 17 days 

for the PSA to return to a stable baseline value.

On the other hand, an average of 18 days for patients who underwent TURP was recorded for the PSA 

level to return to the stable baseline level (Ibid, 1993). A critical assessment of these findings 

demonstrated almost unequivocally that there was no variation in the PSA level due to either flexible 

or rigid cystoscopy. However, TURP and prostate biopsy demonstrated an instant elevation in the PSA 

concentration, which often goes back to a stable state after about three weeks. Nevertheless, in some 

cases, the PSA level can be seen to remain elevated even up to 4 weeks post prostate biopsy or TURP. 

Therefore, it is recommended that about six weeks should be allowed after either a prostate biopsy or 

TURP before another PSA level is obtained to ensure the accuracy of the result (Ibid, 1993).

Men below 40 have been advised not to have the test done unless there are prevailing clinical concerns, 

such as a previous family history of prostate cancer because this population was seen as a low-risk 

group. The Prostate Cancer Prevention Trial had shown that men with a PSA value of 4 ng/ml with a 

normal DRE have a 30-35% risk of having cancer (Thompson IM et al., 2004). There is a significant risk 

among the population of men with a PSA level of less than four ng/ml as well (Ibid, 2004). Therefore, 

the American Urological Association (Thompson IM et al., 2004) suggested that a risk calculator should 

be adopted following suspicion from the PSA level to guide the decision to proceed with a biopsy.

2.5.2.1. Post-treatment Monitoring and PSA Timing 
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The process whereby a PSA attains an undetectable level following a radical treatment such as radical 

prostatectomy, radiation therapy, or androgen deprivation therapy is often known as PSA nadir (Fady 

B. Geara et al., 2017). PSA levels are often utilized to monitor the treatment of prostate cancer patients, 

especially those with intermediate or high-risk tumours confined to the prostate gland. Baseline PSA is 

often established before the treatment is commenced. After the treatment, a gradual decline in the 

PSA levels is usually observed, which often signifies an excellent response to the treatment. After 

several weeks depending on the therapy (about 4weeks for surgery), the PSA level reaches its lowest 

point (Skove SL et al., 2017). However, about a third of prostate cancer patients undergo biochemical 

recurrence within ten years after surgical intervention. Time to nadir could differ for different 

therapeutic procedures (Ibid, 2017). A short time to nadir following radiation therapy could mean an 

increased chance of biochemical recurrence and metastasis (Ibid, 2017).

Nevertheless, following surgery, a long time to nadir could signify the presence of distant metastasis. A 

commonly accepted definition of biochemical recurrence is a rise in PSA level following curative 

treatment. For example, a PSA level greater than 0.2 ng/mL after surgical intervention often indicates 

biochemical recurrence (Ibid, 2017). However, PSA may continue to decrease after radiation therapy 

for several years before reaching the PSA nadir. Any rise in PSA by 2.0 ng/mL above nadir is often 

regarded as a biochemical recurrence following radiation therapy (Fady B. Geara et al., 2017). A 

combination of androgen deprivation therapy and external beam radiation therapy has significantly 

improved biochemical recurrence, distant disease spread, and mortality rate (Skove SL et al., 2017).

2.6. Ultrasound
 Ultrasound uses high-frequency sound waves to create images of the body's internal structures. The 

transducer delivers the vibrations with a frequency higher than the upper limit of human audible 

hearing. The ultrasound waves deposit energy as they traverse the tissue. For imaging purposes, the 

deposited energy is insignificant and does not result in tissue damage. However, during therapeutic 

procedures such as High-Intensity Focus Ultrasound (HIFU), a large amount of energy is deposited with 

increased intensity waves, resulting in tissue destruction (Jang HJ et al., 2010). During therapeutic 

procedures, thermal and cavitation methods are the two methods causing tissue damage (Ibid, 2010). 

Absorption of ultrasound energy by the tissue converted into heat causes a thermal effect (Ibid, 2010). 

The temperature in the sonicated tissues rises to a level that causes irreversible tissue damage. Rapid 

temperature increase can be achieved up to 100⁰C within a few seconds with each pulse (Ibid, 2010). 

The cavitation occurs due to the interaction of the ultrasound with the micro-bubbles in the sonicated 
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tissue. The exchange could cause an oscillation of the micro-bubbles collapse and dispersion of energy 

which aids the process of tissue ablation. It is important to note that both approaches result in cell 

damage due to coagulative necrosis, as demonstrated in figure 2.3 below.

Fig. 2.3: Schematic diagram showing the use of HIFU in tumour therapy (Izadifar Z et al 
2020).
HIFU can focus the ultrasound beam and its energy onto a millimeter-size target for treatment purposes 

(Izadifar Z et al., 2020). Careful utilization of this technique is a non-invasive technique for the treatment 

of several solid tumours, including prostate, kidney, bones, breast as well as uterine fibroids (Ibid, 

2020). Recent advancements in physics, imaging, and biology have improved the precision of focusing 

the ultrasound beam on deeply seated targets in the body. The ultrasound beam has been shown to 

focus the beam's intensity at a focal point within a small volume of about 1 mm in diameter and about 

10 mm in length(Zhou Y, 2011), which reduces the potential tissue damage away from the focal area. 
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Thermal tissue damage due to high temperature is linearly related to the length of the exposure but 

exponentially to the increase in the temperature (Haar G et al., 1991).

2.6.1. Ultrasound in Diagnosis of Prostate cancer
The primary limitation of ultrasound is that about 40% of prostate carcinomas have the same echo 

texture as the surrounding structures (Pallwein L et al., 2008). Therefore, it is slightly difficult to 

differentiate this lesion from the surrounding tissues. As a result, cancerous lesions could easily be 

missed. About 66% of prostate tumours are hypoechoic in texture, and only a third of these 

hypoechogenic lesions are cancerous. It is, therefore, challenging to rely on the echo texture of the 

lesion to characterize these lesions, as not all cancerous lesions have the same echotexture. Therefore, 

the positive diagnostic value of ultrasound as a diagnostic tool is as low as 30-40%. Contrast-enhanced 

colour Doppler and elastography (Pallwein L et al., 2008) have improved ultrasound sensitivity and 

specificity in prostate cancer diagnosis. Contrast-enhanced colour Doppler ultrasound aids in assessing 

prostate blood flow to investigate an area of suspected focal neoplastic proliferation (Ibid, 2008), 

highlighting that angiogenesis is often observed within the vicinity of cancerous growth. Comparison 

between systematic and contrast-enhanced targeted biopsies have demonstrated that the targeted 

approach can depict more cancers, especially those with high Gleason scores (clinically significant 

cancers). Therefore, reducing the number of core biopsies taken.

Ultrasound elastography can map the tissue stiffness of the prostate gland. Prostate cancer tissue is 

harder in texture than normal tissues (Correas JM et al., 2013). It helps improve the sensitivity of 

ultrasound as a diagnostic tool for prostate cancer by measuring the tissue elasticity during TRUS. 

Tissues with cancerous cells have been shown to tend to have a higher cell density and therefore are 

stiffer than the normal tissues (Correas JM et al., 2013).

Some sonographic features could indicate the infiltration of cancerous tissues into the prostate capsule. 

These features include blurring the image, tearing off its integrity, and lifting the capsule. These features 

could be an indication of extracapsular extension. Neurovascular bundle invasion could be seen as a  

thickening of the bundle and a poor or not visible flow. At the same time, the seminal vesicle invasion 

could also be seen as an asymmetry, an enlargement of the anteroposterior dimension over 1.5 cm of 

their solid structure. The blurring of the angles between the vesicles and the prostate base and the 

displacement of the seminal vesicles to the front such that the distance from the rectal wall is greater 

than 1 cm (Pallwein L et al., 2008).
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2.7. Computerized Tomography
One of the primary roles of Computed tomography (CT) is the assessment of the involvement of lymph 

nodes in prostate cancer spread and the presence of extracapsular extension. Lymph node metastasis 

has been established as an indication for assessment of biochemical recurrence (BCR) free survival. 

However, this modality lacks sensitivity for early disease detection. Some recent studies have shown a 

sensitivity of about 35% (De Visschere P et al., 2010). CT has minimal use in detecting tumours confined 

within the prostate gland except for high-risk patients with clinically apparent advanced disease. 

Therefore, if the primary goal of the clinician is to identify early disease occurrence, then this may not 

be the most suitable imaging modality. Alternative imaging could be considered (Ibid, 2010). Disease 

spread from the primary site of origin (prostate) to distant organs could come under the remit of this 

modality (Ibid, 2010). 

2.8. Digital Rectal Examination
Digital rectal examination is one screening tool used by clinicians to rule out the presence of 

abnormalities in the prostate gland. Nodularity, significant asymmetry, induration, or loss of anatomical 

landmarks, as determined by the examiner, are some of the positive findings of DRE that could raise 

suspicion of abnormality within the prostate gland. 

Svetec D et al. and colleagues (1998) put forward that before a test can be deemed as fit in clinical 

practice as a screening tool. Apart from the cost-effectiveness of this potential test, it is essential to 

ascertain that the disease condition must be considered a public health concern. Recently, prostate 

cancer has been shown as one of the leading most diagnosed cancers among men, with increasing 

mortality rates. The following essential criteria for acceptance of a test as a screening tool is that the 

test must be able to identify the disease condition at an early stage of the disease, preferably during an 

asymptomatic phase of the disease, when the lesion is still confined to the primary organ of origin 

(Svetec D et al., 1998). Both DRE and PSA can detect this disease condition at an early phase. Therefore, 

judging from the above criteria, DRE has qualified to be utilized as a screening tool. However, there are 

a few issues concerning the suitability of DRE as a screening tool for prostate cancer. The potential 

screening tool must have sufficient sensitivity and specificity and positive and negative predictive 

values. Secondly, the curative ability to cure the disease must be more remarkable for the cohort of 

patients detected by the screening test. Finally, there must be enough evidence showing improved 

outcomes associated with the screening test. No clear indications show if DRE can meet all the criteria 

highlighted for acceptance as a screening tool for prostate cancer.
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Nevertheless, autopsy reports have also shown that about 30% of men aged 20 to 40 have been 

diagnosed with prostate carcinoma (Ibid, 1998). The figures have further demonstrated that the 

percentage of men with prostate neoplasm has increased by more than 50% in men above the age of 

50 years (Svetec D et al., 1998). These were all unsuspected carcinomas during the lifetime of the 

patients under interrogation. Further indicates that sometimes men could have prostate cancer, be 

asymptomatic, and live with the disease for the rest of their lives (Naji L et al., 2018). Also, it explains 

why only a 3.64% lifetime risk of dying from prostate cancer has been estimated (this figure may be 

related to organ-confined tumours) (Ibid, 2018). However, with local spread to the lymph node, there 

is an increasing risk of disease-specific death up to about 70% (Svetec D et al., 1998). A significant 

increase in mortality rate can impact the patient's life quite severely with poor outcomes. About 50% 

of this cohort are expected to die within two years, which means poor outcomes are associated with 

disease spread (Svetec D et al., 1998). Hence it is essential to detect this disease condition quite early, 

especially while the disease is still asymptomatic and organ confined.

The difficulties resulting from either biopsies or therapeutics include incontinence, impotence, and 

urinary dysfunction, and patients could also be subjected to undue anxiety. Radiation therapy has also 

been shown to have complications related to bowel and rectal symptoms, such as acute or chronic 

radiation enteritis, which can cause pain, bloating, nausea, faecal urgency, and diarrhea as rectal 

bleeding (Ibid, 2011). 

Erectile dysfunction, incontinence, and perioperative mortality rates are common complications of 

prostatectomy.

A study conducted in the UK by Downing and colleagues tagged life after prostate cancer diagnosis 

(LAPCD), assessing the patient-reported outcomes of over 3,000 prostate cancer survivors at 18-42 

months following diagnosis. About 81% of patients documented that their overall sexual function was 

poor or very poor in some cases. The prevalence of poor or very poor sexual function among men aged 

60 and above is usually 33% (Downing et al., 2019), which shows a decline in the sexual functions of 

men who have undergone some form of radical therapy. 

Therefore, until the effectiveness of the screening tool to decrease disease-specific mortality is 

established, a screening tool should not be adopted as a nationwide scheme. However, this can be 

adopted based on the risk calculation on an individual basis.
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When Catalona W J (2017) compared the impact of DRE and PSA in early prostate cancer detection in 

a multicentre study of about 6,630 participants, PSA detected clinically significant tumours in about 

82% of the population while DRE showed a detection rate of 55%. Of the 160 participants who 

underwent radical prostatectomy and pathological staging, 114 (71%) were organ-confined cancers. 

PSA detected 85 (75%) while 64 (56% p=0.003) were detected by DRE. Demonstrating that PSA was 

superior at detecting organ-confined tumours when compared to DRE. The cancer detection rate was 

3.2% for DRE and 4.6% for PSA. However, a combination of the two screening tools depicted an increase 

in the detection rate of organ-confined cancer (5.8%). Although findings from DRE do not present a 

strong indication for a biopsy, it could be considered an additional test to PSA to further strengthen the 

premise for prostate biopsy (Catalona WJ et al., 2017). Halpern J A et al. suggested that DRE may be 

used for follow-up and adjunct testing with elevated PSA levels (Halpern JA et al., 2018).

2.9. Magnetic Resonance Imaging
Magnetic Resonance Imaging is a non-invasive imaging modality that utilizes the interactions between 

a strong magnetic field, radio frequency pulses, and body tissues to acquire images of planes within the 

body (Schaudinn et al., 2019). This imaging technique exploits the magnetic field to polarize protons 

within tissues. Pulse energy is often directed into the tissues, which knocks some protons out of 

alignment. When the pulse is turned off, the radio waves can be detected as the proton moves back 

into its aligned position (Ibid, 2019).

A few concerns limited the inclusion of Magnetic Resonance Imaging (MRI) into the prostate cancer 

diagnostic pathway a few years ago. One of such limitations was that MR imaging was often carried out 

following prostate biopsy. Post-biopsy MR images were often seen with haemorrhage and 

inflammation, which causes artefacts on the images, resulting in false positive or negative results or 

even suboptimal images, which could be of little or no diagnostic value. The second limitation of this 

imaging modality concerning prostate cancer diagnosis was that attention was most often focused on 

the peripheral zone of the gland since most prostate cancer is often found in this zone. However, the 

downside is that tumours within the anterior fibromuscular stroma or the central zone could easily be 

missed. Furthermore, TRUS biopsies have been shown to lack the ability to adequately sample lesions 

in the anterior part of the gland due to the greater distance of the biopsy needle from the rectum 

(Delongchamps NB et al., 2013).
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Providing a cost-effective MR imaging approach to increase the detection rates of clinically significant 

tumours while reducing the detection rate of indolent tumours in the prostate gland would be a 

welcome approach that can add value to the clinical diagnosis of prostate cancer.

The initial utilization of MRI as far as prostate cancer diagnosis was concerned was primarily for local 

staging, seminal vesicle invasion, and the detection of extracapsular extension. Nevertheless, the 

advent of Multiparametric MRI (mpMRI) has some promising roles, such as tumour localization, disease 

diagnosis, staging, and risk stratification of clinically significant prostate carcinomas.

Olson et al. (2019) reported a case study of a patient who had a consistent negative prostate biopsy 

with a consistent elevation of PSA 5 different times. However, when a different Urologist was 

contacted, this urologist decided to order a multiparametric MRI. A 3cm mass in the anterior 

fibromuscular stroma and anterior aspect of the transition zone to the right of the midline was depicted. 

A CT-guided biopsy of the mass was obtained, and the sample was sent for histological assessment,  

further demonstrating a Gleason 5+4 adenocarcinoma of the prostate gland involving more than 95% 

of the needle core and 15 mm in aggregate length. This patient was treated with radiotherapy with MRI 

used for treatment planning (Olson DO et al., 2019).

 Multiparametric MR imaging is often made up of structural (T2 Weighted Imaging), functional 

(Dynamic Contrast Enhanced Imaging & Diffusion Weighted Imaging), and spectroscopic imaging 

techniques (Siddiqui MM et al., 2015). T1 Weighted imaging is often utilized in assessing post-biopsy 

haemorrhage. However, in recent times most prostate biopsies have been carried out after MR imaging 

to avoid any biopsy-related artefacts such as haemorrhage. Therefore, T1 Weighted imaging is of 

limited use as far as prostate cancer imaging is concerned except when post-contrast dynamic scans 

are required (Abdi H et al., 2015).

T2 Weighted Imaging (T2 WI) is often utilized to assess the morphology of the prostate gland due to its 

high spatial resolution (Siddiqui MM et al., 2015). The zonal anatomy, seminal vesicle, neurovascular 

bundle, ejaculatory ducts, and urethra are often well delineated with the aid of T2 WI. The peripheral 

zone in the prostate gland is made of glandular tissue and is often seen as an area of high signal intensity 

on a T2 WI due to the higher water content. However, the presence of a malignant lesion is often seen 

as an area of low signal intensity within the peripheral zone (Schaudinn et al., 2019). Other conditions 

can present as an area of low signal intensity within the peripheral zone, including scar tissue, fibrosis, 
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prostatitis, post-irradiation, or post-biopsy haemorrhage. The transition zone comprises two distinct 

histological tissue types: the glandular and stromal tissues. In the normal transition zone, the glandular 

tissues are often seen as an area of hyperintensity, while the stromal tissues are often seen as an area 

of low signal intensity (Abdi H et al., 2015). Hence the signal intensity of the transition zone is often 

heterogeneous due to the presence of the glandular and stromal tissues. Detecting carcinoma in this 

zone could be slightly challenging due to high and low signal intensities (Ibid, 2015). The main features 

(histological) that distinguish the transition carcinoma from the normal tissue are increased cellular 

density, decreased luminal volume, decreased extracellular space, and the presence of new blood 

vessels formed (neo-angiogenesis). A focal, homogenous hypointensity against a background of the 

high signal intensity of the glandular tissue with poorly defined margins is often seen on T2 WI as a 

feature of transition carcinoma (Stabile A et al., 2018). The lenticular shape, the absence of a capsule, 

and the invasion of the anterior fibromuscular stroma can also be attributable to cancer in the transition 

zone (Stabile A et al., 2018).

Restricted diffusion is often a feature of a malignant lesion in the prostate gland on the Diffusion 

Weighted Imaging (DWI) which often presents as an area of high signal intensity on DW images due to 

the increased cellular density and membrane permeability (Ibid, 2018). However, on the apparent 

diffusion coefficient map, in most cases, malignant lesions are presented as areas of low signal intensity 

within the transition zone (Schaudinn et al., 2019). Sometimes the features depicting restricted 

diffusion may only be observed in either DWI or ADC map and not often seen on both, especially for 

tumours with Gleason score 6 and 7 (mainly for 3+4) when the b-value is ≤1000. Nevertheless, when 

the b-value is ≥1600, restricted diffusion is often observed on both the ADC map and DWI (Stabile A et 

al., 2018). Due to the new blood vessels formed due to a tumour in the transition zone, there is early 

and fast contrast enhancement within the area where the lesion is found, and subsequently, contrast 

washout is observed. It is also important to note that quick contrast enhancement and washout are not 

essential characteristics of transition zone cancer. However, they may increase the confidence level for 

a suspicious lesion (Ibid, 2018).

The introduction of the Prostate Imaging – Reporting and Data System (PIRADS) in 2011, published in 

the European Radiology journal in 2012 (Barentsz JO et al., 2012) brought about the ability to 

differentiate between a clinically significant and a clinically insignificant lesion within the prostate gland 

(Ibid, 2012). This structured reporting system comprises T2 WI, DWI, and DCE findings. Any tumour with 

a Gleason Score ≥7 (3+4), tumour volume greater than 0.5 mL, and extracapsular extension are often 
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clinically significant. PIRADS tends to assign scores from 1 to 5 depending on the degree of probability 

of being a cancerous lesion, with one being highly unlikely and five being highly likely. This scoring 

system allows the clinician to determine if a biopsy is necessary or not. In most cases, biopsies are often 

considered for PIRADS 4 and 5 lesions, while no biopsy is often planned for patients with PIRADS 1 and 

2 lesions. Although PIRADS considers anatomical and functional imaging features to determine if the 

lesion is of any clinical significance, it is also important to note that some dominant sequences are more 

sensitive on different prostatic zones.

The PROMIS study demonstrated a sensitivity and negative predictive value of mpMRI of 88% and 76% 

for detecting tumours with a Gleason score ≥3+4 (Faria R et al., 2018). If an initial biopsy proves without 

cancer, multiparametric MRI is often considered for the diagnosis of clinically significant cancer in the 

prostate gland. PROMIS was the most extensive accuracy study utilising mpMRI and TRUS biopsy 

(TRUSB) to diagnose prostate cancer. With the aid of a template mapping as a reference standard, it 

was discovered that mpMRI had better sensitivity for detecting clinically significant prostate cancer 

than TRUSB. However, mpMRI had a lower specificity (Ibid, 2018).

2.9.1. The role of mpMRI in biopsy naïve patients 
TRUS and MRI-targeted biopsy have been shown to provide the highest detection rate of clinically 

significant prostate cancer (Abdi H et al., 2015). The combination of these two biopsy strategies 

compared to the use of the targeted strategy alone did not significantly increase the detection of 

clinically significant (p=0.21) (Ibid, 2015). Higher accuracy in depicting clinically significant prostate 

carcinoma was demonstrated by MRI- targeted biopsy when compared to TRUS biopsy (Ibid, 2015). It 

was also easier to avoid indolent cancers with the MRI-targeted biopsy than TRUS biopsy (Ibid, 2015).

2.9.2. The role of positive mpMRI in previous patient (Active surveillance)
Active surveillance is a process of monitoring men diagnosed with localised prostate cancer to avoid or 

delay unnecessary treatment in men with low volume or risk of prostate carcinoma. Adding MRI-

targeted biopsy to the standard of care made it possible for clinicians to depict more clinically significant 

carcinoma of the prostate gland. Abdi et al. demonstrated that a combination of MRI- targeted biopsy 

and standard mpMRI could increase prostate cancer progression's detection rate during active 

surveillance (Abdi H et al., 2015). Furthermore, Siddiqui et al. demonstrated that using mpMRI could 

reduce repeat biopsies by 68% (Siddiqui MM et al., 2015).
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2.10. Histopathology of prostate cancer
Histopathology, as it relates to prostate cancer, involves the microscopic assessment of prostate tissue 

biopsy and surgical specimens to rule out the presence of prostate cancer. Often carried out after the 

specimen or samples have been processed, and histological sections have been placed on glass slides.

During a prostate biopsy, the standard routine process involves using an 18-gauge needle to obtain 

biopsy cores through the transrectal or transperineal route. Radical prostatectomy specimens can also 

be sent for histopathological interrogation.

2.10.1. Histopathological features consistent with carcinoma
Typical malignancies include extraprostatic spread, perineural invasion, collagen micronodules, and 

glomeruloid intraglandular projections (Baisden BL et al., 1999). Although part of the prostate gland is 

found outside the gland, it is often an indication of malignancy within the prostate gland; nevertheless, 

some cases of ectopic benign prostatic glands are found outside the gland. This prostate tissue has been 

seen in the testis, the root of the penis, subvesical space, seminal vesicle, penile urethra, peri-colonic 

fat, epididymis, submucosal and perirectal fat, urachal and spleen (Humphrey PA, 2003)

Perineural invasion is the main feature of malignancy in the prostate gland, one of the most frequently 

used pathways to spread malignant disease. Therefore, perineural invasion involves a process whereby 

the cancerous cell infiltrates into, around, or through a nerve. By implication, the malignant cell does 

not necessarily need to be in the perineural space but may infiltrate anywhere within the nerve. This 

feature has been found in most cases of prostate cancer (84%-94%) (Byar DP et al., 1972). However, 

only 25% of the needle biopsy cases have been shown to have perineural invasion (Bismar TA et al., 

2002). The fact that there is a prostate gland immediately next to a nerve does not necessarily confirm 

the diagnosis of malignancy since some benign prostatic glands have been shown to abut or wrap 

around nerves (Ali TZ et al., 2005). The presence of epithelial cells around a nerve can help distinguish 

benign from the malignant perineural epithelium.

Lymphovascular space invasion by prostatic epithelial cells can be seen as a specific diagnostic feature 

for malignancy. Nevertheless, it may not even be seen in needle core biopsy. The lymphovascular 

invasion has been found in 5% - 53% of radical prostatectomy cases. This invasion is often correlated 

with higher grade, volume, and stage and is often associated with an increased risk of biochemical 

recurrence and distant metastases (Fajkovic H et al., 2016).  
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Collagenous micronodules are microscopic aggregates of hyalinized stroma, an unusual response to 

invasive prostate adenocarcinoma (McNeal et al., 1991; Baisden et al., 1999). The micronodules are 

mainly collagen and sparsely distributed, with a few elongated fibroblastic nuclei observed. 

Nevertheless, about 13% - 22% have been detected through radical prostatectomy (Kaleem et al., 1998; 

Bostwick et al., 1995). These are often linked with Gleason pattern 3 or 4 adenocarcinomas (Kim et al., 

2015).

Glomeruloid structures are renal glomeruloid-like epithelial aggregates within the acini of the prostate 

adenocarcinoma (Baisden et al., 1999). Although this growth pattern is believed to be consistent with 

cancer, they have limited use because only 3%-15% have been reported for tissue biopsies for 

adenocarcinoma. In contrast, 5% have been reported for prostatectomies with cancers (Pacilli et al., 

1998; Verma et al., 2012). Round tufts or buds into small to medium-sized malignant glands are often 

seen as features of glomeruloid bodies on the microscope. Although the glomeruloid structures are 

often small features of cancer, they represent a high-grade Gleason pattern 4 (Epstein et al., 2016b).

2.11. Staining 
Histopathologists tend to depend (to a greater extent) on contrasting stains for assessing tissue 

samples. Nevertheless, histological stains are often made for microscopic assessment.

Tissue morphology and architectural details could easily be detected from Haematoxylin and Eosin 

stains; however, it is challenging to determine the gene expression profile of cells from H & E Staining. 

However, to determine the gene expression profile, image analysis of immunohistochemical (IHC) is 

often carried out to provide the functional details needed to determine the likelihood of the presence 

of a  disease condition. A typical example is that it can be challenging to ascertain the presence or 

absence of a basal cell layer on H & E  alone. However, IHC could be very useful in assisting the detection 

process. The ability to obtain information and further assess features such as nuclear density and 

intensity that could indicate the possibility of a disease condition can be obtained through stained 

digitized by whole-slide imaging systems at high resolution. A computational model can be built with 

the aid of the features to assess the spatial distribution of disease on each whole-slide image (WSI). 

Immunohistochemical assessment involves the monoclonal or polyclonal antibodies to determine the 

presence or absence of specific antigens in the tissue sample (Carneiro et al., 2018).



42

Immunohistochemistry determines the characteristics of the tumour, disease spread, response to 

treatment, and cellular differentiation. In some other instances, it has also been shown to be relevant 

in materials secreted by specific cells of interest and identification of structures of organisms (Ibid, 

2018).

Inter and intra-observer variability could be minimised in histological analysis through computer-

assisted analysis, enhancing patients' outcomes (Ibid, 2018). High-quality image data is needed to 

ensure the process of digital pathology is effectively delivered.

Prostate tissues are often stained with H&E, although this has been found to give a suboptimal 

distinction between glandular epithelium and stroma as both stains in shades of red/pink by eosin. 

There is, therefore, a need to identify another stain with optimal quality differentiation between the 

glandular epithelium and the stroma so that adequate prostate gland segmentation can be achieved. 

Litjens and colleagues (2016) were able to manually define cancer regions from H&E-stained prostate 

tissue with the aid of a convolutional neural network (CNN). A cancer likelihood map from CNN with 

good agreement with the manual identified cancer region (Litjens G et al., 2016). These researchers 

could show that it was possible to reduce the workload of pathologists while increasing the objectivity 

of diagnosis. All prostate cancer slides were automatically detected with the deep machine learning 

approach. In contrast, 30-40% of the slides with benign and normal were distinguished with any 

additional immunohistochemical markers or human intervention (Ibid, 2016). 

In summary, the lack of precision of the available screening and diagnostic tools in the early detection 

and risk stratification of prostate cancer has allowed for the search for a novel diagnostic tool with 

improved precision. 
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Chapter 3: Novel Optical Diagnostic Techniques
Raman spectroscopy has been shown to possess an innate ability to unravel the biochemical 

composition of biological samples. In this chapter, we will discuss the potential ability of Raman 

spectroscopy as a novel optical diagnostic tool that can be utilised to detect early molecular changes 

within biological samples. We will look at the history of Raman spectroscopy, which will lead us to 

explore its underpinning principles and the different components of Raman spectroscopy equipment. 

Light interactions with biological samples will be examined. Blood serum and plasma were used for 

analysis in our study, followed by the technique and underpinning principles of Drop Coating Deposition 

Raman Spectroscopy. Proteomic profiling and metabolites in cancer diagnostics will be discussed, 

followed by glycolysis and Raman spectroscopy of blood constituents. Then establishing the 

biochemical basis of urological diseases measured by Raman spectroscopy and, finally, the clinical 

utilisation of Raman spectroscopy will be discussed.

3.1. Raman spectroscopy
Raman spectroscopy is an analytical tool for acquiring chemical data through inelastic light scattering. 

This technique has been very amenable in detecting early-onset disease conditions such as precancers. 

It provides the ability to interrogate the biochemical composition and function of cells, tissues, and 

biofluids in a non-destructive and label-free mode. Biochemical changes occur long before structural 

changes are evident in many disease conditions. Therefore, better outcomes are often expected in the 

clinical environment if these disease conditions are detected early. For example, if tumours are 

detected early, either at the precancerous stage or stage 1 or 2, treatment options with curative intent 

can be administered in molecular disease conditions such as cancer.

Nevertheless, when these disease conditions are detected through structural imaging modalities or 

when the patient becomes symptomatic, the disease may have progressed to a stage where palliative 

treatment is the only option available to the patient and the clinician. Therefore, a diagnostic assay with 

an innate ability to detect early cellular differentiation, mitosis, and programmed cell death will be 

helpful in diagnosis, early treatment, and better patient outcomes. Raman spectroscopy has been 

shown to detect these molecular changes early. It could therefore revolutionise the clinical

3.1.1. Raman spectroscopy and Historical perspective
Adolf Gustav Stephan Smekal was an Austrian theoretical physicist interested in solid-state physics. In 

1923, he predicted the inelastic scattering of light, but it was not seen in practice until 1928. C.V Raman 

and K.S. Krishnan were the first to notice the inelastic scattering of light in organic liquids in 1928. 
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However, this effect was seen in inorganic crystals by Grigory Landsberg and Leonid Mandelstam. 

Franco Rasetti discovered the Raman spectra in 1929 in gas. 

In 1930, Sir Raman was awarded the Nobel Prize in Physics for discovering Raman scattering. This 

technique was not extensively used until the 1960s because the necessary equipment, such as lasers, 

detectors, and spectrographs, were unavailable. The advent of various optical technologies and 

instrumentations in the late 1960s brought about an ability to assess the biochemical components of 

different materials and create a database for spectral features of lipids, proteins, and peptides. 

Assessment of molecular components of biological cells and tissues, as well as biofluids, started in the 

1970s with the aid of Raman spectroscopy.

3.1.2. Underpinning Principles of Raman Spectroscopy
When laser light is incident on a biological sample, the photons from the laser light can interact with 

the intramolecular bonds within the sample. Most commonly, the oscillating electric field of the photon 

causes the molecule to vibrate with the same frequency as the photon, leading to a rapid emission of a 

photon with the same energy as the incident one and the molecule to return to the relaxed state it was 

prior to the interaction with the photon. A change to the energy in the molecule occurs due to the 

interaction hence photon is emitted. During this process, the photon donates energy to or receives 

energy from the molecule, producing a change in the molecule's vibrational state. When the photons 

are emitted from the molecule, the energy becomes altered precisely by the amount of energy donated 

to or captured from the molecule, thus changing the colour of the light from that of its illumination, 

often referred to as inelastic scattering or Raman scattering (named after its discoverer CV Raman). 

This change in the photon's energy is referred to as Raman shift and is measured in wavenumbers 

(which are proportional to photon energy). This shift is specific to the molecule and its environment. 

Photons interacting with different biochemical bonds within the tissues or biofluids can result in 

different Raman shifts leading to the formation of a Raman spectrum when combined. The Raman 

spectrum is a direct function of the molecular composition of the tissue or biofluid, providing a 

molecular fingerprint of the phenotypic expression of the biological fluid and tissues, which can give 

good objective information regarding the pathological state of the biological sample under 

interrogation. 



45

3.1.2. Raman microscopy: 
A combination of a light microscope and Raman Spectroscopy provides a great analytical tool to assess 

a biological sample's morphological and molecular features. A single spectrum can be acquired from 

volumes smaller than one µm³ either by point-by-point scanning or a line-by-line scanning technique, 

which has been utilised extensively to assess the biochemical components and variations in the 

biomolecules in cells, tissues, and biofluids. A typical Raman micro-spectrometer includes laser 

transmissive imaging optics, high contrast rejection filter for Rayleigh scattered light, and a high-

resolution spectrometer containing an efficient grating and sensitive charge-coupled device, which can 

be seen in figure 3.1 below.

Fig. 3.1. Schematic presentation of How Raman spectroscopy signal are generated and 
the subsequent spectrum acquisition. Plot reprinted with permission from {J. Phys. 
Chem. C, 2011, 115 (46) pp 22761 - 22769}. Copyright {2011} American Chemical Society)
The most scattered light is elastically scattered, meaning it has the same wavelength as the excitation 

source. The elastically scattered light is often removed from the path of the light beam with a notch 

filter to avoid overwhelming the Raman signals. The Raman scattered light may be dispersed according 

to wavelength and detected by a CCD. A Raman spectrum for tetra(4-aminophenyl) porphyrin (TAPP) 

powder is shown in figure 3.1 above (Plot reprinted with permission from {J. Phys. Chem. C, 2011, 115 

(46) pp 22761 - 22769}. Copyright {2011} American Chemical Society).
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3.2. What is a laser?
A laser is a device that emits light through optical amplification based on stimulated emission or 

electromagnetic radiation.

Theodore Maiman produced the first laser on the 7th of July, 1960, using ruby as a lasing medium that 

was stimulated using high-energy flashes of intense light. It is important to note that the term laser is 

a short form for "light amplification by stimulated emission of radiation." Einstein's quantum theory of 

radiation underpins the stimulated emission.

3.2.1. What are the characteristics of the light that is emitted?
Monochromatic: laser lights are often monochromatic with a single wavelength or narrow band of 

wavelengths. Because laser light is monochromatic, it is possible to ensure accurate targeting of the 

biological sample under investigation while avoiding the surrounding structures.

Coherence: The coherence of laser light is a measure of the precision of the waveform. Therefore, a 

highly coherent laser beam can accurately focus on the material. The emitted photons tend to vibrate 

in phase agreement in space.

Directionality: the direction of travel of the laser beam is often in line with the emission of a very narrow 

beam of light (radiation) which tends to spread slowly. The directionality allows the laser light to be 

focused on minimal focal spot size.

3.2.2. Why is it different to light from other sources…?
Lasers differ from other light sources because they emit light coherently, allowing a laser to be precisely 

focused on a tight focal point. Therefore, this property allows laser light to be utilised in laser cutting 

and lithography. Spatial coherence also allows the laser beam to stay narrow over a long distance which 

can be exploited to produce laser pointers.

3.2.3. Light source

3.3. Interaction of light and biological samples 
Laser light is often utilised for the excitation of biological samples to acquire Raman spectroscopic 

measurement of the biochemical compositions of the sample under investigation. Due to the relatively 

weak Raman signal, it is often necessary to give enough power to the sample to produce Raman 

scattered photons for detection within an acceptable acquisition time for clinical application. 

Therefore, issues such as maximum permissible exposure (controlled by American National Standards 
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Institute or similar organization) and temperature elevation (crucial to avoid tissue damage and 

maintaining patient comfort) should be considered before Raman measurement is carried out. 

Therefore, a compromise between patient comfort and safety, signal-to-noise ratio, and instrument 

consideration must be considered when the choice of laser power is considered. Laser stability must 

also be considered, mainly when the multimode laser is used, since Raman lines are precise and narrow 

for a particular vibrational mode. Accurate position bandwidth and spatial mode must always be 

considered if a consistent result is to be achieved at all times.

It is well established that Raman scattering intensity is inversely proportional to the fourth power of 

the illumination wavelength, which means that excitation at a longer wavelength leads to a decline in 

the Raman signal intensity. Furthermore, it is essential to know that the detection's sensitivity relies on 

the wavelength range. Therefore, a faster detection rate is often observed in wavelengths above 800 

nm, mainly when the quantum efficiency of an uncooled silicon-based CCD (charge couple device) is 

utilized. Indium gallium arsenide (InGaAs) array devices are often utilised for longer wavelength 

illumination. However, there is a negative impact of a higher noise level and cost implication, resulting 

in reduced sensitivity. In Raman spectroscopic imaging, spatial resolution is also an important aspect to 

consider. It is affected by the illumination wavelength since diffraction-limited laser spot diameter is 

often influenced by 1.22 (λ/4), where λ is the wavelength. 

The optical properties (such as scattering and total attenuation coefficient) of the biological sample 

under investigation and intrinsic fluorophores' excitation-emission and yield properties should also be 

considered when deciding on an excitation laser source. The wavelength of the light photon tends to 

affect each of these parameters. The ability to deliver and obtain light photons beyond a particular layer 

of biological samples, which could be tissue or biofluid, is governed by the attenuation coefficient, 

among other factors. Therefore, when a volume of biological sample has a low attenuation coefficient, 

the light beam can easily pass through the sample without much attenuation of the light beam, which 

depends on the wavelength of the light and the sample under investigation.

On the other hand, it is also important to note that the molecules within a biological sample with a 

remarkable ability to absorb light could lead to excess heat deposition, damaging the biological sample 

with a high irradiance laser beam. Furthermore, robust fluorophores could produce a fluorescence 

signal, which could overpower the relatively weak Raman signal or peaks. NIR excitation sources are 

often selected for high-absorbing molecules (such as melanin, water, oxy- and deoxyhaemoglobin) 
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because of the reduction in their attenuation coefficient linked with these high-absorbing molecules. 

This decision is often made to avoid a spectrum in which high fluorescence is very likely to occur. 

Therefore, NIR wavelength often results in a low fluorescence background and makes it easy to identify 

Raman bands in contrast to UV or visible excitation. Highly autofluorescence tissue samples such as 

kidneys would probably need a longer excitation wavelength to acquire any significant Raman signal. 

However, even with different wavelengths, Raman spectra can easily be acquired from tissues with low 

autofluorescence properties, such as breast tissues.

In the past, argon ion lasers were utilised for visible excitation within the Raman systems. In contrast, 

neodymium-doped yttrium aluminium garnet (Nd: YAG) was utilised for Fourier transform- Raman 

applications, and NIR excitations utilised titanium: Sapphire (Ti-Sapph). Near diffraction-limited optical 

performance could be achieved for all the light sources if high output powers are utilised alongside 

longitudinal and single spatial modes of operation and Gaussian beam profiles. Nevertheless, for the 

light sources to be helpful in clinical practice, their cooling must function at an optimum capacity, and 

the size of the laser and its accompanying electronics must be compact enough for clinical utility. These 

requirements may be challenging with some of the existing systems. The continuous improvement in 

the field of diode laser technology has revolutionised the landscape in Raman optical imaging systems. 

The light emission given by electro-optical components known as diodes is often based on the applied 

current and the operating temperature. The size of diodes and the need for great precision in 

controlling electronics are crucial to secure a stable output for Raman excitation. Laser diodes could be 

subjected to thermal-elastic effects within the laser cavity length, and output power fluctuations could 

occur if there are no stable thermal and current controls. Elliptical beam output and unequal beam 

divergence from each dimension of the rectangular facet are often seen with laser diodes making free 

beam coupling somewhat challenging, often resulting in beam shaping of the optics for practical 

application. Some laser diodes are built with a pigtail option which enables the coupling of the fibre to 

the laser diode to reduce the loss caused by the elliptical nature of the beam and astigmatism.

The advent of external cavity diode lasers (ECDL) has brought about a cost-effective and robust light 

source for Raman excitations. The small thermo-elastic effect is often reduced by the inherent extended 

length of the resonant cavity of the laser diode by extending the distance between the diode's 

longitudinal modes. The ECDL has various advantages, which include reduction of mode hops, 

wavelength tunability permission, reduction in temperature-dependent frequency response, and 

reduction of the spectral bandwidth of the output light. Where measurement repeatability and high 



49

spectral resolution are essential such as in clinical practice, ECDL provides laser linewidth of less than 

0.001 nm (at 785 nm) with mode-locking. Tuneable Littman-Metchaf and Littrow configurations are the 

ECDL configurations available for routine use. With powers in the region of 300 mW, there are mode 

stabilizers and diode lasers available for use as single or multimode configurations designed for Raman 

spectroscopy applications. 

3.3.1. Light interaction with tissue samples:
Biological tissue is a dielectric medium with an average refractive index higher than air (Tuchin VV, 

2015). When a light beam comes in contact with the surface of biological tissue, a partial reflection 

occurs at the interface between the air and the tissue since some light access the tissue. Refraction of 

light is a process whereby there is a change in the direction of the ray of light as it moves from one 

medium to another obliquely. The speed of light is different as it moves from one medium to another. 

Refraction obeys Snell's law which states that the ratio of sines of the angles of incidence and refraction 

is equivalent to the ratio of phase velocities in the two media or equivalent to the reciprocal of the ratio 

of the indices of refraction (Tuchin VV, 2015). The relative refractive index of these two media can be 

represented by n1 and n2, where n2 is greater than n1. The refractive index in the tissue's visible / 

Near-infrared range (wavelength) and its composition varies from a value higher than that of water due 

to the influence of some organic components (Ibid, 2015). Biological tissues interacting with light are 

often not homogenous and sometimes multi-layered with rough surfaces and from bulk tissues such as 

prostatectomy specimens. Therefore, the incident light will undergo reflection, transmission, and 

another form of attenuation as it traverses the medium of interaction. As the incident light traverses 

the medium, scattering and absorption occur, as demonstrated in figure 3.2 below. 

Most light scattering occurs in the backward projection, whereby the light particles are forced to 

deviate from the straight trajectory by localized non-uniformities in the medium through which they 

pass (Tuchin VV, 2015). The way and manner by which light transfers its energy from one point to 

another are often dependent on the absorption and scattering abilities of the components of the tissue, 

such as the fibres, cells, and cell organelles. The shape, size, density of the structures, their refractive 

indices, and the polarization state of the incident light governs the character of light propagation on 

tissues (Tuchin VV, 2015).
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A                                                      B.                                               C.

Fig. 3.2: Schematic diagram showing Light beam absorption and scattering by a tissue. 
A. Both absorption and scattering occur here. Common with the NIR light source 
interactions. B. Mostly absorption occur here. Often seen with UV or MIR/FIR 
interactions. C. scattering is the main attenuation process occurring here. Common with 
NIR interactions (Ibid, 2015).

3.3.2. Scattering of Light:
When light photon in the infrared region interacts with the molecules in a medium, it induces a 

momentary transition to a virtual energy level. Therefore, the molecules become excited, but since they 

cannot stay in the virtual energy state for long, it relaxes back to the initial ground state by emitting a 

photon with the same energy as the incident photon. Since there is no change in the frequency or 

energy of the emitted light because there was no transfer of energy to the molecule, this process is 

referred to as Rayleigh scattering. However, suppose the molecule releases a different amount of 

energy than the incident light photon, known as Raman scattering, since there is a transfer of energy 

to or from the molecule.

3.4 – Blood
Blood is a mildly alkaline aqueous fluid with a pH value between 7.35 and 7.45, in which several types 

of free-floating red cells are suspended. Blood helps transport oxygen from the lungs to different body 

parts and helps move waste products to excretory organs for onward excretion. Nutrients are also 

conveyed to relevant body parts through the human blood. The concentration of the different levels of 

nutrients, metabolites, waste products, and oxygen can be measured in the blood. Their results can be 
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utilised for the clinical assessment of patients for different disease conditions. Different biochemical 

changes of blood components can be utilised to characterise disease conditions such as malaria, sickle 

cell anaemia, or diabetes.

3.4.1. Plasma
The plasma is a straw-yellow fluid with a total volume of 2.7 to 3.0 litres (2.8-3.2 quarts) in an average 

human. About 50% of the total blood volume comprises blood plasma (mildly alkaline). Plasma is 

primarily made of water (92%) with 8% dissolved proteins (such as globulins, fibrinogen, and albumins), 

a trace number of clotting factors, and other metabolically relevant compounds such as antibodies, 

electrolytes, and hormones. Metabolic processes in the human body can be detected through the 

molecular assessment of blood plasma and serum. 

3.4.1.1. Extraction of plasma from whole blood
The extraction of blood plasma from whole blood is often done through centrifugation. The quality of 

the separation process is often controlled by the purity of the plasma, separation time, the yield of the 

extracted plasma from the whole blood sample, and the suppression of haemolysis (Mathew J et al., 

2020). Since plasma is lighter in weight than the blood cells, it is often seen as the yellowish fluid in the 

upper part of the blood sample. In contrast, the blood cells are often seen in the bottom part of the 

sample because they are denser than the plasma (Ibid, 2020), as shown in figure 3.3 below. During the 

separation, a sharp interface is often observed between the purified plasma and the cell suspension. 

The interface is often referred to as a shock interface because it represents a sudden discontinuity in 

the cell suspension. After the separation, a radial stack often consists of a cellular pellet at the bottom 

and a purified plasma supernatant (Ibid, 2020). 
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Fig. 3.3: The separation of blood plasma from blood cells 
(https://en.wikipedia.org/wiki/Blood-spinning)
The mass density variation causes the separation of the plasma from the blood cells, often referred to 

as sedimentation. The sedimentation of the suspended particles in the centrifugal field can be 

substantially enhanced because the centrifugal net force induced by the particle of the volume at radial 

position scales with the square of the rotational frequency. Therefore, lighter particles are often seen 

floating on the top, while denser particles are often seen at the bottom. In order to maintain the 

integrity of the plasma collected, it is advisable to freeze it within 24 hours of collection. Ensures that 

the clotting factors and immunoglobulins within the plasma continue functioning to the optimum level. 

The shelf life of the frozen plasma is estimated at one year, after which it should be discarded as it will 

not function appropriately anymore. 

3.4.1.2. Development of plasma
Plasma is often formed from water and salts absorbed from the digestive tract. Nevertheless, plasma 

proteins have a more distinct organ that produces them depending on an individual stage of 

development (Mathew J et al., 2020). The mesenchymal cells are often in charge of producing plasma 

cells during the early conception stage, and albumin is often the first protein to be synthesized. On the 

other hand, the reticuloendothelial cells of the liver are responsible for plasma protein synthesis in 

adults. Bone marrow degenerating blood cells and general body tissue cells, together with the spleen, 

also contributes to the production of plasma proteins (Ibid, 2020).

https://en.wikipedia.org/wiki/Blood-spinning
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3.4.2. Serum
When the clotting factors and fibrinogen are removed from plasma, the liquid left is called serum. 

Therefore, the serum is obtained by collecting plasma without any anticoagulant. The removal of a large 

portion of the fibrinogen content of plasma in the form of fibrin clot results in serum with a lower 

protein concentration.

Over 20,000 different proteins are known components of blood serum that flow through the body's 

different organs. Peptidome, a Low Molecular Weight fraction serum composition of blood, contains 

much information that can be exploited for diagnostic purposes.

3.4.3. Collection, handling and storage of plasma and serum
The collection, handling, and storage of plasma and serum are crucial in the practical analysis of 

biofluids since the reproducibility, sensitivity, and selectivity are often dependent on these parameters. 

Furthermore, overnight fasting, speed and time of centrifugation, and storage conditions such as 

temperature (Issaq H et al., 2007) could also impact the analysis and subsequent plasma and serum 

proteome results.

Silicones are often utilised to coat the internal surface of the collection tubes, and polymers such as 

polyvinylpyrrolidone or polyethylene glycols can be added. A few recent studies have demonstrated 

the presence of polymeric compounds in clinical samples, which could further compromise the integrity 

of the spectral information due to unwanted peaks from the polymeric components. Different studies 

have observed a significant difference between collection tubes, primarily when a red-top tube 

(without preservatives or anticoagulant) is utilised compared with tiger-top tubes (serum separator 

tubes). Fasting and the time the sample was collected from the patients were also demonstrated to 

impact the proteomic profiling (Ibid, 2007) significantly.

Variations in sample-related factors and patient-related factors could significantly impact the data 

acquisition and analysis of data, which inadvertently affect the validity of the result obtained during 

vibrational spectroscopy of biological fluids. Sample-related factors such as the presence or absence of 

anticoagulant (Li-Heparin or EDTA) in the collection tubes of blood plasma has been shown to have 

some confounding peaks, which could interfere with the spectral peaks of the biological sample under 

investigation. Some authors have suggested that when the interfering peaks from the anticoagulants 

are filtered out from the spectra, an accurate representation of the biological samples under study can 
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be seen. In order to prevent this interference, since the serum is essentially plasma without the 

presence of fibrinogen, some authors have suggested that it is probably better to employ serum when 

analysis of biochemical components of blood samples is considered (Baker M et al., 2015). Secondly, 

the freezing process can affect the fibrinogen, making it coagulate irregularly.

Patient-related factors that could inadvertently affect the result of most spectroscopy (Ibid, 2015) 

studies include an improper choice of participants in the study group and control group. Recruitment 

into the study and control groups must be matched appropriately for sex, age, and other conditions, 

such as pathologies other than the disease of interest, so bias can be excluded from the study. Crucial 

because the observed differences in spectra could be attributable to the confounding factors instead 

of what goes on between the two groups under interrogation.

Specific technical features could essentially affect the validity of the analysis of the biological 

composition of the samples under investigation. Close attention should be paid to the interaction of 

the biological samples with light to maintain the result's reproducibility, robustness, and accuracy. 

Esmonde-White K et al. (2014) attempted to assess the impact of the substrate surface and fluid 

concentration on the dried outer ring's visual appearance and chemical heterogeneity. Light microscopy 

and Raman spectroscopy were exploited to interrogate the morphology as well as the chemical 

composition of the droplets.

 Raman spectra were acquired over the surface of the outer ring in order to measure the chemical 

heterogeneity. Information on the chemical characteristics and the outer ring's geometry were 

acquired from the dried droplets in the form of Raman spectra and microscopic images. While the final 

deposition pattern was influenced by the substrate's lack of affinity for water (hydrophobicity), as 

demonstrated by the microscopic images. Subtle variations in the bands consistent with hydrogen 

bonding of aromatic amino acid were seen on the Raman data when fluids were diluted. Spatial 

heterogeneity of protein distribution was observed on the Raman maps in the outer rings, possibly due 

to the starting concentration of the biological fluid.

Nevertheless, the majority of the heterogeneity was seen in the undiluted droplets. Lavergne and 

colleagues demonstrated that the best reproducibility and absorbance intensity that was ideal for 

spectral analysis was observed with 3-fold dilution, and poor signal-to-noise ratio was observed for 

more than 3-fold dilution, which did not include the analysis of molecules at a low concentration in the 
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serum (Lovergne L et al., 2015). Therefore, heterogeneous deposition of the macromolecules should 

be considered when carrying out point-by-point spectroscopic analysis. Averaging of the spectra taken 

at three different points on the outer rings was utilised to combat our study's shortfall inhomogeneity 

of the outer ring spectra. In order to maintain a rigorous protocol for the experimental parameters, an 

automated sampling approach may be necessary to ensure reproducibility and consistency in data 

analysis and results. Translation of vibrational spectroscopy into clinical practice can be achieved if 

inter-instrument transferability can be ensured alongside other requirements, which is crucial as 

clinicians would want to see the same results from spectra obtained from the different optical 

equipment manufacturers (Esmonde-White K et al., 2014).

3.5. Biomarker in biological fluids
A biomarker is often defined as a characteristic objectively measured and evaluated as an indicator of 

normal biological processes, pathological processes, or pharmacological responses to a therapeutic 

intervention (World Health Organization definition). For instance, an antibody could indicate the 

presence of infection in the body, and cholesterol values are indicators and biomarkers for coronary 

and vascular disease conditions. It can be measured in the body through blood or tissue samples. 

Biomarkers are crucial in screening patients at risk and determining early disease stages, the prognosis 

of disease conditions, therapeutic response, and monitoring disease progression. Helpful in clinical 

practice since it helps guide clinical decision-making, especially when other morphological indicators 

are indeterminant. In oncology, it is well established that tumour cells are highly vascularised, and 

markers are shed into the bloodstream. A careful study of the blood samples could indicate the 

presence or absence of biological markers under investigation. There is compelling evidence that there 

is a high possibility of ascertaining the presence of some potential infectious organism within human 

beings via assessment of the individual, even at the asymptomatic phase. As a result, exploring such 

fingerprints in the person's biological fluid before becoming symptomatic is a welcoming development 

since treatment can commence. In most cases, treatment with curative intent can be administered 

safely.

Apart from blood, other biological fluids are relevant in the clinical environment and can be exploited 

for diagnostic purposes as well as monitoring therapeutic outcomes. Urine, sputum, pancreatic juice, 

bile, ascitic, pleural, and cerebrospinal fluids are close to the body's different organs that may be 
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diseased. Therefore, the biomarkers or biosignatures released from those organs or tissues are directly 

shed into the respective fluid. Because they are in close contact with the diseased structures, the 

biomarkers in those fluids are often in large quantities compared to those in blood samples. Other 

biofluids require an invasive procedure before the samples can be obtained. For example, cerebrospinal 

fluid does require lumber puncture before the fluid can be obtained.

3.5.1. Why blood plasma and serum
Blood plasma and serum have been frequently employed for blood testing because they are made up 

of biomarkers convenient for disease diagnostics. The results obtained from these tests could indicate 

what goes on within the cellular and extracellular microenvironment, especially for disease conditions 

such as cancer.

Secondly, blood samples are easily obtainable with very minimal invasiveness. Blood samples are 

obtained from the vessels by trained medical personnel by inserting a needle into the vessel, and the 

blood can be withdrawn by suction through the needle into a collection tube. Because of the availability 

of blood samples, multi-centre studies can be carried out efficiently. 

Thirdly, it is possible to repeat the blood test as often as possible to monitor disease progression and 

response to therapy, especially in oncology, where close patient monitoring is crucial.

3.5.2. Drop Coating Deposition Raman Spectroscopy
Drop Coating Deposition Raman (DCDR) spectroscopy involves the deposition of a drop of a solution of 

interest on a substrate. Followed by solvent evaporation, a coffee ring effect is allowed to form. 

Furthermore, the acquisition of Raman spectra from the analyte deposit occurs. This technique is 

mainly governed by the fact that components in the solution tend to precipitate in different regions on 

the DCDR substrate. It is always a good practice to ensure that the measurement positions represent 

the whole sample droplet. Often, DCDR is mainly performed by pipetting a small quantity of the solution 

around the region of 1-10 µL in volume to produce a protein spot of about 0.5-5 mm diameter on the 

substrate. After deposition of the solution on the substrate, time should be for the solvent to pre-

concentrate to allow for evaporation. About ten minutes per millilitre deposition or one minute per 

nanolitre is ideal for evaporation. Using a smaller quantity of the deposited solution often results in 

faster drying of the deposited solution, thereby enhancing throughput. The ability to reproduce the 
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measurement is crucial in DCDR, and factors such as temperature and humidity tend to affect 

reproducibility.

Since Raman spectroscopy is essentially a scattering process instead of absorption, it can be performed 

on optically transparent or opaque samples and substrates. There is no need for optical tagging or 

another chemical pre-processing. Resonance Raman (RR) and Surface-Enhanced Raman Scattering 

(SERS) could potentially assist in increasing the Raman scattering cross-section of various compounds, 

including biological samples (Zhang D et al., 2003). RR only enhances Raman features firmly attached 

to the chromophores and could potentially omit other important structural information (Ibid, 2003).

Dongmao Zhang and colleagues published the first work on (DCDR) Spectroscopy in 2003. 

Measurement of Raman spectra of analytes acquired from low-concentration solutions could be 

possible through DCDR. It can also effectively separate proteins, lipids, and other vital components of 

biological fluids from fluorescent impurities and buffers (Zhang D et al., 2003). There are different 

contributing factors responsible for this separation. A 'coffee ring' effect occurs after solvent 

evaporation due to convective streaming, which occurs as a result of the evaporation of the liquid from 

the substrate. This effect is possibly responsible for the predisposition of proteins and other 

metabolites to assemble in a ring around the outer edge of the DCDR deposits (Ibid, 2003). 

Thermodynamics is another factor responsible for proteomic analyte segregation since pure solids 

generally possess lower free energy than solid solutions except for very different structures co-

crystallized as the solid solution (Zhang D et al., 2004). Segregation may also be influenced by the 

differential solubility of different solution components (Ibid, 2004). For instance, since proteins are 

insoluble (relatively), they tend to precipitate early in evaporation. However, highly soluble compounds 

such as buffers or other compounds at low initial concentrations tend to remain dissolved in an 

evaporating drop for an extended time. They tend to deposit inside the region encircled by the outer 

ring (coffee ring) (Ibid, 2004).

 Raman spectroscopy of the whole droplet can be time-consuming in a standard laboratory technique. 

DCDR can overcome fluorescence and buffer interferences to produce high-quality Raman spectra of 

solid analytes. Carey et al. utilised a Raman system with enhanced collection efficiency to obtain Raman 

spectra from protein solutions with a concentration in the 10¯⁴M range. Dongmao Zhang et al. (2004) 

demonstrated that it was possible to utilise the DCDR to acquire high-quality typical Raman spectra of 
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proteins acquired from concentrations as low as 1µM with approximately 1fmol of protein probed, 

using a 12 mW, 633 nm, HeNe laser (Zhang D et al., 2004).

3.5.3. Underpinning principles of Droplet evaporation
A contact line is often formed when a liquid droplet is deposited on a flat horizontal surface, the 

interface between liquid and solid, and that of liquid and vapour. The triple phase line is where the 

liquid, solid, and vapour meet, while the contact angle is the angle between the contact line and the 

surface of the solid, which Thomas Young first described in 1805 (Yuan Y., 2013). 

Wettability is another core principle of droplet evaporation; it defines the ability of the fluid to be 

attached to a particular solid surface, which essentially is the measurement of the contact angle (Ibid, 

2013). When the liquid spreads quickly on the surface of the solid, complete wetting is said to have 

occurred, and the contact angle is, therefore, zero. When the contact angle is less than 90⁰, the 

wettability is favourable, and the liquid spreads over a wider area. Therefore, this is described as 

hydrophilic. Hydrophobic surfaces are, therefore, surfaces with a contact angle greater than 90⁰ (Yuan 

Y., 2013). 

3.5.4. Proteomic Profiling
Techniques that measure the compositions in biological samples can provide diagnostic fingerprints 

that could act as therapeutic and diagnostic indicators of a particular disease condition, particularly in 

the field of oncology, where the presence of malignancies has been known to show up as variations in 

the proteomic content of the blood (Issaq H et al., 2007). A large number of proteins depicted in a 

particular patient's blood at a particular time instead of just one particular biomarker could be utilised 

as a sensitive diagnostic tool for assessing the presence of a disease condition (Ibid, 2007). Therefore, 

it can be utilised as a basis to detect specific disease conditions that are asymptomatic before the first 

clinical symptoms become evident. Also, this could be utilised to monitor disease progression and 

determine treatment efficacy.

3.5.5. Metabolites and other chemical species screening
Raman bands in plasma were found to be related to carotenoids. About ten years later (488 nm 

excitation), the assignment was confirmed with a larger cohort of patients diagnosed with a wide range 

of cancers (Ozaki Y et al., 1996). In 1996, Ozaki et al. attempted to address the problem of the 

fluorescence background from plasma by utilising the chromatic aberration of the lens (514.5 nm 

excitation) to collect anti-stokes Raman spectra. The approach produced the same strong carotenoid 
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bands. After adding glucose artificially to both plasma and serum, the researchers exploited the 

intensity of a band at 1135 cm¯¹ to estimate glucose concentrations (Ozaki Y et al.,  1996).

A protein native to blood plasma called C - reactive protein (CRP) is often utilised in a clinical 

environment as a biomarker for bacterial infection and tissue damage. With an inflammatory process, 

an elevated CRP concentration is bound to circulate in the blood. The reference concentration of CRP 

in a healthy adult is <10 mg/L. CRP has been shown to increase with age, possibly due to subclinical 

conditions such as asymptomatic carriers of a microbe. CRP concentration has been known to rise to 

1000 times in the presence of inflammation. The liver synthesizes CRP in response to factors released 

by macrophages and adipocytes. However, there could also be some seasonal variation in the CRP 

concentrations. This concentration is not sensitive to a viral infection, making it easy to rule out the 

need for antibiotics. Interferon alpha prevents the production of CRP from the liver cells, which explains 

the relatively low level of CRP during viral infection compared to bacterial infection. Increased levels of 

blood CRP have been found in patients with avian flu H7N9 compared with H1N1 influenza. Elevated 

levels of CRP were documented in Wuhan, China, in 2020 as one of the clinical features of coronavirus 

(COVID-19) infection. C-reactive proteins have also been linked with the risk of developing certain 

cancerous conditions such as colon carcinoma. Nevertheless, there is no correlation between the 

genetic polymorphisms influencing the circulating level of CRP and carcinogenesis (Ibid, 1996). 

In 2009, Researchers (Bergholt MS et al., 2009) from the University of Southern Denmark proposed that 

there could be a different method of measuring the CRP level from blood samples with the aid of 

vibrational Raman spectroscopy and multivariate analysis. This proof-of-concept study was based on 

the fact that Raman spectroscopy can be utilised to interrogate the vibrational frequencies of 

molecules. It is, therefore, possible to infer that the Raman spectrum of a particular molecule is, in 

principle, unique, and the Raman bands are narrow and highly resolved; therefore, Raman spectra are 

specific as a result. The basic principle governing this technique is a linear relationship between the 

Raman signal of CRP and CRP concentration (Ibid, 2009). 

The authors obtained 1 mg of human plasma CRP in a buffered aqueous solution containing Tris 

aminomethane, sodium chloride, calcium chloride, and sodium azide. With the aid of a 785 nm 

excitation laser, Raman spectra of CRP in the blood plasma from 40 donors (Bergholt MS, 2009) were 

acquired. The blood samples were taken from healthy individuals and those with a bacterial infections. 

In order to avoid thermal effects such as burning, the laser power was maintained at 14 mW. All the 



60

necessary data pre-processing and post-processing techniques were applied. With this proof-of-

concept study, the researchers demonstrated that Raman spectroscopy and multivariate analysis could 

be utilised to predict the concentration of CRP in the presence of patient-to-patient variations. 

Improved laboratory productivity and point of care system could be achieved through this method 

when compared to the current biochemical techniques (Ibid, 2009).

3.5.6. Metabolites in Cancer diagnostics
Metabolic activities are often seen altered in the presence of cancer cells, especially compared to 

normal cells. The alterations ensure that the oncogenic characteristics are maintained (Phan LM et al., 

2014). Metabolic reprogramming is the traditional metabolic pathway whose activities are either 

enhanced or subdued in tumour cells compared to benign due to carcinogenic mutation and other 

factors (Ibid, 2014). On the other hand, oncometabolite often indicates metabolites found in large 

quantities in the presence of cancer cells. Oncometabolites are often referred to when there is a distinct 

mechanism linking a particular mutation in the tumour to the large concentration of the metabolites. 

Also, there should be an indication of the metabolite's association with the carcinogen's tumour (Ibid, 

2014).

Reprogrammed metabolic pathways are often referred to as the Warburg effect or aerobic glycolysis 

because Dr Otto Warburg observed for the first time in the 1920s that there was an altered metabolism 

of cancer cells. 

3.5.7. Glycolysis:
Glycolysis is, therefore, a physiological reaction to lack of oxygen (hypoxia) in normal tissues; however, 

in the 1920s, Dr Otto Warburg discovered that tumour slices and ascitic cancer cells constantly absorb 

glucose and, in return, give out lactate irrespective of the presence or absence of oxygen.

3.6. Raman spectroscopy of blood constituents and cancer diagnostics
In 2013, Murali Krishna et al. obtained serum from 40 patients with tongue cancers and compared it 

with 16 healthy control samples. They observed differences in bands associated with nucleic acids (the 

differences suggested an increased cell-free DNA) and a decrease in the concentration of β-carotene 

for patients in the cancer group (Sahu A et al., 2013). When the study was repeated in 2015 with a 

larger population group (328 donors, 785 nm excitation) and additional dimension of precancer 



61

chemical conditions, the result was consistent with the previous study in 2013 (Sahu AK et al., 2015) 

with the feasibility of precancerous and specific cancer detection. Sensitivity and specificity of 64% and 

80% were recorded to distinguish between normal and abnormal models. These rates are comparable 

to standard oral cancer screening approaches (Ibid, 2015). Another study from the same group was 

carried out in 2015 with the focus on discriminating between serum from patients suffering from 

malignant tumours who had endured a recurrence of their cancer post-surgery and serum from a 

patient suffering from malignant tumours who had not (Sahu A et al., 2015). While the spectra reported 

negligible pre-surgery differences between serum from recurrence and non-recurrence patients, the 

post-surgery spectra revealed quantifiable differences. These changes were possible due to the groups' 

DNA and variable protein content (Sahu AK et, 2015).

Researchers from Guangdong, China, conducted a similar Raman spectroscopy study regarding cancer 

detection with blood plasma. They utilised the drop-coated deposition technique on plasma from 

patients with colorectal cancer (15 patients) and normal healthy controls (21 volunteers). The Raman 

data (785nm excitation) suggested an increased level of cell-free DNA and a decreased level of β-

carotene in the cancer group, similar to the study reported above. Two mechanisms have been 

proposed to be responsible for the increased nucleic acid level in the blood plasma of participants with 

cancer (apoptosis/ necrosis or release of intact cells in the bloodstream and their subsequent lysis). At 

the same time, a reduction in the β-carotene was also observed. This result was consistent with 

previous reports (Li P et al., 2015), which were in keeping with a deficiency of anti-oxidant species as 

an essential risk factor for advancing precancer cancer.

3.7. Establishing the biochemical basis of urological disease measured with Raman 
Spectroscopy.
The biochemical basis of urological pathologies such as prostate and bladder diseases has recently been 

studied with Raman Spectroscopy. The biochemical changes that occur in tumour-related disease 

conditions are believed to be a gradual process that goes from normal to malignant (Stone N et al., 

2007b) disease condition. As a result, detecting precancers within the tissues will involve detecting the 

biochemical changes associated with the disease advancement before they become malignant (Ibid, 

2007). Useful in clinical practice because if disease conditions are depicted at early asymptomatic stages 

but can potentially progress to malignant conditions, therapeutic options can be adopted to ensure 

that the situation is arrested without causing many problems for the patient. The result of the study by 
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Stone et al. depicted that the relative DNA content increased as the tissue advanced from normal to 

malignancy within the bladder and prostate gland tissues.

In contrast, in the bladder, the collagen content decreased. This result was anticipated because the 

nuclear to cytoplasm (actin) ratio increases from normal to malignant tissue. In malignant conditions, 

DNA is often found in a large nucleus concentration (Ibid, 2007). Secondly, the cells increase in number, 

and as a result, the extracellular matrix, which is rich in collagen, is reduced until the tumour becomes 

prominent. Then more collagen is therefore expected (Ibid, 2007).

As a potential model for necrosis, cholesterol was utilized; as the tumour increased in size, necrotic 

areas became more prominent within the tumour because it became too big for its blood supply. This 

study demonstrated an increase in cholesterol as the tumour progressed from benign to malignant 

disease and increased severity (although the bladder showed a relatively lower concentration than the 

prostate). Choline levels were also shown to increase with disease progression in the bladder and 

prostate gland, although still in low concentrations. It is expected for the choline level to increase with 

membrane synthesis for cell proliferation. Choline has been utilised as a marker for breast cancer in the 

past as well (Ibid, 2007).

3.8. Clinical utilisation of Raman spectroscopy
The development of a disease condition results in cells becoming dysfunctional, leading to disease-

specific changes in the expression of molecular components. One abnormal molecular component can 

lead to other components becoming abnormal as well. For instance, when the proteins that maintain 

the stability of the genome fail to function appropriately, DNA aberration occurs, leading to more 

abnormal protein expression and DNA aberration.

 Cancer is a disease of uncorrected DNA mutations which translate into abnormal protein expression 

and eventually change in other molecular components. As a result, the cell's chemistry can be impacted 

significantly. These chemical changes can take the form of new or unique signals associated with these 

changes in the molecular components that arise from the disease. Raman spectroscopy (RS) can be 

utilised to characterise the biochemical properties of cells. Since the cell structure changes as the 

tumour become differentiated, the Raman technique can characterise different stages in the 

progression of a cell, from normal to cancerous.
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RS can differentiate between benign and malignant tumours and pre-malignant steps such as dysplasia, 

which is often difficult for pathologists to distinguish reliably. A wide range of tissues has been shown, 

including the brain (Desroches J et al., 2019). Jermyn and colleagues have developed a Raman system 

with a handheld probe for intraoperative use during brain tumour resection. Spectra were obtained 

from 17 patients with 0.2 seconds acquisition time. Only patients with grade 2 to 4 glioma were 

included. Normal brain tissues were differentiated from dense cancer, and the normal brain was 

invaded by cancer cells. A sensitivity of 93% and specificity of 91% were reported for this study by the 

group (Jermyn M et al., 2015). Their findings were consistent with other studies in this field, with cancer 

tissues showing an increased nucleic acid concentration than normal brain tissues. However, a 

population size of 17 seems relatively small to depict all the variances within the spectra. One would 

have expected a larger population size to depict what goes on within the tissue samples.

Vibration spectroscopy has previously explored skin cancer (Zhang et al., 2018). In 2008, Zhao and 

colleagues utilised a single-fibre Raman probe to assess nine different skin cancers, including basal and 

squamous cell carcinoma. A sensitivity of 91% and specificity of 75% were achieved in differentiating 

between malignant and benign lesions (Zhao J et al., 2008).

Breast cancer has also attracted many researchers' interest in oncology and photonics (Lyng FM et al., 

2019); Saha et al. utilised a multi-fibre Raman probe to assess microcalcifications in the breast of 

patients. A positive predictive value of 97% for detecting microcalcification was recorded (Saha A et al., 

2012).

Widjaja and colleagues assessed 105 colon samples with an in-house built Raman probe. A classification 

model was built to differentiate the samples into different groups. The samples were differentiated into 

different groups with a diagnostic accuracy of 98% (Widjaja E et al., 2008).

 Cervical cancer was assessed by Mahadevan-Jansen et al. in 1998. Kanter and colleagues could utilise 

a handheld portable Raman Spectroscopy probe to differentiate between low and high-grade 

squamous intraepithelial lesions and normal tissue. Accuracy for classification was 88%, with a 

sensitivity of 86% and specificity of 97% (Kanter EM et al., 2009).

Tumours in other locations in the body, such as Larynx (Stone N et al., 2000), lymph nodes (Rau JV et 

al., 2019), and oesophagus (Stone N et al., 2004), were characterised and are currently being 

investigated by researchers. Stone et al. (Ibid, 2004) introduced the concepts of RS for various epithelial 
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cancers and suggested methods of translation of the approaches and interpretation of the data for 

clinical decision-making. The above studies have demonstrated the potential of Raman spectroscopy in 

clinical practice. Nevertheless, it is also important to note that these were all proof-of-concept studies, 

and as such, they are yet to make their way into the clinical environment.

3.9. Raman Spectroscopy in prostate cancer
3.9.1.Tissue diagnosis and prediction of cancer grade:
Crow et al. (2005) demonstrated that it was possible to utilise RS in differentiating between different 

prostatic adenocarcinoma cell lines in the prostate. Raman spectra were measured from two well-

differentiated androgen-sensitive cell lines (LNCaP and Pca2b) and poorly differentiated androgen-

insensitive cell lines (DU145 and PC3). Molecular differences between the cell lines were determined 

with the help of Principal Component Analysis and linear discriminant analysis applied to 200 spectra 

to construct a diagnostic algorithm capable of differentiating between the different cell lines. The 

overall sensitivity of 98% and specificity of 99% were recorded, respectively. 

The result of the findings of the study conducted by these researchers (Ibid, 2005) demonstrated that 

a lower concentration of glycogen was associated with poorly differentiated cell lines (DU145 and PC3) 

when compared to well-differentiated cell lines (LNCaP and Pca2b). Raman spectroscopy has also 

demonstrated that glycogen (Crow P et al., 2003) is a significant marker for benign tissues. It has been 

shown with RS to be increased in cells that can tolerate radiation therapy (i.e., radiosensitive cells).

In 2003, Crow et al. conducted an RS study to identify and grade prostatic adenocarcinoma. Following 

informed consent, one extra biopsy sample was obtained from all the recruited patients undergoing 

routine biopsy procedures as part of their standard routine care. Those biopsies were snap-frozen with 

liquid nitrogen to reproduce in vivo conditions as closely as possible and transferred to a -80⁰C freezer 

for storage. The frozen biopsies were sectioned onto UV-grade calcium fluoride (Crystal). They were 

thawed in preparation for Raman measurement using a Raman system (Renishaw 1000) optimised for 

tissue measurement at an 830 nm laser line. The findings of this study indicated a reduced glycogen 

content and increased nucleic acid content in malignant prostate tissue samples compared to benign 

prostate tissue samples. These findings are consistent with the findings of previous studies of the larynx 

(Stone N et al., 2004), colon (Feld MS et al., 1999), oesophagus (Mahadevan-Jansen A, 1996), and cervix 

(Mahadevan-Jansen A et al., 1998).
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The Raman spectra provide a global tissue fingerprint in biomolecules such as amino acids, proteins, 

lipids, carbohydrates, RNA, and DNA. This information was utilised to distinguish between prostatic and 

extra-prostatic tissue and detect prostatic tissues with different cancer grades. Peaks predominant in 

malignant tissue were made up of DNA/RNA, keeping with the increased proliferation rate associated 

with cancer cells. Classification accuracy for benign and malignant tissues was achieved at 86% with a 

sensitivity of 87%, specificity of 86%, and Area Under the Curve (AUC) = 0.93. Dominant peaks for low 

Gleason Grade Group (GG1) comprised proteins and lipids such as amide 1. On the other hand, the 

dominant peaks for higher cancer grade (GG5) were related to the presence of DNA/RNA, consistent 

with higher nucleic acid content in keeping with higher tumour grade. 

The clinical need for precision in prostate cancer diagnosis and possibly improving surgical resection 

during radical prostatectomy led to a proof-of-concept study conducted to assess the efficacy of Raman 

spectroscopy as an appropriate tool for diagnosis and possible grading of prostate cancer. Aubertin et 

al. recruited about 32 participants who underwent prostate biopsies with more than two cores having 

prostate cancer at a biopsy involving>10% of each positive core. With the aid of a custom handheld 

contact, a Raman spectroscopy probe made up of seven 300 µm core detection fibres surrounding a 

272 µm core excitation fibre by which a wavelength stabilized 785 nm laser light was passed. Supervised 

machine learning neural network methods and leave one out cross-validation were utilised to classify 

the spectra. The distinction between benign and malignant tissue samples was achieved with the aid of 

the whole spectrum (500-1700 cm¯¹) with a sensitivity of 87% and specificity of 86% (Aubertin K et al., 

2018).

3.9.2. Assessment of surgical margin following radical prostatectomy:
Positive surgical margins are often associated with tumour at the inked surface of the surgically excised 

section of the prostate gland. It can result from an incision through the capsule across the tumour that 

is an extracapsular or unplanned incision into the prostatic capsule in the tumour localised within the 

prostate (Shuford M D et al., 2004). 

The most accurate determination of margin status is often based on the histopathologic evaluation of 

the removed prostate specimen instead of examining small remnants of in vivo tissue (Cookson MS, 

2010).
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Ten-year progression-free survival rates of men with organ-confined tumours in the prostate gland 

have been recorded as 85%. Nevertheless, that rate drops to 55% in men with positive surgical margins 

and extracapsular extension. The prognosis worsens with positive surgical margins and extracapsular 

extension. Cookson and colleagues have shown that positive margins range from 4-40% (Ibid, 2010).

RS possesses a high potential for quick intraoperative margin assessment and diagnosis. Since sample 

preparation is unnecessary, tissue damage does not usually occur if appropriate wavelength and laser 

power levels are applied. With the advent of fibre optic Raman probes, surgical robots can potentially 

be coupled to intelligent Raman probes to perform in vivo targeting of surgical margins.

Haka and colleagues examined frozen breast cancer tissue samples both as an in vivo and ex vivo study 

using RS following partial mastectomy (Haka A et al., 2009), which was achieved with the aid of a fibre 

optic Raman probe. Both the ex vivo and in vivo Raman spectra data were in good agreement, and the 

feasibility of RS for intraoperative margin assessment, thereby inferring that the re-excision surgeries 

from positive margins determined by Raman signal can be reduced in partial mastectomy breast.

Crow et al. studied to ascertain if a fibre-optic Raman system could be utilised to differentiate between 

the benign and malignant bladder and prostate tumours through in vitro means. In contrast, the 

bladder algorithm could differentiate benign samples from transitional cell carcinoma samples with an 

overall accuracy of 84%. The prostate algorithm could differentiate between benign and malignant 

diseases with an accuracy of 86%. However, the group failed to identify accurately the biochemical 

constituents that allowed for differentiation among the various pathologic findings (Harder SJ et al., 

2015).

After radical prostatectomy, assessing the resected prostate tissues is common practice to rule out the 

presence of cancer cells within the surgical and anatomical margin. This routine practice is critical 

because if cancer cells are left behind in the tumour margin, it could increase the risk of biochemical 

recurrence. Therefore, a positive surgical margin is an evidence that some cancer cells have been left 

behind at the tissue surface when surgical intervention. During surgery, the surgeon has to decide 

whether to preserve the neurovascular bundle or not. This decision-making process always has a trade-

off, and careful risk analysis and calculation should always be considered. A nerve-sparing approach 

during prostatectomy prevents unfortunate side effects such as impaired sexual functions. Although 

surgery is often planned after the result of the biopsy or other diagnostic examination, the decision on 
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whether to preserve the neurovascular bundles or not is often decided at the time of surgery. About 

20% of radical prostatectomies often have positive surgical margins (Auner GW et al., 2018), which 

ultimately increases the chances of biochemical occurrence of patients with positive margins. 

Therefore, to mitigate against this unfortunate recurrence, frozen section analysis is often carried out, 

whereby microscopic analysis of the tissue specimen is carried out after the surgery. The downside of 

this technique is that histological assessment of the surgical margin possesses a low sensitivity in 

detecting the presence of cancer cells left behind during surgery (Ibid, 2018). Therefore, there is a need 

to develop a more accurate diagnostic technique to evaluate the surgical margins for the presence or 

absence of tumour cells within an acceptable surgical window (time frame). Tactile resonance sensor 

technology has been demonstrated to have the ability to distinguish between stiff and soft tissue in 

medical applications. This capability can be helpful in oncology since this can be exploited to 

differentiate between cancerous and normal epithelial tissues.

Moreover, stroma and prostatic stones (benign conditions) often have higher tissue stiffness, which 

could be challenging to distinguish from prostate cancer tissue. Based on this premise, if precision in 

differentiating between benign and malignant lesions is to be achieved, there is a need for a 

complementary diagnostic tool with a high level of accuracy in diagnosis. Raman spectroscopy and 

tactile resonance sensor coupled together could increase the sensitivity and specificity when assessing 

tumour margins to rule out the presence of positive margins following radical prostatectomy. In 2015, 

Nyberg M et al. developed a dual-modality probe with a tactile resonance sensor (stiffness modality) 

and Raman spectroscopy. A fibre optic probe was inserted into a hollow stiffness sensor and connected 

to a 785 nm laser Raman spectroscope (Kaiser Optical). The operator could switch between the two 

modalities without moving the probe. A total of 36 measurements were acquired ex vivo on four 

prostatectomy tissues. Stiffness, autofluorescence, and Raman peak found at 2881 cm¯¹ were utilised 

as discriminatory parameters. Nevertheless, strong fluorescence leads to lower detectability (77% 

sensitivity and 65% specificity). Moreover, with the combination of stiffness and autofluorescence, a 

sensitivity of 100% and specificity of 91% was achieved, which is quite impressive (Nyberg M et al., 

2015).

3.9.3. Detection of metastasis:
Lymph node metastasis predicts local disease recurrence and lower survival rates for breast cancer 

patients. Examining the sentinel nodes is an excellent method to detect if the tumour has spread 
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beyond the breast to the lymphatic system (lymphatic spread) (Day JC et al., 2013). RS has been utilised 

to interrogate axillary lymph nodes intraoperatively during breast cancer surgery, demonstrating a 

sensitivity of 91% and specificity of 93% for distinguishing between positive and negative nodes in newly 

diagnosed breast cancer patients. Mean spectra assessment from the positive and negative groups 

suggested that positive nodes have increased DNA and tyrosine contributions and reduced levels of 

collagen contributions when compared to the negative nodes (Shipp DW et al., 2018). Similar 

technology can be applied to detect the involvement of pelvic lymph nodes in prostate cancer.

3.9.4. Assessment of castration resistant prostate cancer:
Wang L et al. (2013) evaluated the feasibility of using RS as a diagnostic and prognostic tool in assessing 

castration-resistant prostate cancer. Raman spectra were detected from prostate cancer cell lines 

(LNCaP and C4–2) using a LabRAM HR 800 Raman Spectrometer. The prediction was achieved with the 

aid of Principal Component Analysis (PCA) and Support Vector Machine (SVM). A leave-one-out cross-

validation was used to train and test the SVM. Castration-Resistant Prostate Cancer tissues were 

diagnosed effectively with a sensitivity of 88.2% and specificity of 87.9%. Androgen Dependent Prostate 

Cancers were also diagnosed and differentiated from Castration-Resistant Prostate Cancer with a 

sensitivity of 85.7% and Specificity of 88.9% (Wang J et al., 2013). Tissue classification in the above 

studies was based on overall patient diagnosis and not on local histological analysis matched with the 

Raman optical measurements.

Most cancer-related deaths in men with prostate cancer occur due to metastatic prostate cancer 

(Corsetti S et al., 2017), resistant to hormonal therapy (Androgen Deprivation therapy). With a high 

chemical specificity of RS, subtle molecular variations at the cellular level can be detected and 

quantified for diagnostic purposes. Corsetti et al. (2017) demonstrated in their study the presence of a 

higher concentration of phenylalanine, tyrosine, DNA, and amide 111 in androgen-resistant prostate 

cancer cells in contrast to normal cell (PNT2) with a higher concentration of L-arginine. They had a B 

configuration of DNA (Ibid, 2017).

3.9.5. Monitoring treatment effectiveness:
The work of T. R. Ashworth in discovering tumour cells in the blood of patients with metastatic cancer 

over a century ago has made it easier to understand and target the cause of metastasis in many 

malignant conditions (Ashworth TR, 1869). Circulating tumour cells (CTC) are shed by primary tumours 

and are found in the peripheral blood of patients with metastatic cancers (Yu L et al., 2013). Since CTCs 

are found in the peripheral blood, they can be carried to distant structures to form secondary deposits 
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(tumours), affecting the disease's severity and prognosis. CTCs have been detected in PC patients 

(Danila DC et al., 2007) as well as melanoma (O'Brien CM et al., 2011), breast cancer (Meng Set al, 

2004), lung cancer (Hou JM et al., 2011), colon cancer (Marrinucci D et al., 2010) and pancreatic cancer 

(Rizzo FM et al., 2019) patients. However, Allard and colleagues have demonstrated that CTC has never 

been detected in benign tumours or healthy individuals (Allard WJ et al., 2004). It has been 

demonstrated that CTC counts have consistently decreased with a decrease in the tumour sizes of 

patients undergoing treatments (Ross JS, 2009), which can be a handy tool in monitoring treatment 

effectiveness and establishing drug-resistance and drug-sensitive biomarkers. The progression of an 

early primary tumour to metastasis has always been an area of keen interest within the clinical 

environment. Understanding the functional and molecular analyses of CTCs is crucial in managing 

metastatic cancers. Since CTC counts are closely related to patient prognosis, it is crucial to adopt a 

sensitive detection approach to precisely detect and count the isolated CTCs. It is also essential to keep 

the in vivo environment as close as possible to their native environment to accurately characterise the 

cells to understand their biology.

The genomic profiling of CTCs from castration-resistant metastatic prostate cancer can be analysed 

using array comparative genomic hybridization (aCGH) (Magbanua MJ et al., 2012). However, relatively 

low cell numbers often hinder molecular profiling and quantitative analyses of CTC. The multistep 

separation process also tends to compromise the viability of the CTCs in revealing their molecular and 

functional nature.

The lack of a reliable universal marker to characterise CTCs arising from different malignant tumours 

associated with the low purity and low throughput of these strategies has prevented the use of CTCs to 

guide therapeutic decisions by clinicians.

Using lab-on-a-chip (LOC) to isolate viable CTCs with high efficiency, purity, and throughput for post-

processing can bring about a fresh approach to assessing tumour cell biology, signaling, and drug 

sensitivity (Wang X et al., 2011).

There is currently evolving development in the use of Nanoparticles (NPS) such as quantum dots (QD), 

metal NPs and liposomes in the practical analysis of rare cells due to their distinct size-dependent 

optical, electronic, and magnetic properties.
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Combining nanotechnologies and miniaturised biomedical systems with cell biology has a powerful 

influence on biomedical research. The physical dimensions of cells and their native cellular 

microenvironment are in the order of micrometres, which correspond well with the scales of the 

microchannels. 

Surface-enhanced Raman spectroscopy (SERS), which enhances the signal of molecules near the surface 

of nanoscale features in noble metals, has been used to measure gold nanoparticle-targeted CTCs in 

the presence of white blood cells without subsequent separation procedures (Magbanua MJ et al., 

2012). Although the CTCs had more intense Raman signals than the blood cells, probably due to their 

larger sizes. 

In summary, we have shown that Raman spectroscopy can probe the biochemical composition and 

function of biological samples, which can be utilised to assess the presence of early-onset diseases such 

as precancers. C.V Raman and K.S Krishnan were the first to observe the inelastic scattering in an 

organic liquid. The interaction of light with the intramolecular bond within the biological samples has 

been shown to carry with it biochemical information that is unique to the molecules as well as its 

environment, therefore providing a Raman spectrum which is a direct function of the molecular 

composition of the biological sample.
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Chapter 4 – Methodology
 In this chapter, we will first look at the basic Raman instrumentation for measuring biological samples, 

followed by alignment and calibration of equipment, sampling stage, preparation, and presentation. 

We will explore the experimental setup, data analysis, multivariate and histological analysis, and Raman 

spectroscopy data analysis techniques.

4.1– Basic Raman Instrumentation for measuring biological samples
It is well established that Raman spectra of tissues and biofluids can easily be measured using a 

microscope or fibre. The laser is often coupled into the microscope using a single-mode fibre and 

irradiated onto the specimen with a microscope objective. Raman spectroscopic-based confocal 

imaging can be achieved by collecting the backscattered light using a fibre. The single fibre acts as a 

pinhole and couples the light into a high-throughput spectrometer that disperses it onto a charge-

coupled device (CCD) camera. Hyperspectral Raman imaging is a rapidly advancing technology in the 

vibrational spectroscopy field, which involves the acquisition of Raman spectra at distinct points over 

the surface or cross-section of the biological sample under investigation, and analysis is carried out to 

acquire a spectral-based image. Often fast raster scanning is usually carried out with the aid of a 

motorized or piezoelectric stage. Although Raman signals received from biological samples are often 

weak, the advent of new developments in the detectors and instrumentation has significantly improved 

the speed at which Raman spectral acquisition, decreasing the image acquisition time from hours to 

minutes while providing high-quality images. There are different variations of Raman microscopy 

system available in practice, and these include Raman microscopy systems (Puppels GJ et al., 1990), 

light sheet-excited direct Raman microscopy (Oshima Y et al., 2012), and line scan Raman microscopy 

(de Grauw CJ et al., 1997). 

Selecting the correct laser excitation wavelength is crucial in measuring the Raman spectroscopy of 

biological samples. The Raman signal is known to scale with the fourth power of the excitation 

frequency. Often, a compromise between decreasing the background autofluorescence and amplifying 

the Raman signal intensities (both increase as the wavelength decreases) is always considered when 

deciding on the choice of wavelength to use for the measurement of Raman data. 

Optimizing this balance is highly dependent on the sample type and application. Adequate Raman signal 

and acceptable low autofluorescence under near-infrared (NIR) 785-1048 nm laser excitation are often 

observed for measuring biological tissues. However, some tissues can have high autofluorescence, 
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although NIR excitation has been employed. These tissues include kidneys, spleen, liver, heart, and lung  

(Huang N et al., 2011). However, for samples with low degrees of autofluorescence, such as bone, 

cartilage, and cell monolayers, it is advisable to utilise shorter excitation wavelengths, such as 532 or 

633 nm, which increases the speeds of the acquisition time as a result of the generation of stronger 

signals (Ibid, 2011).

Different Raman microscopy systems provide slightly different resolutions, although in most cases, it is 

diffraction-limited and, therefore, greatly relies on the excitation wavelength and the objective choice. 

For a state-of-the-art confocal Raman system with visible excitation, the lateral resolution can reach as 

low as 300 nm and the depth resolution can reach less than 500 nm for sufficiently small pinhole 

settings (Ibid, 2011).

4.2. Alignment and calibration
When the spectrograph and laser focal point are brought into a perfect sequence, it is called alignment. 

An offset at the sample end may impact the intensity of the Raman scattered light received, which may 

result in the microscope performing at a suboptimal level. Over the years, it has been observed that 

the Raman microscope does suffer some alignment issues, such as drifts resulting from temperature 

fluctuations in the laboratory, normal wear and tear of the components of the instrument, and external 

interferences. This misalignment must be adjusted periodically by the manufacturer to ensure that the 

equipment is functioning at an optimal level with adequate Raman signal acquisition and spatial 

resolution.

Equipment calibration was carried out before any measurement was performed to ensure that the 

accuracy of Raman measurement was maintained at all times. A neon lamp, photodiode, a small piece 

of polystyrene, and a broadband white light source were used to calibrate and align the micro-

spectrometer. Aligned the optical path from the spectrometer and laser beam was done with 

photodiodes and polystyrene. Calibration of the excitation laser frequency and multi-point x-axis 

calibration for satisfactory correction for distortion and allow for spectrograph-to-spectrograph data 

transfer were also executed using polystyrene.

4.3. Sampling stage 
A Raman map was acquired using an array of Raman spectra at predetermined positions in the 

biological sample. Traditionally, the instrument stages were driven by motorized steppers, while 
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modern systems are based on the raster scanning principle, providing a faster imaging system. While 

the traditional instrument utilizes the point-by-point scanning approach whereby one spot of the 

sample is imaged simultaneously, the contemporary approach allows for continuous scanning without 

stopping, sometimes referred to as a line-by-line scanning approach. For this study, point-by-point 

scanning was carried out, and a magnetic linear motor stage was used to move the stage from one 

point to another.

The charge-coupled device measured signals generated from the vibrations of molecules from the 

chemical bonds irradiated by Raman spectroscopy. Variation in the concentration of the molecular 

composition, the nature of the molecules' functional groups, and its conformation was determined by 

the signal intensities of the scattered light. Therefore, the vibrational spectroscopic bands were 

governed by the nature of the molecular functional groups and their conformation. The vibrations of 

specific biological molecules such as phospholipids, proteins, and carbohydrates provide considerable 

detail regarding the molecules' morphology and concentrations within the biological samples. As a 

result, after the interaction of light with the biological samples, the emitted photons carry vital 

information regarding the molecular structure and composition of the sample under investigation. The 

Boltzmann distribution of the vibrational state has most molecules in the ground vibrational state, often 

seen at ambient conditions. Therefore, the incident photons have higher energy than the scattered 

Raman photons from the ground state. Anti-stokes Raman scattering occurs from the vibrationally 

excited state that is thermally populated and results in the scattered photon that goes back to the 

ground vibrational state. At ambient conditions, anti-stokes Raman scattering is often weaker than 

Stokes Raman scattering. Therefore, stokes scattering is often utilised in mapping experiments.

4.4. Sample preparation and presentation
Certain factors must be considered when considering biological samples for vibrational spectroscopy 

measurements. These considerations include how the samples would be prepared and processed and the 

vibrational spectroscopy technique suitable for the application. These must be thought of before any acquisitions 

can be carried out. It is critical in the sense that, as much as Raman spectroscopy can be compatible with water 

and its vicinity, on the other hand, Fourier transform infrared spectroscopy may not function effectively in an 

aqueous environment. Therefore, with Raman spectroscopy, acquisitions can be obtained from biological tissue 

samples placed in saline solution without any adverse effect on the Raman signal expected (Bergholt MS et al., 

2016). As a result, with Raman spectroscopy acquisition, there is no need for sample fixation, embedding in 
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paraffin wax, or dehydration. However, it is essential to analyse biological samples with flat surfaces to ensure 

that the same focus is adopted for the investigated area. 

4.5. Experimental set up
Ethical approval was obtained to take an extra core during the prostate biopsy of participants as part 

of the standard care of the patients. Additional blood samples were also collected from each participant 

following informed consent. The biopsy samples were immediately snap-frozen in liquid nitrogen, 

mounted on cellulose acetate paper, and transferred to a -70⁰ C freezer for storage at Darent Valley 

Hospital (recruiting NHS Trust) until couriered on dry ice to Exeter for measurement. The frozen biopsy 

sections were mounted on a calcium fluoride slide and thawed before Raman measurement. With the 

aid of an optimised Raman India system (Renishaw) (Figure 4.1 below) exploiting a diode laser light 

producing a 300-mW power of near-infrared light at 830 nm wavelength. 

Fig. 4.1: InVia Raman Microscope
https://www.renishaw.com/en/invia-confocal-raman-microscope--6260.
The laser was precisely targeted at the tissue sample through an ultralong working distance times 50 

microscope objective. A white light camera was mounted on the microscope which permitted the 

visualisation of dark field within the area of interest. The laser spot were moved to random locations 

within the tissues samples to allow up to 5 spectra (4 spectra were acquired from some samples) to be 

recorded from each sample as shown in the figure 4.2 below.

https://www.renishaw.com/en/invia-confocal-raman-microscope--6260
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Fig. 4.2: Prostate biopsy tissues measured by Raman at 5 distinct position.
Each Raman spectrum was recorded on the spectrometer using an acquisition time of 20 seconds. 

Calibration of the system was always done every time the unit was switched on with the aid of the 

Renishaw silicon calibration source to correct any wavenumber shift.

After Raman measurements, the biopsy samples were transferred to a -80⁰C  freezer for storage until 

it was time for histological assessment.

The biopsy samples were couriered to Maidstone and Tunbridge Wells NHS Trust for histological 

analysis. The sections were stained with H&E, and a Consultant Uro-Pathologist performed a 

histopathological assessment. Spectral data were loaded onto the Matlab platform (MathWorks Inc, 

Natick, Massachusetts) in conjunction with the PLS Toolbox (eigenvector, Manson, Washington). The 

Raman spectra were then linked to the histopathology of each participant. The model was tested using 

a leave-one-out cross-validation. 

Following informed consent, blood samples were collected from 100 participants and spun down using 

a centrifuge. The blood serum and plasma samples were separated and stored in a -70⁰ C freezer. These 

samples were maintained at -70⁰ C until they were couriered on dry ice to Exeter for Raman 

spectroscopy measurement. The plasma and serum were defrosted at different times, and 1.5 

microlitres were pipetted onto a clean stainless-steel slide. A coffee ring drying pattern with a diameter 

of approximately 1.7 mm and a width of approximately 100 µm was allowed to pre-concentrate the 

solution in ambient conditions in the 22⁰ C lab. The coffee ring pattern (Figure 4.3 below) emerged from 
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a capillary flow in which the attachment of the contact line of the drying drop ensured that solvent 

evaporating from the drop edge was replenished by liquid from the internal part of the drop. The 

outward flow of the solvent carried the solute material toward the edge of the drop.

Fig. 4.3: Dried blood serum with measurement taken from the circular ring on the 
periphery of the dried sample.
After 20 minutes following the deposition of the blood sample on the substrate, Raman spectra were 

measured at known positions on the sample using a micro-spectrometer by placing a circular ring of 

Raman map on the periphery of the dried sample to obtain Raman spectra. PSA and prostate pathology 

status were used to calibrate the machine learning model to evaluate if the drop-coated deposition 

Raman spectroscopy of blood plasma and serum can predict prostate cancer and cancer stage and 

grade.

With the aid of the 5X objective (Olympus, Ultra Long Working Distance (ULWD)), a white light montage 

image of all the drops on the stainless steel was obtained. 50X objective (Olympus, ULWD), Numerical 

Aperture 0.75 to allow for adequate focus of the laser onto the sample on the stainless steel from the 

montaged white light image using an 830nm diode laser line with an edge filter to get rid of the 

unwanted elastically scattered light with a 600 grating with an exposure time of 5 seconds at one 

accumulation. Approximately 8 minutes were taken to measure a Raman map of one droplet. The 

backscattered radiation was collected, and spectra were acquired in static mode with the wavelength 
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centred at 1400 cm¯¹ to ensure that the fingerprint region (400-1800 cm¯¹) was included in our 

acquisition.

4.6. Data Analysis Techniques
Spectroscopy is a method of analysing the properties of matter as a result of its electromagnetic 

interactions. There are two main goals of spectral analysis: classification and quantification. With 

classification, we are routinely interested in distinguishing between different types of tissue, cells, or 

biofluids. In this study, spectral analysis was utilised in differentiating between normal/benign and 

malignant tissues and biofluids. With quantification, we were interested in measuring the 

concentration of different molecular components within the prostate tissue, blood plasma, and serum.

Different steps are necessary for a precise spectral analysis of the acquired data. These steps included 

the following: system calibration, pre-processing of data, empirical peak height, area measurements, 

and multivariate approaches for classification. Diagnostic algorithms were built to detect subtle 

changes in spectral features, thereby leading to spectral separation into significant groups. The 

algorithms were based on empirically identifying diagnostic features such as peak intensity and the 

number and location of peaks. In order to assist in extracting relevant chemical (clinical) information, 

online data analysis was performed. 

The main aim of the spectral analysis was to classify the spectra into predetermined pathological 

groups, which allowed for the classification of spectra with pathology analysis. It was helpful because 

sometimes it can be challenging to find specific bands that can be utilised to discriminate between the 

different pathology groups. Secondly, it was also imperative to assess the concentration of the 

molecular components within the biological samples responsible for the discrimination into the 

different subcategories.

The classification of data into the different groups was conducted, and group membership was 

predicted by comparison of the spectrum with some reference spectra. Some spectral distance 

measurements were utilised, and spectra were grouped into those that were very similar. Cluster 

analysis was carried out to separate the data into different classes. Since there was a high level of 

collinearity in Raman spectra, Principal Component Analysis (PCA) was utilised. A reference or training 

set of spectra was utilised to build a multivariate statistical model onto which the measured spectrum 

was projected, providing a diagnosis for the new spectrum.
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Principal component analysis  (PCA) was used to analyse the data to reduce the dimensions in the 

dataset while preserving the information contained in the dataset as much as possible. In order to 

preserve the variability of the data, new variables were created with linear functions with the original 

dataset that successively maximized variance and was uncorrelated with each other. The new variables 

created were known as principal components. Basically, instead of interrogating the entire data set, the 

first few components containing the majority of the data's variations were examined in greater detail.

With the aid of PCA, the data matrix was broken down into rows (object) and columns (variable) into a 

structured part (S) and a noise part (E). The objects (m) were the distinct observations (spectra), and 

the variables (n) were the measurements (wavenumbers) for each object. The variables jointly 

characterise each of the objects. The n-dimensional coordinate system was made up of orthogonal axes 

with a common origin for the variables called variable space. PCA's main aim was to convert a 

coordinate system from n variable space into a Principal Component coordinate space and 

subsequently eliminate the noise at the same time (Ibid, 2015). The principal components were 

obtained by calculating the eigenvectors and eigenvalues of the covariance matrix obtained from the 

data matrix. The first PC (PC1) was the eigenvector with the direction of the most significant variance 

in the data (highest eigenvalue). PC1 was the direction (axis) that maximizes the longitudinal variance 

or the axis that minimizes the squared projection distances. The maximum variance in the data was 

shown by PC1, while PC2 (second principal component) demonstrated the most significant residual 

variance along a direction orthogonal to PC1. The principal components were independent and 

unrelated, resulting in a dimension reduction. PCA was performed using customised MATLAB protocols 

to describe the resulting spectra as a sum of a small orthogonal set (25) of the linear combinations of 

the original variables. Analysis of variance was utilised to select the most significant principal 

components.

A supervised input was utilised to cover the range of all normal and pathological spectral variances 

encountered during normal operation as a pathological or in vivo analysis.

The supervised training methods incorporating information about the sample's origin were applied. The 

algorithms began from a knowledge base; therefore, they helped address the prediction of new 

pathway members. Furthermore, because models were built from known biology, they could ignore 

dataset-specific noise. Prior knowledge from gold standard techniques, such as histopathology in the 
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case of this study, was used because they assisted us in understanding the essence of the clinical 

questions that required answering. 

Linear discriminant analysis (LDA) has been widely used to extract features from the spectroscopic data 

set (Fisher R A, 1936). Feature extraction is a crucial step in accurately classifying data into different 

groups. The primary purpose of LDA here was to identify the "discriminant axes" used to classify the 

data into two or more classes effectively (Gautam R et al., 2015). PCA and LDA are closely linked because 

both techniques can uncover the hidden features within the sample or specimen under investigation 

(Ibid, 2015). LDA is a supervised analytical tool that distinguishes it from PCA, an unsupervised machine 

learning method. While PCA was used to determine projections to maximize variance, LDA, on the other 

hand, was utilised to determine the projections that maximize the ratio of between-class to within-

class. In other words, it aimed to enhance the separation between groups while minimising the 

separation within groups. Therefore, LDA was used in this study to assist in classifying spectra into well-

defined groups or categories acting as a predictive model for unknown samples.

Data were projected into the new dimensional space with the axes found with LDA. Each observation 

had fewer variables in the new dimensional space (dimensional reduction). At the same time, 

observations belonging to the same class formed clusters, and each cluster was differentiated.

The combination of PCA and LDA was a good approach to data analysis since it enhanced classification 

efficiency and aided in detecting spectral features. PC-LDA model also ensured an easy visualization of 

the clusters in three-dimensional space using LD scores. 

This study used two vital phases of the supervised methods, including the training and prediction 

phases.

The training phase was a passive phase whereby a training data set was used to find patterns in the 

data. These model parameters were exploited to learn where vital chemical information was stored for 

further validation.

The prediction phase was utilised as a testing phase, an active phase whereby data not part of the 

training set were verified with the model parameters learned in the first phase.

 Support vector machine learning algorithm was also utilised as a supervised method to analyze data 

for classification. It was a great prediction model based on a statistical learning framework. This model 
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was used to build an algorithm to assign new examples to different classes with the aid of a hyperplane. 

In this study, the largest separation or margin between the two classes was the hyperplane.

4.7.2. Normalization:
Normalization is the process whereby the inconsistency in the intensity levels is addressed by ensuring 

that the intensity of a given Raman band of the same material is as close as possible across the spectra 

recorded under the same experimental parameters. Data were normalized to the area under the curve. 

These variations could be due to poor alignment of the instrument as well as changes in the laser power 

levels. 

4.7.3. Smoothing:
Smoothing is a technique utilized to eliminate the high-frequency components of the Raman signal (Liu 

Y et al., 2020). Since the Raman signal is weak, it is easily affected by noise. Although there are different 

noise sources, the camera and signal (shot noise) are the primary sources of noise as far as the Raman 

signal is concerned (Ibid, 2020). Therefore, reducing the noise before the data were processed allowed 

for decent clean data void of obliteration of the chemical information (Ibid, 2020). In order to eliminate 

the influence of noise, smoothing algorithms are often used (Ibid, 2020). Savitzky-Golay (SG) filter (Ibid, 

2020) was utilised for this study, which was applied by fitting each segment of the original Raman 

spectrum in a separate window to a polynomial function (Gautam R, 2015).

4.7.4. Removal of Outliers
Outliers in data could result in a significant variance introduction with the model, resulting in a 

distortion of the data. 

Some spectra from the same sample can appear different from the rest due to the presence of outliers 

from equipment artefacts or variations within the sample. Outliers must be removed from the data 

before multivariate analytical tools are applied. Signal-to-noise ratio (SNR) based on threshold 

techniques to remove unwanted spectra. A threshold value was set for a specific variable, and any 

intensity value that exceeds or is below the predetermined threshold was considered an outlier (Ibid, 

2009). Principal component analysis was used to determine the presence of outliers within the data in 

this study.

Spectra that were not within the Region of interest (ROI) were also classified as outliers and were 

subsequently removed to avoid unnecessary distortion of the data.
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4.7.7. Cross Validation
Cross-validation was utilised to assess the predictive ability of our classification model in this study, 

which was beneficial to determine how the results of this study can be generalised to an independent 

dataset. Therefore, it estimated how accurately the predictive model would perform in actual practice. 

After that, a training dataset was presented to the model; unknown data was tested, and the unknown 

data was called the validation dataset or testing dataset. The main aim was to assess the model's ability 

to depict new data that was not used in estimating it, helpful in determining the presence of overfitting 

or selection bias.

4.7.7.1.  Leave one out cross validation
 20% of the data were held back from the training dataset, and the resulting model was evaluated on 

the left-out observation. This process was repeated for all the observations in the dataset five times 

(five-fold cross-validation), and the average performance across that iteration was considered the 

classification mode's performance. 

4.7.8. Receiver Operating Characteristic Curve
A receiver operating characteristics (ROC) curve is a graphical representation that depicts the diagnostic 

ability of a binary classifier system as its discrimination threshold varies (Fawcett, 2006). In our study, 

receiver operating characteristics curves were created by plotting the True Positive Rate (TPR) against 

the False Positive Rate (FPR) at various threshold settings. TPR was also regarded as sensitivity or the 

probability of detection in machine learning, while FPR was the probability of a false alarm. The ROC 

curve was therefore generated by plotting the cumulative distribution function of the detection 

probability on the Y-axis versus the false-alarm probability on the X-axis.

The Area Under the Curve is a performance measurement for classification at various threshold 

settings. ROC is a probability curve, while the AUC represents the degree or measure of separability. It 

highlights how much a model can differentiate between classes. The higher the AUC, the better the 

model is at predicting outcomes. Essentially, this was likened to the higher the AUC, the better the 

model differentiating between different classes or groups in this study.

4.7.8.1. How to evaluate the performance of a model:
An excellent model was regarded as one with an AUC closer to 1, meaning it had a good measure of 

separability. A poor model was regarded as one with an AUC near 0, which means that it had the worst 

separability measure, effectively predicting 0s as 1s and 1s as 0s in a binary classifier system. However, 
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when the AUC was 0.5, the model had no class separation capacity whatsoever (Ibid, 2015). For this 

study, one can see that the SVM learning algorithms for two and 3-group classification models were 

between 0.97 and 0.98 for the blood plasma and serum spectral analysis. However, for the spectral 

tissue analysis, the SVM learning algorithm had an AUC of about 0.80 for the two and 3-group 

classification models, demonstrating that the support vector machine was excellent at discriminating 

spectra into 2 and 3 groups. Nevertheless, the linear discriminate analysis demonstrated a lower ability 

to distinguish spectra into different classes for the tissues and blood samples, as shown by the AUC.

4.8. Histological Analysis:
The tissue samples were processed in a laboratory (Maidstone and Tunbridge Wells NHS Trust) 

accredited to ISO15189 with the United Kingdom Accreditation Service (UKAS).

Prostatic tissue samples were placed in a neutral buffered formol saline solution which was necessary 

for tissue fixation. Approximately 48 hours after arrival at the laboratory, the tissue samples were 

removed from the formal solution when the tissues were fully fixed.

The tissue samples were then transferred to tissue cassettes and processed using a standard biopsy 

processing protocol on the Sakura VIP6  tissue processor (as depicted in table 4.1 below). Processing 

tissue in this context indicates replacing water within the tissue with paraffin wax. There were a few 

steps involved in the process since water and wax are not miscible. 
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Biopsy Processing Schedule

Solution Temp (oC) Time

 1)     10% Formalin 40 10 mins

2)     99% Alc 40 10 mins.

3)     99% Alc 40 10 mins.

4)     99% Alc 40 10 mins

5)     99% Alc 40 10 mins

6)     99% Alc 40 10 mins

7)     99% Alc 40 10 mins

8)     Xylene 40 10 mins

9)     Xylene 40 10 mins

10)    Xylene 40 10 mins

11)    Wax 63 10 mins

12)    Wax 63 10 mins

13)    Wax 63 10 mins

14)    Wax 63 10 mins

Table 4.1: Prostate biopsy Processing Schedule
NB: Processing required pressure and vacuum to facilitate the impregnation of the tissue with the 

reagent (otherwise, tissue processing would take several days).

Once the tissues were processed, they were fully impregnated with wax, where there was water within 

the tissues. The tissues were then transferred to a small metal mould containing molten paraffin wax. 

The tissue samples were then placed flat and firmly against the base of the mould, and the wax was 

subsequently allowed to cool and solidify around the tissues by placing the mould on a cold plate. Once 

cooled, the block shells out of the mould, and we were left with wax-impregnated tissues held within a 

block of solid wax.

The blocks were safely and efficiently handled at room temperature. Small tissue slices (3 µm) were 

taken from the block with the aid of a microtome. The tissue sections were collected onto glass slides 

and stained with the standard histology stain, haematoxylin, and eosin (H&E). An automated process 

was utilised, and the subsequent cover-slipping of the slide was to protect it from damage.

Once the slides were cover-slipped, they were sent to the Consultant histopathologist for his opinion.
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4.9. Raman Spectroscopy Data analysis
4.9.1. Analysis of prostate tissue spectra
Multivariate analysis was utilised to build a linear discriminant classification model for predicting the 

prostate tissue pathology established upon the measured Raman spectra.

An outline of the technique is given below, followed by a more detailed analysis of each technique in 

turn.

Spectra with unacceptable SNR or high fluorescence were removed, and the remaining spectra were 

used to build the training classification model; this was mean-centred.

To ensure that clustering the spectra with the different pathology groups was done to enhance the 

separation into different groups, weights of the principal components were plotted. Two, three, four, 

and five class group classifications were utilised at different times to build the diagnostic models to see 

the best possible classification model. The most diagnostically significant principal components were 

utilized to conduct linear discriminant analysis. Leave one sample out cross-validation was utilized to 

assess the prediction accuracy of the different models. The Linear discriminant weights were plotted 

against each other to assess the separation with the pathology groupings.

4.9.2. Data pre-processing:
Removing unwanted signals from the Raman spectroscopy measurement was crucial in maintaining 

reproducible data that can be utilised for both quantitative and qualitative analysis. Pre-processing 

steps such as removal of outliers, denoising, and normalization were applied to the raw data to ensure 

that data with relevant spectral signals were processed. Although different pre-processing strategies 

can be applied,  care was taken to ensure that appropriate pre-processing techniques were applied to 

the data.

The following pre-processing steps were applied to the raw data of the prostate tissues using a MATLAB 

program. Firstly, mean spectra were calculated from the five spectra, and some were four spectra 

acquired from each tissue sample. Secondly, unwanted background signals were subtracted from the 

mean spectra. Thirdly, each spectrum was corrected with the spectral response. Fourthly, residual low-

frequency components such as autofluorescence were excluded with a sixth-degree polynomial fit. 

Fifthly, all spectra were normalised using standard normal variate normalization. Finally, wavenumber 

x-axis calibration was carried out with Tylenol measurement.
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 In order to authenticate the diagnostic model adopted for analysis of the tissue biopsy samples, it was 

necessary to validate the data to ensure that the model could be used for in vivo studies.

Deep learning training has uncovered molecular fingerprints of different neoplasia, mainly when large 

sets of Raman data are involved, which is helpful in tumour margin assessment and the detection of 

aggressive cancers.

In summary, we have looked at the different components of the Raman instrument, including the laser 

source and charged-couple device. In order to prevent any form of distortion of the Raman signal, 

regular equipment calibration was carried out before any measurement was carried out to ensure the 

accuracy of measurements at all times. Periodic adjustment of the instrument by the manufacturers 

was carried out to ensure that there was no form of misalignment of the instrument, thereby ensuring 

optimal instrument functioning.



86

Chapter 5 – Result
This chapter will demonstrate the degree of prediction accuracy of the different classification models 

as we attempt to classify the data into different groups, such as 2, 3, 4, and 5 classes. Linear discriminant 

analysis, and support vector machine learning classification algorithms, were utilised to discriminate 

the spectra into different classes. The degree of their prediction accuracy was assessed using overall 

prediction accuracy, positive and negative predictive values, and true and false positive rates. Analysis 

of Variance was utilised to select the most significant principal components used for scatter plots and 

inclusion into the multiclass classification model. Scatterplots were used to determine the degree of 

separability for the different group classifications. Results for tissue samples, serum, and plasma will be 

presented in this chapter.

5.1. Tissue samples:
One hundred participants were included in this study, with the majority having intermediate or high-

grade prostate cancer. Therefore, a small sample for measurement or fluorescence and Raman spectra 

were obtained from 79 prostate tissue samples after excluding the unwanted specimens due to tissue 

burning. Nevertheless, the tissue samples were further reduced to 49 (as shown in the flow chart in 

figure 5.1 below) because some samples were inappropriate for histological assessment. No glandular 

epithelial tissues were found on the specimens. Therefore histopathologist could not assess only the 

stromal element of the sample. Therefore about 30 tissue samples were further removed (figure 5.1). 

Renishaw India spectrometer (Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire GL12 8JR) 

was utilized to carry out all the Raman spectroscopy measurements. Raman spectral measurements 

were conducted over five locations on each tissue sample. A total of 381 Raman spectra were obtained 

for which histo-pathology analyses were performed, classifying the investigated tissue samples. Gold 

standard technique assessment against molecular characterization based on the Raman spectra was 

obtained. Histology analysis led to a characterization of whether the investigated tissues were benign 

or malignant. Further histological assessment of the participant's standard care biopsy samples 

(different from the research samples) was carried out to further probe the tissue samples with cancer.
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Fig 5.1. Flow chart showing the number of tissue samples collected and subsequently 
used for Raman measurement and histology analysis.
Extended Multiplicative Signal Correction (EMSC) is often utilized as a pre-processing method to see if 

the data quality can be improved by removing any unwanted artefact or noise that could obscure the 

relevant chemical information. The mean spectra of the cancer group were compared with that of the 

benign group without the EMSC method applied. A good separation between the two groups was easily 

visualised, as demonstrated in figure 5.2 below. However, when EMSC pre-processing technique was 

applied, there was a poor separation between the two groups. The possible explanation for this would 

be that no outliers in the original data needed the inclusion of multiple reference spectra to account 

for the chemical profiles of the outlier spectra. Therefore, analysis was carried out without EMSC since 

acceptable quality spectra were achieved with the original data.

Total tissue samples 
collected.

N=100

Total samples used 
for Raman 
measurement.

N=79

Samples used for 
Histology analysis

N=49

n

Samples not suitable for 
Raman measurement 

N=21.

(Burnt=5, fluorescent=1, 
too small =15)

Samples not suitable for 
Histology assessment.

N=30



88

Fig. 5.2: Comparison of the raw data with data corrected with EMSC
One point per wavenumber was used to express the data representation, and energy sensitivity 

calibration was applied. All spectra were mean-centred to scale the spectra intensities in all the 

wavenumber channels to zero with unit variance.

Principal component analysis was conducted using singular value decomposition (SVD) of the data 

matrix (PLS toolbox in MATLAB) since utilizing all the values in the data matrix was unnecessary. Only 

data with relevant chemical information was utilised for further analysis to represent the entire data.

5.1.1. Two Pathology Group Training model:
A training model was built by combining the spectra into two groups, benign and malignant groups. The 

groups were assigned such that all prostate tissues with benign and normal features were grouped into 

one class (class 1), while all tissue samples with malignant features were grouped into another class 

(class 2). Each principal component was made up of some components of tissues which vary collinearly. 

Different principal components were initially used to validate the result. Nevertheless, 24 principal 

components gave the best outcome. Therefore, twenty-four principal orthogonal components (PCs) 

were used to build the training model, describing 99.9% of the variance of the raw data set. These 

principal components were therefore utilized as input into a linear discriminant analysis (LDA) model. 
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The LDA of the PCs utilized to distinguish between the two pathology groups, benign and malignant 

groups, and minimize the variance within the groups, required two linear discriminant functions for 

adequate separation between the two groups, as plotted in a bar chart in figure 5.3 below. The first 

class (Benign) recorded a prediction accuracy of 77.5%, while the second class (malignant) also 

demonstrated a prediction accuracy of 77.5%. Overall prediction accuracy for this training model was 

recorded at 77.5%, as seen in table 5.1 below. The percentage of prediction accuracy of the different 

classes and the overall prediction accuracy can be seen in figure 5.3  below.

Training classification performance

Class Percentage of accurate prediction

Class 1 77.5%

Class 2 77.5%

Training performance = 77.5%

Table 5.1a. Table showing the training classification performance for benign vs Cancer

Fig. 5.3: Plot of Linear discriminant function scores for each spectrum, colour coded 
according to pathology opinion for the training model for benign (Green) vs cancer 
(Red).
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The receiver operating characteristic curve was plotted for the linear discriminant analysis with true 

positive rates plotted against false positive rates. With the aid of the MATLAB classification app, a 5-

fold leave-one-out cross-validation was applied for the two-group mean spectral model (Benign versus 

cancer). The overall accuracy of 72.6% with an AUC of 0.7  for the two classes can be seen in figure 5.4 

below. A negative predictive value was recorded as 86%, which resulted in a false omission rate of 14%. 

Nevertheless, this model showed a positive predictive value of 46%, resulting in a false discovery rate 

of 54%. The sensitivity and specificity of this model were measured to determine the proportion of the 

correctly classified spectra into the respective classes. Therefore, a sensitivity of 76.4% and a specificity 

of 61% were recorded, respectively.

Fig. 5.4: Receiver Operating Characteristic curve for a 2 group (benign vs cancer) mean 
spectral Linear Discriminant model showing an area under the curve of 0.7 and an overall 
accuracy of 72.6%.
Note: class 2 is the positive group which is the cancer group.
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                                                              Model 2 (Linear Discriminant)

                                                                                                                

                      1                          

                                                                                                                                    

  True class   

                      2                                        

                                                         1                                                2 

Predicted class  

Fig. 5.5: Confusion matrix for a two group LDA classification model for benign vs 
malignant (cancer).

 5.1.2. SVM learning model with a two-pathology group training model
Quadratic Support Vector Machine (SVM) learning algorithm was also used to classify the spectra into 

two groups. To compare the performance of LDA model and the Quadratic SVM model, a 5-fold leave 

one out cross validation was utilized to validate the data with the aid of MATLAB classification app. The 

AUC was recorded as 0.69 (Figure 5.6) with an overall prediction accuracy of 72.6%. It was observed 

that this model was worse for cancer prediction but better for benign group classification. The positive 

predictive value of 38% and a false discovery rate of 62% with a negative predictive value of 90% which 

resulted in a false omission rate of 10%. The sensitivity and specificity for this model was 64% and 75% 

respectively.

42 7
 

13 11
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Fig. 5.6: Receiver Operating Characteristic curve for a 2 group (benign versus cancer) 
mean spectral Quadratic SVM model showing an area under the curve of 0.69. the 
positive class here is the cancer group (class 2).
                                               Model 3.2 (Quadratic SVM)

                                                                                                                

                      1                          

                                                                                                                                    

  True class   

                      2                                        

                                                         1                                                2 

Predicted class  

Fig.5.7: Model 3.2 showing the confusion matrix of a Quadratic Support Vector Machine 
Learning Model for a two-group classification (benign vs cancer).
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Fig. 5.8: Difference between benign and malignant tissue spectra measured

Fig 5.9: Mean spectra after background subtraction and smooth post Raman assessment 
(benign versus malignant).

The difference spectra were calculated by subtracting the mean spectra of the benign pathology group 

from the malignant group. This difference in spectra can be useful in understanding the biochemical 

changes that were responsible for the advancement toward malignancy within the prostate gland. 

Figure 5.8 above demonstrates the spectral difference between the benign and malignant tissues. The 
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major positive and negative peaks can be seen above. Positive peaks (above zero) were located at 485, 

527, 609, 715, 870, 1077, 1297, 1439, 1653 and 1742 cm¯¹. Negative peaks were seen at 471, 514, 675, 

958, 1001, 1139, 1401, 1495 and 1696 cm¯¹. The peaks below zero (0) were referred to as negative.

Positive peaks were seen corresponding to glycogen spectrum, which had a peak at 485 cm¯¹, 

cholesterol with a peak at 609 cm¯¹, proline (amino acid) with a peak at 870, triglycerides with a peak 

at 1077, lipid with a peak at 1297 cm¯¹ & 1742 cm¯¹, CH₂ deformation due to lipid and protein, amide 1 

corresponding to 1653. Negative peaks corresponded to Phenylalanine (amino acid) with a peak at 

1001. The relevant pieces of literature were consulted on the nature of these peaks, although the 

biochemical designations of some peaks were not known (Kendall C, 2002). Higher lipids and 

unsaturated fats concentrations were seen in benign spectra at positive peak positions 602, 621, 851, 

1061, 1300, 1447, and 1655 cm¯¹. On the other hand, a lower glycogen concentration was seen in the 

benign spectra than in malignant spectra, which was seen at peak position 1377 cm¯¹ as shown in Figure 

5.9 below.

The first twenty-four PCs were plotted in Figures 5.10a & 5.10b below; each PC comprised several 

collinear tissue compositions. Analysis of variance was used to select the most significant principal 

components. PC2 was seen to have many distinctive features of prostate tissue peaks, as documented 

in the literature. PC3 had peaks that were typical of the glycogen spectrum. Peaks from PC4 were typical 

of nucleic acid with a contribution from glycogen at approximately 480 cm¯¹. PC5 had peaks linked to 

amino acids, proteins, and glycogen. PC6 had peaks associated with glycogen, nucleotides, proteins, 

and lipids. Other peaks shown on the other PCs were not statistically significant.
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Fig. 5.10a: First 12 principal components 

Fig. 5.10b: the next 12 principal components.
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5.1.3: Two Group classification model

Fig. 5.11: Receiver Operating Characteristics curve for a two-group classification 
showing the Area Under the Curve of 0.77 in a LDA model.
                                                Model 6 (Linear Discriminant)

                                                                                                                

                      1                          

                                                                                                                                    

  True class   

                      2                                        

                                                         1                                                2 

Predicted class  

Fig. 5.12: The confusion matrix of the two-group classification model using a linear 
discriminant analysis 
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The Area under the curve of 0.77 shows that the above model is a good (acceptable) classification model 

between different pathological groups, as demonstrated in figures 5.11 & 5.12 above. However, it is by 

no means a perfect classification model. The sensitivity and specificity for this model were 65.6% and 

78.4%, respectively with an overall accuracy of 75%. The positive predictive value was 53% with a 

corresponding false discovery rate of 47%, while the negative predictive value was 86%, and the 

corresponding false omission rate was 14%.

However, with the medium Gaussian SVM, the Area under the curve can be seen as 0.82 (as shown in 

Figures 5.13 & 5.14 below), which was better than the LDA model, although still not a perfect 

classification (prediction model). The SVM model's overall accuracy of 80.8% was recorded compared 

to 75% of the LDA model for this two-group classification. The sensitivity and specificity of 87% and 

79.4%, respectively, while the positive and negative predictive values of 50% and 96% were recorded, 

respectively.

Fig. 5.13: Medium Gaussian SVM showing the AUC of 0.82 and the prediction accuracy 
of 80.
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                                                 Model 5.5 (Medium Gaussian SVM)

                                                                                                                

                      1                          
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                                                         1                                                2 
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Fig. 5.14: Confusion matrix of a two-group classification model using a Medium 
Gaussian SVM.

5.1.4: Four group classification model (Gleason grade scoring system)
A three-dimensional (3D) scatter plot was plotted to visualise the level of separation between the four 

different Gleason risk stratification groups using linear discriminant analysis, as shown in figure 5.15 

below. A closer look at the scatter plot shows minimal separation between the four groups. 

After the raw data's normalization, the four-group classification model's overall accuracy demonstrated 

a 50.4% accuracy. The group of tumours with a Gleason score greater than 7 demonstrated the highest 

prediction accuracy rate of 57.6%. However, all tumours with a Gleason score of 7 showed the lowest 

prediction accuracy (46.7%).

231 9
 

60 60
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Fig. 5.15: Three-Dimensional Plot of the linear discriminant function of the scores for 
each class spectrum, colour coded according to the histopathology report following 
normalization to area under the curve (Benign, GS<7, GS=7, GS>7).

5.1.5: Two Group classification model (Low grade versus high grade tumour)
A two-group classification model depicted an overall prediction accuracy of 68.8% for the PC-LDA  

model for a low-grade tumour in one group. In contrast, intermediate and high-grade tumours were 

placed in another group. With this classification, low-grade tumours demonstrated a higher prediction 

accuracy (70.8%) than high-grade ones (66.8%), as shown in figure 5.16 below.
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Fig. 5.16: Bar chart showing the Raman spectroscopy prediction power of a two group 
(benign & GS<7 vs GS 7 & >7) with the aid of PC-LDA model with normalisation of the 
raw data to the area under the curve. The green bars represented the low-grade tumour 
-class 1 (GS = benign & <7), Red bars represent the high-grade tumour – class 2 (GS = 
≥7).
When a confusion matrix was plotted to further scrutinize this model as a classification model, it was 

discovered that a positive predictive value of 62.7% was recorded. In contrast, a negative predictive 

value of 61% was documented. Nevertheless, the sensitivity and specificity were recorded as 60%, 

respectively.

The overall accuracy of 61.9% was recorded with an AUC of 0.65 for the 2-group classification model, 

as demonstrated in figure 5.17 below. An interpretation of this AUC as it relates to this 2-group 

classification model of LDA shows that it is a poor model for discriminating between low-grade and 

high-grade tumours.

However, cubic SVM alongside 5-fold cross-validation on the same two-group classification model 

demonstrated overall accuracy of 74.8%, and AUC of 0.80, as seen in the figure below. A confusion 
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matrix depicted a positive predictive value of 73% and a negative predictive value of 76%, respectively. 

While sensitivity and specificity of 77% and 73% were documented for this classification model, as seen 

in figure 5.18 below. Demonstrated that the support vector machine learning approach was superior 

to the linear discriminant analysis with normalisation of the raw data. Although still not a perfect 

classification model, it is better for discriminating between high-grade and low-grade tumours by 

normalising the raw data to the Area under the curve.

Fig. 5.17: Two group classification LDA (benign & GS<7 vs GS 7 & >7) with the aid of PC-
LDA model with normalisation of the raw data to the area under the curve and a 5-fold 
cross validation model showing the AUC of 0.65 and overall accuracy of 61.9%.
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                                              Model 3.3 (Medium Gaussian SVM)

                                                                                                                

                                1                          

                                                                                                                                    

  True class   

                                 2                                        

                                                                1                                                2 

                         Predicted class  

Fig. 5.18: A confusion matrix for a two-group classification model (benign & GS<7 vs GS 
7 & >7) with the aid of PC-LDA model with normalisation of the raw data to the area under 
the curve.

5.1.6: Three Group classification Model
The limitations of the Gleason scoring system from biopsies, such as poor reproducibility and poor 

correlation with radical prostatectomy grade, were responsible for the introduction of the new Gleason 

grade group in 2013 by Johns Hopkins Hospital. Gleason 7 tumours which have always been regarded 

as intermediate-risk cancer, have also been shown to have worse outcomes and biochemical recurrence 

rates, especially Gleason 4+3. The 5-year biochemical risk-free survival for the Gleason grade group 1 

to 5 based on prostatectomy grading was shown to be 96%, 88%, 63%, 48%, and 26%, respectively. This 

Gleason grade group classification is superior to the Gleason risk stratification (<7, 7 & >7).

Therefore, it was imperative to assess the performance of this diagnostic model against the new 

Gleason grade group classification and the Gleason risk stratification (the old model). Two linear 

discriminant functions were utilized to discriminate between the different Gleason grade groups in a 

four-group LDA classification model. Two linear discriminant functions were used to assess the Gleason 

risk stratification model in a three-group LDA model. The scores of the two linear discriminant functions 

for the spectra of the Gleason grade group and the risk stratification model were colour-coded and 

plotted based on histopathology. These can be seen in the figures below, respectively. Easy visualization 

of the spectra separation between the different pathology groups can be seen in Figure 5.19 below. 

141 44
 

52 144
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Further analysis was carried out on the Gleason grade group by merging Gleason grade group 4 and 5 

spectra and assigning them into one class (class 3). In contrast, Gleason grade group 1 (Gleason 6 or <7) 

was assigned to class 1, and Gleason grade group 3 (Gleason 4+3) was assigned to class 2. 

Measurement of the level of separation between the different classes with different machine learning 

techniques in a three-group classification model distinguishing the spectra into benign + Gleason <7, 

Gleason 7, and Gleason >7 using a linear discriminant analysis, the overall accuracy at prediction into 

these classes was 57.22% as seen in the table 5.2a below. Figure 5.19 below is a scatter plot showing 

the separation between the three pathological groups. However, there was no significant separation 

between the groups, as seen in the figure below.

Fig. 5.19: Plot of the linear discriminant function of the scores for a three-group 
classification model using LDA for the Gleason risk stratification groups (benign + <7, 7 
& >7). Each class spectrum were colour coded according to the histopathology report.

-8 -6 -4 -2 0 2 4 6 8
LD 1 10 -3

-10

-5

0

5

LD
2

10 -3

Benign + GS<7
GS=7
GS>7



104

Histology Confirmed Raman Predictions
Class Benign/GS = 

>7
GS = 7 GS = >7

1 Benign/ GS = <7 62 26 25
2 GS = 7 14 42 16
3 GS = >7 38 44 114

GS = Gleason Score, N=381
Overall accuracy = 57.22 %

Table 5.2a:Training classification in a three-group PC-LDA model with Gleason <7, 7 & 
>7 with histology versus Raman predictions.

Training Classification Performance 
Class % Accurate Prediction 
1 54.87
2 58.33
3 58.16
Training Performance = 57.22 %

Table 5.2b: Showing the training classification performance in a three-group PC-LDA 
model with Gleason <7, 7 & >7.

5.1.7: Four Group classification Model (Gleason grade group scoring system)
The four-group classification model demonstrated 100% prediction accuracy for Class 4 (Gleason grade 

group 5) tumours. However, the other classes did not have excellent prediction accuracy, as shown in 

figure 5.20, table 5.3a, and 5.3b below. 

Fig. 5.20: Plot of the linear discriminant function of the scores for a four-group 
classification model using LDA for the Gleason grade group scores. Each class 
spectrum were colour coded according to the histopathology report.
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Histology Confirmed Raman Predictions
Class GG 1 GG 3 GG 4 GG 5
1 GG 1 59 26 20 8
2 GG 3 22 93 20 2
3 GG 4 23 29 70 4
4 GG 5 0 0 0 5
Overall accuracy = 59.58 %, N=381

Table 5.3a: Showing the training classification performance for Raman versus histology 
in a four-group PC-LDA model with Gleason grade group 1, 3, 4 & 5. 

Training Classification Performance 
Class % Accurate Prediction 
1 52.21
2 67.88
3 55.56
4 100
Training Performance =59.58  %

Table 5.3b: Showing the training classification performance in a four-group PC-LDA 
model with Gleason grade group 1, 3, 4 & 5.

5.1.8: Three Group classification Model (Gleason grade group scores)
The three-group classification model involving Gleason grade groups 1, 2 & 4/5 shows inadequate 

separation between the groups, as seen in figure 5.21 below.
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Fig. 5.21: Plot of the linear discriminant function of the scores for a three-group 
classification model using LDA for the Gleason grade group scores with spectra from 
Gleason grade group 4 merged with 5. 

Histology Confirmed Raman Predictions
Class GG = 1 GG = 3 GG = 4/5
1 GG = 1 60 29 24
2 GG = 3 26 87 24
3 GG = 4/5 25 31 75

GG = Grade Group score
Overall accuracy = 58.27 %

Table 5.4a: Raman prediction accuracy against histology in a three-group PC-LDA model 
with Gleason grade group 1, 3 & 4+5.

Training Classification Performance 
Class % Accurate Prediction 
1 53.10
2 63.50
3 57.25
Training Performance = 58.27%

Table 5.4b: Showing the training classification performance in a three-group PC-LDA 
model with Gleason grade group 1, 3 & 4+5.
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When a 5-fold leave-one-out cross-validation was applied for the predominant three groups (original 

Gleason risk stratification) LDA model, the overall prediction accuracy was recorded at 52.5%, but the 

Area under the curve was recorded as 0.73 (figure 5.22). This model is not perfect for discriminating 

the spectra into three different classes, but it is a reasonably good model. The ROC curve of the 

pathology of interest is demonstrated in figure 5.22 below.

Fig. 5.22: Three group classification LDA and a 5-fold cross validation model showing 
the AUC of 0.73 and overall accuracy of 52.5% (Gleason 7, <7 & >7).
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                                                            Model 1 (Linear Discriminant)

                               1

 True class

                               2

                               3
                                                            1                                   2                                       3        

                                                                         Predicted class

Fig. 5.23: A confusion matrix of a three-group classification LDA and a 5-fold cross 
validation model showing the AUC of 0.73 and overall accuracy of 52.5% (Gleason 7, <7 
& >7) .

Quadratic Support vector machine learning was also utilised to further assess the performance of the 

classification into the three classes that could assist in the risk stratification of prostate cancer (Gleason 

<7, 7, >7). As seen in figure 5.24 below, the AUC was 0.79, with overall prediction accuracy of 64.6%, as 

shown in the figures below. The quadratic SVM model demonstrated a better ability to discriminate the 

spectra into these three risk stratification classes than the LDA model. Nevertheless, the quadratic SVM 

learning algorithm was not a perfect model for the discrimination of prostate cancer tissue for risk 

stratification purposes. The ROC curve below is for the more advanced disease (Gleason >7).
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Fig. 5.24: Three group classification Quadratic SVM and a 5-fold cross validation model 
showing the AUC of 0.79 and overall accuracy of 64.6% (Gleason 7, <7 & >7).
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Fig. 5.25: Confusion matrix of a three-group classification using Quadratic SVM and a 5-
fold cross validation model (Gleason 7, <7 & >7).
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5.1.9: Four-group classification (Gleason grade group 1, 3, 4 & 5)
The same was also done for a four-group classification model for the Gleason grade group (1,3,4,5) with 

two linear discriminant functions to assess the level of separation between the four groups for 

visualization of the separation between the groups. It was not a good model, as the overall accuracy 

was less than 50%. Figure 5.26 and Tables 5.5a & 5.5b below show the separation between the groups 

and the overall accuracy rate.

Fig. 5.26: Plot of the linear discriminant function of the scores for a four-group 
classification model using LDA for GG1, GG3, GG4 & GG5. 

Histology Confirmed Raman Predictions
Class GG =1 GG =3 GG = 4 GG = 5
1 GG = 1 53 28 15 17
2 GG = 3 13 50 8 6
3 GG = 4 35 33 58 25
4 GG = 5 1 9 8 22
Overall accuracy = 48.03%  GG =Grade Group score

Table 5.5a: Raman prediction against histology prediction in a 4-group model 
Training Classification Performance 
Class % Accurate Prediction 
1 46.90
2 64.93
3 38.41
4 55.00
Training Performance =  48.03%

Table 5.5b: Showing the training classification performance in a four-group PC-LDA 
model with Gleason Grade Group score 1, 3, 4 & 5.
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5.1.10: Five group classification model (Gleason grade group scores)

Fig. 5.27: Plot of the linear discriminant function of the scores for a five-group 
classification model using LDA for the Gleason grade group scores (GG1, GG2, GG3, 
GG4 & GG5) spectra. 

Histology Confirmed Raman Predictions
Class GGS = 1 GGS = 2 GGS = 3 GGS =4 GGS = 5
1 GGS= 1 97 28 20 12 24
2 GGS = 2 20 25 8 0 11
3 GGS = 3 19 6 31 9 8
4 GGS = 4 2 2 3 13 4
5 GGS = 5 7 6 4 1 17
Overall accuracy = 42 %

 Table 5.6a: Raman prediction accuracy against histology predictions for a 5-group 
training model.

Training Classification Performance 
Class % Accurate Prediction 
1 52.49
2 39.06
3 41.09
4 50.00
5 37.14
Training Performance = 44%

Table 5.6b: Showing the training classification performance in a five-group PC-LDA 
model with Gleason grade group score 1-5.
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The worst outcome was observed in a five-group classification model with overall prediction accuracy 

of 45.9%, as seen in tables 5.6a & 5.5b above; hence not a great model with the tissue samples.

5.1.11: Comparison between two sets of two-group classification models:
When the background was subtracted from the raw data, the LDA model for distinguishing Raman 

spectra into two groups (benign versus cancer) demonstrated an overall prediction accuracy of about 

60.8%, as shown in tables 5.7a & 5.7b below. Nevertheless, when spectra were classified into the 

different Gleason risk stratification groups, the prediction accuracy dropped below 50%. However, the 

overall prediction power for low versus high-grade tumours was recorded at about 59%. Shows that 

the model is not ideal for risk stratification, particularly when the background was subtracted.

Fig. 5.28: Bar chart showing the Raman spectroscopy prediction power of a two group 
(benign vs cancer) with the aid of PC-LDA model with normalisation of the raw data to 
the area under the curve.
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Raman Prediction
Benign Cancer

Benign 143 95

Histology Confirmed

Cancer 46 74
Table 5.7a: Raman prediction accuracy against histology in a 2-group training model.

Training Classification Performance 
Class % Accurate Prediction 
1 60.42
2 61.67
Training Performance = 60.83 %

Table 5.7b: Showing the training classification performance in a two-group PC-LDA 
model with benign versus malignant tumours.

Fig. 5.29: Bar chart showing the Raman spectroscopy prediction power of a two group 
(benign & GS<7 vs GS 7 & >7) with the aid of PC-LDA model with normalisation of the 
raw data to the area under the curve.
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Raman Prediction
Benign/GS = <7 GS = ≥7

Benign/GS = <7 102 83

Histology Confirmed

GS = ≥7 73 123
Table 5.8a: Raman prediction accuracy against histology in a two-group model (low 
grade versus high grade tumours.

Training Classification Performance 
Class % Accurate Prediction 
1 55.14
2 62.76
Training Performance = 59.06  %

Table 5.8b: Showing the training classification performance in a two-group PC-LDA 
model with low grade tumours versus intermediate and high-grade tumours.

5.1.12: Partial least square analysis:
The partial least square analysis is often utilised to assess the prognostic impact of various factors. It is 

a method used for constructing prediction models that are many and highly collinear. It finds a linear 

regression model by projecting the predicted and observable variables to a new space. 

Fig. 5.30: Partial Least squares regression of the PSA showing a RMSEP of 7.3840
The Root mean square error of prediction calculated by summing all the squared prediction errors 

during cross validation. It is an indication of the reliability and predictive ability of the model. The lower 

PLS - PSA
RMSEP =

7.3840
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the root mean square value error of prediction (RMSEP), the higher the prediction ability of the model. 

The RMSEP of this model is 7.3840 as demonstrated in figure 5.30 above.

5.2: Serum Spectral analysis:
The Raman spectroscopy maps were recorded with the aid of the InVia Raman system and were loaded 

into MATLAB R2019a (the MathWorks inc Natick, Massachusetts, USA) for data pre-processing. These 

data were subjected to baseline correction using a 23-point Savitzky-Golay filter for smoothing, and 

cosmic ray contributions were removed. The noise in the Principal Components was individually 

eliminated by inspection and subsequently by an objective method, therefore, filtering off noise level. 

Data with an intensity of fewer than 400 counts at 1650 cm¯¹ were eliminated. PC noise reduction 

assisted in reducing the noise in a set of spectra by ensuring that only noise-free components were 

reconstructed. This process ensured that all the background noises were filtered out from the data set 

while vital spectral information was preserved.

After the pre-processing stage, the mean intensity on the y-axis was calculated to compare the values 

between the different maps. Data were validated with a 5-fold cross-validation. All spectra were mean 

centred, and 25 principal components were utilised to compress the data before discriminant 

classification at each training run. 20% of the data were held back from the training and utilised to test 

the model's performance in each fold (5 times). 

Figure 5.31 below shows the separation between the mean spectra of benign and malignant samples. 

There was not a great deal of separation between both spectra.
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Fig. 5.31: Spectral differences between benign and cancer from the raw data after 
histology assessment was carried out.

5.2.1: Two group pathology training classification model
Prediction accuracy for the two pathology groups using PC-LDA algorithm for benign and cancer 

group. This is demonstrated in figure 5.32 with benign in green and cancer in red. Overall prediction 

accuracy of 72.3% is shown in table 5.9a & b below.

Fig. 5.32: Bar chart showing the training classification model for two pathology groups 
(benign vs cancer) with the aid of PC-LDA model.
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Raman Prediction
Benign Cancer

Benign 38 13

Histology Confirmed

Cancer 8 17
Table 5.9a: Raman prediction accuracy against histology in a two training PC-LDA model 
in blood serum samples.

Training Classification performance 
Class % Correct 
1 (Benign) 74.51
2 (Cancer) 68.00
Training Performance = 72.37%

Table 5.9b: Showing the training classification performance in a two-group PC-LDA 
model with benign versus malignant tumours.

5.2.2: Four Group training model:
Prediction accuracy for the two pathology groups using the PC-LDA algorithm for benign and cancer 

groups, which is demonstrated in figure 5.32 with benign in green and cancer in red, the overall 

prediction accuracy of 72.3% is shown in Tables 5.9a & b below.
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Fig. 5.33: Training classification model showing a 3-Dimensional (3D) Plot of the linear 
discriminant function of the scores for each class spectrum (Benign, GS<7, GS=7, 
GS>7).

Histology Confirmed Raman Predictions
Class Benign GS = <7 GS = 7 GS = >7
1 Benign 18 8 2 2
2 GS = <7 3 14 1 1
3 GS = 7 7 6 16 4
4 GS = >7 2 4 3 11
Overall accuracy = 55.34 %

Training Classification Performance 
Class % Accurate Prediction 
1 56
2 68.42
3 48.49
4 55

Training Performance = 55.34%
Table 5.10a & b: Showing the training classification performance in a four-group PC-LDA 
model with Benign, GS <7, GS =7, GS >7.
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5.2.3: Two Pathology Group training classification model: Low versus high grade tumours
A training classification model was built using the two pathology diagnostic groups (low versus high-

grade tumours). Better outcome was shown with the low-grade tumours (benign/GS = <7) with 

accurate class prediction of 77.6%, while the second class recorded prediction accuracy of 52.8% with 

an overall training performance of 64.1% as demonstrated in figure 5.34 and tables 5.11a & b below.

Fig. 5.34: Bar chart showing the Raman spectroscopy prediction power of a two group 
(low risk vs intermediate and high-risk tumours) with the aid of PC-LDA model.

Raman Prediction
Benign / GS = <7 GS = 7 / GS = >7

Benign / GS = <7 39 10

Histology Confirmed

GS =7 / GS = >7 24 29

Training Classification performance 
Class % Correct 
1 (Benign / GS = <7) 77.55
2 (GS = 7 / GS = >7 52.83
Training Performance = 64.07%

Table 5.11a & b: Showing the training classification performance in a two-group PC-LDA 
model with low-risk vs intermediate / high risk tumours.

-8 -6 -4 -2 0 2 4 6 8 10
LD Score 10 -4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
um

be
r

LDA model for GS cancer v low risk pathology prediction



120

5.2.4: Three Group training classification model
The figure 5.34 below shows a three-group training classification model demonstrating the ability of 

Raman spectroscopy to distinguish between the low-grade tumours, intermediate & high-grade 

tumours. Although the overall accuracy of this diagnostic model was recorded at 56.3%. Nonetheless, 

the prediction accuracy of the intermediate-grade tumours (73.63%) was somewhat better than that 

of low-grade tumours (56.67%) and high-grade tumour (50.94%) as shown in table 5.12a & b below.

Fig. 5.35: Plot of the linear discriminant function of the scores for a three-group training 
classification model using LDA for the Gleason risk stratification groups (benign + 
Gleason <7, 7 & >7). 

Histology Confirmed Raman Predictions
Class Benign/ GS 

= <7
GS = 7 GS = >7

1 Benign / GS = <7 18 8 4
2 GS = 7 4 15 0
3 GG = >7 14 12 27

GS = Grade Score
Overall accuracy =  56.31%

Table 5.12a: Showing the training classification performance in a three-group PC-LDA 
model with Gleason Risk stratification scores using blood serum samples.
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Training Classification Performance 
Class % Accurate Prediction 
1 56.67
2 73.68
3 50.94
Training Performance = 56.31  %

Table 5.12b: Showing the training classification performance in a three-group PC-LDA 
model with Gleason Risk stratification scores using blood serum samples.

5.2.5: The two-group pathology classification (after training)
A two-group classification model was built to assess the prediction accuracy of the  PC-LDA model for 

distinguishing spectra into two groups (low grade + intermediate versus high grade tumours), the 

receiver operating characteristics curve is shown in figure 5.36 below.

Fig. 5.36: Two group classification LDA and a 5-fold cross validation model showing the 
AUC of 0.78.
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In order to further assess the performance of this model, a confusion matrix was constructed. The 

diagonal elements in green depicted correctly classified observations (figure 5.36), true positive and 

true negative. However, the diagonal elements on pink (figure 5.36) were the elements that were 

falsely predicted. The true positive rates for classes 1  & 2 were 64% and 72% respectively while the 

false negative rates for classes 1 & 2 were 36% and 28% respectively. The negative predictive value was 

recorded as 64% and 72% seen in the figure 5.38 below.

                                 

                                                               Model 1 (Linear Discriminant)

                                                                                                                

                      1                          

                                                                                                                                    

  True class   

                      2                                        

                                                         1                                                2 

Predicted class  

Fig. 5.37: Confusion matrix used to evaluate the performance of the LDA model as 
classification model of the group (Low-grade tumours versus intermediate and high-
grade tumours).
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                                                 Model 1 (Linear Discriminant)
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 class   
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                                           TPR                                    FNR

Predicted class

Fig. 5.38 The confusion matrix of a two-class prediction model showing the true positive 
and false negative rates low grade versus intermediate & high-grade tumours.
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                                                                         Model 1 (Linear Discriminant)

  

                                                     1

                        True class

                                                    2

         Positive Predictive Value

               False Discovery Rate

                                                      

1 2

Predicted class

Fig. 5.39: The confusion matrix of a two-class (low grade versus intermediate & high-
grade tumours) prediction model showing the positive predictive value and false 
discovery rates.
The model above depicted a positive predictive value of 59% and 77% (figure 5.39) respectively with a 

false discovery rate of 41% and 23% (5.38) respectively for both class 1 and 2 pathology groups. 

Support vector was utilised to also evaluate the performance of this model as a classification tool to 

distinguish the spectra into two groups of low grade versus intermediate + high grade tumours. The 

support vector machine demonstrated an overwhelming 0.97 (figure 5.40) area under the receiver 

operating characteristic curve for a two-class prediction (low grade versus intermediate + high grade 

tumours) as demonstrated in the figure 5.40 below. This has been able to show that with the aid of the 

cubic support vector machine learning algorithm, an outstanding diagnostic performance can be 

59% 23%

41% 77%

59% 77%

41% 23%
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achieved for the discrimination between low-grade versus intermediate + high-grade tumours. The 

overall accuracy of 94% was demonstrated with the cubic Support vector machine learning algorithm.

Fig. 5.40: Receiver Operating Characteristic curve with a five-fold leave one out cross 
validation for a 2 group mean spectral (low grade versus intermediate and high-grade 
tumours) cubic SVM model showing an area under the curve of 0.97 with an overall 
accuracy of 94%.
A confusion matrix was also constructed to further quantify how good this classification model was for 

discrimination between the low grade and intermediate + high grade tumours. This demonstrated a 

positive predictive value of 95% and a false discovery rate of 5% as demonstrated in the figure 5.40 

below. This is quite impressive as outstanding diagnostic model aimed at differentiating between the 

low-grade tumours and intermediate / high grade tumours. The negative predictive value was also 

recorded as 92% while the false omission rate was 8% as seen in the figure 5.41 below. 
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                                                                    Model 2 (Cubic SVM)

                                                                                                                

                                    1                          

                                                                                                                                    

      True class    

                                    2                                         

                                                         1                                                2 

Predicted class  

Fig. 5:41: Confusion matrix for a 2 group SVM classification model (Benign / GS = <7 VS 
GS7 / GS = >7).

The true positive rates of 92% and 95% was documented for this discriminatory model as shown in 

figure 5.42 below. Furthermore, positive predictive value of 92% and 95% were recorded for class 1 & 

2 respectively (figure 5.42).
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Model 2 (Cubic SVM)

                                                            1                    

                                  True class

                                                         

                                                          2

1 2                                  TPR                         FNR
Predicted class

Fig. 5.42: Confusion matrix for a 2 group SVM classification model (Benign / GS = <7 VS 
GS7 / GS = >7).
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Fig. 5.43: Confusion matrix for a 2 group SVM classification model (Benign / GS = <7 VS 
GS7 / GS = >7).
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Linear discriminant analysis was utilized to assess the discrimination ability of the model in 

distinguishing between the high-grade tumours (GG 4 & 5) and low + intermediate grade tumour (GG 

1-3). With this model, an overall accuracy rate of 74.9% was recorded with an area under the curve of 

0.81 as shown in the figure 5.44 below. An interpretation of the area under the curve for discriminating 

between the high-grade tumours and low-grade tumours (Gleason grade group score of 1, 2 and 3) 

depicted a good classification model.

Fig. 5.44: Two group classification LDA and a 5-fold cross validation model showing the 
AUC of 0.81 (Gleason grade group score of (1, 2, 3) vs (4 &5).
A confusion matrix was also constructed to further quantify how good this classification model was for 

discrimination between the low grade and intermediate + high grade tumours. This demonstrated a 

positive predictive value of 91% and a false discovery rate of 9% as demonstrated in the figure below. 

However, the negative predictive value was also recorded as 59% while the false omission rate was 41% 

as seen in the figure 5.45 below.
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                                              Model 1 (Linear Discriminant)

                                                                                                                

                      1                          

                                                                                                                                    

  True class   

                      2                                        

                                                         1                                                2 

Predicted class  

Fig. 5.45: Confusion matrix for a 2 group LDA classification model (Gleason grade group 
score of (1, 2, 3) vs (4 &5).
The true positive rate for prediction into class 1 and 2 were 91% and 59% respectively while the false 

negative rates for class 1 and 2 were 9% and 41% respectively (figure 5.46) The positive predictive 

values for class 1 and 2 were 69% and 86% respectively as shown in figure 5.47 below.
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Fig. 5.46: Confusion matrix for a 2 group LDA classification model.
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                                                                     Model 1 (Linear Discriminant)
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Fig. 5.47: Confusion matrix for a 2 group LDA classification model showing positive 
predictive values and false discovery rates for class 1 and 2.
The cubic support vector machine was also used to differentiate between the high- and low-grade 

tumours. An overall accuracy of 94.6% with the area under the curve of 0.98, which depicted an 

outstanding discriminating model at classification of spectra into different classes as shown in the figure 

5.48 below.
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Fig. 5.48: Two group classification (Low grade vs high grade tumours) Support vector 
machine and a 5-fold cross validation model showing the AUC of 0.98 with overall 
accuracy of 94.6%.
A confusion matrix was also constructed (figure 5.49) to quantify further how good the classification 

model was for discrimination between the low-grade and intermediate + high-grade tumours, 

demonstrating a positive predictive value of 95% and a false discovery rate of 5% as demonstrated in 

the figure 5.49 below. It is impressive as an outstanding diagnostic model aimed at differentiating 

between low-grade and intermediate/high-grade tumours. The negative predictive value was also 

recorded as 94%, while the false omission rate was 6%, as seen in figure 5.50 below.
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Fig. 5.49: Confusion matrix for a 2 group SVM classification model 
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Fig. 5.50: Confusion matrix for a 2 group SVM classification model showing True positive 
and false negative rates.
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Confusion matrix for multiple classes calculations and interpretation:
The diagonal values in the green boxes were the true positive rates or the sensitivity for the respective 

classes.

The total number of the values for any class was calculated as the sum of the values for the 

corresponding row, which was the same as true positive + False negative values for that class.

The number of false negatives for a class was the sum of the values in the corresponding rows, excluding 

the true positive value.

The number of false positives for a class was the sum of the values in the corresponding columns, 

excluding the true positive value.

The number of true negatives for a particular class was the sum of all the columns and rows, excluding 

that class's column and row.

Sensitivity is the true positive rate = TP/(TP+FN), which in this case is the true positive divided by the 

sum of the values on the row of that particular class in our confusion matrix.

Specificity, also known as the true negative rate, was calculated by: TN/(TN+FP). TN (true negatives) for 

a particular class was regarded as the sum of all the values in the columns and rows, excluding that 

class's column and row. False positive was the sum of the values in the corresponding columns, 

excluding the TP.

N/B:

For this study, the positive class was regarded as cancer, while the benign class was regarded as 

negative. High Gleason grades and high Gleason grade group were regarded as positive classes.

True positive indicated that the classification model predicted cancer or high-grade tumour consistent 

with the gold standard technique. False positives indicated that the classification model predicted the 

presence of cancer or a high-grade tumour. In contrast, the gold standard technique indicated the 

presence of a benign or low-grade tumour. True negative values indicated the situation where the 

classification model predicted the absence of cancer or a high-grade tumour, which corresponded well 

with the prediction of gold standard techniques.
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5.2.6: Three group classification model

LDA was used to classify the spectra into three distinct groups, which included benign, low- and high-

grade tumours. Although the overall accuracy was recorded as 64.6%, the area under the receiver 

operating characteristics curve was 0.80 for the more advanced disease (figure 5.51 below), which was 

a good model by interpretation.

Fig. 5.51: Three group classification (Low grade vs high grade tumours) LDA and a 5-
fold cross validation model showing the AUC of 0.80 with overall accuracy of 64.6%.

The confusion matrix used to quantify the level of accuracy of the LDA classification model 

demonstrated positive predictive values for the three classes were 47%, 37%, and 71% for classes 1 to 

3 (figure 5.54), respectively. In comparison, the true positive rates (sensitivity) for the three classes (1-

3) were 32%, 18% & 88%, respectively, as shown in figure 5.53 below.
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 True class

                                      2
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                                                              1                                   2                                       3        
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Fig. 5.52: Confusion matrix with absolute values for a three-group discrimination with 
the aid of LDA model. 
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Fig. 5.53: Confusion matrix for a three-group discrimination with the aid of LDA model 
showing True positive rates and False negative Rates. 
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Fig. 5.54: Confusion matrix for a three-group discrimination with the aid of LDA model 
showing positive predictive values and False discovery rates. 

Support vector machine learning was also utilised to distinguish between benign-, low- and high-grade 

tumours for risk stratification. The model can allow clinicians to identify the correct level of care to 
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administer to the different subgroups. With the cubic SVM for the three-group classification, an overall 

accuracy at discrimination was recorded as 93.2%, while the AUC of the receiver operating 

characteristic curve was 0.98. A brilliant discriminating model for three-group classification is shown in 

figure 5.55 below. The ROC curve shown below was for the pathology of interest in this model.

Fig. 5.55: Three group classification (benign vs Low grade vs high grade tumours) 
Support vector machine and a 5-fold cross validation model showing the AUC of 0.98 
with overall accuracy of 93.2%.
A confusion matrix (figure 5.57) was plotted to evaluate further this classification model's performance 

for the three pathological groups. This further demonstrated a positive predictive value for class 1, 2, 

& 3 as 92%, 87% and 95% respectively with a corresponding false discovery rate of 8%, 13% & 5% 

respectively as demonstrated in figure 5.56 below. On the hand, the true positive rate for the three 

classes (1-3) were 89%, 86%, and 96%, respectively (figure 5.58 below).                                                                          
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Fig. 5.56: Confusion matrix for a 3 group SVM classification model 
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Fig. 5.57: Confusion matrix for a 3 group SVM classification model 
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Fig. 5.58: Confusion matrix for a 3 group SVM classification model 
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Figures 5.59, 5.60 & 5.61 below demonstrate the spectral features that discriminate spectra into 

different groups.

Fig. 5.59: The spectral features used for discrimination. 

Fig. 5.60: Spectra difference between benign and cancer serum samples with peak 
assignment.
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Fig. 5.61: Spectral differences between the low Gleason score (mean) and high Gleason 
score (mean).

11.3 Blood Plasma analysis:
The blood plasm spectra were all processed in the same manner, with all spectra with an intensity of 

fewer than 400 counts removed because they were outside the biological fingerprint region. 25 PCs 

were utilised to compress the data before discriminant classifications were carried out at each training 

run. 20% of the data were held out from the training and utilised to test in each fold (5 times). The 

mean spectra for benign and cancer are displayed in figure 5.62 below.
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Fig: 5.62: Showing the separation between the mean spectra of the benign and the 
malignant samples.

5.3.1: Two Class discrimination Models:
Firstly, the linear discriminant analysis was utilised to discriminate the spectra into two pathology 

groups. Class 1 comprised all spectra from benign and low-grade Gleason <7 tumours. On the other 

hand, class 2 tumours consisted of all intermediate-grade tumours (Gleason 7) and high-grade (Gleason 

>7) tumour spectra. The area under the curve was 0.74 (threshold 0.49, 0.80), as shown in figure 5.63 

below.
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Fig. 5.63: Two class discrimination using PC-LDA with an AUC of 0.74 (threshold 0.49, 
0.80). Low grade versus high grade tumour spectra.
The confusion matrix depicts the true positives and negatives in green, while the false positives and 

negatives are shown in red in figure 5.64 below.                       
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Fig. 5.64: Confusion matrix of the LDA classification model showing class 1 (benign & 
Gleason <7) and class 2 (Gleason 7 & >7).
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The positive predictive values for classes 1 and 2 were 65% and 70%, respectively, while the false 

discovery rates for classes 1 and 2 were 35% and 30%, respectively, as demonstrated in figure 5.65 

below. The sensitivity  (true positive rates) for classes 1 and 2 were  51% and 80%, respectively, while 

the false negative rates for classes 1 and two were 49% and 20%, respectively, as shown in figure 5.66 

below.
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Fig. 5.65: Showing the Positive predictive values and False discovery rates for the two 
classes (Low grade vs high grade).
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Model 1 (Linear Discriminant)

True class
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Fig. 5.66: Showing the True positive rates (sensitivity) and False Negative rates for two 
classes (low grade vs high grade).

51% 49% 51% 49%

20% 80% 80% 20%



148

SVM was also utilised as a discrimination model to classify the plasma spectra into benign & low-grade 

tumours (Class 1) and intermediate & high-grade tumours (class 2). As shown in figure 5.67 below, the 

area under the curve was 0.98 (threshold: 0.04, 0.97), which is an outstanding model.

Fig. 5.67: Support Vector machine learning algorithm for a two class (benign + Gleason 
<7 versus Gleason 7 & >7) discrimination model showing an AUC of 0.98.

A confusion matrix (figure 5.68) was constructed to evaluate this classification model's performance 

further. The true positive rates were 96% and 97% for classes 1 and 2, respectively, while false negative 

rates are displayed in figure 5.69 below. The positive predictive values were 96% and 97% for classes 1 

and 2, and false discovery rates are also demonstrated in figure 5.70 below, which further confirms that 

this model is excellent for discriminating between two pathology groups (benign +Gleason <7 vs. 

Gleason ≥7).
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                      1                          

                                                                                                                                    

  True class   

                      2                                        

                                                         1                                                2 

Predicted class  

Fig. 5.68: The confusion matrix for a two class SVM model demonstrating the true 
positive and negative (green) and false positive and negative (pink) respectively.
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Fig. 5.69: The confusion matrix for a two class (Benign + < Gleason 7 vs Gleason ≥7) 
SVM model demonstrating the true positive rates and false negative rates (red) 
respectively.
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 Model 2 (Cubic SVM)
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Fig. 5.70: The confusion matrix for a two class SVM model showing positive predictive 
values and false discovery rates respectively.

5.2.2: Two Group classification model with Low grade versus high grade tumours
Another two-group classification model assessed the Gleason grade group classification with Gleason 

grade groups 1, 2, & 3 classified as class 1 while Gleason grade groups 4 & 5 were classified as class 2 

tumours. Both linear discriminant analysis and SVM learning algorithm were utilised to assess the 

performance of this two-group classification model.

When LDA was used to conduct the analysis, an AUC of 0.69 is shown in figure 5.71 below.
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Fig. 5.71: Receiver operating characteristic curve showing an AUC of 0.69 in a two-group 
classification LDA model for low grade versus high grade tumours (Gleason grade group 
scores).
A confusion matrix was constructed to summarise the classification algorithm's performance further. 

The true positive rates for classes 1 and 2 were 85% and 40%, respectively, as shown in figure 5.73 

below. Conversely, 15% and 60% false negative rates were recorded for classes 1 and 2, respectively, 

as demonstrated in figure 5.73 below.
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                                                           Model 3.4 (Linear Discriminant)
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                                                         1                                                2 
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Fig. 5.72: Confusion matrix showing the true positive and false positives as well as the 
true and false negatives for Gleason 1,2 & versus Gleason 4 & 5 using LDA classification 
model.
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Fig. 5.73: Confusion matrix showing the true positive and false positives rates for 
Gleason 1,2 & 3 versus Gleason 4 & 5 using LDA classification model.
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Support vector machine learning was also exploited to classify the spectra into two groups (Gleason 

grade groups 1, 2 & 3 versus Gleason 4 & 5). The figure below shows the receiver operating 

characteristics curve with an area under the curve of 0.98, which is an outstanding model for 

classification into two groups (Gleason grade groups 1-3 vs. Gleason grade groups 4-5).

Fig. 5.74: Receiver operating characteristic curve showing an AUC of 0.98 in a two-group 
classification SVM model for low grade versus high grade tumours (Gleason grade 
group scores 1, 2, & 3 vs 4 & 5).
Confusion matrix (figure 5.75) was constructed to further assess the performance of this classification 

model. True positive rates of 97% and 96% respectively were recorded for class 1 and 2 respectively as 

shown figure 5.76 below. However, false negative rates of 3% and 4% for classes 1 and 2 respectively 

as shown in the figure 5.76 below.
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Fig. 5.75: Confusion matrix with correct prediction in green while false prediction in pink 
for Gleason 1,2 &3 versus Gleason 4 & 5 using SVM classification model.
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Fig. 5.76: Confusion matrix showing the true positive and false positives rates for 
Gleason 1,2 & 3 versus Gleason 4 & 5 using SVM classification model.
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5.3.3: Three Group Classification model
LDA and SVM algorithms were also used to classify the spectra into three different pathology groups.

The three pathology groups in focus were benign, low-grade tumour, and high-grade tumours.

When LDA was exploited, the area under the curve of 0.68 was recorded, as shown in figure 5.77 below. 

A confusion matrix was utilised to assess the performance of this diagnostic model, necessary to give 

us an understanding of what the model was getting right and what types of errors it was making, 

demonstrated in figure 5.78 below. The ROC curve is shown below for the high-grade tumour class, 

which was the pathology of interest.

Fig. 5.77: Receiver operating characteristic curve showing an AUC of 0.68 in a three-
group LDA classification model for benign, low grade & high-grade tumours.
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 Model 1  (Linear Discriminant)

1

 True class

2
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                   1                                            2                                       3        

                                                                         Predicted class

Fig. 5.78: Confusion matrix showing correct (green) and false (pink) predictions for 
benign, low-grade, and high-grade tumours using LDA classification model.

The confusion matrix demonstrated true positive rates of 38%, 27%, and 69% for classes 1,2 & 3, 

respectively. In comparison, 62%, 73%, and 31% false negative rates were recorded for classes 1-3, as 

shown in figure 5.79 below.
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Fig. 5.79: Confusion matrix showing the true positive rates and false negative rates for 
discrimination into benign, low-grade, and high-grade tumour classes using LDA 
classification model.
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Fig. 5.80: Confusion matrix showing the positive predictive values and the false 
discovery rates for the three group LDA classification model.
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SVM was also utilised to discriminate the spectra into three pathology groups (benign, low-grade, and 

high-grade tumours). The receiver operating characteristic curve demonstrates an AUC of 0.98, as seen 

in figure 5.81 below. The ROC curve shown in figure 5.81 below was for the high-grade group.

Fig. 5.81: Receiver operating characteristic curve showing an AUC of 0.98 in a three-
group SVM learning classification model for benign, low grade & high-grade tumours.

A confusion matrix was constructed to assess this classification model's performance further. It 

demonstrated positive predictive values of 95%, 95% & 96%, respectively, with false negative rates of 

5%, 5%, and 4%  for classes 1, 2, and 3, respectively, as shown in the figure below. On the other hand, 

the true positive rates were 95%, 95% & 96%, while the false negative rates were 5%, 5%, and 4%, 

respectively, as shown in figure 5.82 below.
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Fig. 5.82: Confusion matrix for a three-group pathology showing the true positive and 
false positives SVM classification model.
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Fig. 5.83: Confusion matrix for a three-group pathology showing the true positive and 
false negative rates with the aid of SVM classification model.
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Fig. 5.84: Confusion matrix showing the positive predictive values and the false 
discovery rates for the three group SVM learning classification model.

Spectral features found within the plasma samples are highlighted in Figures 5.85-5.87 below.
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Fig. 5.85: Linear discriminant functions of the spectral features used for discrimination 

Fig. 5.86: Mean spectral differences between benign and cancer samples (Plasma).
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Fig. 5.87: Spectral difference between the low- and high-grade tumours (plasma).

In summary, we have shown the discriminate abilities of LDA and SVM algorithms for tissue, serum, and 

plasma spectra, considering 2, 3,4, and 5 group classification models. We have shown that the models 

become less reliable as we move from 2 group classification to 5 group classification model. Better 

outcomes have been shown with SVM learning algorithms when compared to LDA models. The 

summary of the performance of the LDA and SVM classification models for two and three groups can 

be seen in tables 5.13-5.21 below for easy comparison.  Spectral features have been shown for tissue, 

serum, and plasma, with higher peaks for nucleic acids such as DNA for the mean cancerous spectra 

compared to the benign group. The cancerous group observed lower carotenoid concentrations in the 

blood serum and plasma.

Tissue LDA SVM

Sensitivity 66% 87%

Specificity 78% 79%

AUC 0.77 0.82

PPV 53% 50%

NPV 86% 96%

Table 5.13: Two Group classification: Benign vs Malignant (Tissues)
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Tissue LDA SVM

Sensitivity 60% 77%

Specificity 64% 73%

AUC 0.65 0.80

PPV 63% 73%

NPV 61% 76%

Table 5.14: Two Group classification: Low-grade tumour vs High-grade tumour (Tissues)

Tissue LDA SVM

Sensitivity: Class 1 49.4% 64.7%

Sensitivity: Class 2 53.5% 63.9%

Sensitivity: Class 3 53.4% 65.3%

Specificity: class 1 39% 58.4%

Specificity: class 2 62% 72.3%

Specificity: class 3 54.2% 61.8%

AUC 0.73 0.79

Overall accuracy 52.5% 64.6%

Table 5.15: Three-Group classification: Predominant 3g (Tissues)
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Serum LDA SVM

Sensitivity: Class 1 64% 92%

Sensitivity: Class 2 72% 95%

False Negative Rate: Class 1 36% 5%

False Negative Rate: Class 2 28% 8%

Positive Predictive Value: Class 1 59% 95%

Positive Predictive Value: Class 2 77% 92%

False Discovery Rate: Class 1 41% 5%

False Discovery Rate: Class 2 23% 8%

AUC 0.78 0.94

Table 5.16: Two-group Classification model: Low-grade versus high-grade tumours

Serum LDA SVM

Sensitivity: Class 1 91% 95%

Sensitivity: Class 2 59% 94%

False Negative Rate: Class 1 9% 5%

False Negative Rate: Class 2 41% 6%

Positive Predictive Value: Class 1 69% 94%

Positive Predictive Value: Class 2 86% 95%

False Discovery Rate: Class 1 31% 6%

False Discovery Rate: Class 2 14% 5%

AUC 0.81 0.98

Table 5.17: Predominant 2 groups: Low-grade versus high-grade tumours
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Serum LDA SVM

Sensitivity: Class 1 32% 89%

Sensitivity: Class 2 18% 86%

Sensitivity: Class 3 88% 96%

False Negative Rate: Class 1 68% 11%

False Negative Rate: Class 2 82% 14%

False Negative Rate: Class 3 12% 4%

Positive Predictive Value: Class 1 47% 92%

Positive Predictive Value: Class 2 37% 87%

Positive Predictive Value: Class 3 71% 95%

False Discovery Rate: Class 1 53% 8%

False Discovery Rate: Class 2 63 13%

False Discovery Rate: Class 3 29% 3%

AUC 0.80 0.98

Table 5.18: 3-group classification model: Benign, low-grade versus high-grade tumours

Plasma LDA SVM

Sensitivity: Class 1 51% 96%

Sensitivity: Class 2 80% 97%

False Negative Rate: Class 1 49% 4%

False Negative Rate: Class 2 20% 3%

Positive Predictive Value: Class 1 65% 96%

Positive Predictive Value: Class 2 70% 97%

False Discovery Rate: Class 1 35% 4%

False Discovery Rate: Class 2 30% 3%

AUC 0.74 0.98

Table 5.19: 2-group classification mode: Benign + low-grade versus high-grade tumours
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Plasma LDA SVM

Sensitivity: Class 1 51% 96%

Sensitivity: Class 2 80% 97%

False Negative Rate: Class 1 49% 4%

False Negative Rate: Class 2 20% 3%

Positive Predictive Value: Class 1 65% 96%

Positive Predictive Value: Class 2 70% 97%

False Discovery Rate: Class 1 35% 4%

False Discovery Rate: Class 2 30% 3%

AUC 0.74 0.98

Table 5.20: Low-grade versus high-grade (2 Group classification model).

Plasma LDA SVM

Sensitivity: Class 1 38% 95%

Sensitivity: Class 2 27% 95%

Sensitivity: Class 3 69% 96%

False Negative Rate: Class 1 62% 5%

False Negative Rate: Class 2 73% 5%

False Negative Rate: Class 3 31% 4%

Positive Predictive Value: Class 1 45% 95%

Positive Predictive Value: Class 2 36% 95%

Positive Predictive Value: Class 3 52% 96%

False Discovery Rate: Class 1 55% 5%

False Discovery Rate: Class 2 62% 5%

False Discovery Rate: Class 3 48% 4%

AUC 0.68 0.98

Table 5.21: 3-group classification model (benign versus low-grade versus high grade 
tumours).
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Please note that all sensitivity, specificity, positive predictive values in this study were calculated as 

shown the table 5.22 below.

Disorder No Disorder

Positive  Test Result True Positive (TP) False Positive (FP)

Negative Test Result False Negative (FN) True Negative (TN)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

PPV = TP/(TP+FP)

NPV = TN/(TN+FN)

Table 5.22 : Calculation of sensitivity, specificity, positive and negative predictive values
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Chapter 6– Discussion

6.0: Contribution to knowledge:
Raman spectroscopy has been shown to have the ability to probe the molecular fingerprints of different 

disease conditions. It can assess the biochemical compositions and functions of different biological 

samples in a non-destructive and label-free fashion. Therefore, it could be utilised to assess early 

molecular changes resulting from prostate cancer before structural changes are seen. The work in this 

thesis was set out to see if Raman spectroscopy can provide a more accurate prediction of the presence 

of prostate cancer than PSA and allow for blood sample triage of patients into at-risk groups. Secondly, 

the usefulness of Raman spectroscopy as a minimally invasive diagnostic tool to assess real-time, 

molecular specific fingerprints of prostate disease such as tumour was also assessed.

The testing of liquid and tissue biopsies was proposed to measure the disease-specific molecular 

fingerprints found within blood plasma, serum, and prostate tissues. Raman spectroscopy has been 

demonstrated to have the ability to distinguish between prostate disease at the cellular level. 

Nevertheless, bodily fluids have not been used to date except for the recent work of Medipally D K R et 

al. (2020); who utilised the blood samples of plasma and lymphocytes to differentiate spectra into 

different groups with Fourier Transform Infrared Spectroscopy and Raman spectroscopy from healthy 

controls and cancer patients. We initiated a feasibility study whereby we measured specimens from 

patients exhibiting both malignant and benign diseases within the prostate gland. We compared the 

molecular fingerprints obtained from Raman spectroscopy with histopathology (a gold standard 

technique for diagnosis of prostate cancer) and PSA levels. We utilised advanced data analysis methods 

to identify the differences in the pathology groupings, enabling an initial diagnostic algorithm to be 

demonstrated and tested.

6:1: Performance of the classification models:
A classification model can only be considered as good as the data used in building the model. Therefore, 

it is paramount that high-quality data are obtained and processed carefully since an error in the data 

acquisition or analysis could impact quite severely on the outcome. An experienced and board-certified 

consultant histopathologist reviewed and reported on all the samples used for this study.

6.2: Tissue Samples analysis:
Histological findings concerning tumours in the prostate gland are usually based on the structural 

changes found within prostate tissues, which may vary from the abnormal architecture of the glandular 



171

tissue to the loss of basal membrane cells or changes in the nuclear, among other features. On the 

other hand, Raman spectroscopy relies on the biochemical variation within the cell or tissue or biofluids 

to distinguish between the different pathological groupings. The classification models utilised to 

distinguish the different pathology groups were therefore trained with a gold standard histology 

technique, including the benign and malignant groups. Leave one out cross-validation was statistically 

significant at p<0.1, which indicated that there was a 10% possibility of a chance occurrence of variance 

between the training model and the test model. Demonstrated that the training dataset was probably 

slightly overfitting using spectral components irrelevant to the differences in pathology.

Furthermore, a more extensive sample set would have enabled more inter-patient variation to be 

described, which may have led to more robust models when tested with independent sampling. It is 

important to note that in the protocol employed between the experimental and clinical centres, the 

tissue pathology could not consider the location from which the spectra were measured. Also, the 

prostate tissues were highly heterogenous, including regions of glandular and stromal tissues that could 

have been independently sampled by the few-micron laser beam used for illumination.

The classification model developed performed well compared with the gold standard technique of 

histopathology assessment. Twenty-five principal components were utilised for data compression 

before discriminant classification at each run. 20% of the spectra were held back from the training and 

used to test the model in each fold (5 times). It further confirmed the robustness of the model, although 

some variances among the benign and malignant spectra were not considered.

The same model as above was further utilised for analysis. However, this time only significant principal 

components were utilised, minimising the risk of the model predicting the pathology used in the 

principal components that were not relevant to the pathology. A high sensitivity of 84.6% with a 

specificity of 76.2% was achieved, giving a positive predictive value of 89.8% with a negative predictive 

value of 67.0%. It further substantiated the possibility of utilizing Raman spectroscopy as a measuring 

and discriminating tool in distinguishing spectra into two pathology groups, from benign and malignant 

lesions within the prostate gland.

Both linear discriminant analysis and support vector machine learning classification models were used 

to distinguish between the different pathology groups from the spectra acquired from the biopsy 

tissues.
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The data analysis was done using the raw data, with only normalisation applied. Further pre-processing 

steps, such as EMSC correction and background subtraction, were also tested. However, these pre-

processing steps did not add any value to the classification performance. Hence the data were not used 

for the presented analysis results.

The two-pathology group comprising benign and malignant tissue samples with an LDA model 

consisting of 381 spectra taken from 79 patients was correctly classified with a prediction accuracy of 

75% with an area under the receiver operating characteristic curve of 0.77. The sensitivity and 

specificity of 78.4% and 65.6% were recorded. Moreover, when the MATLAB classification app was 

utilised to distinguish the spectra into the two pathology groups with a 5-fold leave one out cross-

validation for the group mean spectra with the LDA model, 72.6% prediction accuracy was documented 

with sensitivity and specificity of 76.4% and 61.1% respectively with a corresponding AUC of 0.70.

Overall prediction accuracy of 80.8%, a sensitivity of 79.4%, and a specificity of 87.0% with the Support 

Vector Machine Learning algorithm, the AUC was 0.82.

When the MATLAB classification app was utilised to cross-validate (5-fold leave one out) the data for 

the group mean spectra SVM model, the prediction accuracy of 72.6% with a sensitivity of 74.6% and 

specificity of 64.3%. Overall prediction accuracy was also dropped to 0.69 showing better outcomes for 

benign spectra, and worse outcomes for malignant spectra since only a small number of cancer tissue 

samples were used. Although there was a decline in the performance of the SVM when 20% of the data 

were withheld for validation of the data, nevertheless, the SVM algorithm demonstrated better 

prediction ability at the classification of the Raman spectra into two different pathology groups (benign 

versus cancer) than the LDA model.

Another method of assessing a two-pathology group was also conducted. However, this time, instead 

of distinguishing the spectra into either benign or malignant groups, spectra were classified into low-

grade or high-grade tumours. For this analysis, spectra from intermediate-grade tumours were also 

classified as high-grade. Therefore, spectra from Gleason 7 tumours were classified with spectra from 

high-grade tumours. Class 1 comprised benign lesions and Gleason grade <7, while the class 2 group 

comprised Gleason 7 and >7 tumours. Analysis with the raw data using the LDA classification model 

depicted an overall prediction accuracy of 63.3%, with 52.6% correctly classifying spectra into class 1 

and class 2 with an overall prediction accuracy of 75%. This model demonstrated a better accuracy at 
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predicting spectra in the high-grade tumours group than in the low-grade ones. The sensitivity and 

specificity in distinguishing the spectra into low-grade or high-grade groups were 70.0% and 64.6%, 

respectively. However, the training dataset demonstrated a 68.8 % overall prediction accuracy, while 

sensitivity and specificity were 66.8% and 70.8 %, respectively.

Moreover, when the MATLAB classification app was utilised to distinguish the spectra into the two 

pathology groups (low grade versus high grade) with a 5-fold leave-one-out cross-validation for the 

group mean spectra with the LDA model, the overall prediction accuracy was 61.9 %. The area under 

the curve of 0.65 was observed, while the sensitivity and specificity were 60.4% and 63.5%, respectively.

Support vector machine learning was also utilised to discriminate the spectra into these two pathology 

groups – low-grade versus high-grade tumours. The overall prediction accuracy of 74.8% when a 5-fold 

cross-validation was applied, holding back 20% of the data using the MATLAB app for classification. A 

sensitivity of 73.0% and a specificity of 75.6% were documented, respectively. Slightly higher prediction 

performance was observed with the SVM model compared to the LDA model.

A three-pathology group prediction model was also assessed with a PC-LDA model to discriminate the 

spectra into benign, Gleason score <7, and Gleason score ≥7. 69.6% of the spectra were correctly 

classified into the benign group. In comparison, 53.3% were correctly classified into the low-grade 

cancer group (Gleason <7), and 75% were correctly classified into Gleason ≥7 group, giving an overall 

prediction accuracy of 68.4%. When a 5-fold leave-one-out cross-validation was used with a MATLAB 

classification app, an overall accuracy of 57% was documented, with 55% of spectra correctly classified 

into class 1 and 58% classified into class 2. In comparison, 58% were accurately classified into class 3.

When the data were normalised to the spectrum with a 5-fold leave-one-out cross-validation, the PC-

LDA model demonstrated an AUC of 0.73. The overall prediction accuracy of 52.5% was observed with 

49.4%, 53.5% and 53.4% sensitivity for classes 1, 2 & 3. While the specificity were 39%, 62% & 54.2% 

for the classes 1 – 3, respectively.

Quadratic SVM was also used to assess the data; the overall prediction accuracy of 64.6%, and an AUC 

was 0.79 for the three-group pathology analysis. Sensitivity for the respective 3 classes from 1 to 3 were 

recorded as 64.7%, 63.9% & 65.3% respectively. However, specificity were recorded as 58.4%, 72.3% & 

61.8% for the 3 respective classes.
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The four-pathology group biopsy targeting PC-LDA model comprised the benign group as the first group, 

a Gleason score <7 as the second group, a Gleason score of 7 was assigned to the third group, while a 

Gleason scores greater than 7 was classified as the fourth group. The overall prediction accuracy of 

57.0% with the percentage of correctly classification into classes (groups 1, 2, 3 & 4) recorded as 52.2%, 

60%, 64.3%, 50.0%, respectively. However, when the MATLAB classification app was utilised to 

normalise the data using 25 principal components, and 5-fold cross-validation was applied, the total 

prediction accuracy declined to 50.4%, which was about a 6% drop from the raw data. The percentages 

of the spectra correctly classified into different pathology groups were as follows: Class 1, 2, 3 & 4 were 

correctly classified at 47.8%, 55.6%, 46.7%, and 57.6%, respectively.

Another four-group classification was also assessed. However, this time, the predominant Gleason 

grade group scores were assessed, which comprised Gleason grade groups 1, 3, 4 & 5. Correctly 

classified spectra into class 1, 2, 3 & 4 was 52.2%, 67.9%, 55.6%, 100% respectively. Sensitivity was 

56.7%, 62.8%, 63.6%, 35.7% respectively while specificity was 52.2%, 67.9%, 55.6%, 100%.

Nevertheless, merging the spectra from Gleason grade group scores 4 and 5 to form one group, thereby 

reducing the classification model to three groups, did not improve the classification precision. Instead, 

there was a slight depletion in the performance accuracy, showing an overall prediction accuracy of 

58.3% (class 1, 2 & 3), while the four-group classification model's overall prediction accuracy was 59.6%.

6.3: Classification performance for the Liquid biopsy spectra
Liquid biopsies are tests carried out on blood samples to rule out the presence of cancer cells from 

tumours circulating within the blood or pieces of biomolecules from tumour cells found in the blood. 

Liquid biopsy can be utilised for early cancer detection, monitoring disease progression, treatment 

efficacy, or assessing disease recurrence. Biomolecular content variations in the blood have been 

known to occur due to the presence of tumour cells. The variations in oncological metabolites can be 

quantity depletion or an increase in the quantity of the metabolites depending on the metabolite in 

question and the disease condition assessed. Therefore, oncometabolite are metabolites found in large 

quantities in the presence of cancer cells. These are when a distinct mechanism links a particular 

mutation in the tumour to the large concentration of the metabolites.

Raman spectroscopy of blood plasma and serum has recently been accepted as a technique of choice 

in the early detection of cancer within the body since it is a minimally invasive technique and easy 
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accessibility of the blood samples can be achieved from potential subjects. Furthermore, biomarkers 

secreted from the tumour cells into the general blood circulation can be obtained from the blood 

plasma and serum. Although near-infrared Raman signals are often weak, both serum and plasma are 

known to be affected by the fluorescence background, mainly when Raman spectra are acquired. 

Nevertheless, technological advancement has increased the signal intensity of Raman scattered light 

and alleviated the burden upon the Raman signals from fluorescence interferences. The deposition of 

a small volume of blood plasma or serum on a substrate such as calcium fluoride or aluminium and 

subsequent solvent evaporation and formation of a coffee ring has been shown to enhance the 

intensity of the Raman scattered light with less interference from fluorescence. Therefore, an objective 

assessment of the biomolecular composition of the blood plasma/serum can be achieved with Raman 

spectroscopy and multivariate analysis. This technique can be used as a complimentary screening tool 

to PSA in assessing an asymptomatic patient with suspicion of the presence of cancer within the 

prostate gland.

We attempted to discriminate the Raman spectra acquired in our study into different pathology groups 

to assess the prediction accuracy of the classification model for PC-LDA and SVM algorithms. Two group 

pathology models comprising benign and malignant samples from blood serum comprising 300 spectra 

obtained from 100 patients were utilised for training to assess the model's performance. During the 

training process, the overall diagnostic accuracy for the LDA model of the blood serum spectra utilised 

to discriminate the spectra into the two classes was 72.4 %, with higher prediction accuracy in the 

benign group (74.5%) compared to the malignant group (68%). The sensitivity and specificity were 

recorded as 82.6% and 56.7%, respectively.

A training model was also built for a four-group LDA model, consisting of benign, Gleason score <7, 

Gleason score 7, and Gleason >7. The overall prediction accuracy was recorded as 55.3%, with the 

spectra correctly classified into the low-grade tumour with Gleason score <7 having the highest 

prediction accuracy of 68.4%, while spectra from intermediate tumour grade of Gleason score 7 had 

the lowest prediction accuracy of 48.5%. Sensitivity for the four groups were 60.0%, 44.0%, 73.0%, 

61.0% respectively. However, this training model was poor, possibly because there were not enough 

spectra in some groups compared to others.

Another training performance was assessed for a two-group PC-LDA model that was conducted using 

low-grade tumours (benign + Gleason <7) and high-grade tumours (Gleason 7 and >7). This model gave 
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an overall prediction accuracy of 64%. The low-grade tumours were correctly classified by 77%, while 

high-grade tumours were correctly classified with accuracy recorded at 52.8%. The sensitivity and 

specificity for this classification were 62% and 74.3%, respectively.

Three class training performance models included benign and Gleason <7 in class 1, Gleason 7 in class 

2, and Gleason >7 were classified into class 3. Overall prediction accuracy of 56.3%. However, Gleason 

score 7 spectra were correctly classified by 73.7%, while Gleason score >7 had the lowest prediction 

accuracy of 50.9 %. The sensitivity for the three classes were 50.0%, 42.0% and 87.0% respectively.

After assessing the data with PC-LDA with different groups of data, intensity less than 400 counts at 

1650 cm¯¹ (Amide 1) were removed from the data set. Five-fold cross-validation was carried out to test 

the validity of the classification models. All data were mean-centred, and 25 principal components were 

used for data compression before discriminant classification at each training run. Since blood sera and 

plasma were classified separately, a comparison was carried out. Compared to the sera samples, a 

better mean spectra separation between cancer and benign was observed for the plasma samples.

The two-group LDA classification model was made up of low-grade (benign & Gleason <7) and high-

grade (Gleason 7 & >7) tumours for the mean centred spectra of the blood serum samples. These 

included 300 spectra taken from 100 samples taken from 100 patients. The receiver operator 

characteristic curve was generated to assess the performance of the PC-LDA model for blood serum 

classification by consecutively changing the thresholds to determine the correct classification of all the 

subjects. The AUC of 0.78 (threshold of 0.38, 0.72) was recorded with a sensitivity and specificity of 

50.2 % and 76.6 %, respectively. At the same time, the positive predictive rate and the negative 

predictive value were 64.4 % and 72.5 %, respectively.

 A close comparison of this PC-LDA with the performance of the blood plasma for the same two 

pathology group classifications (Low-grade versus high-grade tumours) for 300 spectra from 100 

samples taken from 100 patients was carried out. The AUC demonstrated 0.74 (at threshold of 0.49, 

0.80) with a sensitivity of 64.6 % and 69.5 % respectively. While the positive predictive value and 

negative values were 80.2 % and 64.7 %, respectively.

When the cubic support vector machine learning algorithm was used to analyse the two-group 

classification model, this was done for both serum and plasma with the same number of spectra and 

samples. Overall accuracy for classification of the serum spectra was 94% with an AUC of 0.97 
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(threshold 0.08, 0.95) for two group classification models (benign + Gleason <7 versus Gleason 7 + 

Gleason >7). The sensitivity and specificity were 92.2% and 95.1%, respectively, while the positive and 

negative predictive values were 92% and  95%, respectively.

 On the other hand, the cubic SVM for the same two-sample model for the plasma depicted an AUC of 

0.98 (threshold of 0.04, 0.97). The sensitivity and specificity were 96% and 96.9%, respectively, while 

the positive and negative predictive values of 95.7% and 97.2% were recorded.

 The cubic support vector machine learning algorithm was superior to the PC-LDA for discriminating 

between class 1 and class 2 for both blood plasma and serum spectra; hence it is the preferred 

classification approach.

The performance of another two-pathology group classification model was also assessed with the blood 

serum spectra. This model included Gleason grade group scores 1-3 classified as class 1 tumours, while 

the Gleason grade group score 4 and 5 spectra were classified as class 2 tumours. This practical model 

could be used for treatment planning and avoiding the overtreatment of low-grade tumours. When PC-

LDA was utilised to discriminate spectra into these two pathology groups for the blood serum spectra, 

overall prediction accuracy of 74.9% was recorded with an AUC of 0.8 (threshold 0.09, 0.59). The 

sensitivity and specificity were 69.0% and 86.4%, respectively, while the positive and negative 

predictive values of 90.5% and 59.4% were documented, respectively.

A comparison was made with the performance PC-LDA for the blood plasma, AUC of 0.69 (threshold 

0.15, 0.4). Sensitivity and specificity were 67.1% and 63.7%, respectively, while the positive and 

negative predictive values were 84.6% and 39.5%, respectively. 

Support vector machine learning was also used to assess the performance of the above two pathology 

group classification model for the serum spectra. The overall prediction accuracy was 94.6%, with an 

AUC of 0.98 (threshold of 0.05, 0.94). The sensitivity and specificity of 94.0% and 95.0%, respectively, 

while the positive and negative predictive values of 95.0% and 94.0% were recorded, respectively.

 A close comparison of the Blood plasma spectra analysis with the support vector machine learning 

algorithm also demonstrated the AUC of 0.98 (threshold of 0.03, 0.96). Sensitivity and specificity were 

97.0% and 96.0%, respectively, while the positive and negative predictive values were 97.0% and 96.0%.
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Support vector machine learning algorithm has further proven to be a superior prediction model to 

classify the spectra into two groups Gleason grade group score 1-3 versus Gleason grade group score 4 

& 5 both for the blood plasma and serum spectra with an area under the curve of the receiver operating 

characteristic curve of 0.98. 

The three-pathology group classification model consisting of benign, low-grade, and high-grade spectra 

was also assessed using the PC-LDA classification model for the blood serum spectra. Overall prediction 

accuracy of 64 % was recorded. The sensitivity for the different classes included 47.0%, 37.0%, 71% 

respectively with a positive predictive values of 32%, 18%, 88% respectively and the AUC was 0.80 ( 

threshold of 0.58, 0.88).

When the PC-LDA model was utilised to assess the ability to discriminate spectra into benign, low-grade, 

and high-grade tumour groups for the blood plasma samples, the sensitivity for classification into the 

respective classes (1-3) were 45%, 38%, and 52%, respectively. The positive predictive values for the 

different classes were 38%, 27%, and 69%, respectively.

Support vector machine learning algorithm was also utilised to assess the ability of the model to classify 

the spectra into the three different groups (benign, low-grade & high-grade) both for the serum and 

the plasma spectra. AUC was 0.98 (threshold of 0.08, 0.96) for serum samples with a sensitivity for 

prediction into the three classes of 92%, 87%, and 95%, respectively. At the same time, the positive 

predictive values were 89%, 86 %, and 96%, respectively. On the other hand, when blood plasma 

spectra were assessed, the area under the curve was 0.98 (0.03, 0.96), which was quite similar to the 

AUC for the serum spectra. The sensitivity for classification into the three pathology groups was 95%, 

95%, and 96%, respectively, and the positive predictive values were 95%, 95%, and 96%, respectively.

The support vector machine learning algorithm is an excellent classification model for distinguishing 

between spectra from different pathology groups, as demonstrated unequivocally in tissue, serum, and 

plasma sample analysis. Although the PC-LDA model has shown some ability to classify the spectra into 

different pathology groups, its performance lacks consistency in providing a high prediction accuracy 

all through the different types of samples analysed. Therefore, to answer the first research question, 

can Raman spectroscopy provide a more accurate prediction of the presence and progression of 

prostate cancer than PSA and allow blood sample triage of patients into at-risk groups? It is evident 

that based on this study's findings, with the aid of a Drop coated deposited Raman spectroscopy of 
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blood plasma and serum; it is possible to provide a more accurate prediction of the presence of prostate 

cancer than PSA. The sensitivity and specificity of PSA in prostate cancer detection have been known to 

be around 21% and 91%, respectively. However, with Raman spectroscopy of blood serum and plasma, 

it is possible to detect the presence of prostate cancer and classify the same into two or three groups 

with sensitivity and specificity of 95%-96%. Therefore, it is possible to use this technique to triage 

patients into two or three pathology groups of benign, low-grade, and high-grade tumours with the aid 

of advanced data analysis techniques such as support vector machine learning algorithm. 

Two other studies have used Raman spectroscopy in breast and prostate cancer (Medipally DKR et al., 

2020) with liquid biopsy samples (Freitas DLD et al., 2020). Freitas DLD et al. conducted a breast 

screening program with liquid biopsy from blood plasma samples from 476 patients recruited over two 

years. Attenuated total reflection Fourier Transform infrared was utilised to analyse the 

spectrochemical fingerprints of the plasma samples. Sensitivity and specificity of 94.0% and 91%, 

respectively, were recorded compared to sensitivity (88-93%) and specificity (85-95%) of 

mammography.

Medipally D et al. utilised a high throughput Raman spectroscopy and Fourier Transform Infrared 

spectroscopy of liquid biopsies of blood plasma and lymphocytes to assess the presence of cancer 

among prostate cancer patients and healthy control subjects. Raman and FTIR spectra were recorded 

from blood plasma samples; nevertheless, only Raman spectra were recorded from the lymphocytes. 

Partial Least squares discriminant analysis was used to classify spectra into different pathology groups 

with sensitivity and specificity of 90%-99%. The team utilised classical least squares fitting analysis for 

detecting the main components involved in the development and progression of prostate cancer.

The primary purpose of establishing the Gleason grading system was to assess the prostate tumour 

cell's structural features. The Gleason grading system often decides prognosis prediction and adopts a 

suitable treatment pathway. 

Ozkan and colleagues conducted a study to evaluate the interobserver concordance rate of two 

pathologists at histological grading of prostate tumours (Ozkan TA et al., 2016). Four hundred-seven 

pathology slides of prostate needle biopsies from 34 patients were re-evaluated by two pathologists 

blinded to each other's reports and previous reports. Both pathologists disagreed on the presence of 

tumours in 31 cores; however, 74% (n=23/31) were Gleason pattern 3 based on the initial histological 
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report. While Pathologist 1 reported the presence of a tumour in 202 cores, pathologist two reported 

tumours in 231 cores. The kappa (k) coefficient was utilised to assess the degree of concordance 

between the two pathologists. The concordance rate between the two observers was 63.96% (k=0.34) 

for the primary pattern, while the secondary Gleason pattern received a concordance of 63.45% 

(k=0.37), respectively. The agreement concerning the sum of the primary and secondary patterns was 

57.8%, with a kappa score of 0.43.

On the other hand, the level of agreement was even lower for the Gleason grade group scoring (51.7%) 

with k = 0.39, demonstrating a low level of agreement between the two pathologists, which means that 

the precision in carrying out histological assessment can be less than reliable at all times. Suppose 

clinicians have to depend entirely on the result of the histological grading system to determine the most 

suitable treatment for prostate cancer and the prediction of prognosis. With a lack of precision in 

diagnosis as a result of poor reproducibility, therefore it means that false positives and false negatives 

would have been recorded.

Therefore, using the Gleason grading system to train the Raman models means training the model on 

an imperfect system with spatial discrepancies (in the biopsies) between pathology and potential errors 

in pathology classification to train and test the models. This thesis highlights that a classification model 

is only as good as the data used in training and testing the model.

6.4: Plasma Spectral features:
Prominent Raman peaks were observed in plasma samples with respective tentative biochemical 

assignments at the following locations. 455 cm¯¹, 463, 473, 496, 519, 547 (cholesterol), 583, 617, 625 

(guanine), 640 (guanine), 647, 757, 822, 877, 962, 999, 1005 (beta carotene), 1028, 1074 (triglycerides), 

1133, 1156 (carotenoid), 1174, 1203 (collagen), 1210 (tryptophan), 1230 (amide 111), 1349, 1360, 

1392, 1452 (CH₂ bending), 1467, 1520 (carotenoid), 1332, 1587, 1548, 1600. 1607 (phenylalanine), 1612 

(C-C stretching), 1645 (amide 1 bending), 1656 (amide 1), 1674 cm¯¹.
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Fig. 6.1: Spectral assignment for benign minus cancer plasma data.
The highest intensities were observed at 1156 cm¯¹, 1005 cm¯¹, and 1520 cm¯¹, consistent with 

carotenoid or beta carotenoids. Effectively demonstrated that carotenoid was responsible for 

differentiating benign and malignant plasma mean spectra. Therefore, a higher concentration of 

carotenoids was found in benign samples after cancer spectra were subtracted.

When molecular components of the mean of the low Gleason scores were subtracted from that of the 

mean high Gleason scores, prominent Raman peaks was observed in plasma spectra at the following 

locations 489, 618,625, 640, 647, 692, 703, 711, 755, 874, 903, 918, 942, 999, 1005, 1026, 1034, 1043, 

1103, 1119, 1131, 1144, 1158, 1169, 1282, 1300, 1332, 1347, 1436, 1436, 1452, 1468, 1517, 1578, 1586, 

1597, 1648 cm¯¹ as demonstrated in the figure below.
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Fig. 6.2: Spectral assignment after subtraction of mean spectral intensity of high 
Gleason scores from the low Gleason scores.
Here the highest peak recorded was at 1005, which is in line with the highest amount of molecules, 

which was in a spectral position of carotenoids, while the lowest concentration was seen at peak 

position 999.

Despite the similarity in shape and intensity of the characteristic spectra of benign and cancer plasma, 

remarkable changes in Raman peak intensity were observed.

Firstly, when the benign group was compared with the cancer group, there were higher intensities 

depicted with the mean benign spectra at Disulphide (approx. 507 cm¯¹), phenylalanine (approx. 622 

cm ¯¹), tyrosine (approx. 644 cm¯¹), carotenoid (approx. 1156 & 1517), CH₂ deformation (approx. 1448). 

On the other hand, higher intensities were seen at collagen (approx. 1030 cm¯¹) at peak positions 757 

cm¯¹ and 878 cm¯¹ for malignant mean spectra compared to the mean benign spectra.
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Fig. 6.3: Mean plasma spectra for benign and cancer groups
A comparison was also made between spectral intensities of the mean low Gleason scores with that of 

the mean high Gleason scores. The mean spectra for the low Gleason scores recorded high intensities 

at Disulphide (approx. 509 cm¯¹). However, the mean high Gleason scores demonstrated a higher 

spectral intensity than the mean low Gleason scores at tyrosine (approx. 829 cm¯¹), polysaccharides 

(approx. 851 cm¯¹), lipids (approx. 1261), CH₂ twisting (approx. 1317), DNA (approx. 1335), Glycogen 

(approx. 1377) and CH₂ deformation as seen in figure 6.4 below.

Fig. 6.4: Mean plasma spectral differences between low Gleason scores and high 
Gleason scores.
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6.5: Serum spectral features:
Prominent Raman peaks were observed after subtracting mean cancer spectra from the benign mean 

spectra at the following locations with respective tentative biochemical assignments. 548 cm¯¹ 

(Cholesterol), 618 cm¯¹ (Phenylalanine) amino acid, 625 cm¯¹ (guanine), 717 cm¯¹ (Lipid ), 878 cm¯¹ 

(Lipid), 1128 cm¯¹ (Heme vibration mode), 1235 cm¯¹ (Amide III), 1300 cm¯¹ (Lipid), 1358 cm¯¹ 

(Tryptophan), 1442 cm¯¹ (Lipid), 1525 cm¯¹ (Carotenoid), 1653 cm¯¹ (Amide 1) and 1676 cm¯¹ (C=C 

vibration mode). The highest spectral intensities were observed at peak positions 1300 and 1442, which 

were in the peak position for lipids, and 1653, which was at the amide I position. In contrast, the lowest 

spectral intensities were mostly related to carotenoids' spectral positions at 1525 cm¯¹.

Fig. 6.5: Mean serum spectral difference between benign and cancer.
A comparison between the mean benign and cancer spectra was assessed, and there were some 

differences between the two mean spectra. In comparison, the benign group depicted higher intensities 

at Disulphide (approx. 510 cm¯¹), phenylalanine (approx. 622 cm¯¹), tyrosine (approx. 644 cm¯¹), C-C 

stretch, and collagen (approx. 936 cm¯¹ ), amide III (approx. 1264 cm¯¹). However, the intensity was 

significantly highest in the cancer group at peak position 1003 cm¯¹, which corresponded with 

phenylalanine (amino acid).
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The increased intensities of the 1336 cm¯¹ and 1326 cm¯¹ peaks were in line with a higher content of 

cell-free DNA. Although the reason is unknown, several cancer patients' blood has been proven to have 

an increased level of cell-free nucleic acids.

A lower carotenoid level has been demonstrated in the population of patients with prostate cancer. 

Fig. 6.7: Mean serum spectra of low Gleason scores and high Gleason scores. 
However, high Gleason scores for the blood serum, when compared to low Gleason scores, 

demonstrated a higher intensity at CCH aromatic deformation (approx. 851 cm¯¹), proline (approx. 896 

cm¯¹ & 1031 cm¯¹), α helix (approx. 937 cm¯¹), hydroxyapatite (approx. 955 cm¯¹), phenylalanine 

(approx. 1003 cm¯¹), tyrosine & phenylalanine (approx. 1205 cm¯¹), amide III (approx. 1260 cm¯¹), CH₂ 

(approx. 1313 cm¯¹), and amide I (approx. 1658 cm¯¹).

The increased intensities of the 1335 cm¯¹ peak were associated with a higher content of cell-free DNA. 

Several cancer patients' blood has been proven to have an increased level of cell-free nucleic acids. 

Many studies have shown strong associations between a higher level of β-carotene and a reduced 

incidence of many forms of cancer. The increased intensity at 937 cm¯¹ demonstrated a higher 

concentration of α-helix proteins (e.g., histone, the main protein component that makes up the 

chromatin). The higher intensity of tryptophan at 881 and 1551 cm¯¹ in the serum of colorectal cancer 

has also been reported (Sahu A et al., 2013; Yang &Li S, 2012).
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Therefore, to answer our second research question, can Raman spectroscopy of prostate tissue provide 

molecular signatures that may be used for real-time in vivo analysis? We have demonstrated the 

increased concentration of cell-free DNA in both blood plasma and serum studies with prostate cancer 

participants due to the process of apoptosis and necrosis or release of intact cells in the bloodstream. 

Nevertheless, decreased concentration of β-carotene was observed in blood plasma and serum studies 

among cancer cohorts due to a deficiency of antioxidant species. However, the tissue samples 

demonstrated a lower glycogen concentration in cancerous tissues because tumour cells absorbed 

glucose and, in turn, gave out lactate. Therefore, as the tumour cells advanced from benign to 

malignant tissues, there was a lower glycogen concentration. There was also an increased 

concentration of DNA as the tissues progressed from normal to malignant tissues due to the increased 

nuclear-to-cytoplasm ratio as the tissue advanced from normal to malignancy. Furthermore, reduced 

collagen concentration was observed within the extracellular matrix until the tumour became 

prominent, then more collagen was expected. With the above spectral features, it is possible to provide 

molecular signatures that can be used for real-time in vivo analysis.

6.6: Translation of vibrational Spectroscopy of blood plasma, serum and tissues into clinical 
practice.
It is well established that most biofluid and tissue studies conducted with the aid of Raman 

spectroscopy are purely research-based and have not gained access into the clinical environment for 

routine use. These are purely proof-of-concept studies with small population sizes demonstrating the 

potential of Raman spectroscopy in clinical practice. However, a few studies are using complementary 

techniques, such as infrared spectroscopy, gradually gaining momentum for translation into the clinical 

environment. Butler H J et al. (2019) developed a high throughput blood test with attenuated total 

reflection Fourier transform infrared (ATR-FTIR) spectroscopy to assess brain cancer patients. It was 

based on the fact that it can be challenging to decipher which patients with non-specific symptoms such 

as headache and dizziness were likely to have a brain tumour. Secondly, the NICE guideline for referral 

of patients for medical imaging with a suspected brain tumour was expected to discover brain tumours 

at a rate of 3% in the referral population. ATR-FTIR spectroscopy is a simple, label-free, non-invasive, 

and non-destructive technique that can be utilised to characterise the biochemical profile of blood 

samples to rule out the presence of tumour cells. Four hundred thirty-three patients' blood samples 

were collected from the biobank for the control group (normal) and glioma participants. Machine 

learning algorithms were utilised to learn the infrared signatures that assisted in the discrimination of 

the spectra into cancer and non-cancer with a sensitivity and specificity of 93.2% and 92.8%, 
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respectively. The cancer cohort was further separated into high-grade gliomas, glioblastoma, and low-

grade gliomas, with a sensitivity and specificity of 83.3% and 87%, respectively. The value of sensitivity 

and specificity were found to be within the threshold of cost-effectiveness (80%). By implication, this 

indicates that the test has the potential to provide cost savings to both UK and US health services if 

used to triage patients and detect those that urgently need brain scans. It saves the UK about £6-12 

million annually due to its high specificity. While from the patients' point of view, the high sensitivity of 

the test could help in the early detection of the tumour, and when treatment is offered on time, it could 

result in improved quality of life. This technique is currently undergoing clinical translation (Butler HJ et 

al., 2019).

Jenkins C A et al. (2018) developed a high throughput test using liquid and dry serum Raman 

spectroscopy to rule out the presence of colorectal cancer in symptomatic patients. Because only 3-5% 

of patients referred for colonoscopy end up having colorectal cancer, there was a need to develop a 

simple, rapid, and non-invasive test that can assist in triaging patients and identifying those patients 

that require a colonoscopy. The team recruited 60 participants. Thirty were cancer patients, while the 

other 30 were healthy participants as the control group. Sensitivity and specificity of 83% and 83% were 

recorded in discriminating between healthy controls and colorectal cancer (Jenkins CA et al., 2018)

6.7: Conditions for translation into clinical application 
Many factors are responsible for the lack of translation of vibrational spectroscopy techniques from 

just a research tool to a valuable tool for routine clinical practices. One such factor includes the 

imperfections in the methodology of these techniques. Many variations are found in many biological 

fluids and tissue studies, and everyone claims to have valid methods for assessing different disease 

conditions. Rigorous efforts are therefore necessary to establish a methodology that can withstand the 

test of time and can be utilised across different equipment manufacturers and laboratories. Current 

practices in medical imaging techniques could be seen whereby there is a standardization of 

methodology for investigations across different equipment manufacturers. 

The other crucial point for translation is ascertaining the ideal sample size required to build an ideal 

classifier (diagnostic model) with specified performance. Beleites and colleagues in 2013 had put 

forward that learning curves could be exploited to ascertain the ideal sample size necessary to build 

good classifiers alongside specified performances. It is essential to bear in mind that when the sample 

size is too small to divide the population into a training set and the other independent validation set, 
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cross-validation methods should be utilized to avoid the challenge of overfitting. A small sample size of 

about 5-25 independent samples per class could be utilised to build a diagnostic model, although the 

classification could accomplish an acceptable performance. Nevertheless, the learning curve could be 

obscured by the random testing variability as a result of the small test sample size. Therefore, to 

ascertain the sample size necessary to achieve reasonable precision in the validation, the authors 

discovered that a population size of 75-100 samples was necessary to determine if a classifier was good 

enough. Nevertheless, this is not the same as a perfect classifier (which requires a larger sample size). 

A good classifier, therefore, requires advanced sample size planning based on the performance 

achieved (Beleites C et al., 2013).

In our study, the analysis of tissue samples could have been good at discrimination into the different 

pathology groups if sufficient sample sizes had been utilised. A sample size of 100 participants was 

planned as stipulated by Beleites C et al. in 2013. Therefore, 100 participants were recruited (included 

in the study). Nevertheless, some tissue samples were suboptimal during histological assessment and 

Raman measurements, primarily because the biopsy needle did not retrieve enough tissue samples for 

histological assessment. With a small tissue biopsy, it became difficult to embed the tissue in paraffin 

wax and cut it. It was also observed that some of the tissue samples were fragmented and curved, 

making it difficult to include such in the pathological evaluation. The histopathologist considered the 

tissue biopsies adequate if at least a single prostate gland was present in the tissue. Therefore, if only 

stromal tissues were seen, the biopsy samples were considered inadequate or inappropriate for 

diagnosis or analysis. This study has highlighted the importance of the biopsy technique and the skill of 

the urologist, as these can significantly impact the number of biopsy samples obtained that are of 

diagnostic quality. Therefore, with an original sample size of 100, only 49 tissue samples were helpful 

for histological analysis. The dataset size of 49 tissue samples was insufficient to describe all the 

variances in each group to represent the patient population and the variability of the gold standard 

technique, leading to an inability to distinguish between many subcategories of pathology. 

Nevertheless, for large sample sizes with reproducible homogeneous blood samples, such as dried 

liquid biopsy samples, and a smaller number of pathology groups, such as 2 and 3 groups, it was possible 

to distinguish between the different classes with high sensitivity, specificity, positive and negative 

predictive values respectively.

Future studies should aim for at least 25 independent samples in each class to enable accurate 

classification into 4- and 5-group classification models. Therefore, an ideal sample size for a feasibility 
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study of this nature should be between 100 and 150, based on our experience. A competent clinical 

histopathologist should access each sample before inclusion into the study.

6.8: Limitations of Raman spectroscopy in clinical applications
Fluorescence caused by fluorophores and chromophores within the sample can sometimes impact 

significantly on the quality of the data measured with RS of human tissues. Sometimes, the fluorescence 

emission spectrum masks the weaker Raman spectrum. While the Raman effect is due to a scattering 

process, the fluorescence effect is due to photon absorption. In order to tackle this problem of masking 

the Raman spectrum, some methods have been developed. 

Firstly, the choice of excitation wavelength can minimize tissue fluorescence. The photons in the Near 

InfraRed (NIR) wavelength region (750-1400nm) have lower energy and rarely induce fluorescence 

(Stone N et al., 2007a). However, the Charge Couple Device (CCD) cameras that detect the signals 

become less sensitive at longer wavelengths. Raman scattering signals also reduce since they depend 

on the wavelength by a factor of 1/l4 (Matousek P, 2016). Therefore, a compromise has to be found. 

On the other hand, fluorescence from UV light (10-380nm) has significantly different energy from the 

Raman scattering, allowing separation of fluorescence and Raman signal. However, in vivo safety is a 

concern, and UV light does not penetrate far into tissues, reducing the signals to the surface cells only 

(Kast RE et al., 2014).

The use of lasers to measure tissues may raise some concerns, although lasers are just coherent beams 

of light. Several factors contribute to the threshold of damage for a given application. These include 

tissue type, excitation wavelength (i.e., does the tissue readily absorb it), exposure time, and fluency 

(energy by unit area). Minimally absorbing and non-carcinogenic NIR light enables safe in vivo 

measurements at much higher light fluency levels than visible and ultraviolet wavelengths (Ibid, 2014).

The translation of the Raman-based technique from a research tool into clinical practice would require 

that a detailed spectral database is developed for easy assessment of the molecular fingerprints of the 

subtle changes within the biological samples. Standardizing best practice techniques for image 

acquisition, data processing, and classification is also necessary to enhance consistent results.
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6.9: Clinical Validity:
Defining the diagnostic performance of a given biomarker test is crucial in managing patients 

concerning any particular disease condition. In order to assess the clinical validity of a particular test or 

biomarker, a large population size is necessary (Baker M et al., 2015). Large multicentre randomized 

control trials are usually necessary, whereby the sensitivity and specificity of the diagnostic or screening 

tool are tested against a gold standard diagnostic or screening test. The studies are often designed to 

recruit both the study group and control group to ensure that the biomarker reflects the very essence 

of the test (Baker M et al., 2015). Therefore, the test could be for screening, prognostic, diagnostic, 

treatment response prediction, or disease monitoring. In the context of a screening test, high sensitivity 

and specificity are crucial to ensure a reduction in the number of false positives, which often result in a 

further investigation on the part of the patient (Ibid, 2015). During the recruitment process, it is of 

paramount importance to ensure that bias is not introduced during this process. One quick method of 

achieving this is carrying out a prospective study without knowing the final result (Ibid, 2015). In our 

study, we could see the potential of this test with the blood plasma and serum, which could be utilised 

as a screening test to rule out the presence of prostate cancer following a sizeable multicentre study 

conducted to confirm the findings of this study. With the aid of a support vector machine learning 

algorithm, high sensitivity and specificity were achieved. For a screening test, discriminating between 

normal or benign cancer patients is paramount. This model has been able to differentiate between the 

two classes of spectra, benign versus malignant. The study could also discriminate between low-grade 

and high-grade tumours with high sensitivity and specificity.

On the other hand, due to multiple factors, the tissue sample analysis could not do the same; hence, 

lower sensitivity and specificity were observed. The reason for low prediction accuracy could be due to 

multiple factors. Firstly, the population size was smaller for the tissue samples than those utilized for 

the blood sample analysis. However, the tissue and blood samples were collected from the same 

cohort. However, during histological and Raman assessments, it was discovered that some tissue 

samples were suboptimal for diagnosis and measurements. Secondly, the histological assessments 

were given on the overall tissue, while Raman measurements were taken from five random positions 

within the tissue samples. Future studies could benefit from taking the histological assessment and 

Raman spectroscopy measurements from the same positions on the tissue samples. Thirdly, only one 

histopathologist provided an assessment of all the tissue samples included in the study. Future studies 

could benefit from having more than one histopathologist to conduct tissue analysis. 
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6.10: Clinical utility
The clinical utility of a diagnostic test refers to the extent to which a diagnostic test improves health 

outcomes compared to the existing gold standard technique or by measuring outcomes in randomised 

controlled trials. However, this can be difficult for diagnostic purposes since one has to wait until cancer 

develops before we can assess the test's clinical utility. Nevertheless, this can be handy for a screening 

test since the disease can be discovered early before the tumour progresses to an advanced stage. 

Doctors must distinguish between clinically significant and insignificant tumours, reducing the burden 

of overdiagnosis, overtreatment, and attendant complications. 

Furthermore, clinical utility is one of the metrics that define the usefulness of a biomarker in making 

clinical decisions at an acceptable cost to society (Baker M et al., 2015). Therefore, the laboratory 

director is always in a dilemma of offering a helpful test that is also cost-effective. Before a biomarker 

test can be routinely implemented in clinical practice, the test's positive and negative predictive values 

must be assessed in real-life patients (Ibid, 2015). Drop coating deposition Raman spectroscopy has 

shown a high positive and negative predictive value, especially with support vector machine learning 

algorithm as a potential screening tool that can be utilised in discriminating between low-grade and 

high-grade tumours. Nevertheless, the tissue samples have been able to show lower positive predictive 

and negative predictive values due to low population size and the inability to target Raman 

measurement to the location where histological tissue assessments were taken. It is, therefore, 

essential to verify the findings of this feasibility study with a large independent population both for the 

tissue biopsy samples and the liquid biopsy samples. After these findings are confirmed, it is also 

paramount to conduct a large multicentre study to validate or substantiate them. The next step to 

translation should involve an assessment of the usefulness of these findings in a clinical decision-making 

capacity, considering the cost and the benefit to the clinical environment and the patients.
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Chapter 7 – Conclusion
Raman spectroscopy is an optical technique that can potentially impact the clinical environment, 

especially urology. With high chemical specificity and the ability to provide molecular-specific 

fingerprints of the composition of biological samples under interrogation, Raman spectroscopy can 

provide precision in screening for early tumours, tissue diagnosis, metastasis, treatment efficacy, and 

the assessment of tumour margins following radical prostatectomy. A minimally invasive technique can 

provide objective results in real-time within the clinical environment, thereby removing the adverse 

impact of interobserver variability and delays to diagnosis. The current study has demonstrated that it 

is possible to distinguish between patients with cancer and those with benign prostate conditions 

alongside healthy participants using biopsy tissue samples, blood serum, and plasma. The highest 

intensities at 1003 cm¯¹ in the mean serum Raman spectrum were higher in the cancer group due to 

the phenylalanine.

The highest intensities were observed at peak positions consistent with carotenoid or beta carotenoids 

within the blood serum and plasma spectra; this effectively demonstrated that carotenoid was 

responsible for the discrimination between benign and malignant plasma and mean serum spectra. A 

lower level of β-carotene was demonstrated in the population of blood plasma with prostate cancer, 

with a corresponding higher concentration among the benign group. The concentration of Disulphide, 

phenylalanine, tyrosine and CH₂ deformation was also seen to be higher among benign mean spectra. 

On the other hand, higher intensities were seen at collagen at peak positions for malignant mean 

spectra compared to the mean benign spectra.

The disease-specific molecular fingerprints found in the prostate tissue can be measured with this 

technique which can be utilised in risk stratification of prostatic tumours. This study has shown that a 

high concentration of lipids and amide 1 was observed in benign tissues compared to the malignant 

spectra. On the other hand, a higher concentration of cholesterol, phenylalanine, collagen, α helix, 

tryptophan, and DNA were observed in the malignant mean spectra compared to benign spectra. 

Sensitivity, specificity, and positive and negative predictive values of above 90% can be achieved using 

this technique with the SVM learning algorithm in discriminating blood samples (serum & plasma) 

spectra into two groups, benign versus malignant or low-grade versus high-grade tumours. 

Automation can ensure quick and effective complementary tools in prostate cancer risk stratification 

alongside histopathology.
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A minimally invasive technique that can be quickly used to assess the malignant status of the prostate 

gland that can act as a screening tool can be developed from the blood serum/ plasma assay, which 

essentially allows for early detection of prostate cancer. It can also be utilized in monitoring patients 

for disease progression or the efficacy of a particular therapy.

The translation of Raman spectroscopy from a research tool into clinical practice will require a well-

defined clinical need by Clinicians, well-demonstrated patient safety, and reliable and reproducible 

results achieved through extensive clinical trials. Furthermore, regulatory bodies will need to approve 

this technique's translation into clinical use after a large multi-centre study has been conducted with 

large population size.
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Appendices:
Appendix A : Ethical approval

 

Mr Bassey Ndiyo
Department of Physics & Astronomy 
University of Exeter
EX4 4QL

Email: 
hra.approval@nhs.net

26 February 2018

Dear Mr Ndiyo

Study title: An evaluation of Raman Spectroscopy for the diagnosis and
risk stratification of prostate cancer

IRAS project ID: 236129
REC reference: 18/LO/0135
Sponsor University of Exeter

I am pleased to confirm that HRA Approval has been given for the above referenced study, on the basis 
described in the application form, protocol, supporting documentation and any clarifications noted in 
this letter.

Participation of NHS Organisations in England

The sponsor should now provide a copy of this letter to all participating NHS organisations in England.

Appendix B provides important information for sponsors and participating NHS organisations in England 
for arranging and confirming capacity and capability. Please read Appendix B carefully, in particular the 
following sections:

• Participating NHS organisations in England – this clarifies the types of participating 
organisations in the study and whether or not all organisations will be undertaking the same 
activities

• Confirmation of capacity and capability - this confirms whether or not each type of participating 
NHS organisation in England is expected to give formal confirmation of capacity and capability. 
Where formal confirmation is not expected, the section also provides details on the time limit 
given to participating organisations to opt out of the study, or request additional time, before 

Letter of HRA Approval

mailto:hra.approval@nhs.net


207

their participation is assumed.
• Allocation of responsibilities and rights are agreed and documented (4.1 of HRA assessment 

criteria) - this provides detail on the form of agreement to be used in the study to confirm 
capacity and capability, where applicable.

Further information on funding, HR processes, and compliance with HRA criteria and standards is also provided.
It is critical that you involve both the research management function (e.g. R&D office) supporting each 
organisation and the local research team (where there is one) in setting up your study. Contact details and 
further information about working with the research management function for each organisation can be 
accessed from the HRA website.

Appendices

The HRA Approval letter contains the following appendices:

• A – List of documents reviewed during HRA assessment
• B – Summary of HRA assessment

After HRA Approval

The document “After Ethical Review – guidance for sponsors and investigators”, issued with your REC 
favourable opinion, gives detailed guidance on reporting expectations for studies, including:

• Registration of research
• Notifying amendments
• Notifying the end of the study

The HRA website also provides guidance on these topics, and is updated in the light of changes in 
reporting expectations or procedures.

In addition to the guidance in the above, please note the following:

• HRA Approval applies for the duration of your REC favourable opinion, unless otherwise 
notified in writing by the HRA.

• Substantial amendments should be submitted directly to the Research Ethics Committee, as 
detailed in the After Ethical Review document. Non-substantial amendments should be 
submitted for review by the HRA using the form provided on the HRA website, and emailed to 
hra.amendments@nhs.net.

• The HRA will categorise amendments (substantial and non-substantial) and issue confirmation 
of continued HRA Approval. Further details can be found on the HRA website.

Scope

HRA Approval provides an approval for research involving patients or staff in NHS organisations in 
England.

If your study involves NHS organisations in other countries in the UK, please contact the relevant national 
coordinating functions for support and advice. Further information can be found through IRAS.

If there are participating non-NHS organisations, local agreement should be obtained in accordance with 
the procedures of the local participating non-NHS organisation.

mailto:hra.amendments@nhs.net
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User Feedback

The Health Research Authority is continually striving to provide a high quality service to all applicants and 
sponsors. You are invited to give your view of the service you have received and the application procedure. 
If you wish to make your views known please use the feedback form available on the HRA website.

Appendix B: Research Ethics Committee favourable Opinion

                                       
London – Stanmore Research Ethics Committee

Health Research Authority 

Skipton House 80 London Road

                                                                                                                                                                        London SE1 6LH

Telephone: 020 7972 2561

26 February 2018

Mr Bassey Ndiyo
Department of Physics & 
Astronomy University of Exeter
EX4 4QL

Dear Mr Ndiyo

Study title: An evaluation of Raman Spectroscopy for the diagnosis
and risk stratification of prostate cancer

REC reference: 18/LO/0135
IRAS project ID: 236129

Thank you for your letter responding to the Committee’s request for further information on 
the above research and submitting revised documentation.

The further information has been considered on behalf of the Committee by the Chair.

We plan to publish your research summary wording for the above study on the HRA website, 
together with your contact details. Publication will be no earlier than three months from the date 
of this opinion letter. Should you wish to provide a substitute contact point, require further 
information, or wish to make a request to postpone publication, please contact 
hra.studyregistration@nhs.net outlining the reasons for your request.

Confirmation of ethical opinion

Please note: This is the favourable opinion of the REC only and does not allow you to start your study 
at sites in England until you receive HRA Approval

mailto:hra.studyregistration@nhs.net
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On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the 
above research on the basis described in the application form, protocol and supporting 
documentation as revised, subject to the conditions specified below.

Conditions of the favourable opinion

The REC favourable opinion is subject to the following conditions being met prior to the start of 
the study.

Management permission must be obtained from each host organisation prior to the start of the 
study at the site concerned.

Management permission should be sought from all NHS organisations involved in the study in 
accordance with NHS research governance arrangements. Each NHS organisation must confirm 
through the signing of agreements and/or other documents that it has given permission for the 
research to proceed (except where explicitly specified otherwise).

Guidance on applying for NHS permission for research is available in the Integrated Research 
Application System, www.hra.nhs.uk or at http://www.rdforum.nhs.uk.

Where a NHS organisation’s role in the study is limited to identifying and referring potential 
participants to research sites ("participant identification centre"), guidance should be sought from 
the R&D office on the information it requires to give permission for this activity.

For non-NHS sites, site management permission should be obtained in accordance with the 
procedures of the relevant host organisation.

Sponsors are not required to notify the Committee of management permissions from host 
organisations

Registration of Clinical Trials

All clinical trials (defined as the first four categories on the IRAS filter page) must be registered 
on a publically accessible database within 6 weeks of recruitment of the first participant (for 
medical device studies, within the timeline determined by the current registration and publication 
trees).

There is no requirement to separately notify the REC but you should do so at the earliest 
opportunity e.g. when submitting an amendment. We will audit the registration details as part of 
the annual progress reporting process.

To ensure transparency in research, we strongly recommend that all research is registered but 
for non-clinical trials this is not currently mandatory.

If a sponsor wishes to request a deferral for study registration within the required timeframe, 
they should contact hra.studyregistration@nhs.net. The expectation is that all clinical trials will 
be registered, however, in exceptional circumstances non registration may be permissible with 
prior agreement from the HRA. Guidance on where to register is provided on the HRA website.

http://www.hra.nhs.uk/
http://www.rdforum.nhs.uk/
mailto:hra.studyregistration@nhs.net
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It is the responsibility of the sponsor to ensure that all the conditions are complied with before the start of the 
study or its initiation at a particular site (as applicable).

Ethical review of research sites

NHS sites

The favourable opinion applies to all NHS sites taking part in the study, subject to 
management permission being obtained from the NHS/HSC R&D office prior to the start of 
the study (see "Conditions of the favourable opinion" below).
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Appendix C : Confirmation of capacity and capability

                        
                               Dartford & Gravesham

                                                                                                                                                 NHS Trust

25 April 2018

Ms P Baxter

Senior Research Governance Officer 
University of Exeter
Research Ethics & Governance office 
Lafrowda House
St Germans Road
Exeter

EX4 6TL

Darent Valley Hospital 
Darenth Wood Road

Dartfor
d Kent DA2 

8DA

Direct Line Tel: 01322 428393 
Email:bridget.fuller@nhs.net 

Website: www dvh nhs. uk

mailto:bridget.fuller@nhs.net
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PROJECT TITLE: An evaluation of Raman Spectroscopy for the 
diagnosis and risk stratification of prostate cancer.

REC Reference: 18/LO/0135

IRAS Reference: 236129

Dear Pam,

RE: IRAS 236129 Confirmation of Capacity and Capability at Dartford & Gravesham NHS Trust.

Following review I can confirm that Dartford & Gravesham NHS Trust has the capacity and 
capability to deliver the above referenced study. Please find attached our agreed Statement of 
Activities as confirmation. It is noted that the research core biopsies will be frozen in liquid 
nitrogen in theatres and transported to the local labs for storage in the -70 freezer prior to 
transport to Exeter hospital for histopathology processing.

We agree to start this study on a date to be agreed when you as sponsor give the green light to 
begin, although the researcher will need to complete training in the safe use of liquid nitrogen as 
part of the protocol tissue collection activities.

The approved documents are those listed on the Letter from London — Stanmore Research Ethics 
Committee, dated 28 February 2018 and the HRA approval letter dated 26 February 2018.

Please note under the terms of the research governance framework the study will be subject to 
monitoring and audit and you will be contacted later in the year regarding this.

   If you wish to discuss further, please do not hesitate to contact me.

Kind regards

Michael Brand 

Senior Governance Manager
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Appendix D: Guidance for sponsors and investigators after ethical review

RESEARCH IN HUMAN SUBJECTS OTHER THAN CLINICAL TRIALS OF 
INVESTIGATIONAL MEDICINAL PRODUCTS

After ethical review – guidance for sponsors and investigators

This document sets out important guidance for sponsors and investigators on the conduct and 
management of research with a favourable opinion from a Research Ethics Committee. Please read 
the guidance carefully. A failure to follow the guidance could lead to the committee reviewing its 
opinion on the research.

1. Commencement of the research

1.1 It is assumed that the research will commence within 12 months of the date of the favourable 
ethical opinion.

1.2 The research should not commence at any site until the local Principal Investigator (PI) or 
research collaborator has obtained management permission from the organisation with 
responsibility for the research participants at the site.

1.3 If the research does not commence within 12 months of the favourable opinion being issued, 
the Chief Investigator should send a written explanation for the delay. A further written explanation 
should be sent after 24 months if the research has still not commenced.

1.4 If the research does not commence within 24 months, the REC may review its opinion. 

2. Duration of ethical approval

2.1 The favourable ethical opinion of the REC for a specific research study applies for the duration 
of the study, except where action is taken to suspend or terminate the opinion, subject to approved 
substantial amendments. Where the duration of the study is to be extended beyond the period 
specified in the application form, there is no need to notify or seek approval from the REC.

2.2 Where the research involves the use of “relevant material” for the purposes of the Human Tissue 
Act 2004, authority to hold the material under the terms of the ethical approval applies until the 
end of the period declared in the application and approved by the REC. In England, Wales and 
Northern Ireland, samples may be held after the declaration of the end of the research, for analysis 
or verification of research data for up to one year (this should be detailed in the application which 
is approved by the REC. After this period legal authority to hold any human tissue under the ethical 
approval for this project will expire. To ensure that any continued storage is lawful, either the tissue 
must be held on premises with a storage licence from the Human Tissue Authority, or an application 
made for ethical approval of another project before the favourable ethical opinion (including the 
one year after the declaration of the end of study, if applicable) of the existing project expires. 
Otherwise the tissue would need to be destroyed in accordance with the HTA Codes of Practice.

3. Progress reports
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3.1 Research Ethics Committees can review a favourable opinion in the light of progress reports and 
any developments relevant to the study. The Chief Investigator is responsible for ensuring the 
research remains scientifically sound, safe, ethical, legal and feasible throughout its duration. The 
Chief Investigator should submit a progress report to the REC 13 months after the date on which the 
favourable opinion was given. Annual progress reports should be submitted thereafter.

3.2 Progress reports should be in the format prescribed by the HRA and published on the website 
http://www.hra.nhs.uk/resources/during-and-after-your-study/nhs-rec-annual-progress-report- 
forms/

4. Amendments

4.1 If it is proposed to make a substantial amendment to the research, the Chief Investigator should 
submit a Notice of Substantial Amendment to the REC by accessing the original application form on 
the Integrated Research Application System (IRAS)

4.2 A substantial amendment is any amendment to the terms of the application for ethical review, 
or to the protocol or other supporting documentation approved by the REC that is likely to affect to 
a significant degree:

(a) the safety or physical or mental integrity of the research participants

(b) the scientific value of the research

(c) the conduct or management of the research, including its ongoing legality and feasibility.

4.3 A substantial amendment should not be implemented until a favourable ethical opinion has been 
given by the Committee, unless the changes to the research are urgent safety measures (see section 
8). The Committee is required to give an opinion within 35 days of the date of receiving a valid  notice 
of amendment.

4.4 Amendments that are not substantial amendments (“minor amendments”) may be made at any 
time and do not need to be notified to the Committee. However, changes to contact details of the  
CI, sponsor or R&D contact are helpful and can be notified by letter or email.

4.5 Further guidance on amendments is available at. http://www.hra.nhs.uk/research- 
community/during-your-research-project/amendments/

5. Changes to sites

Management permission (all studies)

5.1 For all studies, management permission should be obtained from the participating 
organisation where it is proposed to:

• include a new site in the research, not included in the list of proposed research sites in the 
original REC application

• appoint a new PI or Local Collaborator at a research site
• make any other significant change to the conduct or management of a research site.

In the case of any new NHS/HSC site, the Site-Specific Information (SSI) Form should be submitted 

http://www.hra.nhs.uk/resources/during-and-after-your-study/nhs-rec-annual-progress-report-
http://www.hra.nhs.uk/resources/during-and-after-your-study/nhs-rec-annual-progress-report-
http://www.hra.nhs.uk/research-
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to the R&D office for review as part of the R&D application.

Site-specific assessment (where required)

5.2 The following guidance applies only to studies requiring site-specific assessment (SSA) as part of 
ethical review.

5.3 In the case of NHS/HSC sites, SSA responsibilities are undertaken on behalf of the REC by the 
relevant R&D office as part of the research governance review. The REC’s favourable opinion for the 
study will apply to any new sites and other changes at sites provided that management permission 
is obtained. There is no need to notify the Research Ethics Committee (or any other REC) about new 
sites or other changes, or to provide a copy of the SSI Form.

5.4 Changes at non-NHS/HSC sites require review by the REC which reviewed the application for the 
research. Please submit the SSI Form (or revised SSI Form as appropriate) to the REC together with 
relevant supporting documentation. The REC will notify the Chief Investigator and sponsor of its 
opinion within a maximum of 25 days from the date on which a valid SSA application has been 
received.

Studies not requiring SSA

5.5 For studies designated by the REC as not requiring SSA, there is no requirement to notify the 
Committee of the inclusion of new sites or other changes at sites, either for NHS/HSC or non- 
NHS/HSC sites. However, management permission should still be obtained from the responsible 
participating organisation (see 7.1 above).

6. Urgent safety measures

6.1 The sponsor or the Chief Investigator, or the local Principal Investigator at a research site, may 
take appropriate urgent safety measures in order to protect research participants against any 
immediate hazard to their health or safety.

6.2 The REC should be notified within three days that such measures have been taken, the reasons 
why and the plan for further action.

7. Serious Adverse Events

7.1 A Serious Adverse Event (SAE) is an untoward occurrence that:

(a) results in death

(b) is life-threatening

(c) requires hospitalisation or prolongation of existing hospitalisation

(d) results in persistent or significant disability or incapacity (e) consists of a congenital anomaly or 
birth defect (f) is otherwise considered medically significant by the investigator.

7.2 A SAE occurring to a research participant should be reported to the Committee where in the 
opinion of the Chief Investigator the event was related to administration of any of the research 
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procedures, and was an unexpected occurrence.

7.3 Reports of SAEs should be provided to the REC within 15 days of the Chief Investigator becoming 
aware of the event, in the format prescribed by the HRA and published on the website:

http://www.hra.nhs.uk/resources/during-and-after-your-study/progress-and- safety-reporting/

8. Conclusion or early termination of the research

8.1 The Chief Investigator should notify the REC in writing that the research has ended within 90 
days of its conclusion. The conclusion of the research is defined as the final date or event specified 
in the protocol, not the completion of data analysis or publication of the results.

8.2 If the research is terminated early, the Chief Investigator should notify the REC within 15 days of 
the date of termination. An explanation of the reasons for the early termination should be given.

8.3 Reports of conclusion or early termination should be submitted in the form prescribed by the 
HRA and published on the website: http://www.hra.nhs.uk/research-community/end-of-study-and- 
beyond/notifying-the-end-of-study/

9. Final report

9.1 A summary of the final report on the research should be provided to the REC within 12 months 
of the conclusion of the study. This should include information on whether the study achieved its 
objectives, the main findings, and arrangements for publication or dissemination of the research 
including any feedback to participants.

10. Review of ethical opinion

10.1 The REC may review its opinion at any time in the light of any relevant information it receives.

10.2 The Chief Investigator may at any time request that the REC reviews its opinion or seek advice 
from the REC on any ethical issue relating to the research.

11. Serious breaches of Good Clinical Practice or the protocol

11.1 To ensure that the REC is able to keep the favourable ethical opinion under review, the 
sponsor should report to the REC any serious breaches of the protocol or of the principles of Good 
Clinical Practice. A “serious breach” is defined as a breach of the protocol or, of the principles of 
Good Clinical Practice which is likely to affect to a significant degree the safety or physical or mental 
integrity of the research participants, or the scientific value of the research. There is no requirement 
to notify minor breaches of GCP or the protocol.

11.2 Reports of serious breaches should give details of when the breach occurred, the location, 
who was involved, the outcome and any information given to participants. An explanation should 
be given and the REC informed what further action the sponsor plans to take.

12. Long Term Studies

http://www.hra.nhs.uk/resources/during-and-after-your-study/progress-and-safety-reporting/
http://www.hra.nhs.uk/research-community/end-of-study-and-
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The sponsor and Chief Investigator are responsible for ensuring that the study procedures and 
documentation are updated in light of legislative or policy changes and also for reasons of good 
practice (e.g. standards for supporting documentation). This should be documented in the progress 
report to the REC (see above) and, where necessary, an amendment (see above) should be 
submitted to the REC. The REC may review its opinion in light of legislative changes or other relevant 
developments.



218

Appendix E - CONSENT FORM

Participant Identification Number for this study:

Title of Project: Rapid AssessMent of prostAte caNcer (RAMAN).

Name of Researcher: Bassey Ndiyo

Please 
initial box 

1. I confirm that I have read the information sheet dated 15/02/2018 (version 1.1) for the

above study. I have had the opportunity to consider the information, ask questions and have

had these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw at any time

without giving any reason, without my medical care or legal rights being affected.

3. I understand that relevant sections of my medical notes and data collected during

the study, may be looked at by individuals from University of Exeter and from the NHS Trust, 

         where it is relevant to my taking part in this research. I give permission for

          these individuals to have access to my records. 

Only initial boxes for those you wish to consent to for part a); b) and c):
a) I understand that taking part involves an additional blood sample being taken for research 

       purposes as part of this study only

b)  I agree to an additional prostate tissue sample being collected via biopsy for the purpose

      of this study, which is one extra sample to the standard care biopsy samples that will be 

      collected.

c) I agree for any residue sample that is not used for my diagnosis to be stored for future 

research 

studies and that if used further ethical approval would be obtained. 

4.  I agree to the options as initialled above only 

5. I agree to take part in the above study.

6. I give express permission for my samples to be sent from Dartford to Exeter

Name of Participant Date Signature
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Name of Person Date Signature taking consent
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Appendix F: Participant Information Sheet

Study Title: Rapid AssessMent of prostAte caNcer (RAMAN)
 Chief Investigator: Bassey Ndiyo

We would like to invite you to take part in this research study which has been set up 

by the University of Exeter in collaboration with the Darent Valley Hospital NHS Trust.

Please take time to read the following information carefully. Discuss it with friends and 

family if you wish.

You are free to decide whether to or not to take part in this research study. If you 

choose not to take part in the study, this will not affect the quality of care you receive 

from your doctor.

Kindly ask, if there are any concerns that you have and we will be happy to explain and 

give further information. This study is undertaken as part of a PhD study at the 

University of Exeter

Background to the study
Prostate cancer is now the most common cancer in men after non melanoma skin 

cancer in the United Kingdom (UK). This disease condition accounts for over 42,000 

new cases diagnosed each year resulting in about 110 men being diagnosed of this 

disease condition every day (Cancer Research UK, 2017). This high incidence can 

also be seen in other nations of the world such as United States of America with an 

estimate of over 220,800 new cases every year (American Cancer Society 2017).

We are using blood samples and biopsy samples to assess the prostate. The aim of 

the study is to identify specific measurable signs (markers) that will assist in the 

diagnosis of both aggressive and non-aggressive cancers that some men suffer from 

and help to prevent the over treatment of patients found to have tumours that are found 

not to be clinically significant.
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The Prostate Specific Antigen (PSA) test is a blood test that can be used to help 

diagnose prostate problems, including prostate cancer. PSA has been a very useful 

tool in detecting prostate cancer at the earlier stages of the disease. However, it can 

be difficult to distinguish between aggressive and non-aggressive prostate cancer 

using only PSA as a measurement. As a result, it may be difficult for your doctor to 

gauge sometimes that you do not need immediate treatment for your prostate cancer. 

This may be because the PSA result is specific to the prostate itself and yet not a 

specific pointer of a possible cancer in the prostate.

Currently the best available assessment tool for early detection of prostate cancer is 

Prostate Specific Antigen (PSA) test which involves taking your blood sample for 

histological assessment for the presence or absence of prostate cancer. In order to 

confirm the presence of cancer, a prostate biopsy (needle puncture sample) is also 

done. A prostate biopsy is where very thin sections of prostate tissue are removed 

using a special needle, although the test can be seen as a very invasive procedure by 

some patients. For this study, we will need one extra biopsy sample to the ones that 

are taken for routine purposes towards your diagnosis. About 100 participants will take 

part in this study.

Why have I been invited to take part?
We are inviting all patients to take part in the research study who have undergone the 

investigations of a PSA test; Transrectal Ultrasound guided biopsy and MRI scan of 

the prostate. These tests will have been requested by your clinician, because you have 

been informed about the suspicion of a growth in your prostate.

You will be eligible to take part in the study if you:

• Are a man aged 40 or above

• Have a raised PSA level.

• Have undergone a digital rectal examination of the prostate for suspected 

abnormal growth.

• Have had a biopsy taken of your prostate gland for pathological analysis.

You will not be eligible to take part in the study if you:
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Had received any prior treatment for your prostate that could affect the results of blood 

samples or biopsy. This could include previous Radiotherapy, brachytherapy or 

hormonal therapy for your prostate.

How will the biopsy samples be taken?
An ultrasound probe will be used to scan your prostate and an image will appear on 

the screen. The image will be used as a guide to take the biopsy samples. A local 

anaesthetic will be given to make the procedure less painful. The doctor will insert a 

thin needle next to the ultrasound probe in your back passage into the prostate. 10 to 

12 small pieces of prostate tissues will be taken from different areas of your prostate 

with an extra piece for research purpose. This whole procedure should take about 10 

to 15 minutes. 

What should I do if I am interested in taking part in this study?
If you think you would like to take part in this study, all you need to do is to take this 

information sheet to your next appointment with your Consultant and there you would 

be asked if you understand what the study is about and have the opportunity to ask 

any questions you may have, before you decide to take part in this study. 

What does taking part in this research study involve?
Taking part in the research study involves having one additional core biopsy which will 

be obtained during your routine biopsy procedure and a 5ml blood sample (about a 

teaspoonful) will be obtained for analysis for the research. Your involvement in the 

study will not require anything else to be done after these samples have been collected 

and your involvement in the study will finish.

What are the benefits for me taking part in this study?
There will be no immediate direct benefit to you should you decide to participate in this 

study. However, there could be benefit to future patients that are investigated for 

prostate abnormalities or cancer.

What are the potential disadvantages or risks for me in taking part in this study?
There is no potential risk associated with taking part in this study above those already 

identified in the guidance you will have received from the hospital for routine samples 
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taken for the investigations of prostate disease; there are commonly risks of bleeding 

from the biopsy site and some discomfort afterwards. Having a blood sample can be a 

little uncomfortable for some people and can cause some bruising.

Will my taking part in the trial be kept confidential?
Yes. We will protect your confidentiality at all times. The following steps will ensure that 

your confidentiality is maintained when participating in the study.

Your consent to participate in the study with your details will be kept locked in a secure 

NHS location and separate from the study data which will be allocated a code number 

to protect your identity.

Your blood sample, tissue sample and data necessary for research purposes will be 

assigned a unique study number. Researchers working outside of Dartford & 

Gravesham NHS Trust and employed by the University of Exeter, who work with your 

blood samples, tissue samples and data, will not know your identity. Your data will be 

stored using a unique, anonymous study identification number for all research 

purposes to protect your confidentiality.

A single table linking your anonymous study identification number to your NHS number 

identity will be stored on a separate password protected document on an NHS 

computer. This will only be accessed by your direct care team.

The link will be used to retrieve only relevant health information from your medical and 

other health related records for the purpose of this study. The retrieved information will 

be anonymous.

All study data to be used for sample processing at the Biophysics lab (University of 

Exeter) will be stored in a restricted access, study database. The study data will be 

connected to your study identification number only and your personal details will never 

appear in this database. Access to the study database will be password protected, 

encrypted and will only be used by named researchers working on this study, under 

the direct supervision of the senior scientific investigator.

What will be stored on the research database at Darent Valley Hospital? 
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Information that will be stored on the research database at the NHS Trust (Darent 

Valley Hospital) will be anonymised.

When will this study end?
Your involvement in the study will end after your study samples have been collected. 

The study will end as soon as all the data collected are analysed by the research 

team, the results are presented, and recommendations are documented. The 

anonymised samples will be stored for up to 3 years at the University of Exeter 

following last participant recruitment. The samples may be used for future research 

which we will first ask your consent for; and if this occurs then a separate ethical 

approval will be applied for. Finally, tissues and data relating to this study will be 

securely destroyed. 

How will I withdraw from the study if I want to do so?
You can decide to withdraw from this study at any time without giving any reason 

without it affecting the standard of care you receive or your legal rights.

You can withdraw from the study by telephoning us on 01322 428612, Monday to 

Friday or by writing to the coordinating Centre (Please see bottom of the leaflet). This 

will allow us to determine the desired level of withdrawal from the following two options:

“No further contact”, which means that the research team would not contact you 

directly anymore but will still have your permission to use your information, blood 

samples and tissue samples provided previously for this research study or future 

research.

“No further use”, which means that in addition to no further contact, all previous data 

collected would not be used any more for the purpose of this study or future research.

Who will be able to use my information, blood samples and tissue samples?
A copy of the results of your anonymous blood samples, tissue samples and data will 

be available only to researchers of this study, who have relevant research ethical 

approval from the Health Research Authority and scientific knowledge for the planned 

research. We will ask your permission in the consent form to store any unused samples 

for future research following ethical approval of a new study.

Anonymised results from this research will be written up as part of the researcher’s 

PhD study and may be published for conferences and journals so that future patients 
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and researchers may benefit from its findings. Neither you nor the data you have 

provided will be able to be identified in any of the write up or publications to protect 

your confidentiality. 

Will I be told the study specific results obtained from my blood samples or tissue 
samples?
Your Consultant will contact you with your routine results at the appropriate time after 

your standard care investigations and your standard care will progress in the normal 

manner. Any information discovered as a result of the research study will be made 

available in a brief report which you will be able to access via the clinic that you 

attended. No participant will be identified in the report findings. In the unlikely event 

that anything untoward is discovered in any of the samples that have been collected 

for research purposes, then the treating clinician at Dartford & Gravesham NHS Trust 

will be informed by the research team, using the unique study number and your 

clinician will contact you directly if required. 

Who has approved the study?
All research in the NHS is looked at by an independent group of people called a 

research ethics committee to protect your interests. This study has been reviewed and 

given a favourable opinion by the London-Stanmore Research Ethics Committee and 

approval by the Health Research Authority. The Research & Development Department 

at Dartford & Gravesham NHS Trust have also approved the study. 

What will happen if an invention is made using my blood samples and tissue 
samples?
You are freely giving your blood samples and tissue samples. This research is a non-

commercial study without any profit from this study. However, for future research we 

may work together with commercial companies to develop inventions for the benefit of 

patients, and we hope that this will help the NHS to improve health care in future. If 

this happens a separate ethical approval will be obtained

Your sample may help researchers in the public and private sector to make an 

invention. If an invention results from this research undertaken with your blood or tissue 

samples, you will not receive any compensation or payment.
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What happens if something goes wrong?
If you are not happy with any aspect of this research study, in the first instance please 

contact the research team directly. If you are not able to resolve your complaint, please 

then contact the Head of Research & Development at the hospital, or please contact 

the Academic Supervisor at the University of Exeter, who can contact the Sponsor 

Representative and Research Ethics and Governance Office. If you still do not feel the 

issue has been resolved, the NHS Complaints department should be contacted 

(Patient Advice and Liaison Service – PALS). Full details are found below under 

contact details.

Who is organising and funding the research?
This study is being organised and funded by University of Exeter and Darent Valley 

Hospital as part of the researcher’s PhD study.

Contact numbers for the research team
Thank you for taking the time to read this leaflet. 

If you have any further questions do not hesitate to ask. For further information please 

contact:

Chief Investigator: Bassey Ndiyo (PhD student researcher)

Address: Department of Urology, Darent Valley Hospital

Tel: 01322 428100

Principal Investigator: Prof Sanjeev Madaan

Address: Department of Urology, Darent Valley Hospital

Tel: 01322 428612

Academic Supervisor: Prof Nicholas Stone

Address: Department of Physics & Astronomy,

University of Exeter,

Tel: 01392 726531
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Contact for PALS: http://www.dvh.nhs.uk/contact-or-visit-us/compliments-

complaints/

Please contact: Senior Governance and Patient Experience Manager at the following 

address;

Complaints Department, Dartford and Gravesham NHS Trust, Darent Valley Hospital, 

Darenth Wood Road, Dartford, Kent, DA2 8DA.

Telephone: 01322 428436

Email: dgn-tr.PALS@nhs.net

Appendix G -Curriculum Vitae
NDIYO, BASSEY

MSc Medical Imaging



228

HCPC: RA43610 UK Registered Diagnostic Radiographer

Clinical Research Fellow – Dartford & Gravesham NHS Trust

__________________________________________________

Home Address:    1 Allium Rise Dartford DA1 5TS UK

Telephone:            07403458902

Email:                    bassey.ndiyo@inhealthgroup.com    bn235@exeter.ac.uk 

PERSONAL STATEMENT

___________________________________________________________________

I have a strong track record of working at the interface between physics, engineering, and 

medicine. I have the ability to develop high-quality, cutting-edge research with little or no 

supervision. I am a dynamic, reliable, self-motivated, confident, and patient focused Medical 

Imaging Specialist with people management skills. I am able to prioritize my work effectively, 

pay close attention to details and maintain high standard of patient care. Furthermore, I 

possess the necessary skills to function effectively in research, academic and clinical 

environments.

EDUCATION AND QUALIFICATIONS

___________________________________________________________________

2015-2019 2018-2020

mailto:bn235@exeter.ac
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2002-2007

1995-1999

1985-1990

University of Exeter

HCPC

City University, London

Federal School of 
Radiography, Lagos

Duke Town Secondary 
School, Calabar

MPhil (2019)

Full registration and 
licence

MSc (Medical Imaging)

DIR Diagnostic 
Radiography

West African Senior 
School Certificate 
Examination

EMPLOYMENT HISTORY

___________________________________________________________________

2010-Till date
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2011-2012

                                      

2008- 2009

2004-2008

2002-2004

InHealth Group Limited

BMI Chiltern Hospital

InHealth Group Limited

Cromwell Hospital 

London

Locum Agency, UK

Senior Radiographer

CT Clinical Lead 

Radiographer

CT Superintendent 

Radiographer

Senior 1 Radiographer/ 

PACS Administrator

Locum Radiographer

2001-2002                               Federal Medical Centre,                Radiographer

                                                Azare, Bauchi

 2000-2001                              Specialist Hospital, Bauchi   Radiographer
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AWARDS 

Dartford & Gravesham NHS Trust - Research Competition Finalist -2019 

TEACHING & PRESENTATION

- 2016 Ndiyo B, Differentiating between aggressive and Indolent prostate cancer using 

Multiparametric MRI & Vibrational Spectroscopy, Annual Scientific Conference of NIRAD, 

London.

- 2017 Ndiyo B, Beyond PSA: Raman liquid biopsy for identification of markers for Prostate cancer, 

Annual Scientific Conference of NIRAD, Birmingham.

- 2018 Ndiyo B, Raman Spectroscopy: A real time molecular imaging can revolutionise Prostate 

cancer management, Urology study day with Urologist, Kent.

- 2019 Ndiyo B, The Role of Raman Spectroscopy in diagnosis & Risk Stratification of Prostate 

cancer, Annual Research Competition, Dartford & Gravesham NHS Trust. 

RESEARCH AND OTHER PROJECTS

- The Role of Raman spectroscopy in diagnosis and Risk stratification of Prostate Cancer

CERTIFIED COURSES

- 2008 Managing Safely – Institute of Occupational Safety and Health

- 2016 Radiographer led CT Colonography – Peterborough & Stamford Hospitals NHS Trust

- 2014 Cardiac CT Course Royal Brompton & Harefield NHS Trust

- Comprehensive list of courses available on request. 

RESEARCH INTEREST

- To develop novel diagnostic approaches for clinical diagnosis of molecular diseases such as 

cancers. I am currently utilising a multidisciplinary approach of micro-spectroscopic imaging 

techniques and histopathology to interrogate biochemical fingerprints of tissues and biofluids for 

suspected prostate cancer patients (as part of My PhD Thesis).

- Translation of novel optical research tools into routine clinical practice from bench top to beside.

- Clinical translation of vibrational spectroscopies and imaging for disease diagnosis and 

therapeutic guidance.

GOVERNING BOARD MEMBERSHIP – Holy Trinity Church of England, Primary School

- Chair- Standards, Ethos and Wellbeing Committee
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- Responsible for raising school standards through three strategic functions by ensuring clarity of 

vision, ethos and strategic direction.

- Able to hold head teacher to account for the educational performance of the school and its 

pupils.

- Financial performance oversight of the school and ensuring that the money is well spent.

- I am an elected member of this governing body.

INTEREST:

- Exploring new areas

- Travelling

- Reading and writing

- Playing football

REFERENCES:

Prof. Nicholas Stone 

Professor of Biomedical Imaging and Biosensing / NHS Consultant Clinical Scientist

(1st PhD Supervisor)

University Lead for Healthcare Technologies

Director of EPSRC RaNT Programme

Physics and Astronomy

College of Engineering, Mathematics and Physical Sciences

University of Exeter

EX4 4QL

Email:n.stone@exeter.ac.uk

Prof. Sanjeev Madaan PhD, FRCS(Urol), FEBU

(2nd PhD Supervisor)

Consultant Urological Surgeon & Lead Cancer Clinician | Darent Valley Hospital, Dartford

Visiting Professor | Canterbury Christ Church University

Speciality lead for Urology Cancer Research | CRN Kent, Surrey & Sussex
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Tel: +44(0)1322 428612

Sanjeev.madaan@nhs.net

Appendix H: University’s Letter of sponsorship 

        

RESEARCH ETHICS AND 
GOVERNANCE OFFICE

Lafrowda House
St Germans Road
Exeter
Devon
EX4 6TL 

Telephone +44 (0)1392 723588
Web www.exeter.ac.uk

14th December 2017

Project title: ‘An evaluation of RAMAN spectroscopy for the diagnosis and risk stratification of prostate 
cancer’ 

Sponsor’s Reference: 1718/22

IRAS ID: 236129

Chief Investigator:         Mr. Bassey Ndiyo, Department of Physics & Astronomy, College of Engineering, 
Mathematics & Physical Sciences, University of Exeter, EX4 4QL

Dear Bassey,

I confirm that the University of Exeter will act as lead sponsor for the above study, undertaking its responsibilities as 
outlined in Health Research Authority’s ‘UK policy framework for health and social care research’ (v3.2,10/10/2017). 
The University will ensure that the necessary insurance cover for professional indemnity and public liability are in 
place before the study commences. 

Before participant recruitment commences, the appropriate HRA, ethics and NHS R&D approvals must be in place; 
please ensure that I have received copies of any correspondence or approval letters. 

 

mailto:Sanjeev.madaan@nhs.net
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As Chief Investigator, you are responsible for the management and conduct of the study and are expected to deliver 
the project in accordance with the University’s Code of Good Conduct in Research 
(http://www.exeter.ac.uk/research/inspiring/about/goodpractice/). 

The primary responsibility for the following lies with the Chief Investigator:

• Establishing and maintaining a Master File and Site Files as appropriate throughout the life of the study. 
Please find a suggested index attached for information.

• Ensuring that the researchers, students or others involved in conducting the project have the necessary 
training, experience, qualifications, support and supervision to carry out their tasks.

• Ensuring that all amendments to the study have received appropriate ethical review and R&D approvals. In 
cases where it is unclear if the amendment is minor or substantial, I will be responsible for making the 
judgement. Please contact me to discuss potential amendments at the earliest opportunity. 

• Providing annual, progress or end of project reports to Research Ethics Committees, funders and others as 
required. Please ensure that I receive copies of all reports. 

• Reporting adverse events or breaches of protocol or good practice, should they occur (a template adverse 
event report form is available at http://www.hra.nhs.uk/resources/during-and-after-your-study/progress-and-
safety-reporting/ . You must ensure that I am informed of adverse events or breaches as soon as possible 
after they occur and always within 24 hours of the incident. If required, I will take responsibility for ensuring 
that the event or breach is reported to the NHS REC, funder or other appropriate organisation within 15 days 
of the incident.

• Appropriate dissemination of the findings

• Satisfactory storage of any personal data and archiving of  study material  

Please note that announced or unannounced monitoring visits may be conducted either as part of the University’s 
routine research governance audit process or in response to a specific concern or incident. The University reserves 
the right to withdraw sponsorship and take any action necessary to ensure the safety of participants if it believes that 
the Chief Investigator is not fulfilling their obligations.

Please do contact me at any time if you have queries or concerns, for additional support or to discuss any aspect of 
your project.

Yours sincerely,

Pam Baxter

Senior Research Ethics and Governance Officer

Direct line: 01392 72(3588)

Email: p.r.baxter2@exeter.ac.uk

I declare that as Chief Investigator for the above named study I, or my nominated delegate, will carry out my 
responsibilities as outlined above.

Signature of CI __________________________________

Date____________________________________________

http://www.exeter.ac.uk/research/inspiring/about/goodpractice/
http://www.hra.nhs.uk/resources/during-and-after-your-study/progress-and-safety-reporting/
http://www.hra.nhs.uk/resources/during-and-after-your-study/progress-and-safety-reporting/
mailto:p.r.baxter2@exeter.ac.uk
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Appendix I: Material Transfer Agreement

Maidstone and   Tunbridge Wells

NHS Trust

MATERIAL TRANSFER AGREEMENT

This Agreement dated is made

BETWEEN

(1) Maidstone and Tunbridge Wells NHS Trust, Histopathology Department, The Maidstone 
Hospital, Hermitage Lane, Maidstone, Kent, ME16 9QQ, (“MTW”); and

(2) University of Exeter, Northcote House, The Queens Drive, Exeter, EX4 4QJ (“UoE”) 

RECITALS

UoE has agreed to provide MTW with prostate biopsy material taken for research purposes as further 
described in the Schedule (the “Materials”) and MTW has agreed to receive the Materials and perform 
the analysis outlined in this Agreement In this Agreement, the Materials shall be accompanied with a copy 
of the signed consent form which is relevant to each sample received that UoE has agreed to provide MTW 
with under, or in connection with this Agreement.

IT IS AGREED as follows:

1. MTW confirms the Materials is being handled is outside standard protocol.

2. MTW will not accept any responsibility or liability in respect of the opinion MTW provides on the 
Materials. The opinion provided by MTW must not be considered a diagnosis in any way.

s. MTW does not accept responsibility for transportation of the Materials. MTW do however have 
an expectation that samples (i.e. Materials) are sent safely packed according to UN3373 
specifications. That means the sample container must be within a sealed, watertight bag, (a clear bag 
as coloured bags tend to indicate a disposal pathway) and that must be placed in an outer, rigid, 
watertight container that has been appropriately labelled as to contents and hazard. This 
container must also clearly state the address of the designation laboratory and provide the 
contact details of the sender in case of emergency. It is the responsibility of UoE to ensure the 
courier transport of the Materials understands the nature of what they are carrying and is H&S 
compliant. MTW reserves the right to terminate this arrangement if the Materials” are 
presented in any way that places its staff at risk (e.g. leaking sample containers).

4. MTW will not review the original diagnosis relating to any of the Materials received. Resolution 
of any discrepancy between the opinion provided by MTW in connection with the Materials and 
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any earlier diagnostic samples for the same patient resides entirely with Dartford and 
Gravesham NHS Trust, the organisation provided with the original diagnosis.

5. UoE warrants that where required the Material has been obtained from humans with the 
appropriate consent as required by the Human Tissue Act 2004 or the Human Tissue (Scotland) 
Act 2006 (as applicable) and with ethical approval and UoE shall be liable for any
claims arising due to the breach of this warranty. UoE further warrants that it has not 
provided any information, (and does not intend to provide any information) which has led or 
may lead to MTW being able to identify the person from whom the relevant material came. 
MTW requires copies of the consent forms to come with the samples comprising the Materials. 
MTW will not commence processing of samples unless there is clear consent provided. 
Consent forms will not be seen by the reporting pathologist. If the patient name needs to be 
redacted from the consent form to provide anonymity MTW will accept the Materials but MTW 
will expect the trials number to be on both the sample pot and the consent form so MTW can 
tie the samples together with the biopsy received.

6. Samples must come in manageable batch sizes. First batch will be 10 cases. Once MTW have 
processed the samples received in the first batch, MTW will confirm if slightly bigger batches can 
be accommodated.

7. UoE must provide MTW with a sample of the spreadsheet that will be used to recording the 
findings for each biopsy received.

8. If the Materials prove to be problematic to interpret due to their having been handled in a non-
standard way, MTW reserves the right to discontinue.

9. Opinions provided by MTW will be based upon a single H&E stained slide. No additional 
laboratory work will be performed so there will be no further tests.

10. The opinion provided by the consultant at MTW will only indicate presence of malignancy (or not). 
MTW may provide brief comments to indicate any limitations in interpretation.

11. All tissue blocks and slides will be returned to UoE once MTW have finished with them. UoE 
will be informed and expected to arrange prompt collection by the courier of their choice.

12. MTW will provide the formalin pots to place the samples in and UoE is required to arrange a courier 
to collect them. MTW will dispose of the empty formalin pots.

13. For the avoidance of doubt nothing in this Agreement will prevent UoE from using the 
opinion provided by MTW for the purposes of the Research Project.

14. This Agreement will commence on the date of final signature and will continue until the first 
anniversary of the commencement date.

15. MTW understands that the Materials may have hazardous properties, contain infectious agents or 
pose other health and safety risks. Except as set out in clause 5 UoE makes no representations and 
gives no warranties either express or implied in relation to it: for example (without limitation), no 
warranties are given about quality or fitness for a particular purpose, or freedom from infection. 
UoE will not be liable for any use made of the Materials by MTW. MTW will use the Materials in 
accordance with good laboratory practice standards, all due skill and care and with dignity, 
sensitivity and respect. MTW will comply with all applicable laws, approvals, rules, codes of practice 
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and regulations governing the transportation, storage, use and disposal of the Materials.
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16. MTW undertakes to store the Material in accordance with all applicable laws and not to 
attempt to identify or contact the donor of the Materials or to compromise or otherwise 
infringe the confidentiality of information on the donors and their right to privacy.

17. UoE has the right to terminate this agreement forthwith at any time by means of written  notice to 
MTW if the ethical approval is withdrawn or if MTW is in breach of this Agreement. In the case of any 
termination, MTW shall immediately discontinue all use of the Materials and, at UoE’s discretion, 
promptly return or destroy all unused Material and provide written confirmation that this has been 
completed. If requested, MTW must certify that it has complied in full with any such requirement of 
UoE.  Should an individual donor or their next  of kin rescind their consent, UoE will require and MTW 
agrees to discontinue using the appropriately identified sample and return or destroy it in accordance 
with UoE’s instructions.

18. The liability of either party for any breach of this Agreement or arising in any other way out of the 
subject matter of this Agreement, will not extend to loss of business or profit, or to any indirect or 
consequential damages or losses.

19. This Agreement constitutes the entire agreement between the parties and supersedes and 
extinguishes all previous agreements, promises, assurances, warranties, representations, and 
understandings between them, whether written or oral, relating to its subject matter. Any 
amendment(s) to this Agreement shall be in writing and must be signed by an authorised 
representative of each party.

20. This Agreement shall be governed and construed in accordance with the laws of England and 
Wales and the Parties agree to the exclusive jurisdiction of the English Courts.

AGREED by the parties through their authorised signatories:

SIGNED by

Hazel Everest, Research and Clinical Audit Manager 

Maidstone and Tunbridge Wells NHS Trust

Date: .....................

SIGNED by ..........................................

Paul Denham, Histology Lead Biomedical Scientist Maidstone and Tunbridge Wells NHS Trust

SIGNED by

University of Exeter

SIGNED by

Mr
Student, University of Exeter
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