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Quantifying resilience of socio-ecological systems (SES) can be invaluable

to delineate management strategies of natural resources and aid the

resolution of socio-environmental conflicts. However, resilience is difficult

to quantify and the factors contributing to it are often unknown. We

provide a theoretical and conceptual framework to quantify resilience in a

long-term context. Our approach uses elements from interdisciplinarity and

network perspectives to establish links and causalities between social and

ecological variables and resilience attributes. The evaluation and modeling

of SES structure and function are established from the analysis of dynamic

Bayesian networks (DBN). DBN models allow quantifying resilience through

probabilities and offer a platform of interdisciplinary dialogue and an

adaptive framework to address questions on ecosystem monitoring and

management. The proposed DBN is tested in Monquentiva, a SES located

in the high Andes of Colombia. We determined historical socio-ecological

resilience from paleoecological evidence (palynological diversity, forest cover,

fires, and precipitation) and social-economic factors (governance, social

organization, and connectivity) between 1920 and 2019. We find that

transformation processes in Monquentiva are mainly related to social change

(e.g., social organization) and increased ecological diversity that in turn

have fostered SES resilience between 1980 and 2019. The ability to predict

the SES response over time and under cumulative, non-linear interactions

across a complex ecosystem highlights the utility of DBNs for decision

support and environmental management. We conclude with a series of

management and policy-relevant applications of the DBN approach for SES

resilience assessment.
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Introduction

The resilience of socio-ecological systems (SES) has become
a focal concept for the management of natural resources
and resolution of socio-environmental conflicts (Folke et al.,
2004). Studies investigating the patterns and drivers of
ecosystem resilience extend from ecology and natural resource
management to food security, community planning, and
disaster management (Folke et al., 2010; Allen et al., 2016; Eason
et al., 2016). Efforts to apply resilience concepts within these
fields have stimulated an interest in assessing and measuring
resilience from multiple disciplinary perspectives (Allen et al.,
2016; Quinlan et al., 2016). The application and measurement
of resilience are varied and often only indirectly linked to
theoretical frameworks. Resilience assessments that are adaptive
and quantitative, and integrate interdisciplinary and network
perspectives, are needed to account for the dynamic nature of
SES under environmental and social change.

Resilience theory provides a framework for integrating
ecosystem dynamics and environmental change to inform
conservation and management of SES. Two aspects of resilience
described in the literature are: (i) Ecological resilience, referring
to the capacity of an ecosystem to absorb disturbance without
changing structure and function (Gunderson, 2000) and (ii)
engineering resilience—defined as the capacity of an ecosystem
to recover from a disturbance that causes change in structure
and function (Holling, 1973). However, resilience is more than
being persistent or robust to disturbance. Resilience emerges
from cumulative effects, feedback loops, and the dynamic
systems that characterize a SES (Angeler and Allen, 2016).
Resilience also relates to opportunities that disturbances provide
for renewal and recombination of processes and the emergence
of new trajectories in a system (Berkes et al., 2008). As such,
resilience also involves three main system capacities: absorption,
adaptation, and transformation (Carpenter et al., 2001; Elmqvist
et al., 2019), which should all be incorporated into resilience
assessments of SES.

Assessing SES resilience can be challenging and requires
integrating approaches, knowledge, and theories from different
disciplines (Ostrom, 2009; Quinlan et al., 2016). In practice, SES
resilience assessment is often developed from the perspective
of a single discipline and tends to oversimplify ecological
and social subsystems (Cote and Nightingale, 2012; Schulter
et al., 2014). However, SES resilience assessments should
integrate the knowledge produced across disciplines including
qualitative indicators and variables (Linstadter et al., 2016).
Interdisciplinarity refers to integrative research that ties the
principles from multiple disciplines together into one cohesive
body of work, where the whole is more than the sum of its
parts (Davidson, 2015). In our experience, interdisciplinarity is a
site-specific but intensive dialogue between social and ecological
experts that aims at a cross-disciplinary appreciation of socio-
ecological resilience. An interdisciplinary framework needs to

be holistic and embrace complexity. Complex systems research
has addressed how decentralized local interactions of social and
ecological agents give rise to collective outcomes (Crawford
et al., 2005), such as a cooperation action between resource
users.

A key conceptual challenge discussed in the social sciences
is the view of resilience as a normative property, as if resilience is
always a value-free, desirable end-state. Normative connotations
of resilience risk introducing fallacies inherent in the unequal
power relations created by resilience discourse, which is to say,
presenting as necessary and good for communities “resilient”
policy decisions that have been made for economic or political
reasons (Cote and Nightingale, 2012; Elmqvist et al., 2019).
Resilient systems, however, are not necessarily sustainable, nor
are sustainable systems inherently resilient to disturbance and
change. Ideally, sustainable systems are resilient in a desired
state and have a high likelihood to maintain that desired
state over time (Allen et al., 2014). A further challenge is to
delimitate and specify interdependencies of subsystems within
a SES (Berkes et al., 2008). The latter is also a prerequisite for
understanding how cross-scale interactions affect the coupling
between social and ecological subsystems (Allen et al., 2014;
Quinlan et al., 2016), and the implications for overall SES
resilience. Research on SES resilience often involves a limited
consideration of temporal scales (Quinlan et al., 2016). However,
SES resilience assessment inherently requires evaluation of
disturbance response over long temporal frameworks (Schulter
et al., 2014). Resilience also needs to be evaluated against
a baseline or a non-static desirable state, that can only be
established by looking at long-term system behavior.

Any approach aiming to assess and quantify SES resilience
requires the integration of ideas from social (Callon, 1984;
Latour, 2005) and environmental (Wu and David, 2002)
sciences and focus on human-ecosystem frameworks. For
example, a network perspective that has gained strength within
contemporary social sciences, and that is relevant to this
interdisciplinary endeavor, is the actor-network theory (ANT)
proposed by Bruno Latour and Michel Callon. ANT delineates
the interaction of networks based on the experiences of the
actors in a SES, without reproducing the disciplinary division
between social and natural sciences (Latour, 2005). Inspired by
ANT, we see the resilience to be measured as the result of place-
based processes, in particular, of the experiences and responses
of actors facing social and/or ecological disturbances. Actors
then respond by absorbing, adapting to, or transforming the
disturbances. The notion of resilience is a “bridging concept”
in this sense, between the natural and social sciences (Davoudi
et al., 2012).

We present an overview of the state of the art on socio-
ecological resilience concepts and modeling, and Bayesian
networks (BN) to assess SES resilience overtime. First, we
review the definitions of SES resilience in the literature
and discuss the challenges of integrating long-term social
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and ecological information. Second, we present definitions of
SES resilience and measures from the literature, including
qualitative and quantitative assessments and their application
to SES resilience. Third, we compile information on network
theory and address advantages and disadvantages of network
approaches. We review how BN and dynamic Bayesian networks
(DBN) operate and their application to model and assess
SES resilience using long-term information. We also discuss
a dynamic Bayesian network approach to build temporally
robust models of SES resilience. This dynamic approach
takes the long-term perspective from a plurality of data
sources and an array of interdisciplinary approaches linked to
paleoecology, archeology, anthropology, and history. Finally,
we present an application of this approach to a SES in the
Colombian Andes.

Social and ecological information
in socio-ecological systems
resilience assessments

SES are complex, integrated systems in which humans are
part of nature (Berkes et al., 2008) and where nature is also
composed of human and non-human elements (Latour, 2005).
Resilience in SES depends on the strength of feedbacks arising
from interactions between the social and ecological elements of
a system e.g., biophysical processes, abiotic structure, species
composition, human actors, and socio-economic processes
(Figure 1; Berkes et al., 2000). Long-term ecological records
can describe the conditions and dynamics of ecosystems
and natural environments (Willis and MacDonald, 2011)
and the changes a SES has undergone during the past.
Records of forest and fire dynamics, climate change, and
human-landscape interactions are important for understanding
ecological processes within SES. Such data are normally
obtained from both paleoecological and archeological records
and span centuries to millennia (Figure 2). On the other hand,
long-term socio-cultural information can include archeological,
anthropological, and historical records documenting past
social structures, organizational practices, economic factors,
or adaptive strategies (Grier et al., 2017). In timescales of
centuries to millennia, archeology is the primary source of
socio-cultural data. Historical information from archives and
ethnohistories can also offer a long-term perspective of these
changes (Figure 2). An approach that combines questions,
theory, and analysis of social and biophysical information to
quantify resilience in a long-term context still needs to be fully
developed. This is partially due to poor understanding of how
each data source operates in the long term, and the challenges
behind their integration around resilience theory frameworks
(Dearing et al., 2015) and the disciplinary infrastructures of each
information source (Redman et al., 2003; Butzer, 2005).

An integrated approach to assess
socio-ecological systems
resilience

Defining socio-ecological systems
resilience and measures

To assess long-term resilience effectively, we need to
adopt a definition of resilience for SES that clearly describes
relationships between both systems: social and ecological. One
key aspect of socio-ecological resilience is the capacity of the
system to absorb disturbance and reorganize while the same
core structure and function are retained over time (Carpenter
et al., 2001; Folke, 2006). Absorption capacity relies on strategies
or actions to cope with change rather than instigating a
significant change to reduce or avoid future disturbances (Béné
et al., 2016). Resilience in SES also includes two other aspects:
adaptive and transformative capacities (Carpenter et al., 2001).
The adaptive capacity refers to the ability of the system to
learn, combine experience and knowledge, adjust responses to
disturbances, and continue operating (Berkes et al., 2008). The
transformative capacity corresponds to reaching a new system
state when ecological or social structures are reorganized in
more fundamental ways, such as by changing key institutional
arrangements (Walker et al., 2004; Figure 3). An essential aspect
of this conceptualization is the recognition that resilience results
from the combination of the three capacities: (1) absorptive
capacity leading to persistence, (2) adaptive capacity leading
to incremental adjustments/changes and adaptation, and (3)
transformative capacity leading to transformational responses
(Carpenter et al., 2001; Béné et al., 2016).

Resilience is also connected to functionality. Functionality
in a SES is closely linked to service provision and can be
conceptualized based on system function in ecological and
social terms (Angeler and Allen, 2016; Nash et al., 2016). If
SES functionality does not persist following a disturbance, the
system cannot absorb, adapt, or recover its core structure. As
such, the state of the system’s functionality after disturbance is
a crucial factor determining its resilience (Figure 3). Capacities
of absorption, adaptation, and transformation of SES can be
conceptualized in terms of functionality to generate resilience
measures (Renschler et al., 2010). However, resilience measures
based on functionality and resilience capacities are challenging
as non-linearity emerges from the cumulative interactions of
disturbances and environmental, ecological, economic, and
socio-cultural processes over time (Holling, 2001). Functionality
can serve as a proxy of resilience and its assessment should
involve uncertainties associated with biological systems, social
complexities, and our current understanding of the SES
dynamics. Thus, heuristic models and integrative methods are
needed to capture system uncertainties and dynamics linked to
SES resilience.
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FIGURE 1

The conceptual framework for a resilience assessment of socio-ecological systems [adapted and modified from Berkes et al. (2000)].

FIGURE 2

Multi-temporal variation of ecological (green bars) and social drivers (gray bars) of change in a socio-ecological system.

Resilience assessments in the literature involve qualitative
and quantitative approaches (Angeler and Allen, 2016; Quinlan
et al., 2016). Examples of qualitative resilience assessments
involve interviews and participatory methods with stakeholders
(Wilson and Wilson, 2019; Saja et al., 2021). Participatory

methods from the social sciences can incorporate social
and ecological variables under the umbrella of methods
such as ethnography, which involve collecting data through
immersing the researcher in the daily life of socio-ecological
communities, so as to produce detailed and “thick descriptions”
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of socio-environmental relationships. Participatory methods
can also involve the collection of qualitative data through
methods such as oral histories, interviews, focus groups, and
social cartographies, with the participatory element allowing
researcher experience to ground these specific insights into
everyday practice or experience in broader contexts, including
wider biophysical processes that have historically influenced
the territory (Hastrup, 2013). These methods are relevant to
interdisciplinary processes as they tend to increase awareness
of resilience and its drivers but provide limited metrics and
long-term dynamics of SES. Meanwhile, quantitative methods
identify underlying patterns and causal explanations of SES
change and have been divided into two types: metric-based
and model-based approaches (Angeler and Allen, 2016). Metric-
based approaches use measures of individual properties to assess
overall system performance, whereas model-based approaches
use system configuration modeling to predict the system
evolution (Linkov and Kott, 2019). Several efforts have focused
on developing metrics applicable to SES (Kerner and Thomas,
2014; Cushman and McGarigal, 2019), including long-term
perspectives (Dearing, 2008). However, the lack of universally
applicable resilience metrics and the inability to formalize
these metrics have been barriers to implementing consistent
approaches to SES resilience (Linkov and Kott, 2019) that
can inform management and policy. Model-based approaches
focus on representing the real world and defining resilience
using mathematical and physical concepts applied to SES
(Linkov and Kott, 2019). Modeling the SES performance is
information-demanding and requires a detailed understanding
of the social and ecological aspects of a system to simulate
resilience capacities and, consequently, system functionality.
In the following sections, we focus on BN to model SES
resilience. This approach combines an assessment of resilience
capacities and functionality through network structures and
modeling.

A network perspective for
socio-ecological systems resilience

Network perspectives, which provide an effective tool for
analyzing and visualizing complex interactions, can be used
to model past social and ecological interactions within a SES
(Moore et al., 2016; Sayles et al., 2019), and to characterize
the flowing of material, energy, and information between the
SES constituents (Cote and Nightingale, 2012). A network
perspective can thus be effective for understanding the structure
and function of SES—specifically, by incorporating graph
theory and statistics with descriptions of social and ecological
dimensions, depicted in terms of nodes and links (Newman,
2004). A network can represent a given system in terms of its
localized variables (i.e., nodes) and the relations between those
variables (i.e., links) (Figure 4A). The links in a network are

FIGURE 3

A graphic depiction of resilience in terms of functionality
illustrating possible ways in which a socio-ecological system
may respond to disturbances. The gray silhouette represents the
frequency of disturbance over time.

usually directed (i.e., one-way or two-way connections/arrows),
and they can depict any relations between linked nodes. The
nature of connections can be entirely social, entirely ecological,
or a mixture of both components. For instance, a socio-
ecological relationship may consist of resource extraction by
peasants from their environment. Human activities can create
a socio-ecological network by linking ecological nodes, where
two independent ecological systems can become connected
by human practices (e.g., ancient communities in the tropical
Andes have developed their productive activities at various
altitudes, and as a result, previously unconnected high Andean
vegetation has become interconnected (Langebaek, 1987). Such
a graphic exercise linking components and their relations
allows to produce a network perspective that can serve
as a basis to develop functionality and resilience measures
for the SES.

A clear advantage of a network approach is that structural
properties can be revealed and associated with SES resilience
(Moore et al., 2016). Networks elucidate the structure of
interactions between SES components and how this structure
affects the performance and functions of the system (Janssen
et al., 2006). The breakdown of network interactions over
time can be related to the loss of functionality and resilience
within the SES. Also, a socio-ecological network perspective
in modeling resilience can provide a common ground where
interdisciplinary and integrative approaches are explored (e.g.,
Quinlan et al., 2016). An expert consensus and stakeholder
participation often provide valuable knowledge about the SES,
and involving these stakeholders in the modeling process can
facilitate communication and learning (Ruckelshaus et al.,
2015). Participatory processes are also relevant to find the
typological structure and links of networks. A collective building
of networks allows an integrative resilience assessment and
identifies reliable interactions that can support decision-making
(Jakeman et al., 2006). As a result, SES resilience can be
represented as interconnected networks composed of social and
ecological nodes developed through interdisciplinary processes
and stakeholder dialogues.
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FIGURE 4

An example of general and dynamic Bayesian networks representing the influences of social and ecological drivers on SES functionality. (A) The
prior model or general Bayesian network represents interactions that are instantaneous, (B) the transition model or dynamic Bayesian network
represents interactions that are both instantaneous and temporal. Green circles highlight the ecological nodes and gray circles highlight social
nodes that may be considered in the assessment of SES resilience.

Bayesian networks to quantify
socio-ecological system resilience

BN deal with the challenges of modeling complex networks
where variables are linked through conditional probabilities
(Marcot and Penman, 2019). Their ability to model associations
from observational data sets has drawn attention from many
disciplines, including biology and engineering (Aguilera et al.,
2011; Wu et al., 2018). Key advantages of BN include integrating
qualitative and quantitative information, incorporating
uncertainty, and their graphical structure (Uusitalo, 2007).
The BN graphical structure represents causalities in a modeled
system, increasing modeling transparency (Jensen, 1996),
and facilitating interdisciplinary communication with other
disciplines and stakeholders (Voinov and Bousquet, 2010).
For example, BN that integrate goals, interests, and opinions
from stakeholders and experts have been used to address water
availability (Henriksen et al., 2007), agricultural (Salliou et al.,
2017), and forest (Gonzalez-Redin et al., 2016) systems. Usually,
participatory dialogues with stakeholders and experts lay the
conceptual and theoretical bases for the selection of nodes
and understandings of their links in the BN (Angeon and
Lardon, 2008). These participatory processes are the basis of
the BN analysis and have the potential to deliver SES resilience
assessments that are most relevant for management. The
involvement of stakeholders also reduces the likelihood that
policy or management strategies derived from the assessment
result in socio-environmental conflicts.

Graphically, a BN is a snapshot of a system represented
by a directed acyclic graph, consisting of nodes and links
(Figure 4A). The BN graph is acyclic (i.e., without cycles),
because link directions prevent a parent node from being its
own child (i.e., without self-loops or parallel edges). The nodes
represent variables, which can be states, processes, outcomes
or drivers of specific components of the system. Each node
contains the probability of occurrence of an event or state.
Nodes are classified into parent or child, a parent node is the
predecessor of a child node or successor in the BN. The links
denote the causal relationships between nodes. For example,
in Figure 4A, ecological and social nodes are predecessors
of absorption (X1), adaptation (X2), and transformation (X3),
which are the children of both sets of nodes. Likewise, nodes X1,
X2, and X3 are the parents of the node functionality (X4).

BN operate by calculating the conditional probability
distributions that measure the relationships between variables or
nodes. Equation 1 represents the joint probability distribution
of a BN consisting of n random variables or nodes (X). Each
node Xi has a conditional probability distribution P[xi | pa(xi)]
attached, where pa(xi) represents the parents of each node Xi in
the graph. An advantage of BN is that the network development
can help to identify relevant (or irrelevant) variables for one
node of interest and relationships between variables. This
provides structure to the interaction networks but also simplifies
the joint probability distribution of variables necessary to
represent the resilience model. The BN provides a compact

Frontiers in Forests and Global Change 06 frontiersin.org

https://doi.org/10.3389/ffgc.2022.889274
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-889274 October 14, 2022 Time: 15:58 # 7

Franco-Gaviria et al. 10.3389/ffgc.2022.889274

representation of probabilities of all variables, defined as the
product of the conditional probability related to each node:

P (X) =
∏n

i=1
P
(
X|pa(xi)

)
(1)

Where X = x1. . .. xn, and pa(xi) is the set of parents of
variable xi.

BN are able to provide reliable uncertainty estimates when
explicitly included in the conditional probability distributions
of nodes in the network. Building a prior BN gives structure
to the interaction network and simplifies the joint probability
distribution of variables necessary to represent the model. BN is
particularly appropriate for dealing with inherent uncertainty,
which tends to be a key issue in SES. To assess uncertainties
in the probabilities of a BN, a sensitivity analysis is often
performed. This allows identifying the most important and
impactful variables and collecting the most relevant data for
those variables (Kleijnen, 1995). As discussed in section “
Social and ecological information in SES resilience assessments,”
assessing SES resilience requires long-term ecological and social
information to quantify the cumulative effects of disturbance.
Incorporating a temporal dimension to the modeling of SES
is achieved by using an extension of BN known as the DBN.
An example of a DBN for a SES representing the influence
between socio-economic drivers, environmental pressures, and
ecosystem function is shown in Figure 4. In DBN, nodes
represent variables at points in time (Tucker and Liu, 2004).
Therefore, the joint probability distribution of t = 0 is the same
as Equation 1, whereas the joint probability distribution of the
following time slices (t > 0) is:

P
(

X(t−1)
)
=

∏n

i=1
P
(

pa(x(t)
i )
)

(2)

Where xi
(t) is the node i at time t and pa(xi

(t)) are the
parents of xi

(t) in the graph. DBN incorporates a prior and a
transition model, unrolling a single BN over time (Figure 4B).
A prior model specifies the initial conditions of the Bayesian
network (Figure 4A), while the transitional model defines
how variables change over time (Figure 4B). The prior model
represents the nodes and their connections that regulate SES
functionality (Figure 4A). Based on the structure and causal
relationships of the prior model, the transition model represents
the relationships between drivers and functionality along two-
time slides, past (t-1) and present (t) (Figure 4B), similar to
Markov models (Tucker and Liu, 2004). In this context, DBN is
an applicable method that assesses the resilience of SES through
functionality by estimating the joint probability of all nodes
or variables at the current time and all preceding times. For
example, the conditional probability of the system to retain
functionality (X4), in time t, is represented by P(Xt

4| Xt
1,

Xt
2, Xt

3, Xt−1
4). Note that the temporal nature of the last

example represents changes in functionality over time, where
the causal knowledge of social and ecological drivers of change
influences SES functionality. For this step, interdisciplinary

understandings are essential to structure the prior model and
provide the basis for assessing SES resilience.

An assumption underlying DBN is stationarity, because the
structure and parameters of DBN are fixed over time. However,
this assumption can be too restrictive and may not hold for
social and ecological systems. There have been several efforts
to relax the stationary assumption by extending each hidden
node of Hidden Markov Model (HMM) into a DBN, which
properly works the underlying time-evolving networks (Zhu
and Wang, 2015). Similarly, this hybrid methodology could
explore possible feedback effects of functionality at time t on
social or ecological nodes at time t + 1. Quantifying resilience
requires a temporal component, making management attempts
based on static reference conditions insufficient. Combining
DBN and HMM approaches can adopt a long-term perspective
to model the probability that a SES maintains structure and
functionality after disturbances. DBN allows quantification of
probabilities that the SES switches from one functionality state
to another and probabilities of function losses or gains over time.

A socio-ecological resilience
assessment based on dynamic
Bayesian networks and integrating
long-term social and ecological
data

The Bayesian network approach to analyze SES resilience
focuses on the time-sensitive causal relationships between
ecological and social drivers of change and three capacities of
resilience to quantify ecosystem functionality. We propose the
following six steps based on interdisciplinarity to build socio-
ecological networks, and DBN for modeling and assessing SES
resilience (Figure 5).

Step 1. Identifying social and ecological drivers of change
in SES and nodes for the DBN. Given the complexity of
SES, identifying these drivers is crucial to understanding
SES dynamics and its responses to disturbance and change.
This analysis should consider drivers and interaction effects
that may not be readily apparent from the perspective of a
single discipline. For example, drivers such as climate change,
governance, economy, technology, policies, and global market
change and their interactions can drive changes on SES (Johnson
et al., 2021). Under our network approach, experts choose
a priori the drivers of change which will constitute the nodes
in the network. In this step of the assessment, it is crucial to
establish causal links based on participatory approaches and
interdisciplinary discussions.

Step 2. Identify and characterize the sources of disturbance.
This step refers to specifying the disturbance regime to which
the SES is subject, e.g., the type of disturbance, their frequency
and intensity (White and Jentsch, 2001). Disturbances may
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FIGURE 5

A methodological framework to assess SES resilience based on dynamic Bayesian networks.

include both human (e.g., fires, local conflict, and habitat
fragmentation) and natural (e.g., fires, recurrent droughts, and
floods). Socio-economic data could inform the identification
and characterization of natural and anthropogenic disturbances
at discrete points in time, while paleoecology can inform the
characterization of those disturbances over time (e.g., Davies
et al., 2018). For example, fire is one of the most common
disturbance factors reconstructed in paleoecology (Vegas-
Vilarrubia et al., 2011). However, a complete characterization of
fires requires understanding the underlying causes, which can be
explained by merging social and ecological information. In this
case, the underlying causes of fires in the Colombian Amazon
during the last decades are related to several socioeconomic
conflicts including land tenure, land allocation and armed
conflict (Armenteras et al., 2019).

Step 3. Resilience decomposition and functionality. The
three capacities of resilience in the BN become bridging
nodes between social and ecological nodes and the system’s
functionality nodes (Dee et al., 2017). In this step, absorption,
adaptation, and transformation represent the three capacities
of resilience and help to quantify the system’s functionality.
Considering our example of the SES network (Figure 4), drivers
associated with absorption may be the physical structure of the
ecosystem or information on land use conversion. Adaptation
as capacity may involve parameters such as institutional and
governance actions referred to preventive measures that reduce
the risk of collapse and enable SES to continue functioning

during and after the disturbance. Transformation may consider
social structures such as communities or corporations and
national and local conflicts that may have pushed the SES
to a new state after disturbance. Resilience capacities and
functionality can be measured independently through expert
knowledge (Sensier et al., 2016) or by using predictive models
where functionality is the dependent variable (Youn et al., 2011).
Alternatively, all three resilience capacities can be quantified
together by Composite Indicators (Burgass et al., 2017), which
offer a means of aggregating multiple indicators to track and
communicate complex systems.

Step 4. Develop conditional probability tables (CPTs).
Conditional probability of discrete variables is usually
represented by a conditional probability table in which
local probability is listed when a child node adopts each
feasible value for each combination of values of its parent node
(Jensen, 1996). The joint probability distribution of variables
can be determined by local conditional probability tables
that include unknown parameters to be estimated based on
expert knowledge and automated learning algorithms (Jensen
and Nielsen, 2007). As for the parent nodes of absorption,
adaptation, and transformation, consisting of the different
combinations of social and ecological nodes, the conditional
probabilities are assigned based on the expert judgment and the
learning algorithm for each combination of states of the parent
nodes.
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Step 5. A resilience assessment over time (modeling). The
resilience levels are modeled through DBNs by calculating joint
probabilities of the nodes and linkages, obtained in Steps 1,
2, and 3. The result of each BN is a performance point. The
collection of the performance points results in a function that
parameterizes system functionality and its changes, starting
from a stable state or performance point and ending with
the possible pathways in which the SES may respond to
disturbances (Figure 3). The resulting time series is used to
interpret changes in functionality over time and be directly
linked to SES resilience. For example, monitoring how forests
and their inhabitants recover from a series of fires becomes an
ideal resilience metric (e.g., Davies et al., 2018; Ibáñez et al.,
2019). The flexibility of the approach allows measuring not
just the impact of disturbances on SES, but also identifying
and characterizing the main social and ecological processes that
make the system resilient.

Step 6. Model validation and application. The resilience
evaluation can be directly assessed by verifying the accuracy of
the DBN Model. Here we recommend a validation model based
on interdisciplinary expertise and stakeholder evaluations. The
experimental validation for DBN-based resilience includes a
sensitivity analysis, which examines how small probability
changes affect other parameters over time (Kleijnen, 1995).
The results of a sensitivity analysis can be used to validate the
model, but also to warn of unrealistic model behavior, point out
important assumptions and help to formulate model structure.
A comprehensive framework to validate expert-based models
has been developed (Pitchforth and Mengersen, 2013) and
accounts for the difficulty of validating expert decisions and that
is applicable to our DBN models. The framework includes seven
types of validity based on psychometrics: nomological, face,
content, concurrent, convergent, discriminant, and predictive
validity. For each validity aspect, questions ranging from the
network structure to their implementation are suggested to test
the validity of the DBN. For example, a question relevant to a
SES resilience assessment and within the content validity is: Do
the states of the nodes reflect all the known possibilities from
expert knowledge and domain literature? Once a validation and
a sensitivity analysis is conducted, participatory activities with
stakeholders can further evaluate how the model is reflecting
SES and changes in its functionality over time.

A study case for Monquentiva,
Colombian Andes

We apply the DBN approach to model and quantify
resilience of the Monquentiva socio-ecological system located
in a biodiversity hotspot in the high Andes of Colombia. The
village of Monquentiva is part of the municipality of Guatavita,
northeast of the city of Bogotá (Figure 6). The Monquentiva
community has high social cohesion and a considerable level

of organization that aims to sustainable use and manage
natural resources (Amador-Jiménez, 2020). The Monquentiva
community runs a cheese and dairy cooperative since 1990 and
rates of deforestation have decreased in the area even when
deforestation has intensified in Colombia (Amador-Jiménez and
Millner, 2021). Today the relationship between the social and
ecological subsystems at Monquentiva is therefore thought to be
stable and harmonious, and if so, the Monquentiva SES could be
an example of a resilient socio-ecological system in the 2nd most
diverse country on earth (Hernández, 2016). However, a careful
assessment of SES resilience in Monquentiva is yet to be done.
Here we model long-term functionality of the Monquentiva
SES and apply the DBN network approach to test how the SES
resilience has varied over time.

Materials and methods

We selected socio-economic and ecological nodes through
discussions among experts from the social and ecological
sciences and stakeholders. Scientific experts had worked in
Monquentiva for over 3 years and included anthropologists,
archeologists, historians, cultural geographers, ecologists,
and paleoecologists. The selection of stakeholders, mainly
policymakers and officials, was relatively simple since the
experts in the area are a limited group (n = 15), including forest
engineers, conservation professionals, environmental officials,
and researchers in ecology and environmental anthropology. In
this research, we approached 9 of the 15 stakeholders identified
for the area, among them men and women. We organized
interviews, meetings, and focus groups: with a (1) official from
the Office of the Environment of the Guatavita Mayor’s Office,
two (2) CAR (Corporación Autónoma Regional [CAR], 2019)
officials in charge of the jurisdiction of the Monquentiva, two
(2) researchers from Conservation International (international
environmental NGO that operates in Monquentiva), two (2)
environmental engineers and ecologists from the District
University of Colombia, a (1) Colombian official from IDEAM
(Institute of Hydrology, Meteorology, and Environmental
Studies), an (1) official from the Chingaza National Park
in the area near Monquentiva. The participation of the
Monquentiva community (n = 30) was given by generational
groups (grandparents, adults, and young people) and by
groups of practices and professions among the peasants: dairy
farming, a forest plantation, environmental conservation,
farm caretakers, and leaders in a peasant association. We held
eight meetings and two workshops with local communities,
stakeholders, and experts, and the interdisciplinary discussions
occurred throughout the data collection phase. The research
team was responsible for guiding the experts through the
tasks, encouraging discussion, and presenting results and
analysis back to the experts. In addition, information from these
discussions and paleoenvironmental data gathered through
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FIGURE 6

Map showing the location of Monquentiva in the high Andes of Colombia. The green dot indicates the location of the coring site for MAR19-G3.
Orange hatching shows the Vereda (Village) of Monquentiva and green patches show the current distribution of High Andean Forest.

analysis of sediment sequences was used to structure the
Monquentiva DBN. The socio-economic variables used in the
DBN were population density, social organization, connectivity,
and economic autonomy (Supplementary Table 1). The
ecological variables included precipitation, forest cover,
diversity, and fire activity (Supplementary Figure 1). The long-
term behavior of ecological variables was derived from pollen
and charcoal records from the sediment core labeled MAR19-
GIII and meteorological data, while the socio-economic
information was gathered through ethnographic work and oral
history at Monquentiva (Amador-Jiménez, 2020). Ecological
variables were discretized (Jensen, 1996) at equal intervals,
converting continuous indicators into ordinal categories. For
example, forest cover was converted into high, moderate,
and low. Social variables were converted into zero, deficient,
low, moderate, high, and very high by ranking methods
(Supplementary Table 1).

The mathematical model was designed from a database
of 12 variables and 96 observations per time window
(Supplementary Table 2). The choices for the prior model

and periods were determined by the time-scale of interest
and social and ecological knowledge of the territory. For
Monquentiva, we chose the period 1920–1960 as our prior
model based on the availability of historical records for the
socio-economic variables. We chose two subsequent periods
1960–1980 and 1980–2022 because they represented contrasting
socio-environmental periods for this specific SES. Each variable
was plotted as a node in a prior Bayesian network corresponding
to the period 1920–1960 (time = t–1) and links were established
with the three resilience capacities: absorption, adaptation, and
transformation—probabilities quantified and assigned based on
expert discussions (Figure 7A, left). A second BN for 1960–
1980 (time = t) plotted the relationships between ecological
and socio-economic nodes, the three resilience capacities, as
well as the legacy of node changes from the prior BN at t–1.
For fire activity for instance, we drew links between the node
fires and transformation at t–1, and a link between fires at t–
1 and fires at t (Figure 7). A third BN was plotted for the
period 1980–2022 (time = t + 1). The next stage involves the
compositional elements of the BN, which are typically in the
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form of conditional probability tables (CPT). The conditional
probabilities were determined using Expectation-Maximization
(EM) learning (Jensen and Nielsen, 2007). Thus, we used
Equation 1 to calculate the probability of each resilience capacity
given the interactions between socio-economic and ecological
variables or nodes, and Equation 2 to model functionality over
time incorporating the three resilience capacities. The model did
not implement a linear regression so there were no assumptions
made on the errors. However, the best score in iteration 0 from
the DBN was –573.663 and EM Log Likelihood was –147.162.

A sensitivity analysis was used to measure the degree
to which the modeling variables influence the output of the
model (Supplementary Figure 2). In this case, the focus
is on studying the parameters which influence the target
variable functionality. The sensitivity analysis applies the
algorithm proposed by Kjærulff and van der Gaag (2000),
to calculate the complete posterior probability distribution
of selected nodes over all numerical parameters of the
Bayesian network. The sensitivity analysis allowed the
identification of important variables within the network
and helped to verify the behavior (i.e., the relationship
between nodes) of the developed model. In the modeling
process, we used the GeNIe environment (Druzdzel, 1999)
developed by the Decision Systems Laboratory of the University
of Pittsburgh1 to build the network structure, calculate
conditional probabilities tables, and validate and verify the
model (Supplementary File 1).

Results and discussion

We observed that system functionality increased in the
Monquentiva SES from 1920 to 2022 (Figure 7B). The
functionality probability reached 0.63 in the most recent
timeslice indicating the highest probability of maintaining
functionality and resilience in the Monquentiva SES over
the last 40 years. We also observed increases in the
probabilities for absorption, adaptation and transformation over
time, which in turned contributed to the accumulation of
resilience probabilities. The pollen-reconstructed forest cover
and diversity increased over the last 40 years, as well as
social organization which together have likely led to a more
functional and resilient system. The sensitivity analysis showed
that the number of sensitive parameters increases toward 2022
(Supplementary Figure 2). Between 1920 and 1960 (time = t–
1), a low probability of functionality is associated with less
absorption and low levels of forest cover, diversity, economic
autonomy, and social organization. Between 1960 and 1980
(time = t), the low functionality probability in the Monquentiva
SES is related to poor absorption and low levels of forest cover,

1 https://www.isp.pitt.edu/research/machine-learning-and-decision-
making-group

diversity, and social organization. Contrastingly, between 1980
and 2022 (time = t + 1) the increase in functionality probability
relates to increased absorption, adaptation, and transformation
in the SES, and resulted from high levels of diversity, forest
cover, economic autonomy, and moderate levels of connectivity
and social organization (Supplementary Figure 2).

Approaches for understanding environmental resilience
need an integration of social and biophysical sciences
(Morehouse et al., 2008). But this integration represents
a challenge in modern research, even more incorporating
ancestral knowledge and daily practices in the restoration
and assessment of ecological resilience (Reyes-García et al.,
2019). Consequently, successful knowledge integration lies
in intertwining this interdisciplinarity to understand the past
and in implementation in the present, which usually does
not happen. Our approach and application in Monquentiva
are an effort in that direction, emerging from a commitment
to interdisciplinarity and allowing a methodology that
incorporates local knowledge.

SES resilience assessments based on DBN can reveal
strategic opportunities and arguments to help guide governance
transformation and management because it is an adaptive,
quantitative, interdisciplinary and participatory approach.
The DBN can adapt as new knowledge about the system
becomes available. As such management recommendations
can also evolve rather than stalling on past or static
assessments. DBN naturally focuses on the relationship between
actions, knowledge, uncertainty, and causality and can be
supplemented with variables encoding management decisions
that in turn affect social and ecological nodes (Jensen,
1996). The consequences of various management decisions
can be studied not only from the perspective of expected
outcomes, but also concerning the risks of highly undesirable
outcomes (Kjærulff and van der Gaag, 2000). The DBN is
also quantitative and can help managers understand and
measure SES resilience while integrating qualitative social
resilience research. Because the DBN resilience assessment
focuses on multiple human and non-human factors and
is based on interdisciplinary and participatory dialogues, it
can consequently guide management actions that preserve
desired functional socio-ecological networks and that explicitly
recognize the priorities and needs of human actors in the
SES (Salliou et al., 2017). For Monquentiva, we found that
SES functionality and resilience were maximum with high
levels of economic autonomy and moderate levels of social
organization. Several studies have revealed the contribution
made by social organizations and agricultural cooperatives to
sustainability (Galdeano-Gómez et al., 2015; Giagnocavo et al.,
2018). This suggests that current management of Monquentiva
by the local community is optimal and should be sustained.
Future work could use the DBN to assess whether maintaining
current management practices could continue to enhance the
SES functionality and resilience.
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FIGURE 7

(A) The topology of the Dynamic Bayesian network for the Monquentiva SES and the conditional probabilities for three resilience capacities over
three time slices 1920–1960 (Left), 1960–1980 (Center) and 1980–2021 (Right). (B) Historical changes in probability of resilience capacities and
functionality in Monquentiva.

Another area where DBN resilience assessments can inform
management is the long-term and dynamic nature of the DBN.
If the management goal for Monquentiva is to preserve the
ecosystems embedded by the community, essential functions
linked to ecosystem services should be maintained. The
long-term knowledge embedded in the DBN could provide
information on stable ecosystem states and how far the SES
may have drifted from historical states or baselines in response
to management (Willis and MacDonald, 2011). This long-
term perspective can help identify conditions under which
ecosystem function is maintained or not, and therefore can
inform managers about the level of intervention needed (Willis
and Birks, 2006). In the determination of baselines and initial
states, paleoecology as a discipline has to offer a reference point,
for example, to restore a habitat (Froyd and Willis, 2008). The
initial states of the DBN could inform ecosystem restoration
for Monquentiva after incorporating multi-millennial ecological
information that represents the system before human activities
began in the region (Espinoza et al., 2022). In South America,
no SES management initiatives have been reported where the
long-term ecological baselines are considered. Differently, in
the United States and Europe long-term baselines are pillars of
conservation ecology and have been widely used in ecosystem
restoration (Swetnam et al., 1999; Willis and Birks, 2006).
Through the use of a DBN, management and restoration
in Monquentiva could be oriented to restoration to baseline
resilience states.

The correlation between levels of quantified SES resilience
and political aspects of the SES (Béné et al., 2016) could be
relevant for policymakers. For instance, questions that can
be explored through the DBN are: Do strong social cohesion

and good governance explain high levels of SES resilience?
For instance, we were able to show in our Monquentiva case
study that social organization was a strong element enhancing
resilience in the SES. Alternatively, does social disintegration
or absence of governability affect the SES ability to maintain
resilience? These questions are fundamental to the resilience-
building narrative and relevant to NGOs and development
agencies that aim to promote or implement sustainable
management strategies. A DBN resilience assessment can help
prevent functionality losses in SES, highlight new challenges
linked to global environmental change, and help to simulate the
effect of policy changes or management strategies on the SES
resilience (Schulter et al., 2014; Salliou et al., 2017).

The application of DBN resilience assessment is, however,
not challenge free. Some practical limitations could include the
absence of funding that allows interdisciplinary work. In the
case of Monquentiva, we had the rare opportunity to have both
the socio-cultural and long-term ecology components working
alongside from the beginning of the project. More often, the
socio-cultural research is added as a supplement at the end of the
ecological investigation. It is also common to see purely socio-
cultural projects that stand alone without the contribution of
ecological sciences. In this exercise, the interdisciplinary funding
allowed co-production of knowledge on the Monquentiva SES
and enriching discussions that resulted in the present analysis
and other joint initiatives. This highlights the importance of
resources for truly interdisciplinary projects where SES are
concerned. Another challenge of the DBN for SES resilience
assessment is that its structure is assumed to be stationary and
constant over time. In other words, the DBN does not allow for
transformation of relationships between components of the SES
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between time steps. This could be circumvented by combining
the DBN approach with Hidden Markov Model (HMM). This
combination extends each hidden node of the traditional HMM
into a hidden DBN and develops the transition between nodes
to describe the transition between network structures (Zhu and
Wang, 2015).

Conclusion

Resilience theory has rapidly developed across multiple
scientific spheres. The development and application of the
concept to environmental change problems has seen little
integration of social and ecological sciences, despite the
significant role that people can play in sustaining or depleting
ecosystem resilience. For this work, we chose to adopt
the definition of socio-ecological resilience that considers
humans embedded in nature and broken down into three
main capacities: absorption, adaptation, and transformation.
Also, we identify the importance of integrating the social
sciences to improve the conceptualization and investigation
of ecological resilience. Interdisciplinary approaches are more
likely to generate resilience assessments that recognize the
power relations in a SES. In this sense, we should not only think
about the resilience of what and for what, also, for whom.

Our approach to quantify resilience is based on networks
and interdisciplinary frameworks and considers elements from
past studies on resilience conceptualization and quantification
(Gunderson, 2000; Cote and Nightingale, 2012; Angeler and
Allen, 2016). The innovation is the recognition that SES
resilience should be assessed through a probabilistic rather
than deterministic approach. A DBN serves this purpose by
integrating social and ecological factors and focusing on changes
in functionality over time. Also, the underlying principle of our
framework is that a more resilient system is more capable of
retaining ecological and social functionality after disturbance.
Based on this principle, SES resilience can be measured and
monitored simultaneously at different levels, different points in
time, and in different socio-environmental contexts.

We explore the potential of integrated methods as DBN
modeling to quantify the resilience of SES. Although DBN
models have not been used in SES resilience assessments, we
have shown that they can provide information on resilience
structure and function. The model has a rigorous probabilistic
foundation which provides substantial benefits to resilience
assessment. In particular, the development of the model
structure and validation serves as a platform of interdisciplinary
dialogue where experts from social and ecological sciences
can discuss their respective understanding of the mechanisms
and processes leading to resilience of the SES. DBN also
offer a flexible framework to address many questions in
ecosystem monitoring and management. We anticipate that
networks-based approaches will become essential for handling

multidimensional observations and indispensable for assessing
the dynamics of SES resilience. Further research into these
techniques, including for instance long-term ecological records
combined with historical information and socio-cultural
contexts are likely to extend the scope of DBNs applications for
SES resilience assessments.

Our assessment of the Monquentiva SES resilience showed
that functionality can be quantitatively assessed over time
through interdisciplinary work and the application of DBN.
Studies that aim to assess SES in longer timescales would require
the development of an increased number of time slices and
BN, however, changes in SES resilience can be identified even
in a simplified network like that developed for Monquentiva.
The DBN-based framework could be further extended to root-
cause nodes to identify other fundamental causes of resilience
building or losses in the SES. For Monquentiva, our resilience
assessment suggests that the enhanced social organization,
connectivity and increased economic autonomy may have
resulted in increased biodiversity and forest cover which in turn
has promoted SES resilience.
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