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The current study cannot be considered more than a beginning in terms of 
analyzing the mechanical properties of Kevlar-based composites. Any 

subsequent study will have to consider the method of obtaining the samples 
so that their cutting is done as precisely as possible, thus avoiding edge 

irregularities and, above all, their deformations. 
 

Based on the experimental tests to determine the mechanical properties and 
especially the ratio between force and displacement, it was found that there 

are differences between the resulting values for each individual sample, the 
values falling as follows: in traction, on the X axis, the displacement varied 

between 0 –0.171 mm, and on the Y axis the force varied between 0 – 127 

kN varying due to the geometric differences of the specimen. 
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Abstract: Complex engineering problems are solved recently more and more often with the 

help of methods which use the correlation between real parts (prototype) and an 

appropriately chosen model. The authors have made a brief review of these methods, 

emphasizing their limitations. Starting from this primary information, the authors present a 

much more efficient, unitary and particularly accessible method to all engineers and 

researchers, i.e. Modern Dimensional Analysis, developed by Prof. Szirtes. After presenting 

the method, the authors illustrate the applicability and flexibility of the method with the 

help of an example from the field of linear displacement calculation. 

Keywords: prototype, model, Geometric Analogy, Similarity Theory, Classical and Modern 

Dimensional Analysis, static displacements 

INTRODUCTION 

In order to solve some highly complex problems, either mechanical, thermal 

or of another nature, the engineer was obliged to correlate the theoretical 

results with the experimental ones based on the Theory of Models (TM). TM 
allows the reduction of both the number of experimental investigations and 

the graphics related to the reproduction of the studied phenomenon. In this 
case, the first time one define the prototype (the real part) and the model 

associated with it, which is usually made on a reduced scale, but can also be 
on a larger scale, if the analyzed phenomenon requires this [1; 54]. 

A first solution was offered by the Geometric Analogy (GA), where by 
defining homologous points-, lines-, angles-, surfaces- and volumes it 

became possible to correlate the behavior of the prototype with that of the 
associated model. 

For slightly more complex phenomena, the Theory of Similitude (TS) was 
used, where based on experimental investigations carried out on the model, 

the probable responses of the prototype could be deduced. 
As shown in the works [1; 2; 10; 124], the similarity can be structural, 

where the focus is mainly on the geometric similarity of the two entities 

(prototype, respectively model), respectively functional, when it is assumed 
that similar processes are carried out in homologous times, thus ensuring 

the similarity of all physical quantities, which intervene in the description of 
the studied physical phenomenon. In turn, the functional similarity can be 

kinematic, respectively dynamic, when similar kinematic or dynamic 
phenomena will take place in homologous points and in homologous times, 

so that each variable (physical quantities)   corresponds to a dimensionless 

ratio: 
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constant in time constant in and in space, referred to as Scale Factors or 

Similarity Ratios, obtained on the model ( 2  ), respectively on the prototype 

( 1 ). 

Regarding the mathematical solution of the equations (usually complex in 
form) that describe the phenomenon studied in the theoretical way, it will be 

replaced by establishing some correlations between the dimensionless 

quantities based on some favorable groupings of the terms involved in the 
respective analytical equation; these dimensionless ratios are also called 

similarity criteria, and their correlations lead to the so-called criterion 
relations. Based on the experimental data, the criterion relations will lead, 

both to the simplification of the analysis of the phenomenon, and to the 
reduction of the experimental measurements necessary to establish some 

relevant and reliable correlations between the prototype and the model. 
For each phenomenon, both the set of analytical equations and the set of 

criterion relations are uniquely defined. 
For complex phenomena, the Theory of Similitude will be replaced by 

Dimensional Analysis, because the number of dimensionless variables, 
respectively of criterion equations increases a lot and the method becomes 

cumbersome. 
Its classical variant, Classical Dimensional Analysis (CDA), also uses the 

correlation between prototype and model, by means of a set of 

dimensionless relations, set, which was established starting from 
Buckingham's  theorem [3; 4; 5; 6; 10; 12]. 

CDA does not eliminate experimental measurements, which it will require to 
be performed on the model, nor does it propose to explain the analyzed 

phenomenon from another point of view. The basic goal of CDA is to simplify 
and optimize the strategy of experimental investigations based on this set of 

dimensionless variables njj ...,,1,  , and the two systems (prototype and 

model), through their behavior, will fully respect the conditions imposed on 
all dimensionless groups. 

In the case of CDA, the establishment of these dimensionless groups can be 
achieved by [1]: 

• direct application of the theorem  ; 

• application of the method of partial differential equations on the basic 

relations of the phenomenon, followed by the normalization of the initially 
involved variables and their subsequent grouping in the desired 

dimensionless groups j ; 

• processing the complete and at the same time the simplest form of the 
equations related to the phenomenon, by transforming them into 

dimensionless forms, followed by the identification of these dimensionless 
groups. 

It should be emphasized that all these above-mentioned theories are usually 
cumbersome, assuming among others: 

• a substantial knowledge of higher mathematics; 
• through knowledge in the field of the respective phenomenon; 

• a laborious methodology for establishing the set of dimensionless groups; 



• significant experience in the field, as well as intuition and ingenuity in 
establishing these dimensionless groups. 

In a word, it is not a method accessible to the average engineer/researcher, 
but rather a theoretical one. 

This is also the explanation for its widespread use/application by ordinary 
specialists. Their detailed presentation can also be found in the works [1; 2; 

3; 4; 5; 6; 12]. 

Against these shortcomings, the methodology developed by Szirtes in his 
works [7; 8], brings significant simplifications to Dimensional Analysis, and 

this variant/version will be called Modern Dimensional Analysis (MDA). 
MDA practically eliminates all the shortcomings of the previously presented 

methods, including CDA, being a method: 
• easy, unitary and simple; 

• which do not require deep knowledge in the field of the respective 
phenomenon, only to take into account all the variables, on which this 

phenomenon could depend to a certain extent; 
• which ensures the establishment of the complete group (complete set) of 

dimensionless variables njj ...,,1,  ; 

• from the complete set thus established, based on simplifications of the 
phenomenon, simpler and easier to model variants can be found (primarily 

to simplify experimental investigations on the model); 
• ensures the automatic elimination of those variables, whose influence is 

insignificant, whether the phenomenon does not depend on them, or 
whether their contribution is below a certain minimum threshold; 

• allows a favorable selection of variables, so that the model becomes as 
flexible as possible, and experimental investigations are as simple, safe, 

reproducible and last but not least at a minimal cost price. 

The methodology proposed by Szirtes, also illustrated in the next chapter, 
includes the following unique basic steps: 

• review of all variables (together with their dimensions), which could have 
any influence on the studied phenomenon; 

• choosing that set of variables, which can be chosen as size/magnitude a 
priori freely, both for the prototype and for the model, called independent 

variables; from the exponents of their dimensions, an invertible matrix is 
formed (so quadratic and with zero determinant), which will be matrix A; 

• the rest of the variables, which will be the dependent variables, will be 
included in matrix B; they are chosen as size/magnitude a priori freely only 

for the prototype, and for the model they will result exclusively from the 
elements of the law of the model, which is to be deduced; the exception is 

that variable (or a small number of variables) related to the prototype, the 
determination of which is difficult, i.e. this is the purpose of modeling with 

MDA; 

• the Dimensional Set (DS) consisting of matrices B, A, I and C will be 
formed, according to Figure 1 

B A 

nxnI   TBAC  1  
Figure 1: The Dimensional Set 



where: 
nxnI is a unity matrix of order n, with n representing the number of 

dependent variables (the columns), identical to that of the number of 

dimensionless variables njj ...,,1,  , which will lead to the formation of the 

set called the Model Law; the exponent (-1) refers to the inverse matrix, 
while (T) to the transposed matrix. 

• The order of placing the variables within matrices A and B is optional and 
does not influence the Model Law to be deduced; 

• Multiple variables with identical dimensions cannot be placed in matrix A, 
because the condition of its invertibility would be compromised; 

• Instead, in matrix B there can be several variables with identical 

dimensions; 
• With the help of matrix 

nxnI  lines nj ...,,2,1 and C, all the dimensionless 

physical variables (quantities) sought njj ...,,2,1 are defined. Thus, the line 

j  of the common matrix (
nxnI  and C) will contain the exponents, which 

intervene in the definition of the dimensionless variable j and which will be 

equal to the product of a dependent variable (from matrix B, at the power of 
one), and the totality of the independent variables involved (from the matrix 

A, located at the powers contained in the row j  of the matrix C. 

• In order to deduce the Model Law, the expressions of all dimensionless 

variables j  will equal unity, as will be shown next. It should be noted that, 

in each of these products, from the matrix 
nxnI  (a unit matrix), there is only 

one dependent variable, to the power of 1 (one), while from the matrix C: all 

the independent variables to the powers resulting from the calculation 
provided by the relationship calculation of the matrix C; 

• In order to simplify the analysis, these obtained dimensionless variables j  

can be later merged, grouped for an easier analysis. 
The next chapter will illustrate this unitary methodology. At the same time, a 

series of facilities will be highlighted regarding how the choice of 
independent variables can lead to obtaining the most flexible models. 

1. STATIC DISPLACEMENT ANALYSIS
 

The illustration of the application of the MDA is provided by means of the 

calculation of the vertical displacement of a cantilever, made of a steel with 
the modulus of elasticity of longitudinal, rectangular section and length, 

required by a concentrated force (Fig. 2). 

 



Figure 2: Analyzed clamped beam 

For this prototype, it is required to find that model, which, based on the 

Dimensional Analysis, will allow the determination of the vertical 
displacenment " v" (in the direction of the force F ) of the prototype with the 

help of the Law of the Model. 
  In the first instance, the following were chosen as variables: 

( gbaFLE ,,,,,,v ). The separation of lengths was applied, according to the 

three orthogonal directions ),,( zyx  that is zyx mmm ,, , in order to increase the 

number of dimensions and thus, reduce the number of dimensionless 
variables j , which will form the Law of the Model. 

After performing the calculations mentioned in the previous theory chapter, 

the Dimensional Set below (Variant V1) resulted, where the independent 
variables ),,,,( gbaFL , included in Matrix A, and the dependent variables, 

included in Matrix B, respectively ),v( E , were chosen. 

Due to the fact that, in the matrix C, under the variable g , only values equal 

to zero are found, it turned out that it is a physically irrelevant variable and 
is eliminated from the matrix A, respectively g from all subsequent 

calculations. 
  B A 

V1  v E L F a b g 

 mx 0 1 1 0 0 0 0 

 my 1 -1 0 1 0 1 1 

 mz 0 -1 0 0 1 0 0 

 kg 0 1 0 1 0 0 0 

 s 0 -2 0 -2 0 0 -2 

 π1 1 0 0 0 0 -1 0 

 π2 0 1 -1 -1 1 2 0 

Based on the calculations, the component elements of the Model Law 

resulted 2,1,1  jj , where 2,1,1  jj by equating each dimensionless 

variable with unity, i.e. and the substitution of the actual variables 

included in j  their scales  
1

2




S , the sought-after elements of the Model 

Law resulted, i.e.: 
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Having the model, and the independent variables chosen a priori 

),,,,,,,( 121212121 EbbaaFFLL , the size of the modulus of elasticity of the 

material of the model is determined, that is 2E , the model is made from this 

material. Based on the measurements on the model, the force 2F  will result 

in the displacement v2, with the help of which, from the first element of the 
Model Law, one obtains in turn: 
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The calculation was resumed, without the variable g , obtaining the V2 

version, where by eliminating the variable g , it was also necessary to 

change the units of measure (in its place, skg, , was introduced N , in order 

to be able to express all the remaining variables appropriately. Thus, the 

matrix A was formed by the elements related to the variables ),,,( baFL , and 

the matrix B remaining the same. 
  B A 

  v E L F a b 

V2 mx 0 1 1 0 0 0 

 my 1 -2 0 0 0 1 

 mz 0 -1 0 0 1 0 

 N 0 1 0 1 0 0 

 π1 1 0 0 0 0 -1 

 π2 0 1 -1 -1 1 2 

Following the calculations, although the number of variables involved was 

reduced, the same component expressions of the Model Law were obtained, 
i.e.: 

bSSbb  

v

1

1 /vv

2
2

2 )( baELF SSSSS
FL

baE





  

The calculations were resumed to find other versions, obtaining practically 

the same constitutive elements for the Model Law. 
  B A 

  v F E L a b 

 mx 0 0 1 1 0 0 

V3 my 1 0 -2 0 0 1 

 mz 0 0 -1 0 1 0 

 N 0 1 1 0 0 0 

 π1 1 0 0 0 0 -1 

 π2 0 1 -1 1 -1 -2 
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  v b E L F a 

 mx 0 0 1 1 0 0 

 my 1 1 -2 0 0 0 

V4 mz 0 0 -1 0 0 1 

 N 0 0 1 0 1 0 

 π1 1 0 0.5 -0.5 -0.5 0.5 

 π2 0 1 0.5 -0.5 -0.5 0.5 
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  v L E b F a 

 mx 0 1 1 0 0 0 

 my 1 0 -2 1 0 0 



V5 mz 0 0 -1 0 0 1 

 N 0 0 1 0 1 0 

 π1 1 0 0 -1 0 0 

 π2 0 1 -1 -2 1 -1 
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  v a E L F b 

 mx 0 0 1 1 0 0 

 my 1 0 -2 0 0 1 

V6 mz 0 1 -1 0 0 0 

 N 0 0 1 0 1 0 

 π1 1 0 0 0 0 -1 

 π2 0 1 1 -1 -1 2 
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In these Laws of the Model, by the express introduction of the dimensions a 

and b, the geometric similarity of the model with the prototype is imposed a 
priori, even if in variants V4, V5 and V6 only one of these dimensions of the 

cross section is considered as an independent variable. 

These component (constituent) elements of the Model Law are not 
influenced by the arrangement order of the variables neither in matrix A nor 

in matrix B. 
It should be emphasized that the variables arranged in matrix A (which are 

actually the independent variables) can be freely chosen not only for the 
prototype, but also for the model, while the dependent ones (arranged in 

matrix B), related to the model, will result exclusively through the 
application of the Model Law, being type/category II sizes. 

For the prototype, all the variables (except for the dependency " v ", which 

we are looking for), can be chosen a priori, being of category I. 

Through measurements performed on the model, the category III quantity 
will result, which, through the Model Law, will provide the quantity sought 

for the prototype, which in the present case represents the vertical 
displacement " v" in the direction of the applied force from that point. 

2. CONCLUSIONS 

From what was presented previously, two important aspects can be noted, 
which are indisputable facilities of the MDA, namely: 

• The inclusion of some variables, whose influence is insignificant (either 
they do not directly influence the respective physical phenomenon, or the 

order of magnitude of their contribution is too small) are automatically 
eliminated from the elements of the Model Law; in the present case, in the 

V1 variant, the gravitational acceleration g was of this type; 



• Through a favorable choice of the set of independent variables (those 
forming the matrix A) the condition of the geometric similarity of the model 

with the prototype can be easily waived (in the present case of imposing a 
rectangular section on the model as well), because if only the variable a as 

an independent variable, then the size of b will necessarily result from an 
element of the Model Law, which will more than likely move us away from 

the geometric similarity of the model to the prototype; 

• If the merging of the variables is resorted to 
zGI , for example instead of 

the variables a and b the axial moment of inertia will be put, then, as 

demonstrated by the authors in a previous work [9], in the matrix A they 
will make their place and other elements useful for the flexibility of the 

model, such as  ELIF zG ,,, , each offering new perspectives for the design of 

models that are more suitable for carrying out simple, safe and repeatable 

experimental investigations on the model. 
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from which, following the above-mentioned calculations, the sought 
calculation equation results: 
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In this case, if the influence is analyzed: 

• the force F , it can be observed that the model will be able to be requested 
in a much wider range of values than those imposed by the previous 

variants, where the force was considered as a dependent variable; 

• the axial moment of inertia zGI , only their ratio to the prototype and to the 

model will be imposed, and the shape of the cross sections will not be 
important; 

• length L , it will also be possible to design models with lengths as 

appropriate as possible for the purpose (experiments that can be carried out 
on the model); 

• the modulus of elasticity E , then contrary to the expectations based on 
the strict observance of some geometric similarities, respectively of 

similarity between the prototype and the model, here it will be possible to 



use even models made/made of other materials compared to the prototype, 
which will also ensure a flexibility larger of the model. 

The papers that are not using the presented guidelines will not be accepted. 
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