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Chapter 1

Introduction

The ability to exploit verbal and non-verbal forms of communication is said to be of
great importance within an individual’s personal and professional life. In fact, the
success of the human species, historically, constantly depends on these forms of com-
munication for survival. Nowadays, communicating verbally and non-verbally is still
of central importance as we deal with daily routines. These two types of communi-
cation are an influential factor in an individual’s degree of ‘success’ in both interper-
sonal relationships and business aspects; and they can define, to a great extent, our
physical and psychological states.

With the goal of achieving an effective and enhanced state of communication, the
first step may be to understand the verbal and non-verbal aspects and to determine
their roles within an individual’s interactions with others. While verbal communi-
cation involves the literal content of a structured message, whether it is delivered
as spoken, written, or signed words, non-verbal communication relates to how the
message is interpreted.

Examples of non-verbal signals include body language, posture, eye contact, facial
expressions. Likewise, the sound of voice, as another non-verbal communication
trait, is capable of transmitting the message by means of the volume or the tone
of the voice. These signals are able to project an individual’s real intentions and
feelings during a social interaction, and may directly affect the perceptions of the
people receiving a message

The non-verbal communication in our species has been relevant since time im-
memorial. Indeed, it is profoundly associated with the evolution of the human lan-
guage; namely, current forms of languages may be the result of an evolved system of
non-verbal communication [140]. Furthermore, over 80% of the way humans com-
municate is primarily non-verbal [192]. Non-verbal communication can be grouped
into the following categories: haptics (touch), kinesics (body movement), paralan-
guage (vocalics), and chronemics (structure of time) [96, 188].
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6 Introduction

In this book, paralanguage, also known as vocalics, is of particular interest. Par-
alanguage can be defined as a non-lexical component of communication by means of
the speech, for example, intonation, pitch and speed of speaking, hesitation noises,
emotions. An analysis of these characteristics contributes to the exploration of auto-
matic ways for predicting speaker states and traits such as the age, gender, and even
the health condition, among others, which can be catalyzed via Artificial Intelligence
(AI) algorithms. Consequently, all the mentioned facts fall into the branch known
as Computational Paralinguistics. However, the above description might also be suit-
able for a sub-field named Pathological Speech Processing, which covers speech that
displays pathological signs that may link to underlying diseases.

Different approaches can be exploited to extract features that represent speech
patterns such as acoustic and phonological features, or speech properties. This thesis,
however, will present research findings involving Speaker and Speech Recognition
techniques that have been utilized to build feature representations, along with the AI
methods that were applied using them.

Computational Paralinguistics can offer a wide variety of real-life applications
including the analysis and monitoring of speech phenomena, the enhancement of
the human-computer interaction experience, and provide tools for screening different
diseases (see more in [20, 170]).

1.1 Speech and Speaker Recognition: A Brief Review

Before going into speech and speaker recognition, we should first examine Speech
and Signal Processing (SSP). Put simply, speech can be defined as the way humans
communicate using language. A signal can be thought as of a function that can trans-
mit information about a specific event; and, a digital signal is a data representation
of a sequence of discrete values. Speech signals (e.g., a waveform) can be handled
using digital signal processing (DSL) to represent them as either analog or digital
forms. Back in the late 19th and the early 20th centuries, when the radio, telephone,
and phonograph were invented, audio signal processing field attracted the interest of
researchers. Davis et al. [32] reported studies that attempted, for example, to syn-
thesize the human voice in the 1880s; and a hundred of years later, the use of ASR
for automatizing call centers.

1.1.1 Automatic Speech Recognition

Automation has been one of the key features for the emergence of new technology
in human history. In the speech processing context, Automatic Speech Recognition
(ASR) and speech synthesis are examples of automation tasks that have had great
attention since the last century. In essence, the main goal of ASR is to recognize and
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translate spoken language into text; while speech synthesis seeks to produce spoken
language. These have a variety of real-life applications such as in in-car systems,
health care, education, robotics, and home automation.

Using speech signals, researchers initially performed experiments on simple pho-
netic elements like vowels, attempting early speech processing and recognition tech-
niques. In the early 1950s, systems that could recognize digits [32] or 10 sylla-
bles [143] spoken by a single speaker were developed and contributed to the progress
of the field. However, it was not until the mid 1980s that the speech recognition met
one of its most prevalent and significant methods, namely the Hidden Markov model
(HMM) framework [94].

Hidden Markov models can be used to construct general-purpose speech recog-
nition systems based on statistics. HMMs are used to predict a sequence of hidden
variables from a set of observed ones. A common example of the use of a HMM is
on weather forecasting based on the states of mood a subject. Here, the weather
is the hidden variable, and mood states are the observed variables. Let us define
the variables as shown in Figure 1.1: the set of states X = {Happy,Grumpy},
the set of hidden states Q = {Sunny,Rainy}, and the set of observed states O =

{Happy,Grumpy,Grumpy,Happy}.
Based on Figure 1.1, we see that the emission probabilities depend on the ob-

served and hidden variables. More specifically, 80% and 60% are the emission prob-
abilities in this case. For instance, a person has an 80% probability of being Happy if
the climate at that point of observation is Sunny. Likewise, the same person would
have a 60% chance of being Grumpy given that the climate is Rainy.

The same figure depicts the transition probabilities, which are those that account
for the transition from and to hidden states. For example, as the weather is a hidden
state that influences the observed variables, there exists a correlation between Sunny
days in a row and alternate Rainy days. There is 80% and 60% of probability that
Sunny and Rainy weather will occur in consecutive days, respectively. HMMs are
or were employed in speech recognition due to the fact that a speech signal can
be viewed as a short-time stationary signal, and also because they are simple and
computationally feasible in practice.

In the past few years, approaches involving Neural Networks and Deep Learning
have started to dominate the ASR field, whether it is combined with HMMs [30, 214],
or as standalone ‘end-to-end’ approaches [14, 74]. In contrast with HMMs, DNNs
make less explicit assumptions about feature statistical variables, and tend to esti-
mate the probability values of a speech feature segment in a discriminative fashion
more efficiently. Conventional DNNs lack the ability to model temporal parameters,
but they could be used as a feature pre-processing technique prior to using a HMM.
However, there are more sophisticated networks that can efficiently handle this task
such as Recurrent Neural Networks (RNN), and Long-Short Term Memory (LSTM).
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Figure 1.1: Markov Model as Finite State Machine.1

1.1.2 Speaker Recognition

In a similar way, Speaker Recognition (SR) has also been a focus of interest over the
past few decades. One of the first SR systems was reported in [107] as ”Voiceprint
Verification” in 1962. Then, in 1977, researchers used spectral analysis to build the
first autonomous text-dependent SR system [40, 57]. In contrast, text-independent
approaches only saw major advances when the cepstrum was introduced to SR in
1981 [56]. One of the biggest advances in SR took place in the early 90s with the
use of Gaussian Mixture Models (GMM) for modelling voice features [160]. Later,
this paradigm was improved by adding the so-called Universal Background Model
(UBM) [159].

The adoption of GMMs (and later UBMs) led to significant advancements in SR.
And, almost a decade after, the field experienced another milestone based on Joint
Factor Analysis (JFA) [103] and GMM supervectors [21]. Representations called the
i-vectors [34] built using a Front-end Factor Analysis approach, achieved the best
performances in SR at that time. Later in 2018, the emergence of a new method that
relies on Deep Neural Networks (DNN) for feature extraction, and probabilistic linear
discriminant analysis (PLDA) for classification demonstrated state-of-the-art results
in speaker recognition (see x-vectors in [186]). Then in 2020 improvements on the
x-vector architecture were carried out by means of emphasized channel attention,

1Source: Source:https://vivekvinushanth.medium.com/

Source: https://vivekvinushanth.medium.com/
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propagation and aggregation over the same TDNN. This method is called ECAPA-
TDNN [38] and is the current state-of-the-art for the Speaker Recognition.

1.2 Paralanguage

One of the most important channels of non-verbal communication is that of paralan-
guage. It is a non-linguistic category mainly related to the speech and it is capable of
modifying the meaning of a message via paralinguistic properties like volume, pitch,
rhythm, intonation, among others [96]. Every speech signal or utterance contains a
voice, which has these paralinguistic properties that can reveal information about a
speaker’s state then the age, sex, gender, geographic origin, the emotional state, and
even their state of health. The latter concerns the evaluation of the speech properties
like phonation, fluency, and intonation, which may be affected when a subject suffers
from a pathological speech condition [167].

As stated in Knapp and Hall [110], the voice qualities that comprise the par-
alanguage involve the pitch, rhythm, tempo, articulation, and resonance. There are
acoustic cues that correlate with specific emotions. Some examples of this are: the
pitch can affect social meanings; the silent and the filled pauses may interfere with
the quality of the delivered message; speech disfluency affects the flow of the con-
versation; and the volume may influence the state of a person.

Pitch is basically the perceived frequency of the sound. Pause is nothing but
a temporary stop, a hesitation, or a rest; while the filled pauses may be viewed
as simple hesitation sounds. Speech disfluency concerns irregularities, breaks or
non-lexical vocables occurrence in a person’s speech. As for volume, it is related to
emotions like excitement and fear [110, 167]. These and other traits are present
within the speech of every individual and they can be used to automatically analyze
a speaker trait or state.

1.2.1 Computational Paralinguistics

The term ‘computational’ refers to a computer processing and analysis of a specific
phenomenon in an automatic way. Computational Paralinguistics, can thus be defined
as the study of modelling non-verbal latent patterns within the speech of a speaker
by means of a computer; and these patterns go beyond the linguistic approach. As
mentioned above, the paralinguistic properties of the voice convey information about
the speaker such as age, gender, and personality. These are defined as speaker traits.
These voice properties may also contain information about the emotions of a speaker,
and they are called speaker states [167].

Traits are long-term and states are short-term; however, in between there are
other kinds of short-term states such as the sleepiness, having a cold, and being
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intoxicated by alcohol. Computational Paralinguistics, which here is also referred as
to CP, investigates these states and traits which are latent in the speech signal of a
given individual, and it seeks to identify non-verbal patterns by means of Speech and
Signal Processing along with Machine Learning (ML) discrimination algorithms.

1.2.2 Contemporary Research

Over the last decade, studies have addressed tasks for the automatic detection of
speech disorders [25, 46, 77], marking significant advancements in the area of CP.
Perhaps one of the most relevant and continuous impulses to the field is the so-called
Computational Paralinguistic Challenge (ComParE) [168] as part of the Interspeech
Conference 2 since 2009; organized every year ever since. It is an open challenge se-
ries that concentrates on certain areas and communities of CP such as audio, speech
and signal processing, and affective and behavioural computing. Moreover, it also
relates with Pathological Speech Processing, which involves health, medicine, and psy-
chology related tasks.

The area of computational paralinguistics differs from Automatic Speech Recog-
nition (ASR), which focuses on the actual content of the speech of an audio signal.
Here, computational paralinguistics may provide the necessary tools for determin-
ing the way speech is spoken. Various studies have offered promising results in
this area, e.g., diagnosing neuro-degenerative diseases using the speech of the pa-
tients [41, 42, 68], the classification of crying sounds and heart beats [70], esti-
mating the sincerity of apologies [64], and determining the state of depression in a
subject [27].

Usually, studies focused on acoustic, articulatory, or phonological approaches for
modelling latent representations of a given utterance [63, 183, 198]. These kinds of
representations are much easier to interpret and are not computationally expensive.
Speaker Recognition methods can be applied to exploit these features and obtain
more meaningful traits. To name a few, the i-vector approach showed great potential
for recognizing emotions from the speakers [210], for age estimation [76], and even
for discovering things in forensics [125]. More studies on both computational par-
alinguistics and pathological speech processing fields will be discussed in Chapter 2,
Section 2.2.

1.3 Structure of the Dissertation

Chapter 2: This chapter covers the use of machine learning methods and algo-
rithms in the field of computational paralinguistics. More specifically, we provide

2https://www.isca-speech.org/iscaweb/index.php/conferences
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an overview of ML and supervised learning, as well as the classification/estimation
algorithms employed in our methodology. Also, we go through the definitions of
pathological speech processing and the feature representations utilized.

Chapter 3: Here, we outline the use of front-end factor analysis as a means for the
automatic screening of Alzheimer’s Disease. In more detail, we introduce the utiliza-
tion of the so-called i-vector features for modelling the speech of speakers suffering
from the mentioned neuro-degenerative disease. We propose a pipeline that achieves
better performance scores on the specific corpus presented in this chapter.

Chapter 4: With the aim of introducing an automatic assessment approach for dif-
ferent types of paralinguistic tasks based on the speech, here we explain the use of
the Fisher vector method for Parkinson’s Disease, cold speech, escalation in the dia-
logue, and primate species detection. Originally intended for image recognition, we
show that Fisher vectors can also capture meaningful speaker traits from the speech
of subjects.

Chapter 5: This chapter describes deep neural network embeddings applied to dis-
tinct types of tasks such as the excessive daytime sleepiness, clinical depression, es-
calation of the dialogue, and primates species chatter. Specifically, we use x-vector
embeddings to model the speech samples of individuals from the above-mentioned
tasks. We demonstrate that training x-vector extractors from scratch and with in-
domain corpora both lead to improvements in the general classification performances.

Chapter 6: Here, we describe how automatic speech recognition methods can be
leveraged to automatically assess both Mild Cognitive Impairment and Alzheimer’s
Disease. We show that temporal speech parameters as well as posterior-thresholding
representations are able to produce robust features at the moment of modelling the
speech of subjects. On the one hand, the first method shows that the language for
training the ASR system is of secondary importance in terms of overall performance.
On the other hand, we show that a full ASR system is not required to have a robust
set of features that model the speech of patients.
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Chapter 2

Machine Learning and Pathological
Speech Processing

Thus far, this thesis has described the principles, evolution, and early studies com-
prising Speaker Recognition, Speech Recognition, and Computational Paralinguistics.
Carrying out data processing for achieving a proper feature extraction phase is only
one part of the story, nonetheless. In order to be able to produce an automatic
screening for a given speech-pathology, there is the necessity to rely on discrimina-
tion algorithms using the processed information. Machine Learning (ML) approaches
come to play a relevant role in this scenario.

This chapter focuses on detailing the ML methods used for addressing the discrim-
ination tasks that will be introduced later in this thesis. Here, a brief explanation of
ML will be provided, along with the related algorithms employed to handle the exper-
iments conducted. Also, a review and the progress of Pathological Speech Processing
as well as its connection to ML will be discussed.

2.1 Machine Learning

Humanity’s ambition for automation is one of the most relevant driving forces that
has encouraged technological innovation over time. Although the earliest instances
of modern automation dates back to the 1980s, automation has been around since
ancient times. For instance, automata were employed in the ancient Greece to an-
imate statues of divinities for religious purposes; and even for the invention of the
first cuckoo clock which served to keep track of time [18]. In the modern world, au-
tomation has countless applications, such as in consumer electronics, automobiles,
kitchen tools, medical equipment, and more. Seeking to transcend from ‘simple’ au-
tomation to more sophisticated scenarios, people began to explore the possibility of
simulating human thinking, which today is known as Artificial Intelligence (AI).

13
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Artificial Intelligence is a broader term that involves Machine Learning as an in-
terdisciplinary sub-field of study. To put it simply, Machine Learning can be thought
of as having a computer to take actions, and make decisions or predictions automati-
cally, that is, without it being explicitly programmed. This can be achieved by means
of algorithms, which, relying on historical data, have the capacity to improve via ex-
perience. These are also called learning algorithms. They learn from a provided input
(training data) and build a model based on it; consequently, they are able produce
outputs of new inputted information (test data) that generally relates to the context
of the data they learned from.

Generally speaking, machine learning is divided into three paradigms: supervised
learning, unsupervised learning, and reinforcement learning. In a ’typical’ ML task,
the training data comes with labeled instances. That is, suppose there is a set of N
training examples of the form {(x1, y1), ..., (xN , yN)}, where xi is a feature vector of
the i-th example, and yi is the class label corresponding to that example. This is the
case for supervised machine learning; that is, when the label yi is actually included
within the training data. In contrast, unsupervised learning lacks this yi label, so
the learning algorithm itself must discover the patterns present in the training data.
On the other hand, reinforcement learning is a rewarding-wise approach where the
algorithm interacts with a dynamic environment where it seeks to take actions and
maximize the rewards in order to achieve a specific objective.

Although there exists a vast number of research studies on machine learning and
related areas [5, 12, 113, 120, 130], the target of this thesis is supervised machine
learning as all of the investigations presented involve labeled datasets. In the next
section we shall discuss supervised learning and focus on the key parts of this disser-
tation.

2.1.1 Supervised Machine Learning

Again, let N be a set of training samples of the form {(x1, y1), ..., (xN , yN)}, such that
xi is the feature vector of the i-th sample and yi is its label. The learning algorithm
looks for a function g : X → Y , where X is the input space and Y the output space.
Here, g is an element of the possible functionsG, and it can be defined using a scoring
function f : X × Y → R. Thus, f can be thought of as a target function that best
maps an input vector X to an output variable Y , that is, Y = f(X). g is defined as the
value returned by y that provides the highest score, namely, g(x) = arg max

y
f(x, y).

As discussed, the existence of the label yi makes the machine learning paradigm
a supervised one. In a nutshell, the learning algorithm trains itself by employing the
(labeled) training data, which serves as a feedback for optimization. Afterwards, the
algorithm is put to the test by providing it with unseen (labeled) test data in order to
measure its discrimination performance.
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Figure 2.1: Hyperplane and margins for a Support Vector Machines (two-class prob-
lem). The samples on the margin are the support vectors.

Two types of discrimination tasks exist called classification and regression. The
former seeks to predict discrete values such as assessing the health state of an individ-
ual, while the latter handles the prediction of continuous values, for instance, esti-
mating the level of sleepiness of a subject. Actually, these predicted values are nothing
but the output variables given by the learning algorithm.

Depending on the nature of the task, there may be a different number of possible
outputs. This divides classification into two main cases: binary classification, and
multi-class classification. A binary task (also called a two-class problem) involves
identifying a particular category of an instance or sample, while a multi-class problem
seeks to determine the instance of the particular category which may belong to three
or more class labels.

Computational Paralinguistics and Pathological Speech Processing often involve
discrimination problems as those described above. For instance, in speech emotion
recognition the task might be the classification of the emotional states of a speaker;
or the states of depression of individuals in pathological speech tasks. Both are multi-
class problems. Differently, examples of binary-class problems may be determining
the health condition subjects such as the presence of a neuro-degenerative disease
like Alzheimer’s or Parkinson’s, or the existence of a common cold.
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2.1.2 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning algorithm used for classifi-
cation or regression. Stated simply, SVM seeks to classify a previously unseen sample
into one of its two possible categories. The main goal of SVM is to map the training
samples to points in the plane in such a way that the width gap between the two
classes is maximized. When a new instance arrives, it is mapped to this plane and,
depending on which side of the gap it was mapped, the prediction of belonging to
one of the two categories is performed.

More specifically, let’s suppose a training set of n samples (x1, y1), . . . , (xn, yn),,
where yi is 1 or -1 that indicates the category of the sample xi, which is a p-dimensional
real vector. The goal is to find the maximum-margin hyper-plane which splits the
samples xi that belong to yi = 1 from those that yi = −1. The distance between this
hyper-plane and the nearest point xi from any of the categories is maximized. The
hyper-plane can be defined by a set of samples (points) x that satisfy wTx− b = 0.
Here, w is the normal vector to the hyper-plane [80]. (See Figure 2.1.)

SVMs are widely employed in many classification tasks because it is memory effi-
cient, effective in high dimensional spaces (as long as the dimensions are not much
greater than the number of instances), and it provides different kernel functions (i.e.,
linear, RBF) for mapping the data into feature space.

2.1.3 XGBoost Algorithm

eXtreme Gradient Boosting or XGBoost is an implementation based on Gradient
Boosting Machines (GBM) [53]. GBM is a regression/classification algorithm that
makes use of an ensemble of weak models, i.e. small decision trees, to make pre-
dictions. A decision tree ensemble in XGBoost is a set of CARTs (Classification and
Regression Trees). Put simply, GBM sequentially adds decision tree models to correct
the predictions made by the previous models, and based on gradient descent, it mini-
mizes the loss function. This is iterated until the objective function (training loss and
regularization) finds that no further improvement can be made [137]. Both XGBoost
and GBM, basically act in the same manner; however, the main difference between
them is that XGBoost, in order to control over-fitting, employs a more regularized
model than GBM does.

This algorithm is widely used in machine learning mostly due to its scaling ca-
pability and model performance; it was designed to exploit the limits of the com-
putational resources for GBM algorithms [26]. Our decision to use XGBoost was
also influenced by its advanced capability for performing model tuning. We see the
performance of XGBoost in [121, 202, 203], where the authors report high scores
in speech-related classification tasks. In the experiments described in the following
chapters, we will employ the Python implementation of XGBoost [26].
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2.2 Pathological Speech Processing

Speech disorder is what the American Speech-Language Hearing Association (ASHA)
categorizes as one of the five types of pathological disorders; being language, social
communication, cognitive communication, and swallowing the other four types of
disorders [11]. Pathological speech can be defined as a set of specific disorders that
hinders a subject’s ability to communicate as a consequence of some underlying dis-
ease. Such disorders may include communication disorders (speech and language),
voice disorders, and swallowing disorders [10].

In the last decades, studies have proposed a sound theoretical framework based
on the normal process of speech and language production that seeks to contribute
in the research and management of communication disorders related to pathological
speech. Based on the traditional three-level speech production model in [90], an
alternate framework is proposed for speech disorders in [15, 129]. This framework
contains a hierarchy that characterizes pathological speech in a four-level approach,
including linguistic encoding (conceptualization), programming (formulation), mo-
tor planning, and execution (more details in [129]).

Speech production and pathological speech are said to be strongly correlated [102,
105, 199]. In this context, speech-language pathologists have undertaken studies on
specific speech and language disorders involving dysarthia (difficulty on controlling
the muscles used for speech production) [115, 213], apraxia (a problem with the
motor coordination of speech) [106], dysphonia (involuntary sounds affecting the
pitch and volume of the voice) [189], aphasia (inability to communicate) [205], and
even neuro-degenerative diseases like Parkinson’s [39] and Alzheimer’s [16].

Besides Computational Paralinguistics, Pathological Speech Processing (PSP) was
also included in the ComParE Challenges mentioned in Chapter 1, Section 1.2.2.
PSP involves health related areas such as medicine and psychology. To name a
few instances, one of the former challenges was to determine the intelligibility of
a speaker [174]. Another task involved autism classification from the speakers as a
type of pathology [175]. Later on, a task related to cognitive psychology was ad-
dressed in [171] where the objective was to predict the levels of cognitive load from
the subjects. And, in a classification problem, Parkinson’s Disease had to be told apart
from healthy speakers [173]. A more recent task related to health was conducted in
2021, where the problem was to discriminate between healthy and COVID-19 speak-
ers [176]. Apart from early contributions (see e.g., [9, 29, 79, 208]), the research
produced by holding these kinds of challenges has proved relevant to the develop-
ment of both Computational Paralinguistics and Pathological Speech Processing. In
Chapter 2, an overview of the use of Artificial Intelligence algorithms for catalyzing
tasks from both fields of study will be discussed.
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2.2.1 Corpora and Feature Representations

The quantity and quality of training instances are relevant aspects that have a di-
rect impact on a machine learning task. Small datasets, due to their nature, tend
to produce lower performances than their large counterparts at the moment of rec-
ognizing patterns [158]. Different methods need to be applied when dealing with
small datasets since the scarcity of the samples may affect the generalization ability
of the algorithm. Moreover, an evaluation on small datasets may result in optimistic
estimation performance scores, which means that the model is not able to assess new
instances in a proper way.

The size of a corpus, both in medical and paralinguistic tasks, is usually small
due to the inherent nature of data collection. Gathering instances for these kind of
datasets often incurs in a high cost of data collection and relies merely on humans
most of the time. The amount of samples is scarce due to several factors that involve
the data collection process, which sometimes turns the mechanism of gathering data
into a time-consuming or complex task. For instance, the type of procedure, the kind
of participants, the instruments employed, or even the physical environment where
the samples are collected. A real-life example of our specific case is the collection of
speech samples taken from patients required to build a specific kind of corpus. For
this, the sampling scenario must have good conditions (i.e., a proper microphone,
silent rooms, willingness of the patient) in order to obtain a high-quality recording
where the background noise is as low as possible and the quality of the voice is
acceptable. Most of the time, however, this is not the case and there is even a scarcity
of available patients to take the samples from, and real-life recording conditions are
usually far from optimal.

To overcome these issues, methods such as Cross-Validation (CV) come into play.
This statistical technique is employed to divide datasets into two distinct segments to
get an adequate evaluation and comparison of using learning algorithms.

Furthermore, experimenting with small corpora may have a direct impact in the
generalization quality of a model at the moment of evaluation. Splitting it into train-
ing, development, and test sets would lead to even smaller sub-corpora and cause the
model to show optimistic performance in the evaluation phase. The reason for this
owes to training and testing the model using limited amounts of instances. This may
cause the model to underfit the data, which means that it will not generalize well
on both seen and unseen samples. However, using the entire corpora as-is would
naturally lead to overfitting. This occurs when the model is presented with similar or
the same examples at the moment of both training and evaluation. An appropriate
scenario would be to have an adequate amount of data to train the model, so that it
is capable of learning the patterns necessary to successfully predict unseen instances
(see Figure 2.2).

As we said before, these are the main limitations for building a medical (speech)
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Figure 2.2: Types of model generalization.

dataset, which have consequences in both the quality of the data and the size of it.
Nevertheless, another issue comes with the ratio between the categorical subjects
(e.g., healthy and non-healthy patients), which is unbalanced most of the times. This
ratio, unfortunately, is greatly dependant on the availability and willingness of the
patients, as well as on the number of existing patients. This will affect the number of
samples for each class distribution.

In the case of imbalanced datasets, the estimation algorithms tend to produce
optimistic performances and give a bad generalization to unseen instances. One of
the methods used to mitigate this scenario is to even the number instances belong-
ing to each category. One way to achieve this is called undersampling, which seeks
to reduce the number of samples associated with all the classes, to the number of
samples of the minority class. This way, the samples become more balanced with
respect to their class distribution. Of course, this procedure must be carried out be-
fore inputting the data to the final classifier. Some discrimination models such as
SVM provide alternative features that can be used for imbalanced corpora as well. A
built-in function for balancing the weights of the classes can be used in SVM where
there exists the possibility of inputting the weights for each class or just to have SVM
to automatically compute them.

2.2.2 Frame-level Features

In order to produce representations that characterize audio signals, there are two ap-
proaches that may be applied: the extraction of short-term frame-level features (the
goal of the studies presented in this thesis), and long-term clip level features. Frames
are nothing but very short time intervals that are analyzed when processing an ut-
terance. Frame-level features are usually split into time-domain (calculated using
the waveforms), and frequency-domain features (derived from the Fourier transfor-
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mation of samples over a given frame). This section describes the different kinds
of frame-level features that were utilized to carry out audio-signal processing in the
experiments detailed in the later chapters. Specifically, we cover filterbanks, spectro-
grams, Mel-Frequency Cepstral Coefficients, and Perceptual Linear Predictions.

Filterbanks are basically arrays of digital bandpass filters utilized to analyze an
input signal by splitting it into multiple signals with non-overlapping frequency con-
tent. A filter bank is classified into two forms: 1) filter bank analysis with a series of
analysis filters; 2) filter bank synthesis with a series of synthesis filters. The former
separates the input broadband signal into multiple components, each carrying a sub-
band of the original signal. The latter unites these sub-bands into a single broadband
signal, which is just a reconstruction of the original input signal.

A filter bank can be employed in bandwidth reduction, spectral composition and
decompositions of signals, sample rate modification, among others. These type of
frame-level representations are relevant in modern signal and image processing ap-
plications such as audio and image coding; and have been applied successfully in
speech processing [201], as well as in speech recognition [182].

A spectrogram is nothing but an ‘image’ that represents a particular waveform.
More in specific, the spectrogram shows the signal strength (loudness) of the audio-
signal over time at various frequency values. In this way, the presence of energy
levels as well as how the energy varies over time is easier to perceive. Typical real-
life applications of spectrograms include in medicine, the study of phonetics, speech
synthesis, among others.

Figure 2.3 shows the form of a spectrogram. It is basically a two-dimensional (fre-
quency in kHz, and time in seconds) graph with a third dimension represented by col-
ors (intensity). The frequency can be thought of as the pitch or tone of the utterance,
having its lowest and highest frequencies at the bottom and at the top, respectively.
The amplitude, or the ‘loudness’ of a particular frequency at a specific time is rep-
resented by the color. Darker tones mean lower amplitudes and brighter ones mean
higher (louder) amplitudes. Spectrograms are of great value in the speech processing
area as they are able to capture robust representations at the frame-level [75, 209].

Among the most popular short-term acoustic features are the Mel-Frequency
Cepstral Coefficients (MFCC), which can be obtained by implementing the follow-
ing operations on the utterances: power spectrum, logarithm, and Discrete Cosine
Transform (DCT). These deliver the first coefficients along with another coefficient
associated with the energy of the frame. Velocity and acceleration (first and second
derivatives) are affixed to the MFCCs together with their energy coefficients. In our
experimental framework, we use MFCCs beacuse this technique has proved to be one
of the most effective when it comes to creating speaker models [59, 78].

Another popular frame-level feature method is the Perceptual Linear Predic-
tions (PLP), which is very similar to the MFCC method described previously as both
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Figure 2.3: A spectrogram representing two spoken words.

attempt to model the human auditory system. The PLP consists of a combination of
critical bands, intensity-to-loudness compression and equal loudness pre-emphasis
obtained from the speech information. In contrast with MFCC, PLP relies on cube-
root compression instead of log compression. However, the main difference between
the two arises from the filter-banks, equal-loudness pre-emphasis, the intensity-to-
loudness conversion, and the application of linear predictions. For instance, the
shape of the filter from PLP is trapezoidal while that of the MFCC is triangular, so the
number and width of the filters vary [215]. The use of PLP features has proved ef-
fectiveness at the moment of modeling frame-level representations for speech recog-
nition [31].
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Chapter 3

Front-End Factor Analysis

This chapter introduces the use of Front-End Factor Analysis for the automatic as-
sessment of Alzheimer’s Disease (AD) by examining the speech of the subjects. We
will cover the current ways of assessing the disease, which are sometimes ineffi-
cient. Then we will provide an approach based on the so-called i-vector features
that capture meaningful speaker characteristics able to model the speech of patients
suffering from Alzheimer’s. This could provide the basis for a tool to help clinicians
when screening the disease. Similar to Alzheimer’s, depression can also be assessed
automatically by means of the speech of subjects in a non-invasive manner.

In this chapter, i-vectors can be utilized as a baseline for the discrimination of
clinical depression. This, however, will be covered in detail in Chapter 5.

3.1 Introduction

Some of the symptoms of Alzheimer’s Disease are linked to speech difficulties in a
subject’s brain. In particular, the inability to recall vocabulary, which makes the pa-
tient’s speech different. Mild Cognitive Impairment (MCI), which is considered to
be a prodromal neuro-degenerative state of AD, also includes these types of symp-
toms but in moderate levels. The key to mitigate the progress of both disorders is
achieving an early diagnosis. However, typical ways of diagnosis are costly and quite
time-consuming.

The speech difficulties of patients suffering from Alzheimer’s Disease become no-
ticeable in the moderate stage of the disease. Such adversities are characterized by
the incapacity to recall vocabulary, leading to constant incorrect word substitutions,
also known as paraphasias [47]. The vocabulary of the patient is limited to a sim-
ple set of phrases or single words; progressively, the patient may entirely lose their
speech, resulting in a substantial decrease in the quality of life [47, 49]. In most
cases, these factors create the structure and the patterns of speech of these kinds
of patients, which is generally formed by syntactic complexity, insufficient speech
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fluency, and vocabulary limitation.

There is scarcity of techniques for Alzheimer’s screening which makes it hard to
diagnose the disease at an early stage. The importance of an early diagnosis may
be the key to a find more efficient manners that can slow down the development of
the disease. This early stage of diagnosis is generally not easy to achieve [58, 138].
Namely, patients arrive at the clinic when Alzheimer’s is already in an advanced state,
which lowers the ratio of early AD detection cases. MCI (Mild Cognitive Impairment),
as part of the process of dementia, may begin around the age of 40. Screening tests
for detecting MCI take a long time, they shortage of pre-clinical state diagnosis and
they require a high budget to fund them [73]. Seeking for a non-invasive tool to
help with the screening of AD, we will employ a method intended to extract mean-
ingful speaker trait: the i-vector approach. This technique was once a state-of-the-art
method for speaker recognition [see more in 61, 88].

Likewise, a mental condition such as clinical depression is considered to affect a
significant part of society, and it has detrimental effects in both personal and profes-
sional life. As a part of our study in [43], we make use of the i-vector approach to
establish a robust baseline for the estimation of the degrees of clinical depression.

3.2 Related Works

The i-vector technique makes use of a GMM-UBM (Universal Background Model)
for collecting sufficient statistics along with a total variability matrix that contains
speaker and channel factors. This matrix is used to extract fixed-sized i-vector fea-
tures from the variable-length utterances. The similarity between two i-vectors is
computed by using Probabilistic Linear Discriminant Analysis (PLDA) [61, 62, 88,
104]. In computational paralinguistics, i-vectors have been widely employed as fea-
tures; for example, Dehak et al. employed i-vectors for language recognition [37],
while Grzybowska and Kacprzak utilized i-vectors to determine speaker age [76].
There have been several such works in medicine as well: Garcia et al. performed
an evaluation of Parkinson’s Disease and the neurological consequences in patients
using i-vectors [60], Cummins et al. utilized i-vectors to determine depression from
speech [27].

At the moment of writing, no studies have applied i-vector features specifically
to predict AD from speech before. We think that, owing to the nature of factor
analysis, which is used to obtain information about speaker and channel variabilities,
i-vector features are able to capture efficiently the information needed to model an
AD subject’s speech in a proper way.
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3.3 The i-vector Approach

GMM (Gaussian Mixture Model) supervectors [21] and JFA (Joint Factor Analysis)
[103] are successful approaches that were once the state-of-the-art systems for ro-
bust speaker recognition. In an attempt to combine of both techniques, JFA speaker
factors were used as features for SVM classifiers [36]. It was found that the channel
factors estimated with JFA not only contain channel effects but speaker-dependent
information as well; hence, speaker and channel factors were combined into a single
space. Factor Analysis (FA), which is used as a feature extractor, defines a new low-
dimensional total variability space in which a speech utterance is defined by a new
vector called i-vector [34] that contains the estimates of the total factors:

M = m+ Tw, (3.1)

where M is the Gaussian Mixture Model (GMM) speaker supervector for a given
signal; m is the speaker/channel-independent component, namely, the UBM super-
vector; T is the Total Variability matrix (TV); and w is a standard normal distributed
hidden variable, i.e. the i-vector. This vector can be thought of as a representation of
a given recording in a lower-dimension space.

In contrast to JFA, i-vectors do not make any distinction between speaker and
channel; here, each utterance is assumed to be acquired from a different speaker.
The i-vector approach is, in plain words, a dimensionality reduction technique of the
GMM supervector.

3.4 The Corpora

The data for the experiments comprises 225 speech signals recorded from 75 subjects
(dementia dataset), and 44 recordings taken from generic speakers (subset of the BEA
Hungarian Spoken Language Database [139]). The speech utterances of the dementia
dataset were recorded at the Memory Clinic, University of Szeged, Hungary. Three
categories of utterances were recorded, namely, subjects suffering from MCI, subjects
affected by the early-stage of AD, and subjects having no cognitive impairment at the
time of recording. Such categories were matched for age, gender and education. We
worked with the utterances of 25 speakers for each speaker group, resulting in a total
of 75 speakers and 225 recordings. Table 3.1 lists the clinical characteristics of the
control, the MCI and the mAD group. The subset of the BEA corpus consisted of a
120 minute-long set spontaneous speech similar to the recordings collected from the
patients.
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Table 3.1: The characteristics of the three groups of the study participants.
Groups: MCI = mild cognitive impairment; mAD = mild Alzheimer’s Disease. Tests:
MMSE = Mini-Mental State Examination; CDT = Clock Drawing Test; ADAS-Cog =
Alzheimer’s Disease Assessment Scale. Values are given as mean ± standard deviation.

Subject groups Statistics
Control (n = 25) MCI (n = 25) mAD (n = 25) F(2;74) p

Age 70.72 ± 5.004 72.4 ± 3.594 73.96 ± 6.846 2.321 p = 0.105
Years of education 12.08 ± 2.326 10.84 ± 2.304 10.76 ± 2.818 2.202 p = 0.118
MMSE score 29.24 ± 0.523 27.16 ± 0.898 23.92 ± 2.488 76.213 p < 0.001
CDT score 8.88 ± 2.007 6.44 ± 3.429 5.88 ± 3.244 7.254 p = 0.001
Adas-COG score 8.575 ± 2.374 12.044 ± 3.205 18.675 ± 5.818 38.35 p < 0.001

3.5 The Experiments

Next, we will describe the audio pre-processing steps performed and the type of fea-
tures utilized before fitting the classification algorithm. We also describe the corpora
utilized in our experiments and the way they were carried out. Finally, we present
and analyze the results obtained.

3.5.1 Feature Extraction

In all of our experiments, we relied on MFFCs for the pre-processing of the audio
signals before training the i-vector models. We extracted 20-dimensional coefficients
from the audio signals. We had a frame length of 25 ms, and time-shift of 10 ms. For
this, we relied on the Kaldi Speech Recognition Toolkit [155].

3.5.2 The i-vector Training

The experiments were executed in the following manner: (1) MFCCs features were
extracted separately from 225 (i.e. dementia dataset) and 44 speech recordings (i.e.,
BEA dataset) (2) the UBM was trained using the MFCCs obtained from the BEA
dataset (3) the i-vector extractor model was trained using the UBM of the previous
step, and MFCCs from the dementia dataset (4) MFCCs from the dementia dataset
were processed to extract a set of 225 i-vectors, and lastly, (5) a Support Vector
Machines (SVM) performed the classification process. These stages are outlined in
Figure 3.1.

Kaldi [155] was used to perform the i-vectors extraction process. Here, two cases
were considered when extracting these features: with normalization and without
normalization of the audio samples. The values of the following parameters were
adjusted in order to train the UBM and get a universal model of the speakers: the



3.5 The Experiments 27

Figure 3.1: The generic methodology applied for Alzheimer’s screening by means of the
speech.

Table 3.2: Scores obtained when SVM classifies with i-vectors.

UBM Performance (%)
Used Recording(s) size Acc. Prec. Rec. F1

Immediate recall 32 42.7% 82.6% 76.0% 79.2%
Previous day 32 41.3% 72.2% 78.0% 75.0%
Delayed recall 4 46.7% 78.7% 74.0% 76.3%
All utterances 16 56.0% 80.9% 76.0% 78.4%

number of Gaussian components, C, from 2 to 256; and the number of Gaussians to
keep per frame, Cf , was given by log2(C).

3.5.3 Evaluation

We performed our classification with the use of Support-Vector Machines [165]. To
avoid overfitting due to having a large number of meta-parameters, we applied a
linear kernel; the value of complexity (C) was set in the range 10{−5,−4,...,0,1}. The
subjects were classified using 5-fold cross-validation. Each fold contained the utter-
ances of 5 healthy controls, 5 speakers having AD, and 5 speakers suffering from
MCI. Each SVM model was trained on the utterances of 60 speakers.

The evaluation was carried out in four ways, where we measured the performance
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of the recordings: immediate recall, previous day, delayed recall, and all utterances
together, respectively. Table 4.7 lists the results got in terms of F1-scoring and ac-
curacy. The best F1-score outcome belongs to the immediate recall measurement.
However, the best accuracy score was obtained when using all the utterances. It can
be seen that Immediate Recall and Previous Day recordings performed the best with
32 Gaussian components in the UBM; but this is not true for Delayed recall, and All
utterances evaluations, they performed the best when the size of the UBM was 4 and
16, respectively.

3.5.4 Results

In Figure 3.2 we see there is a big difference between the values of accuracy for the
set ‘All tasks’ and the accuracy scores from the other set of tasks (i.e. Immediate
recall, Previous day, and Delayed recall). This was because the accuracy score was
measured as a 3-wise set, that is, it was obtained in terms of the AD, MCI, and HC
classifications. This means that SVM had a 3-class classification with an accuracy
score of 56%. In contrast, a 2-wise set used in the rest of the scores, that is, AD
and MCI were treated as one class, while HC was the other class, which allowed
the classifier to perform better. Thus here the evaluation was basically whether the
subject has dementia (AD or MCI) or the subject is healthy (HC). The same figure de-
scribes the number of Gaussian components required to get the best results in terms
of accuracy, it turns out that the best configurations were obtained when using the
number of Gaussian components was less than 32 in the case of Immediate Recall
and Previous Day tasks. For Delayed Recall just 4 components were needed. When
all the utterances were combined, it was enough to use 16 Gaussian components so
as to achieve the best accuracy scores with less computation time. Thus, i-vector fea-
tures in these experiments performed better when using smaller number of Gaussian
components.

It should be added that the best configuration of the number of components C
in the SVM classifier depended on the type of recordings used, i.e. for the best
F1-score (Immediate recall) C = 10−2, while for the best accuracy (All utterances)
C = 10−3. A complexity constant value that is too large may lead to overfit the model;
however, a value that is too small may result in over-generalization. Here, the best
SVM complexity constant values, which define the tolerance for misclassification,
were low in the two best cases, which means that C just needed ‘hard’ boundaries of
tolerance to perform well, and over-fitting was controlled by the cross-validation.
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Figure 3.2: Achieved accuracy scores in terms of the number of Gaussian components.

3.6 Concluding remarks

Alzheimer’s Disease is currently very difficult to accurately diagnose, and the methods
of diagnosis generally comprise several costly and time-consuming tasks that the pa-
tient may be asked to repeat many times. A successful and precise diagnosis may just
depend on the expertise of the physician. Mild Cognitive Impairment is commonly
viewed as a prodromal stage of Alzheimer’s, it induces a gentle-yet-noticeable de-
cline in cognitive abilities (i.e. memory and thinking). Generally speaking, a person
with MCI has a relatively high risk of developing AD or some other type of demen-
tia. Unfortunately, the successful diagnosis of MCI greatly depends on the doctor’s
experience and judgement which may not be the best. MCI diagnosis is also based
on costly biomaker tests (e.g. brain imaging and cerebrospinal fluid tests).

Here, it was demonstrated that speech analysis offers a non-intrusive, non-expensive
and faster way to perform the diagnosis of Alzheimer’s by means of the utterances
(i.e. speech recordings) of subjects. Here, we presented the advantage of i-vectors
as features to model the particular speech of an Alzheimer’s sufferer. Two groups
of speech signals were represented via MFFCs features, one for the BEA Hungarian
Spoken Language Database and the other got from the dementia dataset. Next, i-
vector modeling was performed over these features with the goal of extracting their
total factors (i.e., i-vector features). The i-vector features were classified using a
SVM with linear kernel. It achieved an F1 score of 79.2% for the three groups,
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namely, Alzheimer Disease (AD), Mild Cognitive Impairment (MCI), and Healthy
Control (HC).

The author of this thesis is responsible for the following contributions presented
in this chapter:

I / 1. My contribution relied on training i-vector models for the extraction speech
representations of individuals suffering from Alzheimer’s. I demonstrated that
i-vector features are capable of extracting meaningful traits from this kind of
speech.

I / 2. As a part of my proposals for the study in question, I employed i-vectors as a
baseline approach for the automatic screening of the levels of clinical depres-
sion by means of the speech. Turns out that this method achieves comparable
and even competitive performances compared with prior studies on the same
corpus.



Chapter 4

The Fisher Vector

In this chapter we show how the Fisher Vector, a method intended for image classi-
fication, can be employed for computational paralinguistic and pathological speech
tasks. It turns out that Fisher vector representations are able to capture relevant
speaker features that we call FV encodings, which can be applied to examine differ-
ent speaker states using speech recordings or audio signals. In particular, we experi-
ment with (1) the automatic assessment of Parkinson’s Disease, (2) Cold speech, (3)
contextual escalation (the level of escalation inferred by the dialogue), and (4) the
classification of species of primates. Each sub-section will cover and describe each
above task separately.

4.1 Introduction

Seeking to develop a quick, reliable and non-invasive manner to screen, assess and
detect the events described in the tasks on the later on, we opt for a technique that en-
ables the use of the speech to this purpose: the Fisher Vector (FV) encoding. We will
utilize this method to extract features from the audio-signals available for each task.
FV was originally designed as an image representation procedure that pools local im-
age descriptors. The FV can be compared with the Bag-of-Visual-Words (BoV, [148])
technique, both approaches assign a local descriptor to elements in a visual dictio-
nary. However, instead of just storing visual word occurrences, FV representations
take into account the difference between dictionary elements and pooled local fea-
tures, and store their statistics. An advantage of the FV representation is that, regard-
less of the number of local features (i.e. SIFT for images or frame-level features for
audio-signals), it extracts a fixed-sized feature representation from each sample. We
will show that the proposed approach gives a better performance than for instance,
using i-vectors, and provides a simple-yet-effective way of combining the predictions
with other methods.

31
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4.1.1 Parkinson’s Disease Screening

Some of the classic symptoms of Parkinson’s include shaking, rigidity, slowness of
movement, and speech difficulties. The motor system is directly affected by them,
and this triggers a decrease in the number of dopamine-producing neurons [99].
Such pathologies are often related to one of the most common neuro-degenerative
disorders, that is, Parkinson’s Disease. A person suffering from Parkinson’s is prone
to develop changes and disorders in speech and swallowing. This can occur at any
time during the disease, but it generally appears as the disease advances. Commonly,
the speech of the patient is also affected in terms of its tone, volume, and rate, which
might lead to dysprosody. Words comprising the speech of the subject may be slurred
or mumbled. Additionally, typical articulatory problems exhibited by PD patients are
referred to as dysarthia. Also, the speech can fade away at the end of the sentences;
likewise, patients may speak slowly and with a breathy kind of speech [99, 154].

In order to detect diseases like Parkinson’s, different kinds of features can be
extracted from the speech of the subjects. Several feature types are task-specific,
namely, they were designed to capture and reflect specific properties of the actual
disease we try to detect. For instance, the articulatory aspects of the speech such as
the vowel quality, speech timing, occlusion weakening, or speech coordination [141].
Nevertheless, due to the specific nature of these attributes, they are typically hand-
crafted, and as such, they require domain-specific knowledge. Another drawback of
such feature types is that they tend to be quite specific to the actual disease, which
limits the research effort devoted to their development.

Relying on Computer Tomography (CT) and Magnetic Resonance Imaging (MRI),
the brain scans of people can be harnessed to diagnose PD. However, their results
may appear to be normal, which makes it difficult for physicians to give an accurate
diagnosis. Currently, there are no existing standard blood or laboratory tests that can
be utilized to diagnose PD. Hence, the diagnosis, which sometimes may not be the
most accurate, is often made based on the medical history of the patient and/or a
neurological examination. In some cases, signs and symptoms of PD may be cata-
logued as the result of normal aging. Limitations within the commonly used process
to assess patients with PD include the high cost and the lack of efficiency when eval-
uating the disease. This process generally has two main drawbacks. Firstly, it greatly
depends on the expertise of the clinician, which is subjective; and, secondly, the lim-
itation of taking the patient to the clinic to try out exhaustive medical assessments
and screenings [195].

4.1.2 Cold Speech Screening

The so-called upper respiratory tract infection (URTI) is an infectious process for any
of the components of the upper airway. For instance, it includes the common cold, a
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sinus infection, amongst others. The automatic assessment whether a subject has a
cold may be relevant when trying to prevent the spread of it by predicting its patterns
of propagation. We focus on finding specific voice patterns latent in the speech of
subjects having a cold utilizing the Upper Respiratory Tract Infection Corpus (URTIC)
which was the dataset of one of the Sub-Challenges in the ComParE Challenge from
Interspeech 2017 [169].

4.1.3 Escalation in the Dialogue, and Primates Species Detection

Public security, human-computer interactions, or human-to-human conversations are
some of the scenarios that can benefit from the automatic detection of the levels of
escalation in the dialogue. The acoustic-based escalation assessment include real-
life applications such as e-commerce customer service systems to alert and prevent
potential conflicts before they take place. The same goes for public areas like air-
ports and train/bus stations, where passengers frequently converse. Likewise, these
automatic tools could be useful for maintaining the safety of the passengers in the
above-mentioned areas and maintain public order. To this end, we make use of the
Escalation Corpus described in [176].

Seeking to develop better tools for monitoring biodiversity, researchers have ex-
perimented with bio-acoustics, attempting to annotate or label the different sounds
from nature. In our specific case, we are interested in the discrimination of vocaliza-
tion from Primates species. This task was also introduced by Schuller et al. in [176].

4.2 Related Works

Automatic speech analysis has been utilized in many medical branches in order to
tackle the above-mentioned obstacles by offering accurate and non-expensive solu-
tions that are able to assess the diagnosis of different neuro-degenerative diseases by
the use of speech recordings. Former studies have already addressed these matters
for Parkinson’s Disease screening [134, 216], where the performance of different
speech processing techniques such as i-vectors or ASR-based features (e.g. speech
tempo or hesitation ratio) are applied. After the initial applications of the FV ap-
proach in image classification, it has soon been applied in audio processing as well.
Former studies using Fisher Vectors for human speech focused on tasks like catego-
rizing audio files as speech, music and miscellaneous [133], emotion detection [67],
and determining food type from eating sounds [101].

Earlier studies applied various approaches for Cold Classification from subjects
using the speech of the patients. For instance, Gosztolya et al. employed Deep Neural
Networks for feature extraction for this purpose [69]. Huckvale and Beke utilized
four types of voice features for studying changes in health [87]. Furthermore, Kaya et
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al. [100] introduced the application of a weighting scheme on instances of the corpus,
making use of a Weighted Kernel Extreme Learning Machine in order to handle the
imbalanced data that comprises the URTIC corpus. Like every other computational
paralinguistic task, assessing a cold from the speech is a challenging issue. Finding
out the latent patterns that characterize or represent a cold speech not only depends
on the feature extraction phase but in the data itself too. These includes factors like
a limited amount of data, data imbalance, quality of the recordings.

4.3 The Fisher Vector

As mentioned earlier, we rely on the FV approach [91] for our experiments in all
the four tasks. In this particular scenario, this encoding technique represents audio-
signals as gradients of a global generative GMM of low-level utterance descriptors.

The Fisher Vector technique seeks to represent an image through the extraction
of local patch descriptors (e.g. a set of SIFT descriptors). This approach utilizes the
same principles as those of the Fisher Kernel (FK) introduced in [91]. This section
describes the FK as a method for statistical classification along with its principles
applied to the FV. Likewise, it explains the use of FV representations for audio-signals.

4.3.1 The Fisher Kernel

Put it simply, the FK is a way to measure the similarity between two objects by
means of their deviation from a generative model. More formally, let us define
X = {xt, t = 1, . . . , T} as a sample of T observations xt ∈ X ; and υλ as the probabil-
ity density function that models the generative process of the elements in X . Here,
λ = [λ1, . . . , λM ] ′ ∈ RM represents the parameter vector of υλ. Hence, the gradient
of the log-likelihood of the data X can be employed as a statistical score function
( [91]):

GX
λ = 5λ log υλ(X), (4.1)

which tells the way the parameter υλ should be changed in order to best fit the data
X. Note that the dimensionality of GX

λ ∈ RM is not related to the size of the sample
T , instead, it depends on the number of parameters M in λ.

As mentioned before, the FK defines the similarity between two samples, say, X
and Y . This can be expressed as:

KFK(X, Y ) = GX′
λ F

−1
λ GY

λ . (4.2)

Since Fλ is positive semi-definite, Fλ = F−1λ . Eq. (4.3) shows how the Cholesky
decomposition F−1λ = L′λLλ can be utilized to rewrite the Eq. (4.2) in terms of the
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dot product:
KFK(X, Y ) = GX′

λ G Y
λ , (4.3)

where
GX
λ = LλG

X
λ = Lλ5λ log υλ(X). (4.4)

Such a normalized gradient vector is the so-called Fisher Vector of X [163]. Both the
FV GX

λ and the gradient vector GX
λ have the same dimension.

4.3.2 The Fisher Vector for audio-signals

The SIFT descriptors characterize occurrences of rotation- and scale-invariant prim-
itives of an image [124]. Here, we use MFCC representations as descriptors (i.e.
frame-level features) of the utterances. Let X = {Xt, t = 1 . . . T} be the set of D-
dimensional frame-level features extracted from an audio-signal and let the assump-
tion of independent samples hold. Then Eq. (4.4) becomes:

GX
λ =

T∑
t=1

Lλ5λ log υλ(Xt). (4.5)

The assumption of independence permits the FV to become a sum of normalized
gradients statistics Lλ5λ log υλ(xt) calculated for each frame-level feature. That is:

Xt → ϕFK(Xt) = Lλ5λ log υλ(Xt), (4.6)

which describes an operation that can be thought of as a higher dimensional space
embedding of the frame-level features Xt.

Simply stated, the FV approach extracts low-level local descriptors from the MFCCs.
Then, utilizing a GMM with diagonal covariances, the distribution of the extracted
features can be modeled. The log-likelihood gradients of the features modeled by
the parameters of such GMM are encoded through the FV. This type of encoding
stores the mean and covariance deviation vectors of the K components that form
the GMM together with the elements of the frame-level features. The utterance is
represented by the concatenation of all the mean and the covariance vectors that
gives a final vector of length (2D + 1)K, for K quantization cells and D dimensional
descriptors [150, 163].

The FV approach can be compared with the traditional encoding method called
BoV (Bag of Visual Words), and with a first order encoding method like VLAD (Vector
of Locally Aggregated Descriptors). In practice, BoW and VLAD are outperformed by
FV due to its second order encoding property of storing additional statistics between
codewords and local feature descriptors [178]. Here, we use FV features to encode
the MFCC features extracted from audio-signals of HC and PD subjects. FV allows
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us to give a complete representation of the sample set by encoding the count of
occurrences and high order statistics associated with its distribution.

4.4 The Corpora

4.4.1 PC-GITA Corpus

For the Parkinson’s Disease experiments, we used the PC-GITA speech corpus [144],
which contains the recorded speech of 100 Colombian Spanish speakers (50 PD pa-
tients and 50 HC). All of the patients were evaluated by a neurologist. The corpus
contains a total set of 100 recordings of Colombian Spanish speakers, and it is di-
vided into 50 patients suffering from PD and 50 HC. An expert neurologist assessed
the diagnosis for each of the patients. The audio-signals were sampled to 16 kHz.
The subjects were asked to perform four different tasks during the recordings: six
diadochokinetic (DDK) exercises (e.g. the repetition of the sequence of syllables /pa-
ta-ka/), monologue speeches, text reading, and ten short sentences. Speech/non-
speech and voiced/unvoiced segmentation were the types of segmentation used in
this study, the former utilizes energy-threshold Voice Activity Detection (VAD) and
the latter makes use of the auto-correlation method [17].

4.4.2 Upper Respiratory Tract Infection Corpus (URTIC)

The URTIC dataset consists of 382 male speakers, 248 female speakers, with a mean
age of 29.5 years; and a sampling rate of 44.1kHz downsampled to 16kHz. This
dataset was utilized in the cold assessment task. The corpus was provided by the
Institute of Safety Technology, University of Wuppertal, Germany. The following tasks
were performed by the participants: they had to read short stories (e.g. the well-
known story in the field of phonetics The North Wind and the Sun, to produce voice
commands (such as numbers from 1 to 40), and to narrate spontaneous speech (i.e.
tell something about their last weekend or their best vacation). Note that the number
of tasks varied for each speaker. The recordings were split into 28,652 chunks of 3
to 10 seconds in length. Specifically, the division of the chunks was carried out in
a speaker-independent manner, each partition (i.e. train, development, and test)
having 210 speakers. The training and development sets are both comprised by 37
subjects having a cold and 173 subjects not having a cold. The reader may see more
details in [172]. The number of samples and classes for each subset is described in
Table 4.1.
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Table 4.1: Upper Respiratory Tract Infection Corpus (URTIC).

Class Train Development Test Total

Cold 970 1,011 895 2,876
Not-Cold 8,535 8,585 8,656 25,776
Total 9,505 9,596 9,551 28,652

Table 4.2: The Escalation Corpus.

Class Train Development Test Total

Low 156 69 260 485
Medium 75 34 191 300
High 64 16 50 130
Total 295 119 501 915

4.4.3 Escalation Corpus

This dataset consists of both the Dataset of Aggression in Trains (TR) [118] and the
Stress at Service Desk Dataset (SD) [117]. The corpus presents unscripted interac-
tions between actors, where friction is present as the speakers spontaneously react
to each other based on short scenario descriptions. The TR dataset comprises 21 sce-
narios of unwanted behaviours in trains and train stations. Such scenarios are, for
instance, harassment, theft, travelling without a ticket. The annotation was carried
out relying on aggression levels on a 5 point scale by 7 raters. On the other hand,
the SD corpus has scenarios of problematic interactions situated at a service desk.
For example, a slow and incompetent employee while the customer has an urgent
request. These were annotated for stress levels on a 5 point scale by 4 raters. The
original labels were mapped onto a 3 point scale: SD classes 1 and 2 and TR class 1
onto Low, SD class 3 and TR class 2 onto Medium, and the rest of the data onto High
escalation. The sample distribution is shown in Table 4.2. See more details in [176].

4.4.4 Primates Vocalisation Corpus

As described in [176], the corpus consists of recordings from different species of pri-
mates including Chimpanzees, Mandrills, Red-capped mangabeys, and a mixed group
of Guenons. The annotation process relied on both manual and semi-automatic an-
notations: a) initial annotation based on spectrogram analysis and listening; b) vo-
calisation detection based on energy/variation in specific frequency sub-bands (150
Hz - 2 KHz); and c) final annotation relying on spectrogram analysis and listening,
resulting in over 10,000 annotated vocalisations. Background utterances labeling
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Table 4.3: Primate Vocalisations Corpus

Class Train Development Test Total

Chimpanzee 2,217 2,217 2,218 6,652
Mandrill 874 874 875 2,623
Red-capped mangabeys 208 209 210 627
Guenons 158 159 159 476
Background 3,458 3,459 3,461 10,378
Total 6,915 6,918 6,923 20,756

was taken based on the recording that were not labeled as vocalisation. Table 4.3
shows the class distribution of the datasets.

4.5 The Experiments

The pipeline carried out in the experiments on Parkinson’s consisted of the following
steps: (1) VAD-based segmentation, (2) feature extraction, (3) fitting a GMM to the
local image features, (4) the construction of the (audio) word dictionary by means
of the GMM, that is, the encoded FV that now represents the global descriptor of
the original spectrum, and (5) SVM classification. A similar workflow is employed
for the rest of the tasks (i.e., Cold, Escalation, and Primates), with the difference
that segmentation is not taken into consideration, and that for some tasks the kernel
of the SVM may be distinct. (See Fig. 6.1). We used the Kaldi Speech Recogni-
tion Toolkit [155] for feature extraction. All the FV features were standardized by
removing the mean and scaling to unit variance before training the SVM model.

4.5.1 Feature Extraction

For the Parkinson’s task, the experiments were executed by relying on four different
feature sets. The first consisted of 20 MFCCs, obtained from 30 ms wide windows;
and the rest of the feature sets were built by articulation, phonation, and prosody, re-
spectively. Before extracting the features we performed speech/non-speech segmen-
tation by means of Voice Activity Detection (VAD), and also by voiced/unvoiced using
the auto-correlation method from Praat [17]. For articulation evaluation, the first 22
Bark bands (BBE) in voiced/unvoiced and unvoiced/voiced transitions were treated as
features [145]. Features obtained from phonation and articulation in voiced segments
constitute a 14-dimensional vector with 30 ms of windows analysis and 5 ms of time
shift. These features contained log-energy, pitch (F0), first and second formants (F1,
F2) together with their first and second derivatives, Jitter and Shimmer. Prosody in-
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Figure 4.1: Generic methodology applied in our experiments.

formation was represented by means of the approach introduced in [35]; hence, we
got a 13-dimensional feature vector formed by using the number of voiced frames
per segment and the 12 coefficients.

For the Cold task, we employed MFCCs with a dimension of 13 coefficients along
with their first and second order derivatives. We experimented with 23-dimensional
MFCCs, 40-dimensional FBANKs and spectrograms for the Escalation and Primates
tasks, respectively. For each of the them, we employed a frame-length of 25 ms, and
frame-shift of 10 ms.

4.5.2 Training and Evaluation Methods

To construct the FV representation, we experimented with N = 2, 4, 8, 16, 32, 64 and
128 Gaussian components in all the tasks. We relied on the VLFeat library in order
to get the Fisher vectors [200]. As stated before, the classification was done using a
Support Vector Machines algorithm. We employed the libSVM implementation [23]
with a linear kernel and, as suggested in [91], the C complexity parameter was set
in the range 10−5, . . ., 101.

For the Cold, Escalation, and Primates tasks the performance of the SVM classifier
was measured via Unweighted Average Recall (UAR), which is a proper metric for
these kinds of paralinguistic tasks; also it is commonly used when there is a need to
handle class imbalance situations. As for Parkinson’s screening, the metric used is
described next.

Parkinson’s

Owing to the limited size of the PC-GITA corpus, we conducted the experiments in
a speaker-independent 10-fold nested cross-validation (CV) setting; each fold con-
tained the utterances of 5 PD and 5 HC speakers. The classification was carried out
using the SVM estimator fitted on 9 folds (i.e., 90 speakers). To get the right meta-
parameters, we performed another CV over the 90 speakers of the training folds. After
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determining the optimal N (number of Gaussian components for FV) and C (SVM
complexity) meta-parameters, we trained a SVM classifier using 90 speakers based
on meta-parameter values mentioned earlier. Hence, we obtained predictions for all
speakers without relying on any kind of data or information about the given subject.
The SVM’s outputs were employed to compute the Area Under the Receiver Operat-
ing Characteristics Curve (AUC), which is a widely used statistic for summarizing the
performance of automatic classification systems in medical applications. Moreover,
we calculated the classification accuracy and F-measure (or F1) scores. These metrics
were calculated by choosing the decision threshold along with the Equal Error Rate
(EER).

Cold

The data samples are highly imbalanced. The training dataset consists of 9505 ut-
terances, where 8535 (89.8%) are labeled as healthy (not-cold) and the rest, 970
(10.2%), are labeled as cold. Likewise, the development dataset comprises 1011
cold and 8585 not-cold labels, which are 10.53% and 89.47%, respectively. Having
a high class imbalance is more likely to affect the performance of the SVM classifier.
Hence, we opted for random undersampling, which reduces the number of samples
associated with all classes to that of the minority class (i.e., cold). In our first exper-
iments we reduced the dimensions of the features via Principal Component Analysis
(PCA) [98], keeping a variance of 0.95. Chatfield et al. [24] demonstrated that apply-
ing PCA before classification enhances the discrimination task with FV and reduces
the memory consumption as well.

Moreover, the FV features were normalized with Power Normalization (PN) and
l2-Normalization. Power Normalization was found to be helpful for FVs representa-
tions [163] as it reduced the impact of the features that became more sparse as the
number of Gaussian components increased. In the following experiments, we applied
these normalization techniques before reducing the dimensions using PCA. Likewise,
we found that l2-Norm. helped to alleviate the effect of having different utterances
with distinct amounts of background information projected into the extracted fea-
tures, which attempts to improve the prediction performance. In order to search
for the best complexity C value of the SVM, Stratified Group k-fold Cross Validation
(CV) was applied over the training and development sets. Stratified Group k-fold CV
allowed us to avoid having the same speaker in more than one specific fold while
simultaneously preserving the percentage of samples for each class within each fold.

Escalation and Primates

Since both datasets in the Escalation and in the Primates tasks were imbalanced, we
performed downsampling by randomly discarding training examples from the more
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Figure 4.2: Achieved AUC values as a function of N for the four speaker tasks, when
using the MFCC feature set for the Parkinson’s task.

frequent classes during training. Since this process introduces a further random fac-
tor into the training phase, we decided to fit several models and average out the
resulting posterior values. For the Escalation task, we repeated the model training
100 times; while we trained 10 models in each case for the Primates task. The pre-
dictions from the test set were obtained by fitting on the training and development
sets combined. Furthermore, we trained independent SVM models for the different
types of frame-level features (i.e., MFCCs, FBANKs, and spectrograms), and com-
bined the predictions in the second step by taking the weighted mean of the posterior
estimates. Additionally, in the Escalation and Primates tasks we experimented with
the so-called x-vector approach, which will be covered more in depth in Chapter 5.

4.5.3 Results and Discussion

Parkinson’s results

The results for the different speaker tasks and the various frame-level feature sets are
shown in Table 4.4. The best scores in each case were gotten with the MFCC feature
set (except for the ‘Read text’ task, where the accuracy and F1-scores appeared to be
higher with articulatory features along with an identical AUC score). This is prob-
ably because the FV approach assumed that the frame-level feature values could be
modeled along with a diagonal covariance matrix. This assumption is quite realistic
for MFCCs and, perhaps, for the filter bank values, of the voiced/unvoiced transi-
tions (i.e. the articulatory features), but it may not be true for the phonational and
prosodic attributes.
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Table 4.4: Results obtained for the various tasks and feature sets for the Parkinson’s
task.

Task Features Acc. F1 AUC

DDK

MFCC 78% 0.78 0.834
Articulation 70% 0.70 0.782
Phon./Artic. 62% 0.62 0.737
Prosody 62% 0.62 0.666

Monologue

MFCC 80% 0.80 0.880
Articulation 76% 0.76 0.847
Phon./Artic. 70% 0.70 0.749
Prosody 58% 0.58 0.621

Read text

MFCC 76% 0.76 0.848
Articulation 80% 0.80 0.848
Phon./Artic. 72% 0.72 0.758
Prosody 78% 0.78 0.798

Sentences

MFCC 80% 0.80 0.891
Articulation 76% 0.76 0.834
Phon./Artic. 76% 0.76 0.804
Prosody 62% 0.62 0.684

Next, we focused on the trends in the optimal number of Gaussian components
(i.e. N) for the tasks. We tried out all the possible N values, and then just the C
complexity parameter was determined in a nested CV. (Of course, this was not a
completely fair setup from a machine learning perspective. Still, in our opinion, this
small amount of ‘peeking’ was both necessary and acceptable in this scenario. Then
we could focus on classification performance as a function of N .) Fig. 4.2 shows the
AUC scores for the MFCC features.

In general, using fewer GMMs (N ≤ 16) led to a sub-optimal performance, except-
ing the DDK task, where we can see a close-to-optimal AUC value even for N = 16.
For the Monologue task, N = 32 components were needed for optimal performance,
while N = 64 and N = 128 were enough for the Read text and the Sentences tasks,
respectively. AUC scores were above 0.8 for three tasks even for N = 4; as it meant
104-176 attributes for each subject, we achieved relatively high classification perfor-
mance even with this compact representation.

Moreover, aiming to improve the classification performance, we experimented
with late fusion [172]. The class-wise posterior estimates produced by the SVM al-
gorithm were employed for taking the mean of two or more posterior vectors and
achieve a ‘feature set combination’. We combined the different feature sets and tasks,
and applied late fusion by taking the weighted mean of the posterior estimates with
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Table 4.5: Results obtained when combining the different feature sets for the ‘Mono-
logue’ task (for Parkinson’s)

Features Acc. F1 AUC

MFCC 80% 0.80 0.880
MFCC + Articulation 84% 0.84 0.908
MFCC + Phon./Artic. 78% 0.78 0.871
MFCC + Prosody 78% 0.78 0.878
MFCC + Artic. + Phon./Artic 82% 0.82 0.897
MFCC + Artic. + Prosody 84% 0.84 0.900
All feature sets 82% 0.82 0.895

an increment of 0.05; the weights are determined in a nested cross-validation pro-
cess.

The results of ‘task set combination’ (for the Monologue task) are shown in Ta-
ble 4.5. Note that the results regarding the MFCC feature set improve when artic-
ulatory features are added: the classification accuracy rose from 80% to 84%, the
corresponding F1 value went up from 0.8 to 0.84, and the AUC value of the PD class
also rose from 0.880 to 0.908. However, adding more feature sets proved futile: al-
though the accuracy and F-measure values remained constant even after utilizing the
prosodic features as well, the AUC score fell to 0.900. Still, the 0.908 score achieved
by fusing the predictions got from the first two feature sets brought an improvement
of 20% in terms of the RER.

As per the ‘feature set combination’ experiments, the results are displayed in Ta-
ble 4.6, the highest results correspond to the ‘Read text’ task. It matched the perfor-
mance of MFCCs in terms of the AUC, while the accuracy and F1 values appeared to
be higher. Besides ‘Read text’, using the ‘Monologue’ task resulted in a performance
improvement, while incorporating the ‘DDK’ task as well increased the AUC value
even further (although the classification accuracy and F1 dropped slightly), leading
to a 29% of RER score.

Cold results

As shown in Table 4.7, for the baseline we utilized the ComParE functionals (i.e.
Bag-of-Audio-Words features) that were originally presented and described in [169].
According to the results outlined in Table 4.7, these representations achieved an UAR
score of 67.3% on the test set. This score was slightly outperformed by two of our
configurations: when PCA was applied (67.65%), and when PN was applied along
with PCA (67.81%). Table 1 shows the results obtained when using Fisher Vectors
with their complete number of features as a function of their reduced number of
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Table 4.6: Results obtained when combining the different tasks for the articulatory
features for the Parkinson’s task.

Features Acc. F1 AUC

Read text 80% 0.80 0.848
Read text + DDK 76% 0.76 0.860
Read text + Monologue 84% 0.84 0.878
Read text + Sentences 74% 0.74 0.862
Read text + Monol. + DDK 82% 0.82 0.892
Read text + Monol. + Sentences 76% 0.76 0.867
All tasks 80% 0.80 0.877

Table 4.7: UAR scores obtained for the Cold task.

GMM Performance (%)
Features size Cross-Val Test
ComParE (BoAW-baseline) - 64.54% 67.30%
Fisher Vectors 64 63.98% 66.12%
Fisher Vectors + PCA 64 64.72% 67.65%
Fisher Vectors + PN + PCA 64 64.92% 67.81%
ComParE + Fisher Vectors (+PN+PCA) - 63.01% 70.17%

features. As can be seen, when the classifier learned the raw Fisher Vector features
it achieved a UAR score of 63.98% in the CV. On the test set the performance was
higher (66.12%). PCA proved to be useful here by contributing to a better classifi-
cation performance in both CV and test phases (64.72% and 67.65%, respectively).
However, we found that applying PN before PCA was effective as the CV and test
UAR scores increased to 64.92% and 67.81%, respectively. Afterwards, we used the
ComParE BoAW [172] feature set posterior probabilities and we combined them with
those of the (power-normalized and reduced) Fisher Vectors, that is, we carried out
a late fusion. The UAR score rose to 70.17% of UAR score on test set, which outper-
formed the BoAW baseline.

Escalation and Primates results

It should be noted that tables for both tasks are sparse due to the challenge rules.
Table 4.8 shows the results obtained for the Escalation task. We can see that the
ensemble x-vector approach performed well, considering that it is a 3-class classi-
fication task: the UAR values are in the range 62.6 . . . 72.5%, the last being just as
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Table 4.8: The results obtained for the Escalation Task.

Feature Set Dev Test

ComParE functionals 72.8% —
Ensemble x-vectors (MFCC) 62.6% —
Ensemble x-vectors (FBANK) 68.0% —
Ensemble x-vectors (spectrogram) 72.5% —
Fisher vectors (FBANK + ∆ + ∆∆) 74.3% —
ComParE + x-vectors (spectr.) 74.5% 61.5%

ComParE + FV (FBANK + ∆ + ∆∆) 77.8% 63.2%

Official ComParE baseline — 59.8%

effective as ComParE functionals (72.8%). By combining the two feature types, we
achieved a slight improvement (74.3%). Fisher vectors were slightly better (note that,
due to the lack of space, we only reported the best FV configuration); in the end, we
achieved the best results with the combination of ComParE functionals and FVs. Our
two test set submissions achieved similar results to the scores on the development
set: FVs slightly outperformed the ensemble x-vectors. However, both approaches
scored above the official Challenge baseline (obtained via Bag-of-Audio-Words).

Table 4.9 showcases the results got for the Primates task. For this task, FBANK-
based and MFCC-based (ensemble) x-vectors turned out to be better than the spectro-
gram-based one; and although even the best one, relying on FBANKs, performed be-
low the standard ComParE functionals attribute set (78.3% and 81.1%, respectively),
they could be combined effectively, as the UAR score on the development set im-
proved to 82.6% in this case. Just like that for the Escalation corpus, we achieved
even better scores with the Fisher vectors (although now ∆s and ∆∆s proved to be
redundant); this UAR score of 82.7%, measured on the development set, could further
be improved to 87.5% by a combination with the ComParE functionals. Regarding the
test set scores, the combination of the ComParE feature set with ensemble x-vectors
resulted in a test set UAR value below the Challenge baseline. However, we still
managed to surpass the ComParE functionals score reported in the baseline paper
(see [176]), while with the ComParE + FV method we even exceeded the official
baseline score of 87.5%, which was a fusion of five methods itself. This value was
further exceeded by incorporating the auDeep features as well.
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Table 4.9: The results obtained for the Primates Task

Feature Set Dev Test

ComParE functionals 81.1% —
Ensemble x-vectors (MFCC) 75.7% —
Ensemble x-vectors (FBANK) 78.3% —
Ensemble x-vectors (spectrogram) 70.7% —
Fisher vectors (FBANK) 82.7% —
ComParE + x-vectors (FBANK) 82.6% 83.3%

ComParE + FV (FBANK) 87.5% 88.8%

ComParE + FV (FBANK) + auDeep 88.2% 89.8%

Official ComParE baseline — 87.5%

4.6 Concluding remarks

Parkinson’s Disease

The Parkinson’s states are often difficult to diagnose accurately by doctors. This cre-
ates many limitations in terms of time and costs for the patients that possess the
pathology of the disease and need to be assessed. A non-invasive and promising pro-
cedure for assessing and diagnosing Parkinson’s is the automatic analysis of speech
of the subject. Our study showed how useful FV are over i-vectors as features in
the assessment of PD via the analysis of speech. We used the PC-GITA dataset to
do experiments and classify PD and HC subjects. Samples comprising such dataset
were segmented, and cepstral, articulatory, phonological and prosodic features were
extracted from the voiced parts. These features were represented by FV-encoding
and they were classified using Support-Vector Machines. This workflow produced a
high-precision classification performance.

The first experiments revealed that MFCC features performed the best in three
of the four tasks. The task ’Sentences’ came first in terms of the AUC, with a score
of 0.891. In the subsequent experiments, we showed that the predictions obtained
for the different frame-level feature sets and tasks could be combined, allowing an
even higher classification performance. This way, our AUC scores improved even
further, and we got 0.908 with the combination of MFCCs with articulatory features
for the ’Monologue’ task, while using the articulatory features, but incorporating the
predictions for the tasks ‘Read text’, ‘Monologue’ and ‘DDK’, also led to a significant
improvement over relying on the ’Read text’ task only. Using different feature sets
and/or tasks is not the only possible combination approach possible.
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Cold

Compared with studies conducted by other teams using the same dataset [87, 172],
our performance is competitive, and our feature extraction pipeline seems to be sim-
pler than those studies given that we utilized one single type of feature represen-
tation for training a model. We found that SVM gave better results when the fea-
ture pre-processing step was applied before executing the training phase. Thus, we
demonstrated how applying Power Normalization along with dimension reduction
via Principal Component Analysis on the Fisher Vector features improved the classi-
fication performance.

Combining Power Normalization with PCA gave better UAR scores on test set.
These results are higher compared to those got using the Bag-of-Audio-Words ap-
proach described in [172]. PCA in combination with the SVM allowed us to carry
out a better classification of the actual data while monitoring the memory consump-
tion. PN helped to reduce the impact of the features that increase their sparsity as
the number of Gaussian components increase. Furthermore, L2-normalization was
applied before fitting the data. This helped to alleviate the effect of having differ-
ent utterances with distinct amounts of background information projected into the
extracted features, which attempts to improve the prediction performance.

Escalation and Primates

Although this chapter focuses on Fisher vectors, our main contribution for this spe-
cific task relied on the x-vector technique (covered in more detail in Chapter 5). Our
UAR scores on the development set demonstrated the superiority of the ensemble
classifiers over the independent x-vector-based ones. However, the Fisher vector ap-
proach, was more successful at the moment of modelling these particular corpora.
Our experiments managed to overpass all the official baselines presented in [176].
Moreover, the results achieved in the Escalation task positioned our paper as the
winner of the ComParE Primates Sub-Challenge from the Interspeech Conference of
20211.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

II / 1. I developed a framework for the automatic assessment of Parkinson’s Disease
by means of the Fisher vector approach. My findings showed that these kind of
features are capable of capturing meaningful information not only from images
(as they were originally intended for), but from utterances as well.

II / 2. I constructed a machine learning model capable of discriminating cold from
the speech of individuals using Fisher vectors. I demonstrated the superiority

1http://www.compare.openaudio.eu/winners/
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of XGBoost over SVM when of employing the above-mentioned features for
cold speech classification.

II / 3. As part of the procedures conducted in this study, I modelled the levels of es-
calation in the speech of individuals using Fisher vectors; moreover, the same
technique was employed to extract features from the sounds of primate species.
I proved that such an approach is quite beneficial at the moment of the auto-
matic assessment of the given tasks.

II / 4. I designed a pipeline for ‘cold’ speech feature extraction based on Fisher vec-
tor encodings. I demonstrated that these types of features are capable of accu-
rately modelling the speech of subjects having a cold.



Chapter 5

Deep Neural Network Embeddings

Here, we shall introduce deep neural network embeddings for pathological speech
processing and paralinguistics tasks. More precisely, we will examine the use of the x-
vector approach (a method originally intended for speaker recognition) as a feature
extraction technique for audio-signals containing pathological speech. We experi-
ment with the automatic screening of the following tasks: the degree of sleepiness,
depression, the classification of primate sounds, and the levels of escalation in
speech. Here, we will employ x-vectors to extract meaningful representations from
the speech of subjects in the above-mentioned tasks. With the methodology outlined
in [186], we will adopt the DNN architecture described there. We train the network
from scratch employing distinct corpora and use its encoded embeddings for estima-
tion. We show that x-vector features are able to produce high quality speaker models
for tasks not related to speaker recognition.

5.1 The x-vector Method

The x-vector approach can be thought as of a neural network feature extraction tech-
nique that provides fixed-dimensional embeddings corresponding to variable-length
utterances. Such a system can be viewed as a feed-forward Deep Neural Network
(DNN) that computes such embeddings. Below, we will describe the architecture of
the DNN (based on [186]) and the embeddings that are extracted using it.

5.1.1 DNN structure

Table 5.1 outlines the architecture of the DNN. The frame-level layers have a time-
delay architecture [187], let’s assume that t is the actual time step. Then, at the
input, the frames are spliced together; namely, the input to the current layer is the
spliced output of the previous layer (i.e., input to layer frame3 is the spliced output
of layer frame2, at frames t − 3 and t + 3). Next, the stats pooling layer gets the

49
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T frame-level output from the last frame-level layer (frame5), aggregates over the
input segment, and computes the mean and standard deviation. The mean and the
standard deviation are concatenated and used as input for the next segment layers;
from any of these layers the x-vectors embeddings can be extracted. And finally, the
softmax output layer (which is discarded after training the DNN) [185, 186, 187].

Instead of predicting frames, the network is trained to predict speakers from
variable-length utterances. Namely, it is trained to classify the N speakers present
in the train set utilizing a multi-class cross entropy objective function (see Eq. 5.1).
Let K be the number of speakers in N training segments. Then, the probability of the
speaker k given T input frames (x

(n)
1 , x

(n)
2 , ..., x

(n)
1:T ) is given by: P (spkrk|x(n)1:T ). If the

speaker label for segment n is k, then the quantity of dnk is 1, and 0 otherwise [185].

E = −
N∑
n=1

K∑
k=1

dnk lnP (spkrk|x(n)1:T ). (5.1)

5.1.2 Embeddings

The embeddings produced by the network described above capture information from
the speakers over the whole audio-signal. Such embeddings are called x-vectors and
they can be extracted from any segment layer; that is, either segment6 or segment7
layers (see Table 5.1). Normally, embeddings from the segment6 layer give a better
performance than those from segment7 [186]. In this study, these type of representa-
tions can capture meaningful information from recordings of speakers suffering from
Parkinson’s, which may help to discriminate better the utterances; these characteris-
tics are acquired at utterance level rather than at frame level. For both training the
extractors and extracting the embeddings, we used the Kaldi Toolkit [155].

5.2 Excessive Daytime Sleepiness Detection

Excessive lack of sleep may lead to poor performance in daily activities, can con-
tribute to accidents, and eventually lead to mortality. The most common causes of
excessive daytime sleepiness (hypersomnia) are sleep deprivation and disorders like
apnea (cessation of breathing) and insomnia (the inability to stay or fall asleep) [97].
The National Sleep Foundation of the United States, in their Sleep in America Poll
for 2020 1, found that almost half of Americans report feeling sleepy between three
and seven days per week. Thus, the detection and monitoring of sleepiness crucial
for reducing the risks of having fatal accidents (e.g., when operating machinery or
driving vehicles). Moreover, it may be beneficial for the early detection of specific

1https://www.sleepfoundation.org/wp-content/uploads/2020/03/SIA-2020-Q1-
Report.pdf?x90960
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Table 5.1: DNN architecture of the x-vector system. It comprises five frame-level layers,
a statistics pooling layer, two segment-layers and a final softmax layer as output. N
represents the number of training speakers in the softmax layer. The DNN structure here
is the same as that given in Snyder et al. [185].

Layer Layer context Tot. context In, Out

frame1 [t-2, t+2] 5 120, 512
frame2 {t-2, t, t+2} 9 1536, 512
frame3 {t-3, t, t+3} 15 1536, 512
frame4 {t} 15 512, 512
frame5 {t} 15 512, 1500

stats pooling [0, T} T 1500T, 3000
segment6 {0} T 3000, 512
segment7 {0} T 512, 512
softmax {0} T 512, N

neurological problems. Sleepiness is seen as a symptom caused by an underlying
problem such as a neurological disease [136, 146] rather than a condition. Here,
we propose a non-invasive way to monitor and control the degree of sleepiness by
analyzing the speech of the subjects. This could be of help in automatic risk detection
while driving and in similar scenarios.

5.2.1 SLEEP (Dusseldorf Sleepy Language) Corpus

This corpus was built by the Institute of Psychophysiology, Duesseldorf, and the Insti-
tute of Safety Technology, University of Wuppertal, Germany. The dataset comprises
the recordings of 915 German speakers, 364 females, and 551 males, from 12 to
84 years of age, with a mean age of 27.6. The utterances were recorded with 44.1
kHz and downsampled to 16 kHz, using a quantisation of 16 bit. The audios were
made in quiet rooms with similar acoustic conditions. The subjects were asked to
read passages and carry out speaking tasks. Likewise, the subjects were asked to
speak about, for example, their last weekend or to describe a picture; this resulted in
spontaneous narrative speech. It contains 5564, 5328 and 5570 utterances, training,
development and test sets, respectively; all three subsets contain recordings of just
below six hours, leading to 17 hours and 35 mins of speech overall.

The degree of sleepiness of the subjects was assessed using the Karolinska Sleepi-
ness Scale (KSS) [181]. Each subject reported their sleepiness level on the Karolin-
ska Sleepiness Scale (KSS): from 1 (extremely alert) to 9 (very sleepy). At the same
time, two observers assigned posthoc observer KSS ratings. The average of both
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scores was the reference sleepiness value [177]. Later, this corpus was included in
the Interspeech Computational Parainguistic Challenge in 2019 [177].

5.2.2 Related Works

The task, introduced by Schuller et al. [177], was already addressed by various early
studies. For instance, in [66], a combination of Fisher Vectors, BoAW, and the Com-
ParE functionals is carried out for their final CC scores (.383). (Note that this score
was improved to .387 by training ensembles of classifiers [66].) In [211], the authors
employ attention networks and adversarial augmentation, in the end, their best re-
sults (.369 of CC on test) are achieved by a fusion of neural network models. In [8],
a .367 of CC was obtained by an early fusion of the learnt representations from at-
tention and sequence to sequence autoencoders. Fisher Vector encodings were fused
with the outputs of the ComParE Functionals in [207] to get a CC score of .365. In
both [44] and [55], CNNs were exploited in an end-to-end deep learning approach:
no fusion techniques are executed in the former study to get a .335 of CC; in the
latter, a fusion of their CNN models was made to get a .325 of CC score.

5.3 Clinical Depression Screening

Noting James et. al [92], depression is a common mental disorder that affects glob-
ally to more than 264 million people of all ages. It is described as a psychiatric
disorder affecting the patient in various aspects. Although it is a frequent and cur-
able disease, estimating its occurrence is hard due to the specific clinical expertise
needed [54]. The subject’s speech is a biomarker containing information about a
wide variety of traits (e.g., the mental status of the speaker).

According to a 2012 survey by the WHO, depression is the third most frequent
mental disorder in the population [156]. The fact that there may be a connection
between depression and speech was pointed out by Kraepelin [114], one of the
founders of modern psychology. Early examinations dealt with the analysis of in-
dividual speech features, and reported a decrease in the mean and dynamics of pitch
values, slower articulation tempo [6] along with monotonous and lifeless dynam-
ics [28, 123].

5.3.1 Hungarian Depressed Speech Dataset (HDSDb)

In the Hungarian Depressed Speech Dataset [108], the degree of severity of depres-
sion was recorded using the Beck Depression Inventory II (BDI) scale [1]. The BDI-II
scale ranges from 0 (healthy state), to 63 (severe condition). This scale uses the
following rating: 0-13 healthy, 14-19 mild depression, 20-28 moderate depression,
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29-63 severe depression. The corpus consists of 222 speakers, 116 patients suffering
from depression (mean BDI for males and females are 24.9 (±7.4) and 27.8 (±9.2),
respectively) and 106 healthy control speakers (mean BDI for males and females are
4.3 (±3.4) and 4.2 (±3.0), respectively) with a balanced age distribution.

The speakers were asked to read a short tale (‘The North Wind and the Sun’). The
patients were diagnosed with depression by the Psychiatric and Psychotherapeutic
Clinic of Semmelweis University, Budapest. The recordings were sampled at 16 kHz
and 16-bit.

5.3.2 Related Works

Various former studies investigated the possibility of assessing depression from speech.
For instance, using CNNs for the enhancement of the detection of depression [86];
the analysis of gender and identity issues from the patients [122]; or feature extrac-
tion from the motor incoordination [206]. Prior studies made use of the HDSDb but
with fewer samples, e.g.: CNNs and a speech correlation structure were used in [95]
(accuracy of 84.1% with 188 samples). Also, the use of a special feature acoustic pa-
rameter selection approach in [109] (8.10 of RMSE with 127 samples). Both studies
relied on Leave-One-Out Cross-Validation (LOOCV).

5.4 Escalation and Primates

As already stated in Chapter 4, Section 4.1.3, Escalation detection have real-life ap-
plications such as in public security, conversations in public places, and even human-
computer interactions. Similarly, the automatic detection of Primate species by
means of audio-signals can help to maintain the control and monitoring of biodi-
versity.

5.4.1 Escalation and Primates Corpora

More details about both the Escalation and the Primate corpora can be found in
sections 4.4.3 and 4.4.4.

5.5 The Experiments

In experiments we trained x-vector DNN models (i.e., extractors) from scratch. For
this, we computed different types of frame-level features from the audio-signals. We
employed the segment6 layer of the DNN to compute the 512-dimensional neural
network embeddings (x-vectors).
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5.5.1 Feature Extraction

We relied on Mel-Frequency Cepstral Coefficients as frame-level features in all of
our experiments. For the Sleepiness trials, we extracted 20 cepstral coefficients; we
used 23 for the Depression, Escalation, and Primates tasks. In each case we used a
frame-length of 25ms and a window step size of 10ms.

Additionally, we experimented with filter-banks of size 40 for the Depression,
Escalation, and Primates corpus. While MFCCs are the standard for fitting x-vector
models, FBANKs have proved to be effective in deep learning studies related to
speech analysis, e.g., in speech recognition tasks [131, 179]. Moreover, for Esca-
lation and Primates we also computed spectrograms. These have been proved to
be useful in research related to computational paralinguistics such as in emotion
recognition [13].

5.5.2 Training and Evaluation Methods

The classification and regression procedures were done using a Support Vector Ma-
chines algorithm with a linear kernel and, the C complexity parameter was set in the
range 10−5, . . ., 101, for all the tasks in question.

Moreover, to experiment with the independence of the x-vectors from different
recording and speaking conditions (e.g., language), as well as to deal with limited
amounts of training data, we fitted the DNN extractors on another (larger) corpus
(also for speaker recognition). We used a subset of 60 hours (10,636 utterances) of
the BEA Corpus, which contains Hungarian spontaneous speech (for more details,
see [139]). This corpus was used for the experiments in all the tasks in question.

It is a standard practice to employ data augmentation when training x-vector
DNNs in order to improve the noise robustness of the model. We applied this strategy
in the Sleepiness and Depression tasks, respectively. From the original training data,
two augmented versions were added. From additive noises and reverberation, two
of the following types of augmentation were chosen randomly: babble, music, noise,
and reverberation. The first three types correspond to adding or fitting noise to the
original utterances. The fourth one involves a convolution of room impulse responses
with the audio, i.e. reverberation. The reader can peruse [186] for more details
about the augmentation strategies. Our goal here was to evaluate the contribution of
the augmentation techniques to the overall performance scores. The augmentation
process increased the BEA corpus to a total of 52,636 utterances (293 hours).

Additionally, we utilized the publicly available, pre-trained x-vector model de-
scribed by Snyder et al. [186]. The model was fitted on English speech, specifically,
employing a combination of a portion of Switchboard (SWBD) with a subset of the
NIST SRE corpus. We aim to discover the differences amongst the DNN performances
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when using corpora that differ in both duration and language from the original cor-
pora.

Sleepiness

Besides the BEA corpus, we also trained different x-vector Deep Neural Network
models (i.e., extractors) using the training and development sets of the SLEEP corpus
combined (10,892 utterances, 11 hours and 39 mins). Also, we carried out data
augmentation which increased that corpus training sets to 52,982 utterances (over
56 hours). This resulted in five x-vector training variations described above (SLEEP
Corpus train-dev, SLEEP Corpus train-dev (augmented), BEA Corpus and BEA Corpus
(augmented)), and the pre-trained x-vector DNN model. The evaluation metric was
the Spearman’s Correlation Coefficient, which is typical for these types of tasks [177].

Depression

As the HDSDb corpus size is quite limited, we did not make use of it to train any
extractor. Our training configurations resulted in the following types based on the
corpora: BEA, BEA augmented, and the pre-trained x-vector model.

As for the evaluation approach, in contrast to former studies on the same cor-
pus, and, seeking to avoid an optimistically-biased evaluation of the model, we chose
speaker-wise Nested Cross-Validation. The metrics employed were the Pearson’s Cor-
relation Coefficient of the ground truth and predicted BDI scores of the subjects,
along with the Root Mean Square Error (RMSE). Additionally, we evaluated our
models from a binary class problem perspective. Thus, the subjects were automati-
cally categorized as having depression or not by binarizing the labels based on their
BDI values, where: if BDI ≥ 13.5, the patient was cataloged as depressed; healthy
control otherwise. This way, the class distribution resulted in 116 patients and 106
healthy controls. To this aim, we selected various metrics that provided a broader pic-
ture of the performance of the transformed predictions. As in most medical research,
we used sensitivity and specificity, F1-score, along with Unweighted Average Recall
(UAR, being the mean of specificity and sensitivity), and Area Under the Receiver
Operating Characteristics Curve (AUC).

As an approach for the baseline, we opted for a former state-of-the-art speaker
recognition method: the i-vector approach, which is known to capture speech, speaker
and utterance meta information [34]. Akin to x-vectors, i-vectors also contain rele-
vant information within the channel factor, which was used to classify emotion be-
fore [93]. Moreover, i-vectors have been successfully adapted to depression screening
tasks giving good performances [2, 180]. Here, we trained the GMM-UBM model uti-
lizing the same corpus (i.e., the BEA) that was employed for training the first x-vector
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extractor. The GMM-UBM was fitted with 256 Gaussian components, which was used
to extract i-vector representations from the HDSDb dataset.

Escalation and Primates

As mentioned in section 4.5.2, besides Fisher vectors, we also relied on x-vectors for
these tasks. More specifically, we experimented with ensemble learning at extractor
level. The basic principle of ensemble learning is to train several different, but sim-
ilar machine learning models, and combine their outputs in some way. In this study
we build an ensemble based on the x-vector feature extractors. That is, we propose
training several x-vector neural network models on the same data, but each time us-
ing a different random seed during random DNN weight initialization. By calculating
the embeddings for each of them, we get a number of different representations of the
same training data. Although in theory concatenating these feature vectors and train-
ing only one classifier model might lead to a more robust performance than relying
on any of the individual representations, we would end up with an unfeasibly large
feature vector. Therefore we chose to train separate machine learning (e.g. SVM)
models on these x-vector representations in the next step. To make the predictions
more robust (and thus, making hyperparameter selection more reliable), we suggest
simply averaging out the prediction scores got after evaluation in an unweighted
manner.

More formally, we calculate the posterior estimate provided by the ensemble
model as

Pe(ci|X) =
1

m

m∑
j=1

Pj(ci|X) =
1

m

m∑
j=1

Pj(ci|Hj), (5.2)

where ci denotes the ith class (1 ≤ i ≤ K), X is the frame-level feature sequence
of the actual utterance, Hj is the representation of X calculated by the jth x-vector
extractor DNN, and the Pj value is the individual posterior estimate provided by the
jth SVM model.

Since speaker ID is required to train x-vectors, and it was not available for either
corpora, we trained our x-vector extractor DNN models using the SLEEP Corpus[177].The
number of models in the ensemble (m) was set to 10. The evaluation metric utilized
was Unweighted Average Recall (UAR).

5.6 Results and Discussion

5.6.1 Sleepiness

Table 5.2 outlines the Spearman’s correlation coefficient scores got by the x-vectors
embeddings. Overall, x-vector features extracted employing the SLEEP train-dev
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Table 5.2: Results of the experiments on the SLEEP Corpus given in Spearman’s Corre-
lation Coefficient. We show the results of former studies as well. The * means that the
scores were achieved by a fusion of the best configurations. In contrast, the rest of the
scores were obtained by applying a single approach. The x-vectors scores are given in
accord with the corpus used to train the DNN they were extracted with.

ComParE 2019 Features [177] Dev Test

ComParE Functionals .251 .314
Bag-of-Audio-Words (BoAW) .250 .304
AuDeep .261 .310
Three-wise fusion* — .343

Former Studies

Gosztolya* [66] .367 .383
Yeh et al.* [211] .373 .369
Amiriparian et al.* [8] .320 .367
Wu et al.* [207] .326 .365
Elsner et al. [44] .290 .335
Fritsch et al.* [55] .317 .325

DNN Embeddings (x-vectors)

SLEEP Corpus train-dev (12h) .303 .365
SLEEP Corpus train-dev (augmented) .275 .324
BEA Corpus (60h) .287 .313
BEA Corpus (augmented) .256 .301
SWBD + SRE (pre-trained model, [186]) .300 .355

model gave better performances. These features achieved a .303 and a .365 of CC
score on dev and test, respectively. However, using the augmented version of this
model resulted in a decrease of the CC scores in both dev and test sets (.275 and
.324). A similar situation occurred in the BEA Corpus model, namely, its augmented
version led to a decrease in the CC scores. On dev, CC decreased slightly from .287
to .256; and from .313 (no augmentation) to .301 (augmented) on the test set. Al-
though augmentation gives more diversity to the original data and attempts to make
the models more robust. Here, the results indicate that the DNN was able to cap-
ture more meaningful information from the non-augmented versions than from their
noise-robust counterparts. That is, adding noises and reverberation to this partic-
ular datasets could have caused the DNN to learn from non-relevant information,
resulting in a poorer mapping (i.e., x-vector embeddings) for the specified task.

While the x-vector pre-trained model produced better results (.355 of CC on test),
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Figure 5.1: Confusion matrix for the best results on the test set on the Sleepiness task.

its performance could not reach that of the SLEEP train-dev extractor. This could be
attributed to a language-dependant situation (i.e., the pretrained model was fitted
using English corpora). It appears that, in this case, the model trained with in-domain
data (i.e. using the SLEEP corpus) was able to generate better representations than
the pre-trained model that was trained with huge data amounts of different domain
data.

In Table 5.2 we also compare our performance scores with those of previous stud-
ies and official baselines on the same task. It can be seen that the proposed DNN
embeddings were capable of outperforming all the baseline scores of the Interspeech
2019 ComParE Challenge [177]. Moreover, it is evident that most of the former stud-
ies achieved their best results by relying on a fusion of the scores. Actually, in [66],
a combination of Fisher Vectors, BoAW, and the ComParE functionals is carried out
for their final CC scores (.383). (Note that this score was improved to .387 by train-
ing ensembles of classifiers [66].) In [211], the authors employ attention networks
and adversarial augmentation, in the end, their best results (CC of .369 on test) are
achieved by a fusion of neural network models.

In [8], a CC of .367 was obtained by an early fusion of the learnt representations
from attention and sequence to sequence autoencoders. Fisher Vector encodings
were fused with the outputs of the ComParE Functionals in [207] to get a .365 of
CC. In both [44] and [55], CNNs were exploited in an end-to-end deep learning ap-
proach: no fusion techniques are executed in the former study to get a .335 of CC; in
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Table 5.3: Results of the experiments for the Depression task using all the feature
dimensions. Each row corresponds to a different x-vector extractor in function of the
data used to train it.

Regression Classification

Pearson’s RMSE UAR SPEC SENS AUC F1

i-vector baseline .608 10.45 80.44 89.39 82.00 0.920 89.36

BEA (FBANK) .625 10.26 88.65 86.79 90.51 0.920 89.36
BEA (MFCC) .615 10.36 82.64 77.35 87.93 0.904 84.29
BEA-aug. (FBANK) .684 9.54 89.00 84.90 93.10 0.940 90.00
BEA-aug. (MFCC) .635 10.16 80.75 73.58 87.93 0.908 82.92

Pre-trained [186] .675 9.64 82.99 75.47 90.51 0.935 85.02

the latter, a fusion of their CNN models was made to get a .325 of CC score. However,
in our study, x-vector representations are still competitive and even outperform some
of the former studies without the need for any kind of fusion strategy.

Fig. 5.1 displays the confusion matrix of our best configuration. The figure tells us
that categories 3, 5, 6, 7, 8 had similarly high accuracies. This means that the model
was capable of distinguishing a large variety of categories including one of the ex-
treme labels (8), the slightly extreme classes (3 and 7), as well as the middle cate-
gories (5 and 6). As for the extreme labels 1, 2 and 9, the scores are much lower.
Perhaps this is due to the number of samples for these classes: these three categories
represent approximately 13% of the number of samples in the dataset. Moreover, it
seems that the model tends to overestimate the sleepiness level of the speaker, as we
got higher values mostly above the main diagonal.

5.6.2 Depression

Table 5.3 presents the results of our experiments along with the i-vector baseline,
which was surpassed by the methods based on x-vectors. In general, the DNN embed-
dings could model better speaker traits for depression screening than the i-vectors.
The augmented extractor produced better embeddings than their non-augmented
counterparts, and demonstrated the effectiveness of data-augmentation when using
x-vectors on this specific corpus. In particular, the extractor trained with the BEA-
augmented corpus (with FBANKs) gave the highest Pearson’s CC: .684, and the low-
est RMSE: 9.54. As for the binary classification evaluation, the same configuration
gave the highest scores: a UAR of 89.00%, an specificity of 84.90%, a sensitivity of
93.10%, a AUC-score of 0.940, and an F1-score of 90. We got quite a low number
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Figure 5.2: CC and AUC scores of the feature selection process from the BEA-
augmented Extractor (FBANK) on the Depression task.

of false negative and false positive cases, which indicates the potential feasibility of
the model for screening. Moreover, the AUC-score value suggests a considerably high
discriminating ability of the model.

The extractors fitted with log-energies (except for the non-augmented version)
outperformed their cepstra counterparts in every case. This may be due to the fact
that MFCCs attempt to eliminate unimportant variations for recognition, and lead
to a reduction in the input-signal dimension (less information). Meanwhile, the
FBANKs contain a more integral representation as they produce a less pre-processed
input-signal with a larger set of filter-bank coefficients (more information); it appears
that DNNs are able to better exploit these type of representations. The embeddings
from the pre-trained model (MFCCs), however, achieved better scores than the BEA
Extractor (FBANKs) configuration. Although our custom extractors used in-domain
language data, a possible reason for this might be the significant difference between
their corresponding amounts of training corpora.

The Pre-trained Model [186], although competitive, could not surpass the results
of the best custom model, we got a lower CC (.675). The results may confirm an
existing data-domain dependence of the x-vector architecture. More specifically, we
experimented with models that learned from data closer to the actual task domain
(language-related in this specific case), and they produced better quality representa-
tions than the pre-trained model did.

Correlation-Based Feature Selection

In practice, the x-vector features will have a bigger number of dimensions than the
total number of samples of the dataset. Eventually, this might lead to a decay in the
performance due to the regularization bias growth towards the training data. Hence,
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Table 5.4: Results of the experiments using the correlation-based feature selection
in the Depression task. The best feature selection configurations are presented only. N
denotes the number of features from the automatic feature selection process. Each row
corresponds to a different x-vector extractor in function of the data used to train it. CC
stands for Pearson’s Correlation Coefficient.

Regression Classification

CC RMSE UAR SPEC SENS AUC F1 N

BEA (FBANK) .632 10.14 87.19 83.01 91.34 0.915 88.33 150
BEA (MFCC) .586 10.59 78.39 68.86 87.93 0.891 81.27 175
BEA-aug. (FBANK) .685 9.50 88.61 85.84 91.37 0.938 89.45 125
BEA-aug. (MFCC) .603 10.41 81.11 71.69 90.51 0.914 83.66 175

Pre-trained [186] .672 9.70 83.89 76.41 91.37 0.934 85.82 200

before training, we carried out an automatic feature selection, seeking to reduce the
number of features. More precisely, we computed the CC for each feature-column
with respect to the BDI labels; from these values, we selected those that had the
highest CC scores. The final selection of the number of dimensions (N) was based
on a step size of 25 (i.e., N = 25, 50, . . . , 200 selected dimensions). The procedure
was carried out within the speaker-wise Nested-CV to avoid peaking. Consequently,
besides dimensionality reduction, it also meant that we just had relevant features
(those that contribute the most to the final predictions), and thus speeded up the
BDI estimation step.

The results of this approach are given in Table 5.4. Similar to the previous ex-
periments, the augmented extractors fitted with FBANKs also outperformed the rest
of the configurations in this case. Moreover, the CC increased slightly to .685, while
the RMSE decreased to 9.50. These results were achieved just using 125 of the 512
available original features after the feature selection process. Also, the classification
metrics for the same configuration changed slightly: while the specificity score ex-
perienced an increment, the sensitivity, AUC, UAR, and F1 scores only decreased a
small amount. Again, FBANKs features gave more efficient performances based on
the number of selected features. Fewer dimensions were needed for the model to
provide a better generalization; that is, FBANK-based embeddings actually contained
more meaningful information than those from MFCCs.

Figure 5.2 depicts the AUC and the Pearson’s CC scores obtained using the differ-
ent N feature selection values for the corresponding dimension size. The line plots
display a tendency where the CC values increase as the number of dimensions in-
crement as well, and they both start to decrease after dimension 150. In general,
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Figure 5.3: The UAR scores of the individual and the ensemble x-vector approaches
obtained on the development set; the error bars indicate minimum and maximum values.
Escalation and Primates tasks.

both metrics suggest quite similar trends over the number of dimensions. Over-
all, the correlation-based feature selection, besides discarding irrelevant information
and helping to reduce the computation times, also helped to increase the CC and re-
duce the RMSE in most of the cases. Furthermore, all the configurations necessitated
only less than the half of the original number of dimensions and produced better or
competitive results.

5.6.3 Escalation and Primates

Although the results and analysis for the first stage of the experiments with these
tasks was already shown in section 4.5.3, here we will adopt the ensemble x-vector
approach to be consistent with the current chapter of the book. The reader may
return to the this section if necessary. Moreover, we describe another experiment
conducted on the Escalation corpus.

Fig. 5.3 lists the results obtained on the development sets with the individual
x-vectors and the ensemble x-vectors for both Escalation and Primates. Notice that
the ensemble approach always outperformed the average of the individual models. In
the Escalation task, there was a large difference (4-10%) between the performance of
the best model and the worst model, probably because of the limited amount of data.
For the Primates sub-challenge, this variance was smaller (although still significant:
between 1.4% and 3.6%); however, in this case, the ensemble model outperformed
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Table 5.5: The results obtained for the Escalation Sub-Challenge with the SSPNet Con-
flict Corpus-based approaches

Feature Set Dev Test

ComParE functionals 72.8% —
SSPNet Conflict Corpus-based 62.6% —
ComParE + SSPNet Conflict 73.8% 62.4%

ComParE + x-vectors + FV + SSPNet 79.8% 63.9%

Official ComParE baseline — 59.8%

even the best of the 10 individual x-vector models. This, in our opinion, confirms
that ensemble x-vectors is a viable approach.

Table 5.5 shows the UAR values obtained via the proposed approach. Although
the UAR score of 62.8% on the development set might seem low compared to the
ComParE functionals case, for a 3-class (and cross-corpus, as the test set of the Esca-
lation sub-challenge is comes a different dataset than its training and development
sets) task it is realistic, as it significantly exceeds the 33.3% value achievable via ran-
dom guessing. Furthermore, we did not want to utilize this approach on its own,
but we sought to use it to aid the other classification methods; and by combination,
we achieved an UAR value of 73.8%. On the test set we attained 62.4% with this
approach, which was improved to 63.9% by combining all four methods. Both values
exceed the official baseline of the Escalation sub-challenge, which, in our opinion,
demonstrates the usefulness of this cross-corpus method.

5.7 Concluding Remarks

5.7.1 Sleepiness

We experimented with five different DNN models to map utterances to fixed-sized
representations (i.e., x-vectors). The SLEEP and BEA corpora were employed to fit
two different DNN models using augmented data, and two with no augmentation.
The fifth model used was the pre-trained DNN from [186]. Our findings indicate that
the augmentation strategies applied on both corpora did not give any improvements:
the quality of the embeddings extracted using the augmented models only reduced
the final scores. Furthermore, it appears that making use of in-domain data causes
the extractors (DNN models) to generate more meaningful features than just using
out-of-domain data. In particular, we achieved the best performance employing the
x-vector features computed via the SLEEP Corpus model.

Moreover, in contrast to former studies, we did not rely on fusion strategies yet
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the results are competitive. More generally, we demonstrated that our methodology,
besides surpassing the performance scores of various previous works, also produced
the highest Spearman’s CC score by a standalone (single) method for this particular
task.

5.7.2 Depression

We demonstrated that x-vector embeddings contain information that is predictive
of the levels of clinical depression via the speech of subjects. Our custom x-vector
extractors learned from distinct frame-level features acquired from corpora matching
the language of the actual task. Also, we found an improvement of the quality of the
embeddings when computing them using augmented x-vector models. In this context,
we spotted a slight language-domain dependence of the x-vector method as our best
tailored extractor surpassed the performance of the pre-trained model even after the
feature selection process.

Furthermore, our findings confirmed that log-energies appear to be a robust alter-
native of cepstra coefficients for x-vector training as they provide larger (and more
informative) input representations. We showed how our correlation-based feature
selection approach produced similar performance scores using only a quarter of the
features. Finally, we presented highly competitive CC and RMSE scores compared
to those from former studies that used the same corpus and based their evaluations
using optimistic methods (i.e, LOOCV), which proves the effectiveness of our ap-
proaches.

5.7.3 Escalation and Primates

In our experimental setup, we built an ensemble x-vector classifier by training 10
independent x-vector extractor neural networks on the same data. The ensemble
was constructed aiming to improve both the robustness and the performance of the
x-vectors embeddings. Our UAR scores on the development set demonstrated the
superiority of the ensemble classifiers over the independent x-vector-based ones.

The ensemble x-vectors seem to be an effective approach for modelling Escala-
tion’s dialogue and estimating Primate sounds from different chimpanzees sounds.
As stated in Chapter 4 Section 4.6, a more traditional feature extractor (i.e., the
Fisher vector) was even more successful. Our last technique, which used the SSPNet
Conflict Corpus in the Escalation sub-challenge, also led to promising UAR values.
Overall we outperformed the official baselines from [176] for both tasks, which sup-
ports the efficacy of the applied techniques.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:
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III / 1. I proposed the use of deep neural network embeddings for the estimation the
degree of sleepiness in an automatic manner by means of the speech. I showed
that x-vectors, originally intended for speaker verification, were capable of
modelling speakers that suffer from day-time sleepiness with high accuracy.

III / 2. My proposal relied on the use of custom x-vector extractors for the assessment
of the degree of clinical depression from the speech of patients. By training a
handful of DNN models, I showed that a simple pipeline was capable of sur-
passing the performance scores of those that rely on more elaborate techniques
like ensemble machine learning and classifier combination.

III / 3. Part of my contribution to this study involved the training of various custom x-
vector extractors. I demonstrated that these deep neural network embeddings
had competitive performance scores for both conflict escalation in the speech
and primate species classification.
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Chapter 6

Automatic Speech Recognition
Methods

This chapter introduces the use of different speech analysis and ASR-based tech-
niques for the automatic screening of Alzheimer’s and Mild Cognitive Impairment via
the speech of subjects. First, we present a method that extracts a set of temporal pa-
rameters that characterize hesitation in the spontaneous speech of patients suffering
from MCI in a cross-lingual environment. These attributes are computed based on a
ASR framework. It should be added that the study concerning temporal parameters
is not the main contribution by the author of this thesis.

On the other hand, and similar to temporal speech parameters, we demonstrate
another feature set that can be used to describe the amount of hesitation present in
the speech, with the difference being that these do not rely on any ASR system; we
call these posterior thresholding hesitation representations.

6.1 Introduction

Dementia is a chronic or progressive clinical syndrome, affecting mainly elderly peo-
ple worldwide. It is characterized by the deterioration of memory, language and
problem-solving skills, which are severe enough to adversely affect the patients’ abil-
ity to carry out everyday activities [7]. According to the estimates, the number of af-
fected individuals, which at present exceeds 46.8 million, may double by 2050 [157].

The most widely used term to describe the preclinical stage of dementia is Mild
Cognitive Impairment (MCI), which condition is often considered to be the borderline
between normal aging and dementia [152]. This syndrome shows similar character-
istics to dementia, although in the case of MCI the symptoms do not interfere with
the patients’ activity of daily living [48]. However, given its high conversion rate to
dementia [2-31% annually, see e.g. 19], MCI should be regarded as a severe condi-
tion. As the transition phase from MCI to dementia can last even 15 years [116],

67
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there is a wide time window in which the subtle signs of cognitive decline could be
detected. Since the timely identification of MCI could provide more effective thera-
peutic interventions to delay progression, the importance of developing methods that
allow early recognition has been emphasized in the recent years.

These progressive types of MCI are most of the time precursor conditions to
Alzheimer’s disease (AD), but they can be also due to vascular or other neurode-
generative diseases [151]. Changes in language performance can act as an early
and valuable indicator of MCI or Alzheimer’s, since language-related alterations can
appear before the manifestation of other distinctive cognitive symptoms [127].

It has been shown that changes in language production are associated with sub-
clinical declines in memory, e.g. the fluency of spontaneous speech has been proven
to deteriorate in people with early MCI [135]. During the course of the disease,
filled pauses (i.e. vocalizations like ‘uhm’ and ‘er’) and disfluencies become evermore
frequent in the subject’s speech [33], corresponding to the word-finding or word-
retrieval difficulties of patients [190]. Earlier studies also indicated that compared
to healthy controls, MCI patients tend to have lower speech rate, and an increased
number and length of hesitations [190]. The above-mentioned characteristics can
strongly influence the overall time course of the speech; therefore, the analysis of
such temporal aspects can help us explore the relationships between language and
memory.

6.2 Related Works

In the last decade, numerous attempts have been made to distinguish cognitively
healthy control (HC) subjects from people with MCI or with Alzheimer’s disease (AD)
using different speech analysis techniques. In the earlier studies, analyzed speech
features were extracted mainly from manually transcribed data, which is rather labor-
intensive. In more recent studies the goal was to find out whether extraction by
automated techniques could produce similar results. In the past few years, several
such automatic speech analysis studies have been published [e.g. 33, 51, 73, 111,
112, 116, 184, 193, 194, 197].

There exist previous studies that developed a set of temporal speech parameters
which characterize the hesitation contained in the spontaneous speech of the sub-
jects [72, 73, 84, 196, 197]. Hesitation is defined as an absence of speech. It can be
divided into two categories: silent pauses and filled pauses. Measuring the amount
of silent pauses in human speech is quite common [see e.g. 3, 50, 89, 126, 184].
The attribute set developed by our team, besides silent pauses, also summarizes the
amount of filled pauses (i.e. vocalizations such as ‘er’, ‘umm’ etc.) in the speech of
the subject in the temporal attribute set. This set of temporal attributes (the Speech
Gap Test or S-GAP test) can be calculated by using speech processing tools, i.e. by
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(1) Articulation rate was calculated as the number of phones per second dur-
ing speech (excluding hesitations).

(2) Speech tempo (phones per second) was calculated as the number of phones
per second divided by the total duration of the utterance.

(3) Duration of utterance, given in seconds.

(4) Pause occurrence rate was calculated by dividing the number of pause
occurrences by the number of phones in the utterance.

(5) Pause duration rate was calculated by dividing the total duration of pauses
by the length of the utterance.

(6) Pause frequency was calculated by dividing the number of pause occur-
rences by the length of the utterance.

(7) Average pause duration was calculated by dividing the total duration of
pauses by the number of pauses.

Table 6.1: The examined temporal speech parameters, based on our previous stud-
ies [85, 197].

relying on a phone-level ASR framework.

6.3 Temporal Speech Parameters

To investigate the spontaneous speech of MCI patients and HC subjects, we calculated
specific temporal parameters from their spontaneous speech.

For this purpose, we employ an ASR system trained to recognize phones in the
utterances, where the phone set included the special non-verbal labels listed above
(i.e. filled pauses, coughs, breath intakes etc.).

This set of temporal parameters can be seen in Table 6.1. The articulation rate
and speech tempo (i.e. parameters (1) and (2)) both describe how fast the subject
speaks (although in a slightly different manner), while the duration of the utterance
(parameter (3)) is related to the amount the subject could remember about his /
her previous day. The remaining parameters ((4)–(7)) all describe the amount of
hesitation in the spontaneous speech of the subject by focusing on the number or on
the duration of pauses in some way. We defined hesitation as the absence of speech
for at least 30ms; we distinguished two sub-types of hesitation: silent pauses and
filled pauses (i.e., vocalizations such as ‘er’, ‘umm’ etc.).
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6.4 Posterior-Thresholding Hesitation Representation

Similar to the approach from Section 6.3, here we also focus on measuring the
amount of hesitation (i.e. silent and filled pauses) in the spontaneous speech of
the subjects. However, we design our pipeline dispensing with the ASR system.

The feature extraction approach is divided into three steps. These are:

(1) A Deep Neural Network acoustic model is evaluated on the utterances, using
frame-level features (e.g. MFCCs).

(2) Based on the outputs provided by the DNN, we estimate the local posterior
probability of silence and filler events. This step is still performed at the frame
level.

(3) From the local posterior estimates calculated in step (2), new representations
are computed at the utterance level.

Using the utterance-level feature vectors calculated in step (3), we can readily
carry out the utterance-level (or, in our case, subject-level) classification, e.g. by
using a Support Vector Machine (SVM) classifier. Next, we will describe these steps
in a more detailed manner. Please see Fig 6.1 for the architecture of the proposed
approach.

6.4.1 Frame-level DNN Evaluation

In hybrid HMM/DNN ASR systems the role of the Deep Neural Network compo-
nent is to estimate the likelihood of the Hidden Markov model states for each frame
of the speech signal (typically at 100 frames/sec). It is then the task of the HMM
component to perform the sentence-level decoding by combining these local, frame-
level estimates. The first stage of our approach corresponds to evaluating this DNN
acoustic model on the utterances of the subjects. For this, we have only one special
requirement: this DNN must be trained on an audio corpus that contains occurrences
of filled pauses both in the audio and in the transcription. This is so because our ap-
proach focuses on both pause types, and while it is common to have (and annotate)
silent pauses, several ASR corpora do not contain filled pauses (or their occurrences
are just not marked), because it is not a requirement of a standard ASR system to
locate such vocalizations and include them in its output (i.e. in the automatic tran-
scription).

The result of this step is the sequence of frame-level posterior estimate vectors of
all the phonetic states of the ASR system.
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Figure 6.1: The general workflow of the applied DNN-based feature extraction process.

Algorithm 1 Posterior-Thresholding Feature Extraction
Require: N : the number of frames in the utterance
Require: likelihoods: the frame-level aggregated posterior estimates (with a length

of N)
Require: s: the step size (s < 1)
m := b1/sc
for i := 1→ m do

cnt := 0
th := i · s
for j := 1→ N do

if likelihoods(j) ≥ th then
cnt := cnt+ 1

end if
end for
features(i) := cnt/N

end forreturn features

6.4.2 Hesitation Posterior Estimation

The states of the HMM system are related to the phone set of the given language, but
usually there is no direct one-to-one correspondence, as the states typically represent
a finer resolution. First, we model several acoustic phenomena like filled pauses,
noises, breathing, gasps and coughs by assigning special models to them. Second,
the phones are traditionally divided into three production states, as it is known
to improve recognition performance. Third, instead of working with such simple,
context-independent (CI) phone labels, even better speech recognition results can
be achieved by context-dependent (CD) modelling [82], where the phonetic labeling
also takes the (left and right) neighbors of the actual phone into consideration. As
in this HMM/DNN hybrid model, the role of the DNN acoustic model is to estimate
the local (i.e. frame-level) posteriors of the HMM states, the number of the DNN
outputs should be the same as the number of HMM states. Therefore, to obtain the
frame-level posterior estimates of the silent or the filled pauses, we have to add up
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Figure 6.2: The schema of the posterior-thresholding feature extraction step.

the likelihoods of all the phonetic states which correspond to silence and to filler
events for each frame. In the second step of our feature extraction approach, this
is what is done. Therefore, the result of this step is a sequence of the (aggregated)
frame-level posterior estimates of silence and filler events.

6.4.3 Posterior-Based Utterance-Level Feature Extraction

Even though, at this point, we have the posterior estimates of silence and hesitation,
we cannot utilize them directly in the classification step. The reason for this is that
these posterior estimates are present at the frame level; therefore, the size of their
vector is proportional to the length of the given utterance. However, for utterance-
level classification we need a fixed-size representation. This last step of the proposed
feature extraction method provides a way to fill this gap; that is, to describe the
frame-level posterior sequence for the whole utterance in a fixed-size form.

More specifically, for a given threshold value 0 ≤ th ≤ 1, we count the number
of frames where the corresponding posterior estimate is greater than or equal to th.
Since the number of such frames is also affected by the duration of the utterance,
we divide this sum by the total number of frames (i.e. we normalize them). This
value will be used as a newly extracted feature. To adequately describe the posterior
sequence, this process is repeated for the values s, 2 · s, 3 · s, . . . , 1 as the th threshold,
where s is a step size parameter of the method. The reader should take a look at
Algorithm 1 to see the pseudo-code of our approach; furthermore, Fig. 6.2 illustrates
the mechanism of this step.

Note that extracting the posterior thresholding feature set is equivalent to calcu-
lating the cumulative histogram [166] of the frame-level posterior estimates. These
types of histograms were employed in former ASR techniques [132] as well as in
numerous other tasks like texture classification [83], handwritten character recogni-
tion [81], analog-to-digital converter testing [4] and in computational paralinguis-
tics [65]. Our motivation for employing this feature representation is that, this way,
we can describe the distribution of the posterior estimates of the whole utterance in
finer details with a fixed-size vector.



6.5 The Hungarian MCI-AD Corpus 73

6.5 The Hungarian MCI-AD Corpus

The utterances were recorded at the Memory Clinic at the Department of Psychiatry
of the University of Szeged, Hungary. The study, conducted in accordance with the
Declaration of Helsinki, was approved by the Regional Human Biomedical Research
Ethics Committee of the University of Szeged. The recordings were collected from
three categories of subjects: those suffering from MCI, those affected by early-stage
AD (mild AD or mAD), and those having no cognitive impairment at the time of
recording (i.e. healthy controls, HC). All the participants signed a consent prior the
recording phase. The exclusion criteria were drugs or alcohol consumption, being
under pharmacological treatment affecting cognitive functions, and visual or audi-
tory deficits. Anyone who had previously suffered from head injuries, depression or
psychosis was also excluded.

MCI and mAD patients were selected after a medical diagnosis. Diagnosis was
based on the consensus of a clinical expert panel consisting of a psychiatrist, a neu-
rologist and a psychologist, who reviewed neuroimaging scans (CT, MRI) when avail-
able, and also the results of three cognitive screenings tests: the Mini-Mental State
Examination [MMSE 45], the Clock Drawing Test [CDT 52] and the Alzheimer’s Dis-
ease Assessment Scale – Cognitive Subscale [ADAS-Cog 162]. In the case of MCI,
Petersen’s criteria [153], while for AD, internationally used guidelines [128] were
followed. The possibility of depression was assessed using the 15-item version of the
Geriatric Depression Scale [GDS 212]: participants scoring above 10 on the test were
excluded from the study.

Several studies found that MCI and AD affect the spontaneous speech of the sub-
jects more than their planned speech [see e.g. 161, 164, 191]). Therefore, we de-
cided to record spontaneous speech as well. After the presentation of a specially
designed one-minute-long animated film, the subjects were asked to talk about the
events seen in the film (immediate recall). Afterwards, the subjects were asked to
talk about their previous day (previous day). In the last task, the subjects watched
a second film, and they were asked to talk about this film after a one-minute break
(delayed recall). Details about the actual instructions given to the patients are shown
in Table 6.2. For more details about our experimental setup for recording, see the
study of Hoffmann et al. [84]. Unfortunately, our ethical agreement does not allow
the sharing of these speech recordings. Each recording was edited; namely, parts
before the subject started to speak and after his last phoneme uttered were manually
removed. Hence, we had three recordings for each subject, each containing sponta-
neous speech with a different speaker task. In a real application scenario (e.g. within
a mobile phone application), this step could be automated at the time of recording;
for example by using a specific sound (e.g. beep) to mark the start of the recording,
and apply voice activity detection with a larger time threshold to detect the exact end
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(1) “I am going to show you a silent movie lasting about a minute. Try to remem-
ber the story, the actors, the objects and the places, paying attention to the
details.”

(2) “Please tell me about your previous day in as much detail as you can.

(3) “Now, I am going to show you another clip. Try to remember the story, the
actors, the objects and the places, paying attention to the details. OK, I am
going to start it now.”
The Patient watches the clip. If he starts talking about it, he is reminded
that he is not yet allowed to talk about it. When the clip ends:
“Now we will take a one-minute break.”
If the Patient starts talking during the break, he is reminded that it is still
break-time, and he has to wait until the minute is over. After the one-minute
break is over:
“Right, could you please tell me what you saw in the clip?”

Table 6.2: The instructions to the patients when recording the three utterances.

of the response of the subject.

This corpus comprises recordings taken from more than 150 subjects. Due to tech-
nical issues like poor sound quality and controversial diagnosis (i.e. when our clinical
expert panel could not reach a consensus), some subjects were filtered out. Further-
more, we insisted on performing our experiments on data where the demographic
properties of the speaker groups did not differ significantly, which also reduced the
number of subjects. Therefore, in the end we used the recordings of 25 speakers
for each speaker group, resulting in a total of 75 speakers and 225 recordings. Al-
though at first glance this number might seem low, having 75 subjects is considered
significant in this area, as most studies involve fewer than 200 subjects [see e.g.:
119, 147, 149, 164, 204].

To ensure that there were no statistically significant differences among the speaker
groups in their age, gender and education, we applied one-way ANOVA, Kruskal-
Wallis H test (when the normality assumption was violated) or Chi-squared test (for
categorical values).
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6.6 Posterior-Thresholding Hesitation Representation:
The Experiments

Our Deep Neural Network acoustic models were trained on a subset of the BEA Hun-
garian corpus [139]; we trained the DNN on the speech of 116 subjects (44 hours
of recordings overall in 9.7k recordings (mean duration of 16.4s, median duration
of 13.3s)). We made sure that the annotation suited our needs, i.e. filled pauses,
breathing sounds, laughter, coughs and gasps were marked in a consistent manner.
The minimum duration of both silent and filled pauses were 30ms in the annotation
of this corpus; mean durations were 535ms and 234ms, while median durations were
410ms and 180ms, silent and filled pauses, respectively.

Although context-dependent models have been shown to achieve better perfor-
mance in ASR in terms of Word Error Rate (WER) than their simpler context-independent
counterparts, for our Posterior-Thresholding Hesitation Representation approach we
only need to distinguish silent and filled pauses from everything else. We wanted to
find out whether this could be solved at the same (or a very similar) level of perfor-
mance with simple CI phone states as with the more complex CD ones. To ascertain
whether there is a difference in subject classification performance, we experimented
both with context-dependent and context-independent phonetic mappings.

We used a quite traditional DNN structure in our acoustic model: we utilized
40 Mel-frequency filter banks along with raw energy as frame-level features, and
included the first- and second-order derivatives (i.e. the ∆ and ∆∆ values). To
improve model accuracy, our model used a sliding window with a width of 15 frames
(1845 frame-level features overall). Following this, we utilized 5 hidden layers, each
consisting of 1024 ReLU neurons. Lastly, we included a softmax layer that had as
many neurons as the number of states. Since we had 57 phones (including silence
and filled pauses as special ‘phones’), the Context-Independent DNN acoustic model
had 171 output neurons. In the Context-Dependent case, we employed the standard
tree-based clustering method for state tying [142]; the criterion during state tying
was a Kullback-Leibler divergence-based one [71], leading to 911 tied states.

6.6.1 Feature Extraction

To extract the Posterior-Thresholding Hesitation Representation, we employed a step
size s of 0.02, hence we had 50 features for each hesitation type. We experimented
with using the silent pauses as input (treating gasps, breath intakes and sighs also as
silent pauses) as well as using the filled pauses (treated as a special phone). Further-
more, we experimented with a setup where all HMM states were considered which
corresponded to either the silent or the filled pauses during the posterior summing
step (i.e. step (2) of the feature extraction process), which practically means that we
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measure the amount of all pauses; we will refer to this case as ‘all hesitation’.
These feature sets were extended with one further feature: the duration of the

utterance. When calculating duration, we first omitted the beginning and ending
frames where the likelihood of silent pause exceeded 0.9.

6.6.2 Utterance-level Classification

As is common in medical speech processing tasks, we relied on the Support Vector
Machine (SVM) algorithm for the classification phase; we applied the libSVM im-
plementation [23] with a linear kernel. Since we had a relatively low number of
examples (75, as each subject corresponded to only one example), we employed a
25-fold cross-validation, where each fold consisted of 1 HC, 1 MCI and 1 mAD sub-
ject. Therefore, each classifier model was trained on the speech of 72 subjects. The
C complexity parameter was set in the range 10−5, 10−4, . . . , 102.

The complexity C meta-parameter of the SVM was set by nested cross-validation [22].
Each time we trained on the data of 72 (i.e., 3× 24) subjects, we performed another
(24-fold) cross-validation process, looking for the C meta-parameter value that led
to the highest AUC score. After this, we trained an SVM model with the selected
meta-parameters on the data of all 72 speakers, and this model was evaluated on the
remaining speaker. This way we ensured that we avoided any form of peeking, which
would have created a bias in our scores, had we used standard cross-validation.

6.6.3 Prediction Combination

Besides training an SVM classifier for the silence-related and filler-related feature
sets, we were also interested in what could be achieved with a combination of two or
more attribute sets. To do this, we combined our predictions obtained from the pre-
vious classification experiments. Following our previous studies [see e.g. 65, 73], we
decided to take the weighted mean of the posterior probability estimates produced
by the individual classifier models, which we found to be a simple-yet-robust tech-
nique. This combination allowed us to measure the classification performance for all
three speaker tasks (i.e. immediate recall, previous day and delayed recall) and/or
all three feature subsets (i.e. silent pauses, filled pauses and all hesitation) as well.

6.6.4 Evaluation

We evaluated our models by utilizing the Area Under the Receiver Operating Char-
acteristics Curve (AUC) score. This statistic is widely employed for summarizing
the performance of automatic classification systems in medical applications. In our
experiments, we computed the AUC score for all three speaker categories (i.e., for
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Table 6.3: The various accuracy scores obtained with the S-GAP temporal speech pa-
rameters, following the approach of Tóth et al. [197] and Gosztolya et al. [73]. (Acc.
= classification accuracy, HC = Healthy Control, MCI = Mild Cognitive Impairment,
mAD = Mild Alzheimer’s Disease). On the task column: IR = Immediate Recall, PD =
Previous Day, DR = Delayed Recall, All-3 = Delayed Recall

Classification Area-Under-Curve
Feat. Task Acc. F1 HC MCI mAD Mean

Silence

IR 38.7% 66.7 0.637 0.474 0.705 0.605

PD 41.3% 59.1 0.502 0.646 0.562 0.570

DR 41.3% 59.1 0.558 0.536 0.774 0.623

All-3 42.7% 68.9 0.619 0.374 0.689 0.561

All

IR 40.0% 62.9 0.580 0.566 0.743 0.630

PD 42.7% 64.4 0.622 0.611 0.569 0.601

DR 50.7% 68.9 0.673 0.592 0.805 0.690

All-3 60.0% 77.4 0.728 0.600 0.780 0.705

healthy controls, for MCI and for mAD speakers), and we also report the mean of the
three AUC scores. Since our dataset had a balanced class distribution, we also made
use of the traditional classification accuracy score. Likewise, Information Retrieval
metrics such as precision and recall scores were also added to our metrics. Moreover,
the harmonic mean of these two (precision and recall), that is, F1-score, was also
employed. In these cases we combined the MCI and mAD speaker categories to form
the positive class, while the HC category was treated as the negative one. Lastly,
we report the specificity value as well. These metrics were calculated by setting the
decision threshold along with the Equal Error Rate (EER).

6.7 Results and Discussion

6.7.1 Results Using the Temporal Speech Parameters (S-GAP)

Table 6.3 shows the accuracy metrics obtained by using our temporal speech pa-
rameters developed in our previous investigations. Although the scores do not seem
high, recall that we treated this task as a three-class classification one, therefore
random guessing would lead to a classification accuracy of 33.3%, AUC scores of
0.500, etc. Otherwise, there was no significant difference between the three speaker
tasks: classification accuracy fell in the range 40.0% . . . 50.7%, precision in the range
71.8% . . . 77.5%, while recall and specificity lay between 56% and 64%. (Of course,
the latter two metrics were very similar, because we presented our results using Equal
Error Rate.) Due to these values, F1 was around 63 − 69, while the mean AUC fell
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Table 6.4: The various accuracy scores obtained with the Posterior-Thresholding Hesi-
tation Representation using Context-Dependent states. (Acc. = classification accuracy,
Prec. = precision, Spec. = specificity; HC = Healthy Control, MCI = Mild Cognitive
Impairment, mAD = Mild Alzheimer’s Disease). On the task column: IR = Immediate
Recall, PD = Previous Day, DR = Delayed Recall, All-3 = Delayed Recall

Classification Area-Under-Curve
Task Feat. Acc. F1 HC MCI mAD Mean

IR

Sil. 52.0% 68.9 0.587 0.614 0.759 0.653

Filler 33.3% 59.1 0.533 0.561 0.498 0.530

All hes. 46.7% 66.7 0.570 0.687 0.746 0.668

All 50.7% 70.3 0.580 0.643 0.769 0.664

PD

Sil. 50.7% 68.9 0.613 0.684 0.594 0.630

Filler 38.7% 70.3 0.734 0.522 0.510 0.589

All hes. 40.0% 55.2 0.415 0.657 0.574 0.549

All 50.7% 70.3 0.665 0.680 0.610 0.652

DR

Sil. 60.0% 80.9 0.755 0.670 0.746 0.724

Filler 33.3% 59.1 0.455 0.497 0.455 0.469

All hes. 68.0% 84.2 0.857 0.706 0.802 0.788

All 68.0% 85.4 0.842 0.700 0.775 0.773

All-3

Sil. 61.3% 80.9 0.773 0.683 0.734 0.730

Filler 41.3% 73.9 0.758 0.566 0.526 0.617

All hes. 68.0% 84.2 0.854 0.712 0.806 0.791

All 70.7% 89.6 0.911 0.709 0.794 0.804

between 0.601 (previous day) and 0.690 (delayed recall). Judging from the individ-
ual values, the immediate recall and delayed recall tasks were the best for detecting
mild AD speakers (AUC values of 0.743 and 0.805, respectively). Overall, the delayed
recall task seems to be the most efficient one, although for the MCI speaker category,
the previous day task seems to be more useful. The combined predictions, which
relied on all three speaker tasks, were much better though: accuracy rose to 60%,
precision to 83.7%, while the recall and sensitivity scores were both 72%, leading to
an F-score of 77.4. Of course, these scores serve as a kind of baseline in this study,
since they were achieved via the S-GAP temporal speech parameters described by
Tóth et al. [197].
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6.7.2 Results Using the Posterior-Thresholding Hesitation Repre-
sentation with Context-Dependent States

Table 6.4 lists the results got when applying the proposed Posterior-Thresholding
Hesitation Representation as features, relying on the context-dependent (CD) DNN
acoustic model. Regarding the speaker task of immediate recall, we found that
relying on the silent pause-related attributes led to an acceptable performance: the
classification accuracy score of 52% and the F1 value of 68.9 are definitely above what
could be achieved by random guessing, and the mean AUC score of 0.653 is fine as
well; still, this score is the mean of a good AUC value for the mAD speaker category
(0.759), while the values for the HC and MCI classes are much lower. Examining the
classification metrics for the filler events case, we observe much lower values, which
suggests that they are not useful for detecting MCI and mAD for the immediate recall
speaker task. When we added the posterior estimates of the silent and filled pauses
together before applying the posterior-thresholding step (i.e. step (3)) – that is, the
‘All hesitation’ case in Table 6.4 –, we can see similar values to those in the silent
pause case. Using all three types of attribute together (case ‘All’) brought a slight
improvement in all metric scores.

Using the recordings obtained from the previous day speaker task, we obtained
similar scores for the silence-based attributes as before, with the exception of a
higher AUC value for the MCI category. However, with filled pauses we measured
higher scores than for immediate recall, which, in our opinion, indicates that this
type of hesitation had different patterns for the three subject types for this particu-
lar speaker task. When we merged the phonetic states of both pause types (the ‘All
hesitation’ case), though, our classification results fell. In the case of the delayed re-
call speaker task we found that filled pauses were not really useful; however, silent
pause-related attributes led to good scores, and focusing on all hesitations was ac-
tually even (slightly) more successful: we obtained an F1 score of 85.4 and an AUC
value of 0.773 this way. Of course, the best scores were achieved by fusing the pre-
dictions for all three speaker tasks; but the improvement was only slight in most
cases.

In general, we can observe that the results achieved are similar or just slightly
better than those obtained with the S-GAP temporal parameters for the immediate
recall and previous day speaker tasks; however, considering the fact that the proposed
Posterior-Thresholding Hesitation Representation approach can be realized without
a Hidden Markov model, we consider this a promising finding. For the delayed recall
task, however, we actually obtained higher metric values: the classification accuracy
score of 68.0%, the precision score of 89.1%, the recall and specificity values of 80 −
82% and the F-score of 85.4 are all quite high values, all significantly exceeding those
achieved via the S-GAP parameters. When utilizing the speech samples of all three
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Figure 6.3: The confusion matrices obtained for the three speaker tasks (rows: ground
truth speaker categories, columns: predictions. (HC = Healthy Control, MCI = Mild
Cognitive Impairment, mAD = Mild Alzheimer’s Disease)

tasks, these scores were slightly higher (with the exception of classification accuracy).
Overall, we managed to achieve a mean AUC score of 0.804 as well.

6.7.3 Results Using the Posterior-Thresholding Hesitation Repre-
sentation with Context-Independent States

We found that with the PTHR approach we achieved competitive scores for detecting
MCI and mAD subjects using a context-dependent DNN acoustic model. However, we
wanted to find out whether a context-independent Deep Neural Network component
might be enough to express the likelihood of silent and filled pauses, which has the
advantage that it is a much more compact model. Table 6.5 lists the results obtained
using such a CI DNN acoustic model.

In general, we observe very similar tendencies to those we found in the context-
dependent case. In the immediate recall speaker task, silent pauses were more use-
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Figure 6.4: The confusion matrices obtained for the hesitation types (ground truth:
real speaker categories, columns: predictions.

ful than filled pauses, and mAD subjects were identified more precisely than either
healthy controls or subjects with MCI were. In the previous day task, silent and
filled pauses were similarly useful, the latter leading to a high AUC score (0.749)
for the HC subject category. The most useful speaker task was again delayed recall,
when we relied on silent pauses and on all hesitations. Besides these tendencies, the
metric scores were quite similar as well: in most cases, using the simpler context-
independent DNN hybrid acoustic models led to only a slight fall in the scores, or
none at all.

6.7.4 The Performance of Speaker Tasks and Feature Subsets

In our last sequence of experiments, we examine the behaviour of the classifiers for
various speaker tasks (i.e. immediate recall, previous day and delayed recall) and
feature subsets (i.e. attributes based on silent pauses only, on filled pauses only, and
on all hesitation). To do this, we calculated the confusion matrix for each approach.
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Table 6.5: The various accuracy scores obtained with the Posterior-Thresholding Hesi-
tation Representation using Context-Independent states. (Acc. = classification accuracy,
HC = Healthy Control, MCI = Mild Cognitive Impairment, mAD = Mild Alzheimer’s
Disease). On the task column: IR = Immediate Recall, PD = Previous Day, DR = De-
layed Recall, All-3 = Delayed Recall

Classification Metrics Area-Under-Curve
Task Features Acc. F1 HC MCI mAD Mean

IR

Silence 50.7% 68.9 0.577 0.590 0.758 0.642

Filler 30.7% 55.2 0.467 0.509 0.553 0.510

All hesit. 48.0% 66.7 0.574 0.693 0.769 0.678

All 50.7% 68.9 0.580 0.597 0.759 0.645

PD

Silence 46.7% 68.9 0.618 0.648 0.550 0.605

Filler 40.0% 73.9 0.749 0.516 0.454 0.573

All hesit. 33.3% 48.8 0.373 0.640 0.557 0.523

All 49.3% 72.5 0.659 0.645 0.561 0.622

DR

Silence 58.7% 80.9 0.772 0.690 0.750 0.738

Filler 33.3% 57.5 0.478 0.517 0.488 0.494

All hesit. 62.7% 79.6 0.778 0.684 0.798 0.753

All 62.7% 80.9 0.786 0.685 0.794 0.755

All-3

Silence 62.7% 84.2 0.786 0.693 0.746 0.742

Filler 40.0% 75.3 0.680 0.519 0.540 0.580

All hesit. 64.0% 80.9 0.772 0.696 0.802 0.757

All 69.3% 87.5 0.866 0.703 0.770 0.780

For the sake of readability, we expressed the number of subjects as percentages of the
cardinality of the given (actual) speaker groups. (The columns show the hypotheses,
while the rows show the correct speaker categories.)

Fig. 6.3 shows the normalized confusion matrices obtained for the various speaker
tasks. That is, in these cases we limited our features to one task only, but we used
the fusion of the predictions for all three feature types. Examining the matrix for
the immediate recall task (see Fig. 6.3 (a)) we notice that the mAD speakers were
identified with a high recall rate (84%); yet, the majority of the MCI subjects were
classified as healthy controls, while only 4% of them (that is, one speaker) was classi-
fied correctly. In our opinion, this indicates that the immediate recall task is not quite
suited for detecting mild cognitive impairment, as the symptoms of the MCI subjects
are probably too subtle to distinguish them from healthy controls when recalling re-
cent events. Regarding previous day (see Fig. 6.3 (b)), we see that the MCI speakers
were identified with a much higher confidence than with the immediate recall task,
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while the HC subjects were detected with the same accuracy. However, the mAD
speakers were almost completely missed: roughly one-third of them were classified
as controls, subjects having MCI, and subjects having mAD. From this figure we might
draw the conclusion that this specific part of our protocol is useful for detecting Mild
Cognitive Impairment, but not for identifying early Alzheimer’s Disease.

Examining Fig. 6.3 (c), corresponding to delayed recall, we can see that perhaps
this task proved to be the most effective of the three involved in our protocol: the
recall rate the HC speaker category was high (80%), while MCI and mAD speakers
were detected with 60% and 64% rate, respectively. But even the majority of the
misclassified MCI subjects (28%) were classified as mild AD, which is a more tolerable
mistake than confusing them with healthy subjects. Overall, 88% of the MCI subjects
were assigned to either the MCI or the mAD category; likewise, 76% of the actual
mAD subjects were classified in this way, which are rather high scores.

Fig. 6.4 shows similar confusion matrices for the attributes extracted from the
posteriors of the different pause types (when using all the speaker tasks). Silent
pauses (see Fig. 6.4 (a)) seem to be useful for distinguishing healthy controls from
the other two speaker categories (with a recall rate of 76%); however, MCI and mAD
subjects were detected at a lower rate (48% and 60%, respectively). However, most
confusion occurred between the latter categories, and only 24% of the subjects were
classified as healthy controls. Relying on filled pauses seems to be less effective
(see Fig. 6.4 (b)): based on them, only 24% of MCI and 32% of mAD subjects were
classified correctly. Still, most mistakes again arose from confusing MCI and mAD
speakers, and only 32 − 32% of these subjects were considered as healthy controls,
while 68% of the HC speakers were classified correctly. We obtained the best values
with the combination of the two pause types (see Fig. 6.4 (c), the all hesitation case).
(Note that, as previously, silent and filled pauses were merged by adding up their
frame-level posterior estimates, before the actual thresholding step; i.e. in step (2)
of the PTHR method (see 6.4.2).) In this case, the percentage of correctly classified
subjects was higher for all three subject categories than either for the silent or for the
filled pause cases; and even the (relatively) low number of correctly identified MCI
subjects (56%) was mainly due to the high number of MCI-mAD confusion instances
(20%).

6.8 Concluding remarks

Alzheimer’s and MCI early diagnosis might allow timely treatment to delay progres-
sion. We presented a feature extraction approach which describes the amount of hes-
itations without the need for a whole speech recognition workflow by relying only
on the Deep Neural Network acoustic model of a standard HMM/DNN hybrid model.
We calculated our features directly from the DNN outputs corresponding to the HMM
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states associated with silent and/or filled pauses. Based on our experimental results,
this representation allows the automatic detection of MCI and mild AD with the same
(or even higher) accuracy as the temporal speech parameters developed earlier.

Our best accuracy score was 69.3%, while we achieved an F1 value of 87.5 and
a mean AUC score of 0.780. Although it is impossible to do a direct comparison
with other values in the literature due to using different corpora, experimental setup
and evaluation metrics, our results seem competitive with the works of other re-
search groups. For instance, Themistocleous et al. relied on Deep Sequential Neural
Networks for the classification of MCI/HC (i.e. a binary problem) using a Swedish
Alzheimer’s corpus; where, based on a 5-fold CV, they reported an accuracy score
of 83% [193]. Fraset et al., on the same dataset, presented 0.88 and 83% of AUC
and accuracy scores, respectively (also for a binary class problem) [51]; these where
achieved by a multimodal language data and cascaded classifiers approach. Also,
König et al. focused on the same task and extracted vocal makers from a French
corpus for an automatic speech analysis approach. The authors report classification
scores for HC, Alzheimer’s, and MCI, however, the task was evaluated as pairwise
combination of the three classes (two-class problem) [112].

As our proposed approach first adds up the frame-level likelihoods of all HMM
states which were regarded as silent and/or filled pauses, it may not be necessary to
employ a context-dependent (CD) neural network only to support these aggregated
posterior estimates. Therefore, in our next experiment, we investigated whether us-
ing a simpler and computationally cheaper context-independent (CI) acoustic model
would lead to the same subject classification performance. Our findings showed that,
although there were slight drops in the various evaluation metrics, we were able to
achieve the same level of performance with CI neural networks as we could with the
CD ones, which might justify their application.

Regarding the feature subsets examined, we found that silent pauses were the
most suitable for distinguishing mild Alzheimer’s speakers from healthy controls,
while the MCI detection performance was fair. Filled pauses were less effective for
all three speaker groups; however, we achieved our best results when we expressed
the amount of pauses regardless of their type. In this last case, only 20% of control
subjects were classified as either MCI or mAD speakers, and likewise, only 16− 24%

of the MCI and mAD subjects were identified as healthy. Of course, in a practical
screening application there is no need to limit the input of our classifier model to just
one type of pause. This is especially true as our feature set is a quite compact one,
consisting only of 51 utterance-level attributes; even when merging the features cor-
responding to silent pauses, to filled pauses, and to all hesitations, we still have only
151 attributes for each utterance, which is significantly smaller than, say, 512-long
x-vectors.

The author of this PhD thesis is responsible for the following contributions pre-
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sented in this chapter (this being the first item not his main contribution):

VI/1. My main contribution to this study was the generation of temporal speech pa-
rameters via an ASR system on a frame-level approach. I showed that it is not
needed to use the full ASR in order to obtain high-quality features comparable
to those based on full ASR systems for both MCI and Alzheimer’s screening.

VI/2. My participation in this study was limited as I was not the main contributor.
More in specific, I participated in the temporal speech parameters computa-
tion. This study demonstrated that the language on which the ASR system was
trained only slightly affects the MCI classification performance; reducing the
necessity for relying on a specific language-domain corpora.



86 Automatic Speech Recognition Methods



Bibliography

[1] JRZ Abela and DU D’Alessandro. A test of the diathesis-stress and causal
mediation components of beck’s cognitive theory of depression. British Journal
of Clinical Psychology, 41(1):1, 2002.

[2] A. Afshan, J. Guo, S. J. Park, V. Ravi, J. Flint, and A. Alwan. Effectiveness
of voice quality features in detecting depression. Proceedings of Interspeech,
2018.

[3] Abeer Al-Ghazali and Yasser Alrefaee. Silent pauses in the speech of Yemeni
EFL learners. ELS Journal on Interdisciplinary Studies on Humanities, 2(1),
2019.

[4] F.A.C. Alegria and A.M. da Cruz Serra. Influence of frequency errors in the
variance of the cumulative histogram [in ADC testing]. IEEE Transactions on
Instrumentation and Measurement, 50:461–464, 2001.

[5] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[6] Murray Alpert, Enrique R Pouget, and Raul R Silva. Reflections of depression
in acoustic measures of the patient’s speech. Journal of affective disorders,
66(1):59–69, 2001.

[7] Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures.
Alzheimer’s & Dementia, 16(3):391–460, 2020.

[8] S. Amiriparian, P. Winokurow, V. Karas, S. Ottl, M. Gerczuk, and B. W.
Schuller. A Novel Fusion of Attention and Sequence to Sequence Autoencoders
to Predict Sleepiness From Speech. arXiv preprint, 2020.

[9] Meisam Khalil Arjmandi and Mohammad Pooyan. An optimum algorithm
in pathological voice quality assessment using wavelet-packet-based features,
linear discriminant analysis and support vector machine. Biomedical Signal
Processing and Control, 7(1):3–19, 2012.

[10] American Speech-Language-Hearing Association et al. Scope of practice in
speech-language pathology. 2016.

87



88 Bibliography

[11] American Speech-Language-Hearing Association et al. Council for clinical cer-
tification in audiology and speech-language pathology, 2019.

[12] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. New ad-
vances in machine learning, 3:19–48, 2010.

[13] A. M. Badshah, J. Ahmad, N. Rahim, and S. W. Baik. Speech emotion recog-
nition from spectrograms with deep convolutional neural network. In 2017
International Conference on Platform Technology and Service (PlatCon), pages
1–5, 2017.

[14] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli.
wav2vec 2.0: A framework for self-supervised learning of speech represen-
tations. arXiv preprint arXiv:2006.11477, 2020.

[15] Kirrie J Ballard. Response generalization in apraxia of speech treatments: Tak-
ing another look. Journal of Communication Disorders, 34(1-2):3–20, 2001.

[16] Renée L Beard. In their voices: Identity preservation and experiences of
alzheimer’s disease. Journal of Aging studies, 18(4):415–428, 2004.

[17] Paul Boersma. Accurate short-term analysis of the fundamental frequency and
the harmonics-to-noise ratio of a sampled sound. In IFA Proceedings 17, pages
97–110, 1993.

[18] Gerard Brett. The automata in the byzantine” throne of solomon”. Speculum,
29(3):477–487, 1954.

[19] Maddalena Bruscoli and Simon Lovestone. Is MCI really just early demen-
tia? A systematic review of conversion studies. International Psychogeriatrics,
16(2):129–140, 2004.

[20] Felix Burkhardt, Richard Huber, and Anton Batliner. Application of speaker
classification in human machine dialog systems. In Speaker Classification I,
pages 174–179. Springer, 2007.

[21] William M Campbell, Douglas E Sturim, and Douglas A Reynolds. Support
Vector Machines using GMM supervectors for speaker verification. IEEE signal
processing letters, 13(5):308–311, 2006.

[22] Gavin C. Cawley and Nicola L. C. Talbot. On over-fitting in model selection
and subsequent selection bias in performance evaluation. Journal of Machine
Learning Research, 11(Jul):2079–2107, 2010.



Bibliography 89

[23] Chih-Chung Chang and Chih-Jeh Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:1–27,
2011.

[24] Ken Chatfield, Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman. The
devil is in the details: An evaluation of recent feature encoding methods. In
British Machine Vision Conference, volume 2, pages 76.1–76.12, 11 2011.

[25] Lim Sin Chee, Ooi Chia Ai, M Hariharan, and Sazali Yaacob. MFCC based
recognition of repetitions and prolongations in stuttered speech using k-nn
and lda. In 2009 IEEE Student Conference on Research and Development
(SCOReD), pages 146–149. IEEE, 2009.

[26] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, abs/1603.02754:785–794, 2016.

[27] N. Cummins, J. Epps, V. Sethu, and J. Krajewski. Variability compensation
in small data: Oversampled extraction of i-vectors for the classification of
depressed speech. In Proceedings of ICASSP), pages 970–974, 2014.

[28] N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and T. Quatieri. A
review of depression and suicide risk assessment using speech analysis. Speech
Communication, 71:10–49, 2015.

[29] Nicholas Cummins, Julien Epps, Vidhyasaharan Sethu, and Jarek Krajewski.
Variability compensation in small data: Oversampled extraction of i-vectors
for the classification of depressed speech. In 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 970–974.
IEEE, 2014.

[30] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-
trained Deep Neural Networks for large-vocabulary Speech Recognition. IEEE
Transactions on audio, speech, and language processing, 20(1):30–42, 2011.

[31] Namrata Dave. Feature extraction methods lpc, plp and mfcc in speech recog-
nition. International journal for advance research in engineering and technology,
1(6):1–4, 2013.

[32] Ken H Davis, R Biddulph, and Stephen Balashek. Automatic recognition of
spoken digits. The Journal of the Acoustical Society of America, 24(6):637–
642, 1952.



90 Bibliography
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[65] Gábor Gosztolya. Posterior-thresholding feature extraction for paralinguistic
speech classification. Knowledge-Based Systems, 186, 2019.
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[118] Iulia Lefter, Léon JM Rothkrantz, and Gertjan J Burghouts. A comparative
study on automatic audio–visual fusion for aggression detection using meta-
information. Pattern Recognition Letters, 34(15):1953–1963, 2013.



98 Bibliography

[119] Maider Lehr, Emily Prud’hommeaux, Izhak Shafran, and Brian Roark. Fully
automated neuropsychological assessment for detecting Mild Cognitive Im-
pairment. In Proceedings of Interspeech, pages 1039–1042, Portland, OR, USA,
2012.

[120] Feng Li. Textual analysis of corporate disclosures: A survey of the literature.
Journal of accounting literature, 29(1):143–165, 2010.

[121] Jie-Min Long, Zhang-Fa Yan, Yu-Lin Shen, Wei-Jun Liu, and Qing-Yang Wei.
Detection of Epilepsy using MFCC-Based Feature and XGBoost. In 2018 11th
International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), pages 1–4. IEEE, 2018.

[122] P. Lopez-Otero and L. Docio-Fernandez. Analysis of gender and identity issues
in depression detection on de-identified speech. Computer Speech & Language,
65:101118, 2021.

[123] Daniel M Low, Kate H Bentley, and Satrajit S Ghosh. Automated assessment
of psychiatric disorders using speech: A systematic review. Laryngoscope In-
vestigative Otolaryngology, 5(1):96–116, 2020.

[124] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, 2004.

[125] Miranti Indar Mandasari, ML McLaren, and David A van Leeuwen. Evaluation
of i-vector speaker recognition systems for forensic application. 2011.

[126] Sven L. Mattys, Christopher W. Pleydell-Pearce, James F. Melhorn, and Shar-
ron E. Whitecross. Detecting silent pauses in speech: A new tool for measuring
on-line lexical and semantic processing. Psychological Science, 16(12):958–
964, 2005.

[127] Kim C. McCullough, Kathryn A. Bayles, and Erin D. Bouldin. Language perfor-
mance of individuals at risk for mild cognitive impairment. Journal of Speech,
Language, and Hearing Research, 62(3):706–722, 2018.

[128] Guy M. McKhann, David S. Knopman, Howard Chertkow, Bradley T. Hy-
man, Clifford R. Jack Jr., Claudia H. Kawas, William E. Klunk, Walter J.
Koroshetz, Jennifer J. Manly, Richard Mayeux, Richard C. Mohs, John C.
Morris, Martin N. Rossor, Philip Scheltens, Maria C. Carrillo, Bill Thies, San-
dra Weintraub, and Creighton H. Phelps. The diagnosis of dementia due to
Alzheimer’s disease: Recommendations from the National Institute on Aging –
Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s
disease. Alzheimer’s & Dementia, 7(3):263–269, 2011.



Bibliography 99

[129] Malcolm Ray McNeil. Clinical management of sensorimotor speech disorders.
Thieme, 2009.

[130] Tom Michael Mitchell. The discipline of machine learning, volume 9. Carnegie
Mellon University, School of Computer Science, Machine Learning . . . , 2006.

[131] A. Mohamed, G. E Dahl, and G. Hinton. Acoustic modeling using deep be-
lief networks. IEEE transactions on audio, speech, and language processing,
20(1):14–22, 2011.

[132] Sirko Molau, Michael Pitz, and Hermann Ney. Histogram based normalization
in the acoustic feature space. In Proceedings of ASRU, pages 1–4, Madonna di
Campiglio, Italy, Dec 2001.

[133] Pedro J. Moreno and Ryan Rifkin. Using the Fisher kernel method for web
audio classification. In Proceedings of ICASSP, pages 2417–2420, Dallas, TX,
USA, 2010.

[134] Laureano Moro-Velázquez, Jorge Andrés Gómez-Garćıa, Juan Ignacio Godino-
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Chauhan, Andreas Grammenos, Apinan Hasthanasombat, Dimitris Spathis,
Tong Xia, Pietro Cicuta, M.R̃othkrantz Leon J. Joeri Zwerts, Jelle Treep, and
Casper Kaandorp. The INTERSPEECH 2021 Computational Paralinguistics
Challenge: COVID-19 Cough, COVID-19 Speech, Escalation & Primates. In
Proceedings INTERSPEECH 2021, 22nd Annual Conference of the International
Speech Communication Association, Brno, Czechia, September 2021. ISCA. to
appear.

[177] B.W. Schuller, A. Batliner, C. Bergler, F.B. Pokorny, J. Krajewski, M. Cychosz,
R. Vollmann, S. Roelen, S. Schnieder, E. Bergelson, et al. The INTERSPEECH
2019 Computational Paralinguistics Challenge: Styrian Dialects, Continuous
Sleepiness, Baby Sounds & Orca Activity. In Proceedings of Interspeech, pages
2378–2382, 2019.

[178] Marco Seeland, Michael Rzanny, Nedal Alaqraa, Jana Wäldchen, and Patrick
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Summary

This PhD thesis presented methods for exploiting the non-verbal communication of
individuals suffering from specific diseases or health conditions aiming to reach an
automatic screening of them. More specifically, we employed one of the pillars of
non-verbal communication, paralanguage, to explore techniques which could be uti-
lized to model the speech of subjects. Paralanguage is a non-lexical component of
communication that relies on intonation, pitch, speed of talking, and others, which
can be processed and analyzed in automatic manners. This is called Computational
Paralinguistics, which can be defined as the study of modelling non-verbal latent pat-
terns within the speech of a speaker by means of computational algorithms; these pat-
terns go beyond the linguistic approach. By means of machine learning, we present
models from distinct scenarios of both paralinguistics and pathological speech which
are capable of estimating the health status of a given disease such as Alzheimer’s,
Parkinson’s, Depression, among others, in a automatic manner.

The dissertation consisted of four major parts, in the sections below we will sum-
marize the results of Chapters 3-6. Chapter 1 introduces the reader to the concepts
of non-verbal communication and paralanguage. Also, we briefly cover concepts
on Speech and Speaker Recognition. The same chapter continues with a more in
depth explanation of paralanguage and computational paralinguistics, covering con-
temporary early works in the mentioned field. Chapter 2 describes the concepts of
the machine learning methods used for producing ways of automatic screening of a
given speech-pathology, as well as definitions of pathological speech, and the type of
features we employed for processing the speech samples.

Work I.

In Chapter 3, we proposed the i-vector approach for the extraction of features from
the speech of subjects. These features were able to model the speech pattern of the
three mental conditions from the speakers. These i-vector representations were ex-
tracted from Mel-Frequency Cepstral Coefficients, and were given to a linear-SVM
classifier in order to classify the speech in one of the following manners: AD -
Alzheimer Disease, MCI - Mild Cognitive Impairment, HC - Healthy Control. We
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tested these i-vector features by performing a 5-fold cross-validation and measured
performances relying on F1-score.

Work II.

In Chapter 4, we represented the utterances of subjects having Parkinson’s Disease
and those of healthy controls by means of the Fisher Vector approach. This method is
common in image recognition, where it provides a representation of the local image
descriptors via frequency and high order statistics. We used four frame-level feature
sets as the input of the FV method, and applied (linear) Support Vector Machines
for classifying the speech of subjects. Our findings showed that our approach offers
superior performance compared to classification based on the i-vector and cosine
distance approach, and it also provided an efficient combination of machine learning
models trained on different feature sets or on different speaker tasks.

Moreover, we demonstrated that using Fisher vectors for the assessment of the
levels of escalation in speech and primate species sounds leads to competitive or
even better results than their x-vector embeddings counterparts for that specific cor-
pus. Likewise, we presented models based on Fisher vector representations for the
estimation of cold. We found that XGBoost algorithms were able to represent cold
patterns in a better way than SVM for the given set of features.

Work III.

In Chapter 5, we employed the x-vector approach as a neural network feature ex-
tractor to detect the level of sleepiness of a speaker. We used different corpora for
training the x-vector DNN from scratch, and also experimented with adding noise and
reverberation to the audio samples. Using the publicly available Dusseldorf Sleepy
Language Corpus, we demonstrated that our custom x-vector embeddings as features
for Support Vector Regression consistently led to competitive performance scores in
sleepiness detection. Our methods achieved the highest Spearman’s correlation coef-
ficient on the mentioned corpus that was achieved by a single method.

Furthermore, we introduced custom x-vector extractors and explored the perfor-
mance of an out-of-domain pre-trained x-vector model for the estimation of the levels
of depression. Our findings confirmed that x-vectors were able to capture meaning-
ful speaker traits that contain information for depression discrimination. We demon-
strated that the language of the extractor is of secondary importance compared to
the frame-level feature set. Namely, our best model, which achieved an AUC score of
0.940 and an RMSE score of 9.54, was trained on log-energies (FBANKS) instead of
MFCCs.
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Lastly, we also presented an ensemble of classifiers from x-vector features for both
conflict escalation estimation, and primate species sounds identification, respectively.
We boosted the final performances by incorporating the SSPNet Conflict Corpus in
the conflict escalation training workflow surpassing official baselines on the given
task.

Work IV.

In Chapter 6, we presented a set of temporal speech parameters consisting of artic-
ulation rate, speech tempo and various other attributes describing the hesitation of
a subject suffering from MCI. We showed the possibility of extracting these repre-
sentations in a reliable way regardless of the language of the ASR system employed.
Our experiments indicated that the language on which the ASR system was trained
only slightly affects the MCI classification performance as multilingual (67-92%) and
monolingual (67-92%) scores were similar.

On the other hand, we also introduced a similar feature extraction approach based
on the same ‘temporal speech parameters’ which still quantifies the amount of silence
and hesitation in the speech of the subject, but does not require the application of
a full ASR system. We demonstrated that this approach, operating directly on the
frame-level output of a HMM/DNN hybrid acoustic model is capable of extracting
attributes as useful as those from the ASR-based temporal parameter extraction ap-
proach for MCI and Alzheimer’s detection.

Contributions of the thesis

In the first thesis group, the contributions are related to the automatic screening of
Alzheimer’s Disease by means of the i-vector approach using the speech of subjects.
Detailed discussion can be found in Chapter 3.

I / 1. My contribution relied on training i-vector models for the extraction speech
representations of individuals suffering from Alzheimer’s. I demonstrated that
i-vector features are capable of extracting meaningful traits from this kind of
speech.

I / 2. As a part of my proposals for the study in question, I employed i-vectors as a
baseline approach for the automatic screening of the levels of clinical depres-
sion by means of the speech. Turns out that this method achieves comparable
and even competitive performances compared with prior studies on the same
corpus.
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In the second thesis group, the contributions are related to the automatic assess-
ment of Parkinson’s Disease, the levels of escalation in speech, primate species sounds,
and cold identification using speech features modelled by the Fisher vector approach.
Detailed discussion can be found in Chapter 4.

II / 1. I developed a framework for the automatic assessment of Parkinson’s Disease
by means of the Fisher vector approach. My findings showed that these kind of
features are capable of capturing meaningful information not only from images
(as they were originally intended for) but from utterances as well.

II / 2. Built a machine learning model capable of discriminating cold from the speech
of individuals using Fisher vectors. I demonstrated the superiority of XGBoost
over SVM at the moment of employing the mentioned features for cold speech
classification.

II / 3. As part of the procedures conducted in this scientific article, I modeled the
levels of escalation in the speech of individuals using Fisher vectors; moreover,
the same technique was employed to extract features from the sounds of pri-
mate species. I proved that such an approach is quite beneficial at the moment
of automatic assessment of the tasks in question.

II / 4. I designed a pipeline for ‘cold’ speech feature extraction based on Fisher vec-
tor encodings. I proved that such type of features are capable of accurately
modelling the speech of patients having a cold.

In the third thesis group, the contributions are related to the use of speech for the
screening of the levels of sleepiness, the degree of clinical depression, the levels of
escalation in speech, and primate species sounds. Detailed discussion can be found
in Chapter 5.

III / 1. I proposed the use of deep neural network embeddings for the estimation
the degree of sleepiness in an automatic manner by means of the speech. I
showed that x-vectors, being originally intended for speaker verification, are
capable of modelling speakers that suffer from day-time sleepiness with high
accuracy.

III / 2. My proposal relied on the use of custom x-vector extractors for the assessment
of the degree of clinical depression from the speech of patients. By training a
handful of DNN models, I showed that a simple pipeline is capable of surpass-
ing the performances of those that rely on more elaborated techniques like
ensemble machine learning or classifier combination.
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III / 3. Part of my contribution to this study comprised the training of various cus-
tom x-vector extractors. I proved that these deep neural network embed-
dings demonstrated competitive performances for both conflict escalation in
the speech and primates species classification.

In the fourth thesis group, the contributions are related to the employment of tem-
poral speech parameter as speaker features for the automatic screening of both Mild
Cognitive Impairment and Alzheimer’s Disease. Detailed discussion can be found in
Chapter 6.

IV / 1. My main contribution to this study was the generation of temporal speech pa-
rameters via an ASR system on a frame-level approach. I showed that it is not
needed to use the full ASR in order to obtain high-quality features comparable
to those based on full ASR systems for both MCI and Alzheimer’s screening.

IV / 2. My participation in this study was limited as I was not the main contributor.
More in specific, I participated in the temporal speech parameters computa-
tion. This study demonstrated that the language on which the ASR system
was trained only slightly affects the MCI classification performance; reducing
the necessity for relying on a specific language-domain corpora.

Table 6.6 summarizes the relation between the thesis points and the correspond-
ing publications.

Table 6.6: Correspondence between the thesis points and my publications.

Publication
Thesis point

I/1 I/2 II/1 II/2 II/3 II/4 III/1 III/2 III/3 IV/1 IV/2
[1] •
[2] •
[3] •
[4] •
[5] •
[6] •
[7] •
[8] • •
[9] • •
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Összefoglalás

Jelen doktori értekezés olyan módszereket mutat be, amelyek bizonyos betegségek-
ben vagy egészségi állapotban szenvedő egyének nemverbális kommunikációjának
kiaknázását célozzák azok automatikus szűrésére. Konkrétabban, a nemverbális kom-
munikáció egyik pillérét, a paralingvisztikát alkalmaztuk olyan technikák feltárására,
amelyek felhasználhatók az alanyok beszédének modellezésére. A paralingvisztika
a kommunikáció egy nem lexikális összetevője, amely az intonáción, a hangma-
gasságon, a beszéd sebességén stb. alapszik, és amely automatikusan feldolgozható
és elemezhető. Ezt Computational Paralinguistics-nak h́ıvják, amely úgy definiálható,
mint a beszélő beszédében lévő nemverbális látens minták számı́tási algoritmusok
seǵıtségével történő modellezése. A gépi tanulás seǵıtségével modelleket mutatunk
be mind a paralingvisztikai, mind az orvosi célú beszédelemzés különböző forgatókö-
nyveiből, amelyek alkalmasak egy adott betegséggel (például az Alzheimer-kór, Par-
kinson-kór, depresszió) élő alanyok egészségi állapotának automatikus becslésére.
A dolgozat négy nagy részből áll. Az 1. fejezet bevezeti az olvasót a nemverbális
kommunikáció és a paranyelv fogalmába. Ezenḱıvül röviden ismertetjük a beszéd
és a beszélőfelismerés fogalmait. Ugyanez a fejezet a számı́tógépes paralingvisztika
mélyrehatóbb magyarázatával folytatódik, kitérve az emĺıtett terület szakirodalmára.
A 2. fejezet ismerteti az orvosi célú beszédelemzés során használt gépi tanulási
módszerek fogalmait, a patológiás beszéd defińıcióit, valamint a beszédminták fel-
dolgozásához alkalmazott jellemzőket.

1. téziscsoport

A 3. fejezet az i-vektoros megközeĺıtés használatát tárgyalja a beszédből a jellemzők
kinyerésére. Ezek a jellemzők képesek voltak modellezni a három beszélőcsoport
(AD – Alzheimer-kór, MCI – enyhe kognit́ıv zavar, HC – egészséges kontroll) beszéd-
mintázatát. Az i-vektor reprezentációkat mel-frekvenciás együtthatókból (MFCC)
számı́tottuk, majd egy lineáris SVM seǵıtségével végeztük el a beszélők osztályozását.
Az osztályozás során 5-szörös keresztvalidációt alkalmaztunk, a pontosságot pedig
F1-értékkel mértük.

115
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2. téziscsoport

A 4. fejezetben olyan ḱısérleteket mutatunk be, amelyekben Fisher vektorokat (FV)
alkalmaztunk Parkinson-kórban szenvedő alanyok és egészséges kontrollok beszéd-
felvételeinek feldolgozása során. Ez a módszer a képfelismerésben elterjedt, ahol
lokális deskriptorokat összegez gyakoriság és egyéb magasabbrendű statisztikák se-
ǵıtségével. Az FV eljárást négy különböző keretszintű jellemzőkészletre próbáltuk
ki, mı́g az osztályozást lineáris SVM seǵıtségével végeztük. Eredményeink azt mu-
tatták, hogy megközeĺıtésünkkel jobb osztályozási teljeśıtmény érhető el, mint az
i-vektorokra vagy a koszinusz-távolságra támaszkodva, és jó alapot biztośıtott hogy
különböző jellemzőkön vagy beszédfeladatokon tańıtott osztályozók kombinációjára
is. A téziscsoportban ezen felül azt is megmutattuk, hogy a Fisher vektorok hatékony
jellemzőkészletnek bizonyultak konfliktusok kibontakozásának detektálására, vala-
mint különböző főemlős-fajok hangalapú megkülönböztetésére is (ezeken a felada-
tokon hatékonyabbnak bizonyultak, mint az x-vektorok). Hasonlóképpen, Fisher-
vektor reprezentációkon alapuló modelleket tańıtottunk a beszélő megfázásának meg-
állaṕıtására is. Azt találtuk, hogy az XGBoost osztályozási eljárás magasabb pon-
tosságra volt képes, mint a lineáris SVM.

3. téziscsoport

Az 5. fejezetben az x-vektor mint jellemzőkinyerő eszköz alkalmazását tárgyaljuk
különböző szűrési feladatok automatikus értékeléséhez. Első eredményünkben a
beszélő álmosságának észlelésére alkalmaztuk. Az x-vektor jellemzőkinyerő modellt
több korpuszon tańıtottuk, és ḱısérleteztünk azzal is, hogy a tańıtás során zajt adjunk
a felvételekhez illetve visszhangośıtsuk azokat. A nyilvánosan elérhető Dusseldorf
Sleepy Language Corpuson saját x-vektor beágyazásaink mint jellemzők használatával
(lineáris SVR mint regressziós módszer alkalmazásával) stabilan versenyképes tel-
jeśıtményt értünk el. Módszereink az emĺıtett korpuszon a legmagasabb Spearman-
féle korrelációs együtthatót érték el azon megközeĺıtések közül, melyek egyetlen
módszert (és nem különböző eljárások kombinációját) használták. A fejezetben emel-
lett bemutattuk ḱısérleti eredményeinket saját és előtańıtott x-vektor jellemzőkinyerők
használatával depresszió szintjének becslésére beszédjelből. Ḱısérleteink megerő-
śıtették, hogy az x-vektorok képesek olyan beszélőjellemzők megragadására, ame-
lyek információt tartalmaznak a depresszió hatékony kimutatására. Megmutattuk,
hogy az x-vektor modell nyelve másodlagos jelentőséggel b́ır a használt keretszintű
jellemzőkészlethez képest. Nevezetesen, a legjobb modellünk, amelynek AUC pont-
száma 0,940 és RMSE értéke 9,54 volt, keretszintű log-energiákon (FBANKs) lett
tańıtva MFCC-k helyett. Végezetül adtunk egy x-vektoros jellemzőkre épülő ensem-
ble osztályozót is, konfliktus-kibontakozás becslésére, illetve főemlősfajok hangból
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történő azonośıtására. A konfliktus-kibontakozási feladatban a végső predikciók ja-
v́ıtása érdekében az SSPNet Conflict korpuszt is fölhasználtuk, mellyel az adott fel-
adaton a legmagasabb pontosságértéket értük el.

4. téziscsoport

Végül a 6. fejezetben bemutatunk egy időbeli beszédjellemző-készletet, amely az
artikulációs sebességből, a beszédtempóból és további, az alany hezitációját léıró
jellemzőkből áll. Megmutattuk, hogy ezek a reprezentációk megb́ızható módon kiny-
erhetők az alkalmazott beszédfelismerő rendszer nyelvétől függetlenül: az enyhe
kognit́ıv zavar fölismerésének pontossága csak kismértékben függött attól, hogy egy-
nyelvű (67-92%) vagy keresztnyelvi (67-92%) jellemzőkinyerést végeztünk-e. Ezen
felül bevezettünk egy, a korábban már bemutatott temporális beszédparaméterekhez
hasonló jellemzőkészletet, amely továbbra is a néma és kitöltött szünetek mennyiségét
számszerűśıti, de kiszámı́tásához nem szükséges egy teljes fonetikai szintű beszéd-
felismerő rendszer használata. Megmutattuk, hogy ez az eljárás, amely közvetlenül
a HMM/DNN hibrid modell akusztikai DNN modelljének keretszintű kimenetét hasz-
nálja bemenetként, hasonlóan informat́ıv jellemzőket képes kinyerni a beszédből az
enyhe kognit́ıv zavar és az Alzheimer-kór felismerésére, mint a beszédfelismerés-
alapú, temporális paraméterek kinyerését végző megközeĺıtés.

A disszertáció tézisei

Az első téziscsoportban a hozzájárulások az Alzheimer-kór beszédjelből történő au-
tomatikus szűrésével kapcsolatosak, i-vektor jellemzők használatával. A részletes
kifejtés a 3. fejezetben található.

I/1. Hozzájárulásom az i-vektor modellek tańıtására és az Alzheimer-kórral élők
beszédéből jellemzők kinyerésére vonatkozott. Megmutattam, hogy az i-vek-
toros jellemzők képesek értelmes beszédtulajdonságok tárolására ilyen jellegű
beszéd esetén.

I/2. Az alanyok beszédfelvételeire i-vektorokat alkalmaztam a klinikai depresszió
szintjeinek automatikus szűrése céljából. Az eredményeim alapján ez a mód-
szer hasonló eredményeket ér el, sőt versenyképes teljeśıtményt tesz lehetővé
az ugyanezen témában végzett korábbi tanulmányokhoz képest.

A második téziscsoportban hozzájárulásaim a Parkinson-kór automatikus detek-
tálásához, a konfliktusok kibontakozásának szintjeinek és főemlősfajok hangból tör-
ténő meghatározásához, valamint a beszélő megfázásának automatikus detektálásá-
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hoz kapcsolódnak, Fisher-vektor megközeĺıtéssel modellezett beszédjellemzők seǵıt-
ségével. A részletes kifejtés a 4. fejezetben található.

II/1. Kidolgoztam egy keretrendszert a Parkinson-kór automatikus értékelésére Fi-
sher-vektor jellemzőkészlet használatával. Eredményeim azt mutatták, hogy
az ilyen jellegű jellemzők nemcsak a képekből képesek értelmes információt
rögźıteni (ahogyan eredetileg szánták őket), hanem a beszédjelből is.

II/2. Olyan gépi tanulási modellt éṕıtettem, amely képes megkülönböztetni a meg-
fázott alany beszédét az egészséges alanyétól, Fisher-vektor jellemzőkészlet
használatával. Megmutattam, hogy az XGBoost osztályozó eljárás pontosabb
osztályozást tesz lehetővé a lineáris SVM technikával szemben, amikor az
emĺıtett jellemzőket alkalmazzuk megfázás automatikus detektálására.

II/3. A tudományos cikk keretében végzett ḱısérleti lépések részeként modelleztem
a Fisher-vektorok seǵıtségével az egyének beszédének eszkalációs szintjeit;
továbbá ugyanezt a technikát alkalmaztam a főemlősfajok hangjainak jell-
emzőinek kinyerésére. Bebizonýıtottam, hogy egy ilyen megközeĺıtés hatékony
a szóban forgó feladatok automatikus végrehajtása esetén.

II/4. Megterveztem és megvalóśıtottam egy FV beszédjellemzők kinyerésén és fel-
használásán alapuló, a megfázott alanyok detektálására szolgáló workflow-t.
Megmutattam, hogy az ilyen t́ıpusú jellemzők képesek a megfázott betegek
beszédének hatékony modellezésére.

A harmadik téziscsoportban a hozzájárulások az álmosság szintjének, a klinikai
depresszió mértékének, a depresszió szintjének, a konfliktus-kibontakozások szin-
tjeinek, valamint a főemlősfajok audió-alapú meghatározásához kapcsolódnak. A
részletes kifejtés az 5. fejezetben található.

III/1. Mély neurális hálókból kinyert beágyazások használatát javasoltam a beszélő
álmossági fokának automatikus módon történő meghatározására. Megmu-
tattam, hogy az x-vektorok, melyeket eredetileg a beszélő meghatározására
fejlesztettek ki, alkalmasak a beszélők álmosságának nagy pontosságú mod-
ellezésére.

III/2. Egyedi x-vektor jellemzőkinyerő modelleket használtam a klinikai depresszió
mértékének a betegek beszédéből történő becslésére. Számos x-vektor modell
tańıtásával megmutattam, hogy egy egyszerű struktúrájú workflow is képes
felülmúlni számos bonyolultabb módszer teljeśıtményét, mint például az en-
semble osztályozók vagy osztályozó-kombinációk.
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III/3. A tanulmányhoz való hozzájárulásom egy része különböző egyéni x-vektor
jellemzőkinyerő modellek tańıtásából állt. Megmutattam, hogy ezek a mély
neurális hálózati beágyazások versenyképes teljeśıtményt mutatnak mind a
konfliktus-kibontakozások, mind a főemlős-fajok audió-alapú osztályozásában.

A negyedik téziscsoportban hozzájárulásaim az időbeli beszédparaméterek mint
eszélőjellemzők alkalmazásával kapcsolatosak az enyhe kognit́ıv zavar és az Alz-
heimer-kór vizsgálatában. A részletes kifejtés a 6. fejezetben található.

III/1. A fő hozzájárulásom a tanulmányhoz az időbeli beszédparaméterek generálása
volt egy beszédfelismerő rendszer fölhasználásával, keretszintű megközeĺıt-
ésben. Megmutattam, hogy nem szükséges a teljes beszédfelismerő rendszer
használata ahhoz, hogy hasonlóan jó minőségű jellemzőkhöz jussunk, mint
a teljes ASR-rendszer használatával meghatározott temporális beszédparamé-
terek esetében (enyhe kognit́ıv zavar és Alzheimer-kór szűrése esetén).

III/2. A tanulmányban való részvételem korlátozott volt, mivel nem én voltam a
fő közreműködő. Hozzájárulásom az időbeli beszédparaméterek kiszámı́tása
volt. Ez a tanulmány azt mutatta meg, hogy a beszédfelismerő rendszer
nyelve csak kismértékben befolyásolja az enyhe kognit́ıv zavar automatikus
meghatározásának teljeśıtményét, csökkentve a nyelvfüggő beszédfelismerő
rendszer használatának szükségességét.
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Pákáski, M., Kálmán, J., Gosztolya, G. Using Spectral Sequence-to-Sequence
Autoencoders to Assess Mild Cognitive Impairment. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 6467-
6471, Singapore, 2022.



Acknowledgments

My apologies to whoever reading this section finds inconvenience with the language
employed...
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