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ABSTRACT

Health pandemics such as Covid-19 have drastically shifted the world economics and boosted the development of automation 
technologies in the industries for continuous operation without human intervention. This paper elaborates on an approach 
to dynamically track and grasp moving objects using a robot arm. The robot arm has an eye-in-hand (EIH) configuration, 
where a camera is installed on the robot arm’s end effector. The working principle of the robot arm in this paper is mainly 
dependent on the recognition of augmented reality markers, i.e., Aruco markers, placed on the dynamically moving target 
object with continuous tracking. Then, the proposed system updates the predicted location for the markers using the Kalman 
filter for performing grasping. The proposed approach identifies the Aruco marker on the target object and estimates the 
object’s location using previous states, and performs grasping at the exact predicted location. When extracted information 
is updated, the vision system also implements a feedback control system for stability and reliability. The proposed approach 
is tested using simulation of the dynamic moving object with different speeds and directions. The robot arm with the Kalman 
filter can track and grasp the dynamic object at a speed of 0.2m/s with a 100% success rate while obtaining an 80% success 
rate at a speed of 0.3m/s. In conclusion, the moving object’s speed is directly proportional to the grasping time until it 
reaches the threshold speed for the camera in identifying the Aruco markers. Future works are required to improve the 
dynamic visual servo algorithm with motion planning when obstacles are present in the path of robot grasping.
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INTRODUCTION

Industrial Revolution 4.0 (IR4.0) has shifted the industrial 
sector focus from automation with digital technology to 
interconnected industrial processes through Internet-of-
things (IoT), which has greatly influenced technological 
development worldwide. The focus lies in integrating 
humans with autonomous robots in manufacturing 
processes for continuous operations. Autonomous robots 
can carry out tasks with ease, safely and precisely, and carry 
out tasks that are challenging for humans (Vaidya et al. 
2018). Health pandemics such as Covid-19 have accelerated 
the autonomous robot industry. In this case, factories are 
required to operate with less human intervene with robots 
taking charge of the situation for continuous operations 
(Yamani et al. 2020). Latest control methods are being 
developed rapidly to advance automation to ensure the 
continuous investment and usage of automation technology 
in the industry. Covid-19 also demanded developing a visual 
servo system for robots for dynamic grasping and sorting 
applications. The servo mechanism achieves the desired 
location by using the error feedback between the actual and 
intended position. On the other hand, visual servo utilizes 

visual data, image processing, and a control system for robot 
control. Visual servo is being developed as it is low cost 
to develop visual-aided robots rather than complex joint 
controlled robots (Chaumette & Hutchinson 2009; T. Chen 
& Lin 2020; Peter Corke 2017).

Visual servos have two camera configurations: (a) Eye-
in-hand and (b) Eye-on-world. Visual servo techniques are 
divided into two main parts: (a) Image-based visual servo 
(IBVS) and (b) Position-based visual servo (PBVS) (Peter 
Corke, 2017). IBVS utilizes the image data point feature 
of 2D objects is used to identify the target object, whereas, 
PBVS on the other hand, uses a 3D image feature related 
to the view of the camera and environment to predict the 
relative orientation dan movement related to the camera 
position. IBVS systems using the eye-in-hand method gain 
their ground as they possess advantage and reliability during 
their operations, and they reduce the computation complexity 
and unwanted environmental computations (Thotakuri et 
al. 2017). However, IBVS need to solve complex control 
system problem because the image features are a nonlinear 
function of camera pose (Peter Corke, 2017). Thus, PBVS 
systems are widely used.
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Much research is being conducted based on PBVS 
systems such as autonomous vehicles and drones, where the 
research has achieved the specified hypothesis. However, 
PBVS has its disadvantage where the calibration of the 
robot arm with the robot arm. IBVS, on the other hand, 
does not require the calibration process as the coordinate 
computation is made on the image plane. IBVS also has 
its own disadvantages when the image obtained was not 
complete or with noise compared to the actual image. 
Dynamic IBVS is a servo system using a basic IBVS concept 
with improvements in identifying objects using dynamic 
techniques. Dynamic can be referred to as moving target 
object, unknown target object, or hybrid image processing 
techniques (Bae et al. 2018; Mohebbi et al. 2014; Wang et 
al. 2017)

Shaw and Chi developed a dynamic IBVS system for 
object classification for objects at unknown speeds on the 
conveyer belt (Shaw & Chi 2018). Zhang also uses a system 
with the same concept in industrial implementation (Zhang 
et al. 2018). Visual servo algorithm developed if often 
related with some specific sets of features from the target 
objects. The most popular target identification method is 
using an RGB-D camera for color-coded or varying depth 
object grasping (Durovic & Cupec 2018; Haviland et al. 
2020)techniques for tracking and grasping moving objects 
with an unknown speed on a conveyor using an eye-in-hand 
robot arm are presented, which are useful in a production 
line for automatic object classification. First of all, the 
CAMshift (Continuously Adaptive Meanshift.

Besides that, a 3D model of the object in grasping tasks 
is also a common type of IBVS system used in the industry. 
Finally, some research also developed more complex 
approaches, where neural networking and deep learning 
are used in artificial intelligence for continuous learning 
and grasping the object in the camera field-of-view (FoV). 
Thus, a visual servo algorithm which not complex is being 
developed for easier implementation in the industry and 
reduce the development cost by using the classic method of 
IBVS (Y. K. Chen et al. 2019; Guérin et al. 2018; Shinde et 
al. 2019; Zapotezny-Anderson & Lehnert, 2019).

Digital image processing is a signal processing technique 
where the input for the system is an image or a video frame. 
The output is a parameter or feature related to an image 
processing for the computer algorithm’s usage. Typically, 
the acquired digital image contains errors resulting from the 
unstable camera control; thus image algorithm is required to 
improve the quality of the image obtained (Aqif et al. 2020). 
This technology is gaining ground as implemented in the 
robotics industry for the visual servo to avoid any mishaps 
related to robots. A popular image processing technique 
in the industry is the CAMshift algorithm (continuously 
adaptive mean shift). It recognizes an object in the camera 
FoV by colors and the minimum rectangle method. This 
CAMshift algorithm is based on the mean shift algorithm, 
which searches the object to be tracked in an adjustable 
search window. The downfall of this algorithm is when 

the object has bad lighting conditions and rounded corners 
(Peter Corke 2017; Shaw & Chi 2018).

Besides, Bidirectional Extreme Learning Machine 
(B-ELM) with Smooth Variable Structure Filter (SVSF) 
were used in the hybrid system by Ren (2020) for optimal 
target positioning and overcome the problem related to the 
depth. This system proves its reliability over Kalman filter 
implementation, but it is limited to the camera’s FoV (Ren 
et al. 2020). Remodeling CAD models of the target object 
using 3D cameras for Multiview and RANSAC filter also 
used in hybrid for obtaining optimal grasp planning for an 
object. This remodeling process complicates the execution 
process and increases the cost of implementation (Y. K. 
Chen et al. 2019). Recent research utilizes augmented reality 
(AR) tags as the primary tracker for object identification 
coupled with the minimum rectangle method. This method 
proves its reliability in many implementations and costs 
significantly less. Thus, this study used AR markers for 
object identification coupled with a Kalman filter for object 
target tracking and identification (Mazlan et al. 2020).

Artemciukas et al. (2016) utilize the Kalman filter as 
a hybrid tracker with some sensors for identifying objects 
with AR. In this implementation, the Kalman filter ensures 
the continuity of tracking the AR marker. Kalman filter can 
be used for robot arm localization and grasping in dynamic 
target object situations. Kalman filter eases the computation, 
and an extended Kalman filter is not required if the object 
moves with linear velocity (Artemciukas et al. 2016; 
Mohebbi et al. 2014).

Therefore, the main objective of this study is to develop 
an algorithm to identify and track the dynamic target 
objects with AR markers by utilizing the Kalman filter. 
Thus, AR markers are used as it is common in robot arm 
implementation. Durovic and Cupec use Aruco marker to 
identify the robot arm location in the camera FoV and grasp 
the target object in the FoV where the camera is placed in 
the environment (Durovic & Cupec 2018). Many types of 
markers are available in the market where they are known 
as fiducial markers. Sagitov studied the efficiency of every 
marker, and CALTag contains improvements in every aspect, 
such as occlusion and rotational rate (Sagitov et al. 2017). 
The Aruco marker is used in this study over CALTag as a 
higher rate of occlusion of CALTag might introduce froing 
materials to the system.

This study focuses on developing IBVS based visual 
servo system with eye-in-hand configurations with low cost 
and robust operation techniques for dynamic tracking and 
grasping target objects. The study’s primary objective is 
to develop a robot arm system for dynamic object tracking 
and grasping applications. In addition, the study focuses on 
developing an algorithm for dynamic grasping and sorting 
where the target object is identified using image processing 
and augmented reality. Besides, this study also tracks and 
estimates the motion and distance of moving objects and 
evaluates the system performance to grasp moving objects 
in the simulation environment.
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RESEARCH METHODOLOGY

Figure 1 shows the visual servo flowchart based on IBVS for 
dynamic object tracking and grasping.

FIGURE 1. IBVS Flowchart

HARDWARE ARCHITECTURE

The system, as displayed in Figure 2,  in this study consists 
of:
1. UR5 (Universal Robots):

6 DOF with a maximum payload of 5kg. Its joints have 
± 360º rotations in all joints, with a speed of 180º/s in 
rotation and 1m/s in reachability. Maximum reachability 
is capped at 850mm, and wrist 3 contains the actuator 
for grasping the object.

2. Intel Realsense D435i Camera:
Depth mapping camera with depth, RGB and infrared 
sensor for sweeping and detecting the Aruco marker in 
FoV. Placed on top of wrist 3 and utilized for obtaining 
the vector of the gripper to the target object.

3. Robotiq 2F Gripper:
Two-finger grippers with 140mm off opening for the 
initial stage of testing development for detecting and 
tracking application.

4. Suction Gripper:
Used in overall simulation for implementation in 
industrial manufacturing as the picking is not limited 
by 140mm constraint.

5. Aruco Markers:
Used for object identification and localization by the 
camera for robot arm for performing detection, tracking, 
and grasping.

 

FIGURE 2. Hardware Architecture and Aruco Markers 

SIMULATION

As depicted in Figure 3, simulation is done to enable fast 
recreation of the exact model of the robot arm and defy any 
negative impacts on the real robot arm when undergoing the 
testing phase. The software used in this study are as follows:
1. Robot Operating System (ROS):

An ecosystem for development and testing robot control 
system which consists of node which communicates 
through topics and services. The topic is a system bus 
with no information of node which publishes it. While 
service acts one by one, where one node offers service 
and another node asks for executed operation. 

2. GAZEBO:
A robot simulator for real robot simulation, which 
obtained by URDF file of the robot arm. This can be 
used to accurately identify collision between objects in 
the environment, simulate a camera or depth sensor for 
real-time viewing, and manipulate the joints and robot 
nodes in the ROS environment.

3. RVIZ:
Simulation environment in ROS for 3D visualization 
of the object. This environment is used for camera 
calibration and visualization in the simulation accurate 
to the real world.
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FIGURE 3. Simulation Environment

Software architecture for the recognition and tracking is 
developed where the Aruco marker must be recognized and 
tracked by tracking algorithms. Next, the ID data is obtained 
with its location mapping in the environment. Further 
movement is predicted, and grasping is taking place.

VISUAL SERVO ALGORITHM DEVELOPMENT

The overall IBVS control system used is shown in Figure 4. 
The required image is pre-updated to the system when the 
camera detects the image.

 

FIGURE 4. IBVS Control System

Overall Visual Servo Algorithm

As displayed in Figure 5, the basic visual servo algorithm 
mainly works as a detection and movement system, where 
when the Aruco marker is detected in the camera’s FoV, 
the robot arm moves to the updated location. The tracking 
is voided when the Aruco marker moves away from the 
camera’s FoV before the location is updated and the robot 
arm moved. The threshold speed for tracking with this 
method can be identified using this method. When the 
tracked marker was not in the arm’s reach, this situation 
caused the robot to move more than 80% or 68cm, and the 
robot moved back to the home pose.

FIGURE 5. Basic Visual Servo Flowchart
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FIGURE 6. Advanced Visual Servo Flowchart

Figure 6 depicts the advanced visual servo algorithm. 
The algorithm mainly works as a detection, prediction, 
and movement system. When the Aruco marker is detected 
in the camera’s FoV, the location is predicted with a 
moving marker, and the robot arm moves to the updated 
location. This tracking method is considered the advanced 
tracking method for tracking Aruco markers. Kalman filter 
implementation provides more reliability than the algorithm 
without the Kalman filter if the marker moves faster or away 
from the camera’s FoV. The prediction algorithm using the 
Kalman filter helps track or keep the marker in FoV of the 
camera. This method makes the tracking possible even on 
the threshold velocity for basic tracking. When the tracked 
marker is not in the reach of the arm, the robot moves more 
than 80% or 68cm, and the robot moves back to the home 
pose.

Kalman Filter 

Kalman filter is used for linear quadratic estimation where 
statistical error and measurement inaccuracy are utilized 
in the algorithm. The probability distribution of a variable 

for each period can be estimated using this filter. Kalman 
filter is utilized to estimate a parameter to be evaluated in an 
application. The Kalman filter is usually used for the dynamic 
visual servo to estimate moving target object location with 
camera velocity computations.  Figures 7 and 8 describe the 
computations algorithm with great for computing Kalman 
filter. Noise covariance matrix and sensor covariance matrix 
can be increased or raised to improve the Kalman filter 
prediction.

FIGURE 7. Kalman Filter Computation Overview
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FIGURE 8. Overall Kalman Filter Computation
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Markers were detected in all orientations, 

with a maximum distance of 7 meters from the 
camera, as listed in Table 1. For simplicity of the 
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made constant. Thus, the detection of all the IDs is 
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Kalman Filter Computation

P = Process covariance matrix
(Represents error in the estimate/process)

X = State matrix

R = Sensor noise covariance matrix
(Measurement Error)

µ = Control variable matrix

w = Predicted state noise matrix

Q = Process noise covariance matrix

Y = Measurement of the state

I = Identity matrix

K = Kalman gain

DT = Time for 1 cycle

𝑋𝑋0
𝑃𝑃0

𝑋𝑋𝑘𝑘−1
𝑃𝑃𝑘𝑘−1

𝑋𝑋𝑘𝑘𝑃𝑃 = 𝐴𝐴𝑋𝑋𝑘𝑘−1 + 𝐵𝐵𝜇𝜇𝑘𝑘 + 𝜔𝜔𝑘𝑘
𝑃𝑃𝑘𝑘𝑃𝑃 = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄𝑘𝑘

Predicted state is 
based on physical 
model and previous 
state.

Initial State Previous State (k -1) New State (Predicted) 𝑘𝑘𝑃𝑃

Update with new measurement 
and Kalman Gain

𝑌𝑌𝑘𝑘 = 𝐶𝐶𝑋𝑋𝑘𝑘𝑘𝑘 + 𝑍𝑍𝑘𝑘
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Figure 9 shows the AR (Aruco) detection algorithm. The 
detection algorithm detected the Aruco marker in the FoV 
of the camera when it was detected. The depth, orientation, 
and ED value were obtained from the marker detection and 
identification and tracking. After done identification and 
tracking, the algorithm ended. Identification and tracking 
were considered when the Aruco marker was not in the FoV 
of the camera for some time or after grasping. 
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1. EIH configuration robot arm with a camera mounted in 

wrist 3 of UR5.
2. The Aruco marker will move in FoV of a still camera 

frame with x, y, and z directions.

Figure 10 portrayed the configuration of the robot arm used 
for simulation in the detection and tracking part.

 

FIGURE 10. Robot Arm Configuration for Detection and Tracking

Markers were detected in all orientations, with a 
maximum distance of 7 meters from the camera, as listed in 
Table 1. For simplicity of the implementations, pitch, yaw, 
and roll settings are made constant. Thus, the detection of 
all the IDs is accurate as it is in simulations, but in real-
world implementations, some errors or delays are present 
in the system. In this case, the detection distance was 7 
meters, which is the maximum coded distance in the source 
library for the camera, but in real-world implementation, the 
detection may fail when the image processing error occurs.
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Update with new measurement 
and Kalman Gain

𝑌𝑌𝑘𝑘 = 𝐶𝐶𝑋𝑋𝑘𝑘𝑘𝑘 + 𝑍𝑍𝑘𝑘

Measurement Noise (Uncertainty)

𝐾𝐾 =
𝑃𝑃𝑘𝑘𝑃𝑃 𝐻𝐻

𝐻𝐻𝑃𝑃𝑘𝑘𝑃𝑃 𝐻𝐻𝑇𝑇 + 𝑅𝑅
𝑋𝑋𝑘𝑘 = 	𝑋𝑋𝑘𝑘𝑃𝑃 + 𝐾𝐾[𝑌𝑌 − 𝐻𝐻𝑋𝑋𝑘𝑘𝑃𝑃 ]

Current becomes 
previous

𝑃𝑃𝑘𝑘 = 𝐼𝐼 − 𝐾𝐾𝐻𝐻 𝑃𝑃𝑘𝑘𝑃𝑃
𝑋𝑋𝑃𝑃

Output of 
Updated 
state
𝑋𝑋𝑘𝑘	
𝑃𝑃𝑘𝑘

	𝑘𝑘 → 𝑘𝑘 − 1

UR5 Robot 
Arm Aruco

Marker

Robo+q -2F 
Gripper

Realsense
Camera
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TRACKING

The same environment as in Figure 5 is utilized in tracking 
the Aruco marker. First, tracking of the Aruco marker was 
made for markers approaching from x,y, and z directions 
with different orientations than the actual marker id. Then 
the tracking was further developed to enable the following 
feature for the robot arm to constantly make the marker in 
the center of the FoV until its maximum reachability. 

Next, the threshold speed for tracking the moving 
marker is determined for the basic method by increasing 
the marker’s movement speed, as shown in Figure 11. 
The threshold velocity is determined to be 0.4m/s for the 
basic detect and move method. After that, the manipulator 
struggles to keep track, and the marker sometimes goes 
out of the camera frame. Marker position for tracking is 
kept at 0.2 meters from the end-effector for final tracking 
using Kalman Filter, as depicted in Figure 12. Tracking is 
valid at the speed of 0.4m/s, making tracking possible even 
though the tracking is not very smooth and sometimes lacks 
behind the object. But having a Kalman filter overshadows 

the threshold speed tracking. The flat line in tracking using 
Kalman Filter shows that the marker is not in the camera’s 
FoV.

TABLE 1. Table of Aruco Marker Identification

Marker 
ID Initial Detected Direction Distance 

(m)
0 x, y, z 7

1 x, y, z 7

2 x, y, z 7

3 x, y, z 7

FIGURE 11. Robot Arm Behaviour for Threshold Speed
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GRASPING

The grasping results shown in Figure 13 are built based on 
the simulation of the robot arm with an EIH configuration 
camera with a conveyer belt in the environment. First, the 
target object approaches the FoV of the camera, and the 
process of grasping takes place. In this phase, the grasping 
succession of the target was recorded with multiple targets 
on the conveyer belt approaching the camera’s FoV.

 

FIGURE 13. Robot Arm Configuration in Simulation Environment

For simplicity, two scenarios are tested marker tracking 
with Kalman filter and without Kalman filter. Figures 14 
and 15 show the process flowchart of the basic grasping and 
with Kalman filter implementation. Grasping performances 
for both implementations are recorded by evaluating the 
time taken to perform the grasp, as shown in Figures 16 to 
20. These outcomes are apparent when the motion of the 
end-effector detects the target object in FoV and moves 
until the marker and end-effector move together, showing a 
successful grasping.

FIGURE 14. Flowchart of Basic Grasping

FIGURE 15. Flowchart of Grasping with Kalman
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FIGURE 17. Estimated Simulation Time with a Conveyor Speed of 0.1m/s with Kalman Filter
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FIGURE 19. Estimated Simulation Time with a Conveyor Speed of 0.2m/s with Kalman Filter 
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Table 2 shows the success rate when tested 
with 10 markers continuously in the conveyor 
system. With basic tracking, the robot arm could not 
grasp the marker when the object moves at 0.3m/s 
and even failed to grasp some markers at a speed of 
0.2m.s. But with the Kalman filter, a 100% success 
rate was obtained at a speed of 0.2m/s and an 80% 
success rate of 0.3m/s. This outcome proves that 
Kalman filter implementation can be more 
beneficial for faster moving objects in the real 
world. The obtained results are also backed up by 
recent studies showing that grasping time increases 
correspondence to the speed of moving objects and 

the image processing controllers (Ishak & 
Mahmood, 2019; Shaw & Chi, 2018). 

TABLE 2. Table of Aruco Marker Grasping Performance  
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With 
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0.3 2.4 80 
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FIGURE 20. Estimated Simulation Time with a Conveyor Speed of 0.3m/s with Kalman Filter 
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FIGURE 19. Estimated Simulation Time with a Conveyor Speed of 0.2m/s with Kalman Filter

FIGURE 20. Estimated Simulation Time with a Conveyor Speed of 0.3m/s with Kalman Filter

Table 2 shows the success rate when tested 
with 10 markers continuously in the conveyor
system. With basic tracking, the robot arm could not
grasp the marker when the object moves at 0.3m/s
and even failed to grasp some markers at a speed of 
0.2m.s. But with the Kalman filter, a 100% success
rate was obtained at a speed of 0.2m/s and an 80% 
success rate of 0.3m/s. This outcome proves that
Kalman filter implementation can be more
beneficial for faster moving objects in the real
world. The obtained results are also backed up by
recent studies showing that grasping time increases
correspondence to the speed of moving objects and

the image processing controllers (Ishak &
Mahmood, 2019; Shaw & Chi, 2018).
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Table 2 shows the success rate when tested with 10 
markers continuously in the conveyor system. With basic 
tracking, the robot arm could not grasp the marker when 
the object moves at 0.3m/s and even failed to grasp some 
markers at a speed of 0.2m.s. But with the Kalman filter, 
a 100% success rate was obtained at a speed of 0.2m/s 
and an 80% success rate of 0.3m/s. This outcome proves 
that Kalman filter implementation can be more beneficial 
for faster moving objects in the real world. The obtained 
results are also backed up by recent studies showing that 
grasping time increases correspondence to the speed of 
moving objects and the image processing controllers (Ishak 
& Mahmood, 2019; Shaw & Chi, 2018).

TABLE 2. Table of Aruco Marker Grasping Performance 

SETUP
CONVEYER 
SPEED (m/s)

TIME TAKEN 
(s)

SUCCESS 
RATE

Basic 0.1 1.2 100
0.2 2.0 70
0.3 Keeps Failing 0

With Kalman 
Filter

0.1 0.8 100
0.2 1 100
0.3 2.4 80

CONCLUSION

This paper studies the dynamic object tracking and 
grasping technique based on the IBVS method with eye-in-
hand robot arm configurations. The developed algorithm 
detected and tracked the Aruco marker using the basic 
image processing and Kalman filter methods. The grasping 
is greatly influenced by the object’s speed, where it can be 
said it is directly proportional to the time taken to perform 
the grasping. Grasping with the Kalman filter proves more 
effective compared with the basic tracking and updating 
method in EIH. Basic tracking and grasping can perform the 
best speed up to 0.2m/s, but some grasping is still missed 

when the update is slower. Kalman filter implementation 
proves its superiority by grasping enabled for speed up to
0.3m/s, as compared without Kalman filter. 

Even though the tracking threshold speed is defined at 
0.4m/s when implemented in the real-world environment, 
the marker only passes through FoV once, and higher speed 
caused the marker to append from reachability very fast 
before the prediction occurs. 

The study can be further improved by implementing 
motion planning for moving objects for obstacle detection 
and avoidance. Further studies can also be made on the 

ge p g p fa  pima rocessin ipeline for ster image rocessing and 
updating controller for commending the robot arm joints.
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