
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea in Fisica

DEVELOPMENT OF A
HETEROGENEOUS CLUSTERING

ALGORITHM FOR PARTICLE SHOWER
RECONSTRUCTION IN HIGH ENERGY

PHYSICS USING THE SYCL
ABSTRACTION LAYER

Relatore:

Prof. Francesco Giacomini

Correlatore:

Dott. Felice Pantaleo

Presentata da:

Luca Ferragina

Anno Accademico 2021/2022



Abstract

Nei prossimi anni è atteso un aggiornamento sostanziale di LHC, che prevede di aumen-
tare la luminosità integrata di un fattore 10 rispetto a quella attuale. Tale parametro è
proporzionale al numero di collisioni per unità di tempo. Per questo, le risorse computa-
zionali necessarie a tutti i livelli della ricostruzione cresceranno notevolmente. Dunque,
la collaborazione CMS ha cominciato già da alcuni anni ad esplorare le possibilità offerte
dal calcolo eterogeneo, ovvero la pratica di distribuire la computazione tra CPU e altri
acceleratori dedicati, come ad esempio schede grafiche (GPU). Una delle difficoltà di
questo approccio è la necessità di scrivere, validare e mantenere codice diverso per ogni
dispositivo su cui dovrà essere eseguito. Questa tesi presenta la possibilità di usare SYCL
per tradurre codice per la ricostruzione di eventi in modo che sia eseguibile ed efficiente
su diversi dispositivi senza modifiche sostanziali. SYCL è un livello di astrazione per il
calcolo eterogeneo, che rispetta lo standard ISO C++. Questo studio si concentra sul
porting di un algoritmo di clustering dei depositi di energia calorimetrici, CLUE, usando
oneAPI: l’implementazione SYCL supportata da Intel. Inizialmente, è stato tradotto
l’algoritmo nella sua versione standalone, principalmente per prendere familiarità con
SYCL e per la comodità di confronto delle performance con le versioni già esistenti. In
questo caso, le prestazioni sono molto simili a quelle di codice CUDA nativo, a parità di
hardware. Per validare la fisica, l’algoritmo è stato integrato all’interno di una versione
ridotta del framework usato da CMS per la ricostruzione. I risultati fisici sono identici
alle altre implementazioni mentre, dal punto di vista delle prestazioni computazionali,
in alcuni casi, SYCL produce codice più veloce di altri livelli di astrazione adottati da
CMS, presentandosi dunque come una possibilità interessante per il futuro del calcolo
eterogeneo nella fisica delle alte energie.



Contents

Introduction 3

1 Clustering algorithms in high energy physics 5
1.1 The clustering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 CLUE standalone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 What is CLUE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Clustering procedure . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Heterogeneous computing and compatibility layers . . . . . . . . . . . . . 10
1.3.1 The need for heterogeneous computing . . . . . . . . . . . . . . . 10
1.3.2 The Patatrack group . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 SYCL and other compatibility layers . . . . . . . . . . . . . . . . 11

2 SYCL abstraction layer 13
2.1 Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Compilation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Kernels execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 SYCL implementation of CLUE 26
3.1 Porting the standalone version of CLUE . . . . . . . . . . . . . . . . . . 26

3.1.1 Notable changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Physics validation and performance comparison . . . . . . . . . . 28

3.2 Integrating CLUE in a CMSSW-like framework . . . . . . . . . . . . . . 30
3.2.1 An introduction to the framework . . . . . . . . . . . . . . . . . . 31
3.2.2 Changes and improvements from the standalone version . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Physics performance . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



3.3.2 Porting considerations . . . . . . . . . . . . . . . . . . . . . . . . 38

Conclusions and future work 40

Acknowledgements 42

Bibliography 44

2



Introduction

Research in high energy physics focuses on studying particles at the most fundamental
level in order to discover how they interact. In order to gain an insight on the physical
processes that involve matter at the subatomic scale, it is necessary to accelerate parti-
cles and make them collide at very high energies. The Large Hadron Collider (LHC) [1],
at CERN (Counseil Européen pour la Recherche Nucléaire) [2] accelerates protons to
14 TeV, collimating them in two parallel beams that collide at specific sites where the
particle detectors are located. Four main experiments are hosted at the LHC facility:
ALICE [3], LHCb [4], CMS [5] and ATLAS [6], of which the latter two are general pur-
pose experiments looking to improve our knowledge of the Standard Model [7]. When
protons collide at such high energies, many other particles are produced and scattered
in every direction. These particles fly through the detectors and are stopped at different
levels depending on their charge and energy, and can thus be identified. In high energy
physics there are mainly two ways to look for new physics: either increase the energy at
which particles collide, or observe more collisions to gain insight into the rarest processes.
For this reason, LHC periodically undergoes a series of hardware upgrades that mainly
aim to address both the aforementioned points. In particular, the LHC is scheduled to
receive a major upgrade by 2029, which will deal with both points. Firstly, the energy
of the colliding beams will be increased up to the theoretical limit of the machine of
7 TeV per beam, with resulting collisions at 14 TeV in the center of mass. Secondly,
the number of collisions observed per unit time (luminosity) will increase by roughly
a factor 10. Because of this, detectors have to receive periodic hardware upgrades as
well, to improve their sensitivity. As a result of the hardware upgrades, the statistics
of each event increase as well as the amount of data to be collected and processed with
very strict time requirements. To accomplish such a task, each experiment’s software
must be regularly updated together with the hardware. In particular, we can distinguish
two kinds of algorithms used to process the data coming from the detectors: trigger and
reconstruction algorithms. The first kind filters the collisions’ data in real time by select-
ing and saving only events that satisfy particular conditions due to which they might be
good candidates for new physics. Reconstruction algorithms are instead used to study
these potentially interesting events by reproducing the chain of decays and interactions
with the detectors that have occurred after the proton-proton collision.

3



In this context, the CMS experiment has invested part of its resources to explore differ-
ent heterogeneous computing solutions. This means that several parts of the software
reconstruction can run simultaneously on different types of devices, like CPUs, GPUs
or FPGAs. Recently, considerable efforts have been put in order to improve the code
portability across different architectures and backends. Since writing multiple versions
of the same code for each device would be extremely inefficient, some abstraction layers
have been considered. In every case, the main objective is to produce an executable file
that can run on many different architectures while maintaining a level of performance
as close as possible to the native implementation.
This thesis focuses on one of these abstraction layers, SYCL [8], which is based on the
ISO C++ standard [9]. In particular, the porting experience of one CMS clustering al-
gorithm from CUDA [10] code, designed to run exclusively on NVIDIA GPUs, to SYCL,
with a focus on the performance and physics analysis, is discussed.
In Chapter 1 the clustering problem in high energy physics is introduced, with a de-
scription of the CLUE algorithm, chosen for the porting experience. In Chapter 2 the
SYCL standard is presented, along with its various implementations. In particular,
more details are given on Data Parallel C++, the chosen implementation to carry out
the port. Finally, in Chapter 3 the porting results are shown, as well as the performance
measurements.

4



Chapter 1

Clustering algorithms in high energy
physics

1.1 The clustering problem

Cluster analysis is, in general, a non trivial problem. Even the definition of cluster can
change wildly depending on the context. Due to these circumstances, many clustering
methods have been developed, based on various notions of cluster [11]. Currently, some
of the most common clustering algorithms can be divided in the following categories:

• Connectivity models : generally based on distance between points;

• Partitioning : such as k-mean algorithms, represent each cluster by optimizing a
single function which depends on the distance [12];

• Density models : consider dense regions in the data space as clusters;

• Hierarchical methods : build clusters following a recurring dendrogram with split-
ting or merging.

There is no general correct way to produce clusters: each problem requires a specific
approach depending on the conditions known a priori, the expected results and also the
desired performance.

In the upgrade plan for the future revision of LHC, HL-LHC (High Luminosity Large
Hadron Collider), calorimeters with high readout granularity have been suggested to
observe fine grained images of hadronic and electromagnetic showers [13]. In the case
of CMS, the High Granularity calorimeter (HGCAL) will replace the current endcap
calorimeters. It consists of several layers and has both an electromagnetic and hadronic
compartments.

5



• The Electromagnetic section (CE-E) is made up of cassettes each containing two
layers of sensors and two layers of absorber;

• The Hadronic section (CE-H) contains both silicon sensors and scintillator tiles, as
shown in Figure 1.1.

The latter is divided into two sections: the first having a finer sampling than the second.
The first few layers of the fine part of the Hadronic section are made of hexagonal
silicon sensors only, each having a surface area of 0.5 or 1 cm2; layers in the last part of
the hadronic compartment instead are mixed, with both silicon sensors and scintillator
tiles [14].

(a) High density silicon
sensors

(b) Low density silicon
sensors

(c) Layout of a mixed layer
with both silicon and scintil-
lator sensors

Figure 1.1: Schematic representation of the different sensor layouts on HGCAL layers.

Source:[15, slide 4]

Following a collision, particles that enter the detector interact with its materials and
produce showers, whose energy is measured by the sensors on each layer. By clustering
the resulting energy deposits (hits) it is possible to reconstruct the shower shape and
its main parameters and, after other steps in the reconstruction, identify all of the hits
produced by a single particle. Since the calorimeter will have an unprecedentedly high
granularity, the most efficient way to cluster the deposits is to group them in bidimen-
sional clusters layer by layer [16] and then connect clusters in subsequent layers with
pattern recognition algorithms. In this context, a computational challenge arises, due to
the larger amount of data collected in the era of HL-LHC and the limited computational
time available at the CMS High Level Trigger (HLT) [17], responsible for the selection
of the events of interest. Since event reconstruction must happen at millisecond-level

6



time frames, the algorithm employed needs to be highly efficient and scale well (i.e. lin-
early or better) as the number of hits increases, in order not to be a bottleneck for the
performance. These specific requirements have brought CMS to explore the potential of
heterogeneous computing with hardware accelerators such as Graphics Processing Units
(GPUs) or FPGAs which can help achieving a higher number of events processed per
unit time (throughput) and better energy efficiency.

The input of any clustering algorithm is a set of n points and the output is a set of k
clusters which is usually one or two orders of magnitude smaller than n. For clustering
in high energy physics, n usually varies from a few thousands to a few millions, while k
generally depends on the number of incoming particles as well as the number of layers
of the calorimeter. In the case of the HGCAL detector, the average number of hits in a
cluster m = n/k can be estimated to be in the order of 10. This leads to the relation
between the number of hits n, the number of clusters k and the average number of hits
in a cluster m as n > k ≫ m. Starting from partitioning algorithms, these are not
applicable in this case since the number of clusters k is not known a priori. Moving to
hierarchical clustering, this method is not suitable as well, since it does not scale well
with the number of points as each decision to split or merge needs to scan over many
objects or clusters. Density based methods are the most interesting for the HGCAL
application, as they are capable of finding clusters of any shape and are efficient for
large spacial data collections. However, well-known existing density-based clustering
algorithms intrinsically include serial processes that are hard to parallelize. Due to
all these reasons, CMS has developed its own clustering algorithm to fit the specific
application in the HGCAL detector.

1.2 CLUE standalone

1.2.1 What is CLUE?

Clustering of Energy (CLUE) is “a fast parallel clustering algorithm for high granularity
calorimeters in high-energy physics” [18], which was specifically developed to address all
of the aforementioned challenges. This algorithm follows a density-based approach with
some specific optimizations implemented to give it a greater expression of parallelism.
The input data of the algorithm is a series of hits each having its corresponding coor-
dinates (x, y and layer) and energy. For each point, two key variables are calculated:
the local density ρ and the separation δ. The first one represents the energy density in
the area of the hit, while the second variable corresponds to the distance from the hit
and the nearest hit with higher local density. From these two parameters it is possible
to cluster points depending on arbitrary thresholds set on a case-by-case basis.

7



Figure 1.2: Schematic representation of CLUE clustering procedure: from fixed spacial
grid to clusters.

Source: [18], figure 2

1.2.2 Clustering procedure

Since CLUE was specifically designed to be used in high-energy calorimetry, where hits
are registered on sensor cells whose layout is a multi-layer tessellation, the algorithm’s
data is indexed with a fixed grid, which divides the space into rectangular bins. This
indexing choice allows to fast query the neighborhood of multiple points at the same
time to better express parallelism on GPUs and when running on multiple threads.

CLUE requires three parameters: the critical distance, dc, is the cut-off distance
used for the calculation of the local density; the critical density, ρc, is the minimum
local density to promote a point as a seed or the maximum density to demote it as an
outlier; finally the outlier delta factor, odf , is a multiplicative constant applied to the
critical distance to obtain the maximum distance between a point and its nearest point
with higher density over which the point is excluded from the clustering process. These
parameters are chosen at runtime and can be tuned by the user based on the clustering
application. For example, dc can be tied to the expected shower size and the granularity
of the detectors (possibly differing between silicon-based layers and scintillators), ρc can
be tuned to maximize the signal to noise ratio and odf can be chosen considering the
shower separation. In this way, the use of configurable parameters allows CLUE to be
more flexible at clustering different events for the specific desired goals of physics.

In Figure 1.2 the clustering procedure of CLUE is shown in a 6 × 6 grid. First, a
fixed grid is constructed and each point is arranged in the bin mapped to its coordinates.
Then, CLUE calculates the local density ρ for each point by querying its neighborhood, as
shown by the different sized and colored dots (A). Afterwards, each point gets assigned
a nearest higher nh, defined as the nearest point with higher local density and their
distance δ is calculated (B). Points with ρ higher than the critical density ρc and δ
greater the critical distance dc are promoted as seeds, while points with lower density
and larger separation (δ > dc × odf) are demoted to outliers. All the other points that

8



are neither seeds nor outliers are marked as followers of their respective nearest highers.
As a consequence of this logic, each seed has a chain of followers which can be iteratively
navigated to build a cluster. At the end of the procedure, only clusters and outliers
remain, with the latter points having no followers and not being followers of any other
point.

1.2.3 GPU implementation

As previously discussed, CLUE was first developed in order to provide a parallelizable
clustering algorithm for high occupancy scenarios in high energy physics, targeting GPUs
as hardware accelerators. The main advantage of this class of devices is given by their
massive number of physical threads, than can be used to make computations in parallel.
The GPU implementation of the CLUE algorithm takes advantage of the multi-threading
capabilities of GPUs thanks to the used data structure and the design of each function
in the step-by-step procedure. It assigns one GPU thread to each point, for a total of n
threads, to create the spacial grid, calculate the local density and separation, promote
or demote the point and register points as followers of the corresponding nearest higher.
In the last step of the algorithm, each seed is assigned to a single thread, with a total
of k threads that build clusters in parallel going through the chain of followers itera-
tively. Since the results of each step are required in the following ones, it is necessary to
synchronize all the threads before moving onto the next computation. This is naturally
done by implementing each step into a separate kernel. Data for all of the points is
stored in the global device memory as a single structure-of-array (SoA), which contains
the points’ coordinates, layer numbers and energies.

One key factor to take into account when developing software for GPUs is that,
due to the parallel nature of the execution, it can happen that multiple threads try to
access and modify the same address in global memory at the same time. For the CLUE
application, thread conflicts can happen in three cases:

1. multiple points need to register to the same bin simultaneously;

2. multiple points need to register to the list of seeds simultaneously;

3. multiple points need to register as followers to the same point simultaneously.

Because of this, some atomic operations are required to avoid race condition among
threads. When performing an atomic operation, a thread is granted exclusive access to a
specific memory location that becomes inaccessible to all other threads until it finishes.
The usage of atomic operations naturally causes some serialization among threads in a
race. Its impact is negligible in cases 1 and 3, since the bin dimension and the number
of followers per point are usually small. By contrast, serialization in case 2 can cause a
significant slowdown since the number of seeds k can be large. However, this operation

9



is still faster on GPU memory when compared to the data transfer between host and
device; therefore, the total execution time of CLUE does not suffer significantly from
this serialization.

1.3 Heterogeneous computing and compatibility

layers

1.3.1 The need for heterogeneous computing

The high luminosity upgrade for the LHC, scheduled before the beginning of the next
runs from 2029 onwards, will increase the number of collisions per unit time (namely
the luminosity) by roughly a factor of 10, resulting in an average pileup of 200 proton-
proton collisions every 25 ns. Such an increase in the number of events per second
will pose an incredible challenge for both online and offline software reconstruction of
each experiment [19]. This added complexity far exceeds the expected increase in the
processing power for conventional CPUs and thus calls for the exploration of novel and
different solutions. One such possibility is heterogeneous computing, which is already
being exploited by industry and high performance computing centers to achieve better
efficiency and higher throughput by matching the job to the best possible architecture.
Specifically, applying this new paradigm to CMS software reconstruction (CMSSW) and
its framework means that part of the work can be offloaded to one or more graphics pro-
cessing units (GPUs), thus easing the load on the CPUs while simultaneously increasing
the total throughput and improving energy efficiency. Tasks offloaded to a GPU are
executed in a parallel fashion and, most importantly, asynchronously with respect to
the code running on CPU, meaning that the CPU resources freed by offloading work to
GPUs can be used for other tasks at the same time. The shift to heterogeneous com-
puting has already proved to be a success for CMS offline reconstruction, where GPU
implementations show up to three times increase in performance in some cases [19]. How-
ever, adopting heterogeneous computing also poses some challenges, especially in code
portability and maintainability. While having the possibility to offload work on different
hardware looks promising, it also means that in order to be able to efficiently execute
software on heterogeneous hardware, the code should be written and optimized for each
specific backend1 to be targeted. Even considering only the main GPU manufacturers,
one would need to take into account three different implementations for each kernel in all
of the algorithms, leading to a massive code duplication, whose maintenance represents
an insurmountable challenge and a great resource sink.

These reasons led to explore different compatibility layers to ease the transition to
heterogeneous computing. A candidate layer must support multiple architectures such

1In software engineering, the physical infrastructure or hardware on which the code is executed.

10



that the programmer can write a single source code without having to sacrifice perfor-
mance.

1.3.2 The Patatrack group

The adoption of heterogeneous computing in CMSSW has been first proposed by the
CMS Patatrack group. The group was founded in 2016 and is composed by a diverse
set of people whose main objective is to demonstrate that it is possible to adopt het-
erogeneous computing in both online and offline reconstruction with benefits both in
terms of software and hardware. Firstly, the team developed parallelizable algorithms
for calorimetry reconstruction as well as the Pixel Detector[20], with promising results
which led to a wider push to support heterogeneous computing in CMMSW. In 2021,
the group managed for the first to reconstruct collisions with GPUs[21] offloading ∼30%
of the HLT processing to GPUs. The number of algorithms that can run on GPUs is
planned to grow during subsequent runs with the goal of offloading at least ∼50% of the
processing during Run-4 of HL-LHC and ∼80% in Run-5. In this context, the team is
developing new algorithms as well as porting old ones to GPUs.The work presented here
is part of Patatrack’s research on compatibility layers for heterogeneous computing and
development of parallelizable algorithms.

1.3.3 SYCL and other compatibility layers

As previously discussed, the adoption of heterogeneous computing, while improving per-
formance and efficiency, also poses a great challenge in the ability to maintain code and
port it to different architectures. Therefore, in recent years the development of portabil-
ity layers has ramped up significantly as more and more applications require to offload
work to different accelerators. Many different solutions are now available, each propos-
ing a different way to handle the problem but all trying to use a single source code to
produce a unique executable file able to run on as many different backends as possible.
In this context, the CMS collaboration and in particular the High Level Trigger devel-
opers have started looking for a suitable compatibility layer to adopt for heterogeneous
event reconstruction code. A large fraction of CMSSW algorithms has been successfully
ported to CUDA a few years ago, and it is being executed already on both CPUs and
NVIDIA GPUs (which handle the more computing-intensive parts). In order to adapt
the software reconstruction to more vendors and accelerators, a large fraction of the
framework has already been ported to such a compatibility layer and this new version
is scheduled to run in production after the LHC Christmas shutdown between 2022 and
2023. The compatibility layer currently in use is alpaka: a header-only abstraction li-
brary for accelerator development [22]. Such portability library allows the abstraction of
the underling levels of parallelism by mapping some custom-defined classes to different
hardware depending on the backend. In general, the work division is very similar to

11



CUDA’s grid-blocks-threads division with the addition of an extra element layer that
allows for different mappings on CPUs and GPUs. In this way, the compatibility layer
is able to exploit the different parallelization capabilities of each different backend. As
previously stated, a large fraction of the software reconstruction has already been ported
to alpaka, which thus allows to only develop and maintain one source code while still be-
ing able to run the reconstruction on both CPUs and NVIDIA GPUs. Support for other
backends is still ongoing: Intel GPUs are not yet supported by alpaka itself, while AMD
GPUs are officially supported, but the corresponding backend has not been implemented
in the software reconstruction yet.

Although some other compatibility layers, like kokkos [23], have been explored, alpaka
is, as of now, the most promising of such layers for the CMS reconstruction. However,
SYCL is still a solution being tested for three main reasons:

• SYCL is a royalty-free project, supported by many actors in the tech industry,
which bodes well for the future support of the standard;

• As a new compatibility layer is developed, it is always relevant to explore its per-
formance in comparison to native code and other compatibility layers;

• While not all the backends have been implemented yet, SYCL promises to support
a variety of devices: from CPUs to GPUs and also Intel’s FPGAs.

Furthermore, being a royalty-free project, SYCL can count on a variety of implementa-
tions which are explored in more detail in Section 2.2 but, at a base level, this allows for
more flexible adaptations of the standard to specific needs.

12



Chapter 2

SYCL abstraction layer

2.1 Standard

SYCL is an abstraction layer for heterogeneous computing open source end royalty-free,
maintained by Khronos Group [24]. At its core, SYCL proposes a more flexible and
simple way to write code for multiple devices, thus improving code portability and in
general, simplifying the maintenance of code. On a high level, SYCL defines a library
that allows programmers to write a single source code to be executed on different devices
thanks to the SYCL runtime. A standard SYCL application contains code compliant
with the ISO C++ standard which can be roughly divided into host code, executed by the
CPU, and device code, enclosed in kernels, to be executed by one or more heterogeneous
devices. SYCL kernels are basically C++ function objects, so objects of some class that
overload the ”function call operator” (). For this reason, simple kernels are usually
implemented as lambdas. Furthermore, device code compilation is more complicated
than standard host code compilation, the added complexity is explored in the following
sections.

As previously stated, SYCL tries to be as compliant as possible with ISO C++ stan-
dards so much that all of the host code can, in theory, be compiled with a standard C++
compiler to produce an executable that can run on the CPU. This is true until any kernel
is called or any OpenCL1 integration is required. Some C++ features are unavailable
in SYCL to guarantee the highest degree of portability across most different kinds of
devices. A couple of examples are the inability to use function pointers or call virtual
functions inside kernels. Furthermore, the whole error handling system is different from
standard C++, mainly for the need to throw and catch asynchronous exceptions. Since
heterogeneous computing is becoming increasingly more relevant year over year, Khronos

1OpenCL™ (Open Computing Language) is an open, royalty-free standard for cross-platform, parallel
programming of diverse accelerators found in supercomputers, cloud servers, personal computers, mobile
devices, and embedded platforms [25].

13



is also cooperating with the C++ committee to integrate heterogeneous programming
into the standard. Code 2.1 shows the basic syntax of a SYCL application.

1 #include <CL/sycl.hpp>

2

3 int main()

4 {

5 // allocate input data on host

6 int data[1024];

7

8 // initialize sycl queue. When created, the queue is tied to a device

9 auto q = sycl::queue(sycl::default_selector());

10

11 // allocate memory on the device

12 auto d_a = sycl::malloc_device<int>(1024, q);

13

14 // copy input data from host to device

15 // wait for the copy to finish at the end

16 q.memcpy(d_a, &data, 1024 * sizeof(int)).wait();

17

18 // submit task to the device

19 q.submit([&](sycl::handler &cgh)

20 {

21 cgh.parallel_for(sycl::range<1>(N), [=](sycl::id<1> idx)

22 {

23 // do work on data

24 });

25 }).wait();

26

27 // copy result data from device back to host

28 q.memcpy(&data, d_a, 1024 * sizeof(int)).wait();

29

30 // free device memory

31 sycl::free(d_a, q);

32 }

Code 2.1: Sample code of a SYCL application.

Here the most important characteristics are highlighted, with some of them discussed
in greater detail in the following sections. First up, the distinction between device code
and host code:

14



• Line 19-25 is device code, every operation inside a sycl::queue::submit() will be
executed on the device and the host will only take care of scheduling the work;

• All of the other code will be executed on the host. This includes device selection
and every memory operation on it.

This separation is also tied to a different compilation model which will be explained in
more detail in Section 2.3. On a general level, the SYCL integration starts by creating
a sycl::queue, this object is tied to a specific device (that can be a CPU, GPU, or
FPGA) and is used to manage its memory and the scheduling of jobs to be executed on
it. Memory on the device is allocated through the sycl::malloc device function and
freed using sycl::free. Note that in both cases a queue has to be provided to get the
context and device on which to allocate or free the memory. Finally, note that after each
queue operation there is an explicitly wait used to synchronize the completion of the
kernel. Data dependencies and synchronization are discussed at length in Section 2.4.3.
In general, this is not strictly necessary, depending on the goals and structure of the
program.

2.2 Implementations

Being an open-source, royalty-free, project means that SYCL has many different imple-
mentations which all support different backends. The main SYCL implementations are
schematically reported in Figure 2.2.

Figure 2.2: Overview of the main SYCL implementations.

Source:[24]

15



In general, as of SYCL 2020, an implementation is made of four different components,
represented in Figure 2.3:

• SYCL interface: a template library that provides the developers with the features
of SYCL;

• SYCL runtime: the library that schedules and executes work on both the host and
devices. Specifically, it schedules memory operations, launches kernels, and tracks
data dependencies;

• Backend interface: point of contact between the SYCL runtime and a specific
device. Some examples of backends are OpenCL (used to interface with CPUs),
CUDA (used to interface with NVIDIA GPUs), Level Zero (used to interface with
Intel GPUs), and HIP/ROCM (used to interface with AMD GPUs). Not all back-
ends are supported in all the implementations.

• SYCL device compiler: C++ compiler used to identify SYCL kernels and compile
them down to an Intermediate Representation (IR) to then be linked with code
compiled by the host compiler.

Figure 2.3: Schematic representation of the SYCL implementation backend interface.

Source:[26, lesson 1 - slide 12]

16



OneAPI and Data Parallel C++

Data Parallel C++ is the SYCL implementation developed by Intel and integrated into
oneAPI, their toolkit for heterogeneous programming [27]. This implementation is com-
pliant with the SYCL 2020 standard and thus supports the Universal Shared Memory
model, as described in Section 2.4.1. oneAPI includes a low-level hardware interface
known as Level Zero. This backend interfaces directly with the SYCL runtime and is
used to execute code on Intel GPUs and FPGAs that support it. As far as other back-
ends are concerned, oneAPI officially supports OpenCL to interface with CPUs and its
support for CUDA is under development. Its native support for USM and the auxil-
iary tools provided, as well as native support for Intel hardware, are what ultimately
brought CMS to choose this specific SYCL implementation to explore its capabilities
in high-energy physics software reconstruction. A particular highlight is a support tool
for developers who are first exploring SYCL capabilities. Included in oneAPI, there is a
compatibility tool, Data Parallel Compatibility Tool (DPCT), which can automatically
convert CUDA code into SYCL code. While the output from the tool is not always
correct and some specific functions or features are not translated entirely, the compati-
bility tool surely helps to lay the groundwork to move from CUDA code to SYCL code,
easing the refining work that needs to be done by the developer. The Data Parallel C++
compiler, dpcpp, is regularly forked from the open source LLVM project [28].

2.3 Compilation model

SYCL follows a single-source, multiple-pass compilation model. Since the source code
is just one, the kernels are standard C++ function objects2, generally implemented
as lambda expressions. Because host and device codes are different, the code passes
through a compiler twice: first through the host compiler to produce a CPU object and
then through the device compiler. This second pass on the device code produces a device
IR for the specific architecture of the targeted device. Finally, the CPU object is linked
with the IR to produce a single executable with code for both the CPU and the device.
What was just described is generally known as the Ahead of Time (AoT) compilation
model. The SYCL implementation chosen to carry out the porting, oneAPI, also allows
compiling only the host code while not targeting any specific device. In this case, the
device code will be compiled only at run time using the Just in Time (JiT) compiler.
This gives the user more flexibility to run on many different supported devices while
not necessarily having access to a compiler or compiled code for a specific device or
architecture (as long as both are supported by the implementation).

2In C++, a function object is a generic class which implements an overload of the operator function
call ().

17



2.4 Execution model

Every SYCL device is divided into multiple Compute Units (CUs) which are in turn
split into Processing Elements (PEs). Every kernel computation will be executed on
the PEs of the relevant device. When a kernel is launched, a thread hierarchy gets
initialized. The main element in a SYCL thread hierarchy is the ND-range, which is a
1, 2, or 3-dimensional grid of work groups, that are equally sized groups of the same
dimensionality. These work groups are in turn divided into work items, as shown in
Figure 2.4. Diving into the single elements of the hierarchy, in SYCL, the programmer
has access to:

• Work item: a single thread within the thread hierarchy;

• Work-group: a 1, 2 or 3-dimensional set of threads (work-items) within the thread
hierarchy;

• ND-range: it’s the representation of the thread hierarchy used by the SYCL runtime
when executing work. It has three components: the global range, the local range,
and the number of work groups. The global range is the total number of work
items within the thread hierarchy in each dimension; the local range is the number
of work items in each work group in the thread hierarchy, and the number of work
groups is the total number of work groups in the thread hierarchy, which can be
derived from the global and local.

Figure 2.4: Pictorial representation of the SYCL thread hierarchy.

On some modern hardware platforms, there is also the possibility of accessing subsets
of the work items in a work-group to execute them with additional scheduling guarantees.
These subsets are known as sub-groups.

18



In SYCL, the work-group size can be left empty, and then implementation can set it
to the optimal value according to an internal heuristic. Additionally, SYCL does provide
a mechanism to get the preferred work-group size. An example of how to do it is shown
in Code 2.5. Typically, choosing a work group size that is a multiple of the preferred one
will be enough.

1 auto pWGSM = kernel.get_work_group_info<

2 sycl::info::kernel_work_group::preferred_work_group_size_multiple>();

3

4 queue.submit([&](sycl::handler &cgh){

5 cgh.parallel_for(kernel, sycl::range<1>(pWGSM),

6 [=](sycl::id<1> idx){

7 /* kernel code */

8 });

9 });

Code 2.5: Query of preferred work-group size for a specific kernel.

2.4.1 Memory management

SYCL is based on the OpenCL memory model but operates at a higher level of ab-
straction, which means that storage and access memory are separated and treated with
different objects: buffers and accessors, respectively. SYCL buffers are, at their core,
std::unique ptr wrapped in such a way to make them live only inside the scope they
are defined in. The buffer manages memory allocation/copy, while accessors create re-
quirements on the buffers. These requirements can be allocating memory, synchroniza-
tion between different accessors or data transfer between host and device. Depending
on the accessor, data is automatically allocated on the host or on the device. In the
more recent SYCL specification, a big push has been made to allow explicitly allocat-
ing memory using C-like pointers. This method offers greater flexibility by allowing the
programmer to explicitly allocate and copy exactly when they intend to, often reducing
memory overhead. In order to allocate using regular pointers, the device has to sup-
port Universal Shared Memory (USM). Furthermore, SYCL operates in three different
memory spaces:

• Private memory: region of memory allocated per work item and only visible to
that work item. Cannot be accessed from the host;

• Local memory: contiguous region of memory allocated per work group and visible
to all of the work items in that work-group. This memory is allocated and accessed
using an accessor and cannot be accessed from the host;

19



• Global memory: a memory visible by all of the work groups of the device.

Figure 2.6: SYCL memory layout.

Source: SYCL Academy [26, Lesson 4 - slide 6]

Explicit allocation of memory through pointers has still some limitations like the in-
ability to specify whether the allocation should be in private or local memory and defaults
to private. However, this fairly new feature is still been worked on and improvements
can be expected in the next SYCL releases.

Memory allocation and transfer

Due to the previously mentioned efficiency reasons, this work has been carried out entirely
using the USMmodel. In this case, memory allocation is done through the sycl::malloc
function which is divided into three different methods:

• malloc host: allocate memory on the host that is accessible on both the host and
the device. These allocations cannot migrate to the device’s attached memory so

20



kernels that read from or write to this memory do it remotely, often over a slower
bus such as PCI-Express;

• malloc device: device allocations that can be read from or written to by kernels
running on a device, but they cannot be directly accessed from code executing on
the host. Data must be copied between host and device using the explicit USM
memcpy mechanisms;

• malloc shared: like host allocations, shared allocations are accessible on both the
host and device, but they are free to migrate between host memory and device-
attached memory automatically.

Memory allocated through these methods needs to be managed using specific SYCL
functions:

• sycl::queue::memset(ptr, value, num bytes): Set num bytes of memory al-
located using malloc functions to value;

• sycl::queue::memcpy(dest, src, num bytes): Copies num bytes from src to
dest;

• sycl::free(ptr, queue): Frees memory located at ptr and previously allocated
usign a SYCL malloc function.

Excluding the last method, the other twp are also available as methods of the
sycl::handler class, so they can be used inside a queue::submit() scope as demon-
strated in Code 2.7.

1 q.submit([&](sycl::handler &h) {

2 // copy hostArray to deviceArray

3 h.memcpy(device_array, &host_array[0], N * sizeof(int));

4 });

5 q.wait();

Code 2.7: Example of explicit memory copy using a sycl handler.

Note that in order to allocate and deallocate in SYCL it is necessary to have declared a
queue first, as to choose the device on which each memory operation should be executed.
Furthermore, since copying is asynchronous by default, it is a good practice to always use
sycl::queue::wait() after any group of copying actions to prevent segmentation faults
or unexpected behaviours. Finally, in SYCL it is not necessary to specify the direction
of copying (host-device, device-device, device-host) as it is deduced at run time. The
usage of the discussed methods is exemplified in Code 2.8.

21



1 std::vector<float> h_a(N);

2 auto queue = sycl::queue{sycl::default_selector{}};

3 auto d_a = sycl::malloc_device<float>(N, queue);

4 auto d_b = sycl::malloc_device<float>(N, queue);

5

6 queue.memset(d_a, 0x00, N * sizeof(float));

7 queue.memset(d_b, 0x00, N * sizeof(float));

8

9 queue.memcpy(d_a, h_a.data(), N * sizeof(float));

10 queue.memcpy(d_b, d_a, N * sizeof(float));

11 queue.memcpy(h_a.data(), d_b, N * sizeof(float)).wait();

12

13 sycl::free(d_a, queue);

14 sycl::free(d_b, queue);

Code 2.8: Code sample for SYCL memory management methods.

2.4.2 Kernels execution

SYCL kernel functions are called using one of the following invoke API entries (which
are methods of SYCL handlers):

• single task: The kernel function is executed exactly once;

• parallel for: The kernel function is executed ND-range times passing thread
identification objects as parameters.

Examples for both of these kernels’ calls are shown in Code 2.9.
The handler defines the interface to invoke kernels by submitting commands to a

queue. A handler can only be constructed by the SYCL runtime and is passed as an
argument to the command group function. The command group function is an argument
to submit.

The SYCL kernel function invoke API takes a C++ callable object by value which
is most often expressed as a lambda. If local memory is required or work-group size is
specified manually, then the corresponding nd range object must be used as the first
parameter. In turn, the nd item associated with the nd range can be passed inside the
kernel and its method for barriers or work-group operation can be used.

One tricky issue found when dealing with SYCL kernels is that, as per SYCL specifi-
cation [8], variables can be passed inside a kernel (parallel for) only by value, further-
more the capture of *this is not allowed neither implicitly nor explicitly (in general, this
would point to host memory which is not accessible on the device). To resolve this issue

22



1 // execute the kernel function exactly once

2 auto queue = sycl::queue(sycl::default_selector{})

3 queue.submit([&](sycl::handler& h)

4 {

5 h.single_task([=]{a[0] = 1.0f});

6 });

7

8 // execute the kernel function nd-range times

9 auto queue = sycl::queue(sycl::default_selector{})

10 queue.submit([&](sycl::handler& h)

11 {

12 h.parallel_for(range, [=](id<1> i) {a[i] = b[i]});

13 });

Code 2.9: Examples of SYCL kernel calls.

you can simply create local copies of all the variables needed inside the kernel before the
parallel for gets called, as shown in Code 2.10.

1 sycl::queue q = sycl::queue(sycl::default_selector{});

2 q.submit([&](sycl::handler& h)

3 {

4 auto var_kernel = var;

5 h.parallel_for(...,[=](...)

6 {

7 /* use var_kernel here */

8 });

9 });

Code 2.10: Example of queue submission using a multidimensional range.

2.4.3 Synchronization

SYCL provides a single synchronization level that is across all of the work items within
a single work group using barriers that can be called inside kernels.

• mem fence: inserts a memory fence on global memory access or local memory access
across all work items within a work group.

23



• barrier: like the previous one, but it also blocks the execution of each work item
within a work group at that point until all of them have reached that point.

In Code 2.11 synchronization between work-items is demonstrated using a snippet from
a parallel reduction kernel.

1 sycl::queue q = sycl::queue(sycl::default_selector{});

2 unsigned int tid = item.get_local_id(0);

3 unsigned int i = item.get_group(0) * item.get_local_range().get(0)

4 + item.get_local_id(0);

5

6 sdata[tid] = input[i];

7

8 item.barrier();

Code 2.11: Synchronization between work-items within the same work-group. In this
example, consider sdata as an array in local memory. This snippet needs to be inside a
parallel for scope to have access to the sycl::item used for synchronizing.

SYCL does not provide any memory fences or barriers across the entire kernel, only
across the work items within a work group.

As previously noted and shown in Code 2.1, memory operations, in particular memory
copies, and kernel execution in SYCL are asynchronous by default. This means that by
just scheduling a particular operation, it is not guaranteed that it will be executed
before any other unless relevant data dependencies are specified by the programmer. To
be more specific, SYCL queues are by default not in order, meaning that different kernels
(i.e. queue::submit()) can and will be executed at the same time whenever possible
to improve performance. If the data used by different kernels is not independent, the
queue should be initialized as in-order by passing an extra argument in the constructor
as shown in Code 2.12.

Using an in-order queue corresponds to adding a sycl::queue::wait() after each
and every submission. In this way, operations are executed in issue order on the selected
device.

In case the code allows for some kernels to be executed in parallel while others have
explicit dependencies, it is possible to use a default queue and specify the desired data
dependencies using the member function sycl::handler::depends on() which can take
an event or an array of events as parameters, as shown in Code 2.13. Note that, in this
particular example, the second submit has an explicit dependency on the first, so the
queue will wait and synchronize before executing it. However, the last submission can
be executed at the same time as the first one since no data dependency is specified.

24



1 // create a default queue

2 // kernels will be executed in such a way to

3 // maximize parallel execution

4 auto q = sycl::queue(sycl::default_selector());

5

6 // create an in-order queue

7 // kernels will be executed in the order they

8 // are scheduled

9 auto q2 = sycl::queue(sycl::default_selector(),

10 sycl::property::queue::in_order());

Code 2.12: Creating a queue defaults to an out-of-order one. Kernels can be executed
sequentially when the queue is created specifying the in-order property.

1 // initialize an out-of-order queue

2 auto q = sycl::queue(sycl::default_selector{});

3 // define an event

4 auto e = q.submit([&](sycl::handler& h)

5 {

6 /* kernel */

7 }

8 q.submit([&](sycl::handler& h)

9 {

10 h.depends_on(e);

11 /* kernel */

12 });

13 q.submit([&](sycl::handler& h)

14 {

15 /* kernel */

16 })

Code 2.13: In-order kernel execution using explicit data dependencies.

25



Chapter 3

SYCL implementation of CLUE

3.1 Porting the standalone version of CLUE

3.1.1 Notable changes

As previously discussed, the first step of the porting experience was the translation of
CLUE in SYCL. The original code, which can be found on a CMS Patatrack gitlab
repository [29], already implements the CPU serial, the CUDA and the multi-threaded
CPU versions (the latter using Threading Building Blocks1).

Since, as highlighted above, oneAPI provides the developers with a conversion tool
from CUDA code to SYCL, the conversion process began by passing the CUDA version
of the code through the tool. This produced the first prototype of the SYCL code which
needed some modifications in order to run correctly. While the underlying logic and
implementations are almost the same, two examples of practical differences between the
CUDA implementation and the SYCL one are explored in the following:

• kernel submission;

• use of variables inside kernels as demonstrated in Section 2.4.2

CLUE Kernel submission: CUDA vs SYCL

CLUE is split into five kernels each of which deals with one part of the clustering
procedure, as discussed in Section 1.2.2. In the CUDA version, work is divided in a
grid/block/thread fashion: when a kernel is submitted, the entire problem is covered
by the grid size, then it’s split into smaller parts each of which is assigned to a block
that finally assigns a single task to each of its threads. The work division in SYCL, while

1Threading Building Blocks (TBB) is a performance library that allows simplifying the work of
adding parallelism to complex applications across different architectures [30].

26



similar in principle, is quite different as it needs to adapt to a multitude of heteroge-
neous backends. It can be mapped to the CUDA work division almost completely in case
the code is running on a GPU. In particular, the CUDA hierarchy grid/block/thread

becomes nd range/work-group/work-item in SYCL. It must be pointed out that this
mapping concerns only GPUs, while on CPUs the hardware mapping can look quite dif-
ferent depending on the vectorization2 capabilities of the specific device. In Code 3.1 the
two equivalent ways to cover the same problem with the same work division in CUDA
and SYCL are shown.

1 // CUDA version

2 const dim3 blockSize(numThreadsPerBlock, 1, 1);

3 const dim3 gridSize(numBlocks, 1, 1);

4

5 kernel<<<gridSize, blockSize>>>(d_input, d_output);

6

7 // SYCL version

8 auto queue = sycl::queue(sycl::default_selector{});

9 const sycl::range<3> blockSize(1, 1,numThreadsPerBlock);

10 const sycl::range<3> gridSize(1, 1, numBlocks);

11

12 queue.submit([&](sycl::handler& cgh)

13 {

14 cgh.parallel_for(sycl::nd_range<3>(gridSize * blockSize, blockSize),

15 [=](sycl::nd_item<3> item)

16 {

17 kernel(d_input, d_output, item);

18 });

19 });

20 }

Code 3.1: Difference in work division and kernel submission in CUDA and SYCL.

One thing to note in the example above is the difference in the order of dimensions
between CUDA dim3 and sycl::range. In fact, the former follows the order (x, y, z),
while the latter follows the inverted order (z, y, x). While this might not be an issue
in general, specifically when running SYCL code on NVIDIA GPUs, the order of the
dimensions becomes relevant as most of those GPUs have limited thread capabilities on
the z dimension. For example on the NVIDIA A10 used for testing, the z dimension of

2Automatic compiler optimization which processes an operation on multiple pair of operands at the
same time. Compilers can generally transform for loops in a set of vector operations

27



blockSize is limited to a maximum of 64, while the other dimensions can go up to 1024.
Due to these considerations kernels were submitted in the way demonstrated above to
keep the mapping of one point per thread in the clustering procedure independently by
the hardware that would actually run the code through SYCL.

3.1.2 Physics validation and performance comparison

In order to validate the physics results of the new implementation, a set of synthetic
datasets, which had previously been used to validate the physics results of CLUE, was
considered. In this case, the outputs produced by the different implementations were
compared while using the same input data and parameters. As described in Section 1.2.2,
points with a density below the critical one could be demoted to outliers if their δ is larger
than the specified threshold. The synthetic datasets used were generated in such a way as
to resemble high-occupancy events with conditions similar to what is expected to occur
in the proposed high-granularity calorimeter upgrade for CMS. Results were validated
in different scenarios, each time increasing the number of hits per event. In particular,
a total of 100 layers are input to CLUE simultaneously, with each layer having a fixed
number of points with unit energies. In this scenario, the density characterizes clusters
whose energy has a Gaussian distribution with standard deviation σ set to 3 cm. The 5%
of the points is generated as noise distributed uniformly over the layers. To test CLUE’s
performance scaling, the number of points in each layer is increased from 1,000 to 10,000
in 10 equaling steps so that the total number of points per event in the test ranges
between 105 and 106. Figure 3.2 shows the performance scaling of the different CPU
implementations. The results of these comparisons are obtained as the average value of
the execution time across ten runs of the algorithm with the same parameters. Note that
SYCL seems to provide a massive advantage compared to native serial code when running
on the same hardware. This is mostly due to its native support for multi-threading to
oneTBB, the oneAPI implementations of Threading Building Blocks. While the serial
code is naturally limited to only use one CPU thread, the SYCL version can offload work
to all of the available threads. The other TBB implementation shown in the plot is run
by using the corresponding backend available with Alpaka and, at the time of the data
taking, some unpredicted thread locks decreased performance significantly according to
the implementation of atomic operations in the portability library. This performance
issue should be solved in later releases to bring the performance more in line with the
one demonstrated by SYCL. However, the performance of the TBB implementation scales
linearly with the number of points per layer as expected by the logic of the algorithm.

28



Figure 3.2: Performance comparison of CLUE’s different CPU implementations (lower
execution time is better). Note that the y-axis is in log scale, showing the massive
improvement that SYCL has over the native serial code. This advantage is mostly given
by the native support for multi-threading in SYCL applications.

The largest speedup factor in execution time is achieved by using GPUs. The main
aim of the porting was to show that it is possible to write a single source code to compile
and run on a multitude of devices. In Figure 3.3 it is shown how the total execution
time of CLUE running on the same GPU is similar when using SYCL with the CUDA
backend and native CUDA code. SYCL code is completely unchanged compared to
the CPU version shown above, thus achieving at least one of the objectives of using
portability layers in heterogeneous computing scenarios. The only difference between
this executable and the one used for the CPU benchmark is the compiler that produced
it. In fact, oneAPI’s compiler, dpcpp, does not yet support the CUDA backend natively
and is still in development; therefore, an open source fork of dpcpp, LLVM, was used
to compile the project and test it on NVIDIA hardware. The results look extremely
promising, especially considering that this backend is not officially supported yet.

29



Figure 3.3: Performance comparison between native CUDA code and SYCL code running
through the CUDA backend (lower execution time is better).

Note that, in general, using GPUs allows to improve the performance by roughly a
factor 3, when compared to the multi-threaded execution on CPU, and even more when
considering the other implementations.

3.2 Integrating CLUE in a CMSSW-like framework

The porting of the standalone version of CLUE was carried out mainly to experiment with
SYCL and become familiar with its functioning. Once the task was completed, actual
physics evaluation and performance measurements had to be carried out in a framework
resembling the one used in CMSSW. Although this required significant changes and
adaptations as well as actual developments on the framework itself, better results were
obtained in terms of both raw performance and physics reconstruction.

30



3.2.1 An introduction to the framework

Similarly to what has previously been done by the Patatrack CMS group for the stan-
dalone pixel track and vertex reconstruction [20], an approximation of CMSSW frame-
work [31] was used to process data and schedule the execution of CLUE, from now on
referred to as heterogeneous CLUE.

The main goal of the framework is to facilitate the deployment of software and test
both already-consolidated and new algorithms in a realistic testbed before including
them in the official software of the CMS experiment. The core of the execution is the
Event Data Model (EDM) which is centered around the concept of Event. Topologically,
an Event is a C++ object which contains all the raw data and information related
to simultaneous collisions whose average number is known as pileup and which form a
single particle collision event. In the specific case of CLUE, each Event contains the 2D
coordinates, layer, and energy of every hit produced by a collision event. The Event is
used to pass data from one module to the next and it represents the only way to access or
modify data. Some modules might require additional information to process events that
are provided through the Event Setup module. Furthermore, the framework is modular,
meaning that each step of the reconstruction is represented by a separate plugin that can
be plugged into the main run. Plugins are compiled in shared libraries and the execution
must be configured to schedule and run the desired plugins. Although the framework
includes six different types of modules, only the following ones are used with the CLUE
algorithm:

• Source: Produces one or more Events by reading data from an input file (csv,
binary, ROOT...), gives the Event status information, and can add data on host
memory.

• EDProducer: Producer modules read data from an Event, produce an outcome
and put it back into the Event.

• OutputModule: Reads data from the Event and stores the output to external
media.

In this context, it is possible to offload part of the workload to accelerators when
using one of the implementations of the framework and modules that take advantage of
a compatibility layer such as Alpaka or SYCL.

Figure 3.4 shows heterogeneous CLUE’s workflow step by step. Modules are grouped
by color and the arrows indicate the order of execution. The red module is an under de-
velopment integration of the 3D clustering module used in CMSSW reconstruction. Each
producer module can have an associated ESProducer, used to add relevant information
to the Event through the Event Setup, like the parameters needed for clustering.

31



Figure 3.4: Heterogeneous CLUE workflow. Blue modules are the results of Source, the
yellow module is the single EDProducer, while the green module is the OutputModule
which (optionally) produces a csv output file per event at the end.

Another fundamental aspect of the framework is its integration with Threading Build-
ing Blocks to take advantage of multiple threads and process more events at the same
time. This last aspect, in particular, is carried out by creating multiple EDM streams.
Each of them executes the entire workflow (except for the Source, reads data from all
the events only once per run) on a different event and the framework allows the creation
and execution of multiple streams at the same time. This means that on a more ca-
pable device, like a multi-threaded CPU or a GPU, multiple events can be analyzed at
the same time, thus greatly increasing the total throughput achieved by the algorithm.
CLUE hence acts as a somewhat simple introduction to the framework’s inner workings
and provides a benchmarking platform for the different implementations. It is important
to note that detaching modules from CMSSW and integrating them into standalone ver-
sions of the framework allows to experiment new algorithms, data structures and memory
management methods as well as to test performance without having to interface them

32



with the full reconstruction of the CMS detector. Such idea of a testbed has led to the
creation to the standalone pixel tracking module as well as this CLUE implementation.

3.2.2 Changes and improvements from the standalone version

Integrating CLUE in the framework allows taking advantage of more efficient scheduling,
and finer control of the number of threads and concurrent streams used for the execution
while also providing better performance measuring capabilities. However, in order to
fully take advantage of the framework, significant changes had to be made to the core of
its SYCL implementation.

Starting from the most fundamental aspect, some parts of the framework, ported from
CUDA, needed to be optimized for SYCL’s inner workings, while some others had to
be rewritten entirely. Since SYCL is designed to be compatible with multiple backends,
its logic for device selection cannot match the one implemented in CUDA and is rather
similar to alpaka. In the current version of the code, the user can select which device
to offload work to by a simple command line parameter --device followed by the type
of device wanted or its backend. The device selector will take care of finding all of the
compatible devices and offload work to the selected one by creating an in-order queue
on that device per EDM stream to schedule memory operations and kernel execution.

When offloading work to an accelerator, the most costly operation in terms of over-
head is device memory allocation. That is why the framework includes a module for
caching the allocations, which had to be entirely rewritten for SYCL. This module en-
sures that the least amount of allocations is performed and that memory that has been
freed can be reused without needing another allocation. Using CLUE as an example,
the algorithm needs 13 allocations per run for input variables, results, and some inner
variables used to make calculations. Using the caching allocator, when running with a
single stream, CLUE will allocate 13 blocks of the required size in the device memory,
then reuse those blocks for each event and finally free the device memory at the end of
the execution. At the beginning of the execution one caching allocator is constructed
on each available device. Device memory is accessed through custom-defined unique
pointers which interface directly with the caching allocator on the specific device. This
approach has two main benefits:

• Costly device memory allocations are reduced to a minimum number by reusing
memory whenever possible;

• All of the cached memory is freed at the end of the execution, thus allowing no
memory leaks.

From the algorithm’s point of view, these changes mainly reflect in what modules
of the workflow are allowed to allocate device memory. Since a single sycl::queue is
produced per event and gets propagated by the framework and considering that the queue

33



is needed for all of the memory operations and kernels scheduling, the algorithm needed
some optimizations to perform queue-bound operations only when one is obtainable from
the EDM event.

3.3 Results

Heterogeneous CLUE, was tested with a simulated dataset obtained by running the
reconstruction of a tt̄ event with 200 pileup on a recent version of CMMSW and dumping
the information of hits to a binary file. The conditions chosen are the most similar to
the ones that would be seen in the proposed HGCAL upgrade [14].
In Figure 3.5 and Figure 3.6 are shown the clustering results of CLUE on layer 5 of the
simulated dataset. In particular, Figure 3.5 shows hits registered in the entire detector,
while Figure 3.6 focuses on a smaller window to better show the clusters built by CLUE.

(a) Input data for layer 5. (b) Clusters produced by CLUE.

Figure 3.5: Example of CLUE clustering on layer 5 of the simulated dataset dumped
from CMSSW. Each cluster is characterized by a different color (with some repetitions
due to the large number of clusters) while outliers are represented as black squares.

34



(a) Input data for a small window of the de-
tector.

(b) Clusters produced by CLUE.

Figure 3.6: Clustering results of CLUE on a small detector window. Each color corre-
sponds to a different cluster. Outliers are represented as black squares.

3.3.1 Physics performance

Heterogeneous CLUE’s performance has been evaluated on both CPUs and GPUs with
different backends using Alpaka, SYCL, and native code whenever possible. In particular,
the following hardware was used to benchmark the algorithm:

• Intel(R) Xeon(R) Silver 4114 CPU 2.20GHz with driver OpenCL
[2022.14.7.0.30 160000];

• NVIDIA Tesla T4 with driver CUDA [11.6];

• Unreleased Intel GPU;

Figure 3.7 shows the computing performance of each implementation of heterogeneous
CLUE on CPU, scaling with the number of threads. As seen in the standalone version,
SYCL implementation looks to be able to take better advantage of multi-threading on
CPU showing a 21-57 % performance increase when compared to Alpaka and 14-102%
improvement with respect to the native serial implementation. The measurements are
obtained as the average value of 10 consecutive runs on 1000 events. The exact results
are shown in Table 3.1. One particular case that needs to be clarified is the single-
thread execution. Both Alpaka and the native implementations show less than half the
performance of SYCL in this case. This happens because SYCL is actually using two
threads in this particular instance by relying on the multi-threading capabilities of the
CPU and dedicating one thread to the framework execution and one to the algorithm
itself. This is confirmed by observing that the throughput remains almost exactly the
same when using two threads.

35



Figure 3.7: Performance comparison of the different CPU implementations of heteroge-
neous CLUE (higher throughput is better).

Total throughput on Intel Xeon Silver 4114 (ev/s)
Threads Alpaka Native serial SYCL

1 2.894 ± 0.014 3.09 ± 0.05 8.4 ± 0.3
2 5.44 ± 0.12 5.55 ± 0.05 8.6 ± 0.3
4 10.72 ± 0.09 10.22 ± 0.15 14.1 ± 0.4
8 19.4 ± 0.2 17.6 ± 0.3 20.1 ± 0.6
16 35.9 ± 0.4 30.4 ± 0.6 47.7 ± 0.9
24 44.4 ± 0.4 33.9 ± 0.5 54.7 ± 0.8
32 47.7 ± 0.6 33.1 ± 0.6 57.8 ± 0.6
40 46.2 ± 0.4 29.3 ± 0.5 59.4 ± 0.6

Table 3.1: Detailed throughput analysis for the CPU implementations of heterogeneous
CLUE.

For the GPU implementations, the throughput increases from 3 to 10 times depend-
ing on the comparisons. Figure 3.8 shows the comparisons between the two different

36



compatibility layers discussed, executing logically identical code on the same hardware.

Figure 3.8: Comparison of SYCL and Alpaka heterogeneous CLUE implementations
when running on the CUDA backend (higher throughput is better).

The difference in performance is harder to explain in this case, but on a general level
it seems that, at least for this particular workload and hardware, SYCL has better
memory management capabilities than Alpaka and CUDA, thus improving speed when
transferring data, allocating or setting memory, and synchronizing streams. One thing
to note is that an increasing number of streams can lead to performance degradation
and instability, especially on SYCL, which shows its best performance when using 8
threads/streams. A detailed breakdown of the data is presented in Table 3.2.

37



Total throughput on NVIDIA Tesla T4 (ev/s)
Streams CUDA Alpaka SYCL

1 154.9 ± 1.7 154.6 ± 0.3 167 ± 6
2 249 ± 3 239 ± 6 279 ± 9
4 277.1 ± 0.9 277 ± 2 339 ± 4
6 273.9 ± 1.5 272 ± 2 341 ± 3
8 271.1 ± 1.4 270 ± 2 345 ± 5
10 267.2 ± 1.8 265 ± 4 321 ± 17
12 266 ± 2 265 ± 2 334 ± 4
14 265.5 ± 1.9 265 ± 2 330 ± 4
16 264.8 ± 1,7 262 ± 2 329 ± 4
18 261.5 ± 1.0 261 ± 2 327 ± 6

Table 3.2: Detailed throughput analysis for the CUDA implementations of heterogeneous
CLUE.

Finally, throughput analysis on the unreleased Intel GPU cannot be disclosed due
to the pre-alpha state of the hardware, which is still under NDA. However, testing on
this hardware has been successful in showing that a single SYCL source code can run on
CPUs, Intel GPUs, and NVIDIA GPUs. This demonstrates the potential of SYCL as a
compatibility layer to ease code maintainability across different backends.

3.3.2 Porting considerations

As discussed, multiple adjustments had to be made in order to transition from CUDA
to SYCL. In this context, the compatibility tool developed by Intel has provided help in
more than one occasion, but its output cannot yet be trusted in all situations, especially
when dealing with more complex projects. In particular, some of the areas in which the
tool provides little to no help are:

• Porting of more complex projects made up of multiple compilation units;

• Error management;

• Atomic operations.

Regarding the second point, the error management system employed by SYCL is
based on throwing and catching exceptions, similar to what is done in plain C++, while
CUDA implements its own error management system. Because of this, it is up to the
programmer to add the relevant checks to make sure that the SYCL code can handle
eventual errors. As far as atomic operations3 are concerned, SYCL implementation

3In programming, an atomic operation guarantees exclusive access to a particular memory address
to the thread that is executing the operation itself.

38



is still pretty much undocumented and lacks some fundamental CUDA methods. Re-
implementing needed methods is possible, but must be done on a case-by-case basis and
completely by hand.

In general, expressing parallelism through SYCL is more difficult than doing the same
through CUDA, mostly due to the heterogeneous nature of the SYCL code. The creation
of nd ranges with the desired dimensions to cover any specific problem is extremely
verbose and the methods to obtain the computing capabilities of the device in use are not
always helpful in creating an optimized work division. This problem becomes especially
evident in complex code that makes extensive use of CUDA warps4 which are inherently
more difficult to port to other backends. One possible solution is given by utilizing sub-
groups in SYCL, though the sub-group dimension is hardware-dependent and needs to
be known at compile time in the kernel invocation.

To sum up the porting experience, the compatibility tool proves itself useful in eas-
ing the first steps when getting to know SYCL but fails on more complex projects.
Everything that is not translated automatically can be ported by hand even if the doc-
umentation is not fully developed yet, so the porting involves a lot of tinkering and
experimenting to get the desired results. However, the results obtained in the end look
promising, but SYCL is not ready for large-scale adoption at this point: both for the
ever-changing and evolving nature of the relatively young SYCL standard and the ab-
sence of a complete compiler for all the supported backends.

4In CUDA, a warp is a collection of 32 threads that execute the same instruction.

39



Conclusions and future work

The Large Hadron Collider is scheduled to receive a massive hardware upgrade in the
next few years. This has the main objective to push the boundaries of high energy physics
research by increasing the number of observed collisions per second by a factor of 10 in
order to observe rare events and decays more often. Together with the collider, also the
experiments’ detectors will have to undergo significant upgrades, not only to keep up
with the massively increased data rates, but also to renew components and modules de-
teriorated by the highly radioactive environment where the detectors are. The increased
sensibility of the detectors must be accompanied by corresponding software upgrades to
process and analyze the collected data with very strict time constraints. This has led
CMS to explore the possibilities offered by heterogeneous computing, which would allow
to offload part of the computing work to different accelerators, like GPUs or FPGAs,
while increasing performance and efficiency leaving the experiment’ hardware budget
virtually unchanged. This approach would naturally lead to writing a different source
code per implementation, thus making the job of maintaining and updating the code im-
possible, especially on a large scale such that of CMS reconstruction software. However,
a solution to this problem comes from compatibility layers. These are code abstraction
layers that has the single aim of providing the ability to write a single source code which
can than be compiled to produce an executable file that can run on a wide variety of
devices and backends. CMS has already identified some of such compatibility layers that
might offer promising results in high energy physics: Alpaka and SYCL. Throughout
this work, the performance of SYCL has been explored on a particular reconstruction
algorithm, CLUE, already in use in CMS reconstruction workflow. In particular, the
SYCL implementation backed by Intel, was used to implement first a standalone version
of the algorithm and then integrate the same algorithm in a CMSSW-like framework
allowing to measure performance in comparison with native implementations and Al-
paka: another compatibility layer already used by CMS. The results obtained in this
context are extremely promising, showing the ability to write a single source code and
produce an executable able to run on CPUs, Intel GPUs and NVIDIA GPUs with good
performance results.

However, there still are some key issues in the SYCL implementation used:

• While it is possible to compile for the CUDA backend, it is not yet officially sup-

40



ported by the compiler included in oneAPI. The use of the open source fork of
the compiler, LLVM, is fine for testing implementations but lacks the optimization
passes and stability guarantees coming from an official implementation which is
scheduled for early 2023;

• In general, the documentation is still lacking and often forces the programmer to
implement standard methods by hand;

• It might be possible to improve performance by using device-specific parameters,
but at the same time this would decrease the effective portability of the code.

Optimization in general is still ongoing, especially when it comes to memory oper-
ations and synchronization between the host and the device. In order to further test
the performance offered by SYCL, a porting of the aforementioned Patatrack standalone
pixel tracking module (Pixeltrack Standalone) [20] is being developed. By porting a
more complex application, many more limits of the SYCL standard and its oneAPI are
being discovered and reported to Intel, which is assisting the porting. Once Pixeltrack
standalone will have been fully ported to SYCL and integrated with the improvements
made to the SYCL implementation of the CMS framework, it will be possible to obtain
more significant performance measurements and comparisons with the other implemen-
tations. The results’ comparison will surely be one of the deciding factors to choose
which portability layer to rely on during Run4 of HL-LHC.

41



Acknowledgements

At the end of this three-year journey there are so many people that had a role in making it
better and more worthwhile that I think I’m going to struggle to list them all, but I’ll try
my best. Starting from the most relevant for this work, I want to thank my supervisor,
Francesco Giacomini not only for the guidance while writing this thesis, but for allowing
me to have this great experience in the first place and helping me navigate towards my
master’s. Next up, the group I’ve been working with for the past few months, Patatrack,
has been incredibly great in introducing me to high energy physics reconstruction. A
particular thank you to Felice Pantaleo and Andrea Bocci for their invaluable guidance
and desire to share their knowledge with me. As for the others, I want to mention Wahid
and Tony for always providing helpful suggestions from positions I can only look up to.
I also want to thank Aurora, Nikos and JJ for being the best students-colleagues I could
have wished for in this amazing experience at CERN. Moving closer to home, I feel like
I need to start with my family. There are probably a thousand reasons to thank all of
them for supporting during the last 22 years. However, I can think of three reasons in
particular to thank my father and it has a lot to do with old stories and bedtime. As for
my mother, she has simply always been there, through thick and thin and, no matter
how hard I tried to stay miserable, has always managed to get to me and cheer me up.
As per my brother, he’s always been a point of reference, someone to look up to and
one of my biggest motivations to move forward even when I didn’t feel like I could do it.
Moving a bit further away, I cannot forget my uncle (yes, yellow and red are still great
colours, even in Switzerland), my aunt (and her amazing late dog) and my grandmother
who can never get enough of telling me how much she believes in me and what I do.
There are some more people who have been extremely important in the path that led
me here and I want to take some time to thank them as well. Starting from the physics-
related one, this thesis would probably have never been made if it weren’t for professor
Accorsi and his completely unique way of showing me the incredibly interesting world
of physics which is hiding right behind a curtain made of math. As per the other one,
I can positively say that nothing I’ve written until now would have been the same if it
weren’t for the extremely inspiring work of professor Guastamacchia who instilled in me
the love for the English language. It would be impossible for me not to thank two of
the people who know me best, so thank you Manuel and Nello (see, I’ve used the short

42



version, just like in my contact list) for all of the memories and the Fridays and, well,
everything else, you probably know it better than me at this point. Finally, there are
at least 23 reasons for which I am deeply grateful to you, Francesco, but I’ll keep things
simple just for this time. Thank you for always being there, especially when I’m not at
my best, to show me how to take life one small step at a time and for always seeing the
best part of me.

43



Bibliography

[1] The Large Hadron Collider - CERN. [Online]. Available: https://home.cern/
science/accelerators/large-hadron-collider

[2] CERN. [Online]. Available: https://home.cern/

[3] ALICE Collaboration. [Online]. Available: https://alice-collaboration.web.cern.ch/

[4] LHCb Collaboration. [Online]. Available: https://lhcb.web.cern.ch/

[5] CMS - CERN. [Online]. Available: https://home.cern/science/experiments/cms

[6] Atlas Experiment. [Online]. Available: https://atlas.cern/

[7] The Standard Model - CERN. [Online]. Available: https://home.cern/science/
physics/standard-model

[8] SYCL 2020 specification - The Khronos Group. [Online]. Available: https:
//registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

[9] The ISO C++ Standard. [Online]. Available: https://isocpp.org/std/the-standard

[10] CUDA. [Online]. Available: https://developer.nvidia.com/cuda-zone

[11] V. Estivill-Castro, “Why so many clustering algorithms: A position paper,”
SIGKDD Explor. Newsl., vol. 4, no. 1, p. 65–75, jun 2002. [Online]. Available:
https://doi.org/10.1145/568574.568575

[12] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[13] The CALICE Collaboration, “Calorimetry for lepton collider experiments - calice
results and activities,” 2012. [Online]. Available: https://arxiv.org/abs/1212.5127

[14] A.-M. Magnan, “HGCAL: a high-granularity calorimeter for the endcaps of CMS
at HL-LHC,” Journal of Instrumentation, vol. 12, no. 01, pp. C01 042–C01 042, jan
2017. [Online]. Available: https://doi.org/10.1088/1748-0221/12/01/c01042

44

https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/
https://alice-collaboration.web.cern.ch/
https://lhcb.web.cern.ch/
https://home.cern/science/experiments/cms
https://atlas.cern/
https://home.cern/science/physics/standard-model
https://home.cern/science/physics/standard-model
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://isocpp.org/std/the-standard
https://developer.nvidia.com/cuda-zone
https://doi.org/10.1145/568574.568575
https://arxiv.org/abs/1212.5127
https://doi.org/10.1088/1748-0221/12/01/c01042


[15] M. Rovere. Clustering and reconstruction in HGCAL. [Online]. Avail-
able: https://indico.cern.ch/event/949440/contributions/3988881/attachments/
2092853/3516903/20200828 FCC TICL MR.pdf

[16] Z. Chen, C. Lange, E. Meschi, E. Scott, and C. Seez, “Offline reconstruction algo-
rithms for the cms high granularity calorimeter for hl-lhc,” in 2017 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC), 2017, pp. 1–4.

[17] V. Gori, “The CMS high level trigger,” International Journal of Modern
Physics: Conference Series, vol. 31, p. 1460297, jan 2014. [Online]. Available:
https://doi.org/10.1142%2Fs201019451460297x

[18] M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, and C. Seez, “Clue: A
fast parallel clustering algorithm for high granularity calorimeters in high-
energy physics,” Frontiers in Big Data, vol. 3, 2020. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fdata.2020.591315

[19] A. Bocci, V. Innocente, M. Kortelainen, F. Pantaleo, and M. Rovere,
“Heterogeneous reconstruction of tracks and primary vertices with the cms
pixel tracker,” Frontiers in Big Data, vol. 3, 2020. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fdata.2020.601728

[20] Patatrack group. Standalone Patatrack pixel tracking. [Online]. Available:
https://github.com/cms-patatrack/pixeltrack-standalone#readme

[21] A. Bocci. First collisions reconstructed with GPUs at CMS. [Online]. Available:
https://cms.cern/news/first-collisions-reconstructed-gpus-cms

[22] alpaka - Abstraction Library for Parallel Kernel Acceleration. [Online]. Available:
https://github.com/alpaka-group/alpaka#readme

[23] Kokkos core libraries. [Online]. Available: https://github.com/kokkos/kokkos#
readme

[24] The Khronos Group. SYCL. [Online]. Available: https://www.khronos.org/sycl/

[25] OpenCL overview - The Khronos Group. [Online]. Available: https://www.
khronos.org/opencl/

[26] Codeplay. SYCL Academy. [Online]. Available: https://github.com/
codeplaysoftware/syclacademy

[27] oneAPI specification. [Online]. Available: https://www.oneapi.io/spec/

45

https://indico.cern.ch/event/949440/contributions/3988881/attachments/2092853/3516903/20200828_FCC_TICL_MR.pdf
https://indico.cern.ch/event/949440/contributions/3988881/attachments/2092853/3516903/20200828_FCC_TICL_MR.pdf
https://doi.org/10.1142%2Fs201019451460297x
https://www.frontiersin.org/article/10.3389/fdata.2020.591315
https://www.frontiersin.org/articles/10.3389/fdata.2020.601728
https://github.com/cms-patatrack/pixeltrack-standalone#readme
https://cms.cern/news/first-collisions-reconstructed-gpus-cms
https://github.com/alpaka-group/alpaka#readme
https://github.com/kokkos/kokkos#readme
https://github.com/kokkos/kokkos#readme
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/codeplaysoftware/syclacademy
https://github.com/codeplaysoftware/syclacademy
https://www.oneapi.io/spec/


[28] Intel corporation. Intel project for LLVM. [Online]. Available: https://github.com/
intel/llvm

[29] CLUE gitlab repository. [Online]. Available: https://gitlab.cern.ch/kalos/clue

[30] Intel corporation. Threading Building Blocks. [Online]. Available: https:
//www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

[31] A. Bocci. CMSSW Application Framework. [Online]. Available: https://twiki.cern.
ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework

46

https://github.com/intel/llvm
https://github.com/intel/llvm
https://gitlab.cern.ch/kalos/clue
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework

	Introduction
	Clustering algorithms in high energy physics
	The clustering problem
	CLUE standalone
	What is CLUE?
	Clustering procedure
	GPU implementation

	Heterogeneous computing and compatibility layers
	The need for heterogeneous computing
	The Patatrack group
	SYCL and other compatibility layers


	SYCL abstraction layer
	Standard
	Implementations
	Compilation model
	Execution model
	Memory management
	Kernels execution
	Synchronization


	SYCL implementation of CLUE
	Porting the standalone version of CLUE
	Notable changes
	Physics validation and performance comparison

	Integrating CLUE in a CMSSW-like framework
	An introduction to the framework
	Changes and improvements from the standalone version

	Results
	Physics performance
	Porting considerations


	Conclusions and future work
	Acknowledgements
	Bibliography

