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Abstract

Hand gesture recognition based on surface electromyography (sEMG) sig-
nals is a promising approach for the development of intuitive human-machine
interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG
signal arises from the muscles’ electrical activity, and can thus be used to
recognize hand gestures. The decoding from sEMG signals to actual control
signals is non-trivial; typically, control systems map sEMG patterns into a set
of gestures using machine learning, failing to incorporate any physiological
insight.

This master thesis aims at developing a bio-inspired hand gesture recog-
nition system based on neuromuscular spike extraction rather than on simple
pattern recognition. The system relies on a decomposition algorithm based
on independent component analysis (ICA) that decomposes the sEMG signal
into its constituent motor unit spike trains, which are then forwarded to a
machine learning classifier. Since ICA does not guarantee a consistent motor
unit ordering across different sessions, 3 approaches are proposed: 2 order-
ing criteria based on firing rate and negative entropy, and a re-calibration
approach that allows the decomposition model to retain information about
previous sessions. Using a multilayer perceptron (MLP), the latter approach
results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom sce-
nario.

Afterwards, the decomposition and classification pipeline for inference is
parallelized and profiled on the PULP platform, achieving a latency < 50 ms
and an energy consumption < 1 mJ. Both the classification models tested (a
support vector machine and a lightweight MLP) yielded an accuracy > 92%
in a 1-subject, 5-classes (4 gestures and rest) scenario.

These results prove that the proposed system is suitable for real-time
execution on embedded platforms and also capable of matching the accuracy
of state-of-the-art approaches, while also giving some physiological insight
on the neuromuscular spikes underlying the sEMG.
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Sommario

Il riconoscimento di movimenti della mano basato su segnali elettromio-
grafici di superficie (sEMG) è un approccio promettente per lo sviluppo di
interfacce uomo-macchina (HMI) intuitive in settori quali la robotica e la
prostetica. Il segnale sEMG deriva dall’attività elettrica dei muscoli e può
quindi essere utilizzato per riconoscere i gesti della mano. La decodifica
dei segnali sEMG in segnali di controllo effettivi non è banale; in genere, i
sistemi di controllo mappano i pattern sEMG in una serie di gesti utilizzan-
do l’apprendimento automatico (machine learning), senza assimilare alcuna
comprensione fisiologica.

Questa tesi di laurea magistrale mira a sviluppare un sistema di ricono-
scimento dei gesti della mano bioispirato, basato sull’estrazione di impulsi
neuromuscolari piuttosto che sul semplice riconoscimento di pattern. Il siste-
ma sfrutta un algoritmo di decomposizione basato sull’analisi delle compo-
nenti indipendenti (ICA), il quale scompone il segnale sEMG nelle sequenze
di impulsi delle unità motorie che lo compongono, che vengono poi inoltrati a
un classificatore di apprendimento automatico. Poiché l’ICA non garantisce
un ordinamento coerente delle unità motorie tra le diverse sessioni, vengono
proposti tre approcci: due criteri di ordinamento basati sulla frequenza degli
impulsi e sulla neghentropia (negative entropy) e un approccio di ricalibrazio-
ne che consente al modello di decomposizione di conservare le informazioni
sulle sessioni precedenti. Utilizzando un percettrone multistrato (MLP, dal-
l’inglese multilayer perceptron), quest’ultimo approccio ha permesso di otte-
nere un’accuratezza fino al 99,4% in uno scenario con 1 soggetto e 1 grado
di libertà.

Successivamente, la pipeline di decomposizione e classificazione per l’in-
ferenza è stata parallelizzata e profilata sulla piattaforma PULP, ottenendo
una latenza < 50 ms e un consumo energetico < 1 mJ. Entrambi i modelli
di classificazione testati (una macchina a vettori di supporto—SVM, dal-
l’inglese support vector machine—e una variante “leggera” del MLP) hanno
prodotto un’accuratezza > 92% in uno scenario con 1 soggetto e 5 classi (4
gesti e la classe “riposo”).

Questi risultati dimostrano che il sistema proposto è adatto all’esecuzione
in tempo reale su piattaforme embedded ed è anche in grado di eguagliare
l’accuratezza degli approcci comunemente usati nella letteratura scientifica,
fornendo al contempo una visione fisiologica degli impulsi neuromuscolari
alla base della sEMG.
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1 | Introduction

Hand gestures are one of the most natural ways for humans to express intuitive
intention, manipulate objects and interact with the surrounding environment; con-
sequently, hand gesture recognition is a very active research topic for developing
human-machine interfaces (HMIs) in domains such as robotics, prosthetics and
augmented reality [1, 2, 3].

A very promising approach for hand gesture recognition is electromyography
(EMG) signal processing [3, 4]: EMG is a technique for measuring the bio-potential
generated by the ionic flow threough the membrane of muscular fibers during con-
traction. It can be acquired either invasively, via needle electrodes placed inside the
muscle of interest, or non-invasively via surface electrodes placed on the skin above
the muscle of interest. The latter procedure is referred to as surface electromyogra-
phy (sEMG) [5, 6]; granting a fully non-invasive setup, sEMG signals are particularly
suited for wearable myoelectric control systems.

An open challenge in sEMG-based hand gesture recognition HMIs is robustness
and reliability: in fact, sEMG signals suffer from variability due to individual
anatomical differences, muscle fatigue or sensor repositioning, making sEMG-based
HMIs difficult to be adopted in many real-world scenarios [3, 4].

1.1 Pattern recognition

At the current state-of-the-art (SoA), sEMG-based hand gesture classification systems
rely on pattern recognition: patterns in the sEMG signal are mapped to a given set
of gestures. The general structure of pattern recognition approaches is illustrated in
Fig. 1.1.

Figure 1.1: The six stages of the standard pipeline for pattern recognition. Image adapted
from [4].
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One of the most important stages of pattern recognition models is feature ex-
traction: conventional machine learning (ML) models cannot learn complex features
from raw sEMG data, thus they rely on hand-crafted features which however require
domain-specific knowledge [4, 7]. Conversely, deep learning (DL) models can process
raw sEMG data, as they have enough capacity to allow for data-driven feature
learning [4, 5].

1.2 Purpose of this master thesis
Pattern recognition approaches, especially those based on DL models, act as black
boxes, as they do not yield any insight on the physiology underlying the EMG. The
purpose of this master thesis is two-fold: the primary goal is to develop a bio-inspired
hand gesture recognition system based on neuromuscular spikes extraction, rather
than on simple pattern recognition; the secondary goal is to optimize such system
for real-time execution on a low-power multi-core platform.

Concerning the primary goal, the proposed system consists in a two-stage pipeline:
first, the raw sEMG signal is processed by the decomposition stage, which relies
on independent component analysis (ICA) for extracting the neuromuscular spike
trains underlying the sEMG; then, the estimated spike trains are processed by a
conventional ML classifier (see Fig. 1.2). Since ICA does not guarantee a consistent
ordering of spike trains across different recording sessions, three possible approaches
are tested in the inter-session scenario: two ordering criteria based on firing rate and
negative entropy (a statistical property constituting the objective function of the
ICA-based algorithm) and a re-calibration approach that allows the decomposition
model to retain information about previous sessions.

As to the secondary goal, the decomposition and classification pipeline for infer-
ence is parallelized and profiled on the parallel ultra low power (PULP) platform, an
architecture organized in a cluster of RISC-V cores targeting high energy-efficiency [8].

Figure 1.2: Overview of the proposed pipeline: the raw sEMG signal is first decomposed
by an ICA-based algorithm into its constituent spike trains, which are then classified by a
ML model that outputs the predicted gesture label.

1.3 Thesis structure
This master thesis is structured as follows:
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• Chapter 2 provides an overview of the neuromuscular system, introduces the
basic concepts of sEMG, and summarizes the SoA approaches based on pattern
recognition, either using ML or DL models.

• Chapter 3 introduces the field of blind source separation (BSS) and describes
in particular ICA, together with the FastICA algorithm.

• Chapter 4 illustrates the materials and methods of this work, namely the
decomposition algorithm based on convolutive ICA, the re-calibration procedure
to address the ordering of the extracted spike trains across different recording
sessions, and the ML models used for classification.

• Chapter 5 provides the implementation details of the proposed system.

• Chapter 6 presents the results obtained in the tasks considered.

• Chapter 7 exposes the conclusions and outlines the future work.





2 | Electromyography and sEMG-
based Gesture Recognition

In this chapter I briefly describe the physiology underlying the neuromuscular system,
and how the bio-electrical activity of muscles can be measured via EMG, and
particularly sEMG. Afterwards, I show how the relationship between the EMG
signal and the original bio-signal can be modelled mathematically. Lastly, I provide
an overview of the SoA techniques based on both ML and DL for sEMG-based
gesture recognition.

2.1 Neuromuscular system overview
The central nervous system controls muscles’ contraction via sequences of electric
impulses generated by alpha-motoneurons (α-MNs), neurons whose somas are located
in the spinal cord and whose terminal axons innervate a group of muscle fibers. A
motor unit (MU)—the basic functional unit of a muscle—consists of an α-MN and
its innervated muscular fibers [6] (see Fig. 2.1 - A).

Figure 2.1: (A) Outline of the neuromuscular system. (B) Example of signal obtained
from a surface electrode showing the superimposed activity of several MUs. Image adapted
from [6].

When activated, MUs generate a motor unit action potential (MUAP), an electric
impulse causing the contraction of the corresponding group of muscle fibers. MUAPs
can be generated in sequence by repeated activations, giving rise to motor unit
action potential trains (MUAPTs): in particular, as the contraction level increases,
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additional MUs are recruited, and the firing rates of earlier recruited MUs increase [9]
(see Fig. 2.2).

Figure 2.2: (A) Example of the MUAPTs generated by 21 MUs (sorted following the
recruitment order) during the contraction of the first dorsal interosseous muscle; each
bar represents the firing time of a MUAP, whereas the dark solid line represents the
force output expressed in percentage of the maximum voluntary contraction (MVC). (B)
Averaged time-varying firing rates for each MU derived from the timing data above; there
is a hierarchical relationship between MUs, with earlier recruited MUs having greater firing
rates. Image adapted from [9].

2.2 Electromyography
Electromyography (EMG) is a technique for evaluating and recording the bio-electrical
activity produced by muscles during contractions. There are two kinds of EMG:
intramuscular electromyography (iEMG), which relies on needle electrodes penetrat-
ing the skin to reach the muscle of interest, and surface electromyography (sEMG),
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which relies on electrodes placed on the skin above the muscle of interest. Being
painless and non-invasive [6, 10], the latter is preferred for developing HMIs. In
particular, high-density surface electromyography (HD-sEMG) signals, obtained us-
ing grids of closely-spaced electrodes, encompass also spatial information, providing
two-dimensional activation maps that describe the intensity and distribution activity
of muscles [11].

2.2.1 Data model
Due to the muscle fibers being anisotropic [6], multi-channel EMG signals (either
invasively or non-invasively recorded) expose a spatio-temporal superposition of many
MUAPTs (see Fig. 2.1 - B), and can thus be modelled as a convolutive mixture of a
series of delta functions representing the discharge timings of the MUs [10, 12]:

xi(t) =
N∑
j=1

L−1∑
τ=0

hij(τ)sj(t− τ) + ωi(t)

i = 1, . . . ,M, t = 0, . . . , Drec

(2.1)

where

• xi(t) is the i-th EMG channel;

• hij(τ) is the action potential of the j-th MU as recorded by the i-th sensor;

• sj(t) =
∑

k δ
(
t− T

(fire)
j (k)

)
is the MUAPT generated by the j-th MU, mod-

elled as a sum of delta functions where T
(fire)
j (k) is the firing time of the k-th

MUAP;

• ωi(t) is the additive noise at the i-th channel;

• L is the duration of the MUAPs;

• N is the number of recruited MUs;

• M is the number of EMG channels;

• Drec is the duration of the signal (measured in discrete time samples).

In matrix form, Eq. 2.1 becomes:

x(t) =
L−1∑
τ=0

H(τ)s(t− τ) +ω(t) (2.2)

where x(t) = [x1(t), . . . , xM(t)]ᵀ and s(t) = [s1(t), . . . , sN(t)]
ᵀ are the vectors com-

prising, respectively, the t-th sample of the M EMG signals and the t-th sample of
the N source MUAPTs. For each τ ranging from 0 to L− 1, the matrix of MUAPs
H(τ) (with shape M × N) is assumed to be constant for the duration Drec of the
EMG signal [10].
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2.3 sEMG-based gesture recognition
Thanks to its non-invasiveness and high informativeness, sEMG-based gesture recog-
nition is a promising approach for the development of intuitive HMIs: however, the
decoding from sEMG signals to actual control signals is non-trivial. At the current
SoA, sEMG gesture recognition systems are mainly based on pattern recognition,
achieved with two primary processing methods: machine learning (ML) and deep
learning (DL) [4].

2.3.1 ML-based methods
Methods based on conventional ML are too simple to extract meaningful features
from raw sEMG data; hence, they require hand-crafted feature extraction based
on field-specific knowledge [4]. Typical sEMG features can be divided into three
groups [4, 7]:

• Time domain: integrated EMG (IEMG), mean absolute value (MAV), variance
of EMG (VAR), root mean square (RMS), waveform length (WL), zero cross-
ings (ZC), slope sign change (SSC).

• Frequency domain: frequency median (FMD), frequency mean (FMN).

• Time-frequency domain: discrete wavelet transform (DWT).

After feature extraction, actual classification is usually performed using support
vector machine (SVM), linear discriminant analysis (LDA) or random forest (RF) [7,
13, 14, 15].

For instance, Englehart and Hudgins [14] obtained an accuracy greater than
90% in a four-class problem extracting four time-domain features (ZC, WL, SSC
and MAV) from a four-channel sEMG signal in combination with the LDA classifier.
Atzori et al. [16] presented the Non-Invasive Advanced Prosthetics (NinaPro), a
sEMG database comprising 52 hand gestures. Kuzborskij et al. [13], relying on
both time- and frequency-domain features and a SVM classifier with the radial
basis function kernel, obtained a 70–80% accuracy on NinaPro DB1; these results
were improved by Atzori et al. [15] by considering a normalized combination of four
features and using a RF classifier, which yielded an average accuracy of 75.32% and
75.27% on NinaPro DB1 and DB2, respectively.

2.3.2 DL-based methods
By contrast, DL-based methods do not need field-specific knowledge, as they allow
for fully data-driven feature learning. In particular, convolutional neural networks
(CNNs) can capture spatial (but also temporal) information of the signal: the two-
dimensional array distribution of electrodes in HD-sEMG results in sEMG images
that can be processed by CNNs [4].

Park and Lee [17] proposed a convolutional neural network (CNN)-based method
to classify six hand movements from the NinaPro dataset by processing windows of
sEMG signals, obtaining an accuracy up to 83%, higher than the accuracy yielded by
the SVM. Geng et al. [18] used an improved CNN architecture and an eight-channel
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HD-sEMG setup, obtaining an accuracy of 89.3% in the within-subject test on a
single frame of sEMG image.

To capture the sequential nature of the sEMG signals, other methods rely on
recurrent neural networks (RNNs) [4]: He et al. [19] proposed a model combining a
long-short term memory (LSTM) network and a multilayer perceptron (MLP) and
obtained an accuracy of 73.5% on NinaPro, matching the performance of Atzori
et al.’s RF [15]. Zanghieri et al. [20] proposed an apporach based on temporal
convolutional networks (TCNs)—a CNN-based architecture designed to process time
series—yielding an inter-session accuracy of 93.7% on a 20-session dataset.

2.3.3 sEMG signal variability
One of the main challenges of sEMG-based gesture recognition is inter-subject, inter-
session and inter-posture [21] signal variability: the statistical characteristics of
sEMG signals vary with time and are affected by individual anatomical differences,
sensor repositioning, skin conditions and muscle fatigue. Such variability makes it
difficult to develop a robust recognition approach that can be reliably used in a
real-life scenario [4, 17, 20].





3 | Independent Component Anal-
ysis

In this chapter, the concept of BSS in relation to the cocktail party problem is
introduced; then, the basic concepts of ICA are defined. Lastly, the FastICA
algorithm is presented.

3.1 Blind source separation

Blind source separation (BSS) is the field addressing the separation of mixed
sources [22]. To better understand this concept, let us consider a situation where
there are a number of signals emitted by some physical source, and that there are
several receivers in different positions.

For example, N people talking simultaneously in the same room generate the
speech signals (the sources) s1(t), . . . , sN(t), and M microphones produce the recored
signals (the observations) x1(t), . . . , xM(t), which are a mixture of the sources with
weights depending on the relative distance between people and microphones [23].
This scenario can be expressed as a linear system:

xi(t) =
N∑
j=1

aijsj(t), i = 1, . . . ,M (3.1)

or, in matrix form, as:
x(t) = As(t) (3.2)

Both the mixing coefficients aij and the source signals sj(t) are unknown: the problem
of recovering the sources sj(t) from the observations xi(t) alone is referred to as the
cocktail party problem [23] (see Fig. 3.1).

Such problem can be addressed using BSS techniques, and particularly indepen-
dent component analysis (ICA): this technique will be described in detail in the next
section.

3.2 Independent component analysis

Independent component analysis (ICA) is a BSS technique for extracting under-
lying components from multivariate statistical data; in particular, ICA looks for
components that are statistically independent and non-gaussian [23].
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Figure 3.1: Example of the cocktail party problem: two sounds s1(t), s2(t) are generated by
music and a voice, respectively, and are recorded simultaneously by two microphones; the
resulting recordings are a linear combination of the source signals, where the coefficients
a1, b1 and a2, b2 reflect the proximity of each speaker to the respective microphones. Image
adapted from [22].

3.2.1 ICA model
The simplest ICA model—instantaneous and noiseless—is defined as:

xi =
N∑
j=1

aijsj, i = 1, . . . ,M (3.3)

or, in matrix form, as:
x = As (3.4)

Compared to the formulation in Eq. 3.1 and 3.2, the time index t has been dropped:
the reason is that the ICA model assumes that each observation xi as well as each
source sj is a random variable; hence, the value xi(t) recorded at time t is considered
as a sample of the random variable xi [23].

For simplicity, let us assume that (i) both sources and observations have zero
mean, and (ii) N = M , i.e., the mixing matrix A is square (however, this requirement
can be relaxed to N ≤M , namely there must be more observations than sources):
under this assumption, the goal of ICA is to estimate the “unmixing“ matrix (i.e.,
the inverse of the mixing matrix A) W = A−1, such that the sources—referred to
also as independent components (ICs)—can be computed as [23]:

s = Wx (3.5)

3.2.2 Ambiguities of ICA
The ICA model in Eq. 3.4 presents some ambiguities [23]:

• The variances of the ICs cannot be determined, meaning that the ICs can
be recovered up to a scalar multiplier; assuming that ICs have unit variance
E[s2i ] = 1 (assuming they also have zero mean), they can be recovered up to
the multiplicative sign.

• The order of the ICs cannot be determined, as the order of the terms in the
sum in Eq. 3.3 can be freely changed.



3.2 Independent component analysis 13

3.2.3 Non-gaussianity
The key to estimating the ICA model is non-gaussianity: the Central Limit Theorem
tells that the distribution of a sum of independent random variables tends towards
a gaussian distribution, under certain conditions; in particular, the sum of two
independent, non-gaussian random variables usually has a distribution that is closer
to gaussian than any of the two original random variables [23]. In practice, to
determine the j-th IC sj = wᵀ

jx, an algorithm must choose a vector wj that maximizes
the non-gaussianity of wᵀ

jx [23].

Kurtosis

A typical measure for non-gaussianity is kurtosis [23]; the kurtosis of a zero-mean
random variable y is defined as:

kurt(y) = E[y4]− 3
(
E[y2]

)2 (3.6)

which, assuming also that y has unit variance, simplifies to:

kurt(y) = E[y4]− 3 (3.7)

Conveniently, kurtosis is zero for a gaussian random variable, and non-zero for
(most) non-gaussian random variables: in particular, random variables that have
negative kurtosis are called sub-gaussian (or platykurtic), while those having positive
kurtosis are called super-gaussian (or leptokurtic). Sub-gaussian random variables
have typically a “flat” probability density function (PDF), which is rather constant
near zero; conversely, super-gaussian random variables have typically a “spiky” PDF
with heavy tails, being relatively large at zero and for large values, while being small
for intermediate values [23] (see Fig. 3.2).

Figure 3.2: Example of leptokurtic and platykurtic probability distributions. Image adapted
from [24].

Non-gaussianity could thus be measured by the absolute value of kurtosis; however,
kurtosis is not used in practice, since it can be very sensitive to outliers [23].
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Negative entropy

A better measure for non-gaussianity is given by negative entropy (or neg-entropy).
Given a random variable y with PDF f(y), its differential entropy is defined as:

H(y) = −
∫

f(y) log f(y)dy (3.8)

It can be shown that a gaussian variable has the largest entropy among all random
variables of equal variance: therefore, entropy can be used as a measure of non-
gaussianity [23].

To obtain a measure of non-gaussianity that is zero for a gaussian variable and
always non-negative, one can employ neg-entropy, which is defined as:

J(y) = H(ygauss)−H(y) (3.9)

where ygauss is a gaussian variable with the same covariance matrix as y.
Computing neg-entropy as per Eq. 3.9 would require a possibly non-parametric

estimation of the PDF of ICs; therefore, approximations based on the maximum-
entropy principle are computed in practice [23]:

J(y) ∝ (E[G(y)]− E[G(ν)])2 (3.10)

where ν is a normal standardized random variable, and G is some non-quadratic
function referred to as contrast function. Some popular choices for the contrast
function are the cubic function G(y) = y3/3, the exponential function G(y) =
exp(−y2/2) and the log hyperbolic cosine G(y) = log(cosh(y)).

3.2.4 Pre-processing for ICA
Every ICA-based algorithm share common pre-processing steps: the most basic and
necessary pre-processing is to center x, namely to subtract its mean vector µ = E[x]
so as to make x a zero-mean variable. This step simplifies ICA-based algorithms [23].

Another useful pre-processing step is whitening: before the application of ICA-
based algorithms and after centering, observations x are linearly transformed into a
vector x̂ which is “white”, namely its covariance matrix equals the identity matrix [23].
The whitened observations can be computed as:

x̂ = ED−1/2Eᵀx (3.11)

where EDEᵀ is the eigenvalue decomposition of the covariance matrix Kxx = E[xxᵀ].
The utility of whitening is that the new mixing matrix Â = ED−1/2EᵀA is

orthogonal: therefore, instead of computing the N2 parameters of the original matrix
A, ICA-based algorithms only need to estimate the N(N − 1)/2 parameters of the
orthogonal matrix Â [23].

3.3 FastICA
FastICA is a very efficient algorithm to perform ICA proposed by Hyvärinen and
Oja [25]. The FastICA learning rule finds for the j-th IC a direction—i.e., a unit
vector wj—such that the projection wᵀ

j x̂ maximizes non-gaussianity, measured by
the approximation of neg-entropy J(wᵀ

j x̂) in Eq. 3.10 [25]. FastICA for the j-th IC
is based on the following fixed-point iteration scheme [25]:
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1. Choose initial random vector wj.

2. Let w+ = E[x̂G′(wᵀ
j x̂)]− E[G′′(wᵀ

j x̂)]wj.

3. Let wj = w+
j /‖w+

j ‖.

4. If not converged, repeat from step 2.

The algorithm converges when wj and w+
j point to the same direction, namely their

dot-product is almost equal to 1 [25].
To extract N ICs, FastICA must be run with N weight vectors w1, . . . ,wN . To

prevent the algorithm from converging multiple times to the same IC, decorrelation
is needed after every iteration. This can be achieved via a simple deflation scheme
based on Gram-Schmidt orthogonalization; assuming that FastICA extracted P ICs
(i.e., P weight vectors w1, . . . ,wP ), the weight vector wP+1 is updated after each
iteration step as follows:

1. Let wP+1 = wP+1 −
∑P

k=1 wᵀ
P+1wkwk.

2. Let wP+1 = wP+1/‖wP+1‖.

Figure 3.3: Example of the extraction of a square wave, a sine wave and a sawtooth
wave from a 3-channel mixture using FastICA: as it can be seen, it manages to recover
the original waveforms of the source signals even in presence of additive gaussian noise;
however, it cannot recover their original signs and ordering.
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This chapter describes the materials and methods used in this master thesis: first, I
explain how the FastICA algorithm presented in Section 3.3 can tackle the decompo-
sition of sEMG signals, modelled by the convolutive mixture in Eq. 2.2. Afterwards, I
provide an exhaustive description of the ICA-based algorithm employed in this thesis,
together with a re-calibration procedure to address the problem of the order of ICs.
Lastly, I provide an outline of the ML models used for actual gesture classification.

4.1 Extension of sEMG signals
As explained in Section 2.2, sEMG signals can be modelled as a mixture of source
MUAPTs: in the cocktail party analogy, the MUAPTs are the speech signals whereas
the sEMG channels are the signals recorded with the microphones. However, the
mixture in Eq. 2.2 is convolutive rather than instantaneous: in fact, hij models the
spatial mixing of the N sources to the M sensors, as well as the temporal mixing,
acting as a finite impulse response (FIR) filter with length L [10, 12, 26].

The FIR-based convolutive mixture in Eq. 2.2 can equivalently be represented
as a linear and instantaneous mixture of an extended vector of sources with shape
NL× 1, which includes the original sources and their L− 1 delayed replicas [10, 12].
In order to increase the conditionality of the mixing process (i.e., the ratio between
the number of observations and the number of sources), the vector of observations is
extended by adding fext − 1 delayed replicas, where fext is a fixed extension factor.
Hence, the extended model is defined as:

x̄(t) = H̄s̄(t) + ω̄(t) (4.1)

with

x̄(t) = [x̄1(t), . . . , x̄M(t)]ᵀ, x̄i(t) = [xi(t), xi(t− 1), . . . , xi(t− fe + 1)]

s̄(t) = [s̄1(t), . . . , s̄N(t)]
ᵀ, s̄j(t) = [sj(t), sj(t− 1), . . . , sj(t− L− fe + 2)]

H̄ =

 h̄11 . . . h̄1N
... . . . ...

h̄M1 . . . h̄MN

 , h̄ij =


hij(0) . . . hij(L− 1) 0 . . . 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0
0 . . . 0 hij(0) . . . hij(L− 1)


Assuming matrix H̄ is full rank, in order to address the inverse problem the system
in Eq. 4.1 must be overdetermined, namely the number of extended observations
must be higher than the number of sources multiplied by the length of the filters:
Mfext ≥ N(L+ fext − 1) [10, 12].
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The procedure described so far is referred to as extension: it converts a convolutive
mixture into an instantaneous mixture that can be processed by FastICA. However,
the requirement of statistical independence between sources is no longer satisfied,
since the delayed replicas are not independent by construction. Nonetheless, the
contrast functions used in ICA measures the non-gaussianity of the estimated sources,
and only indirectly their independence; in fact, non-gaussianity can be used as a
proxy of sparsity and, contrary to independence, sparsity is preserved after the
extension. Therefore, ICA tries to maximize the sparsity of the sources, and since
MUAPTs are leptokurtic—and thus sparse—ICA can indeed be used to identify
MUs [10, 27, 28, 29].

4.2 ICA-based algorithm
The proposed system is inspired by the work of Negro et al. [10], and it relies on
a variation of FastICA (cf. Section 3.3). The aim is to recover as many MUs as
possible from the extended observations x̄(t); non-identified MUs will be accounted
for by the additive noise term ω̄(t) [10, 12] (cf. Eq. 4.1).

The block diagram in Fig. 4.1 shows an overview of the decomposition algorithm:
it takes as input the raw sEMG signal and it outputs the estimated discharge timings
of the identified MUs.

Figure 4.1: Overview of the ICA-based algorithm: the system processes raw sEMG data
and outputs the estimated discharge timings of the identified MUs.

This ICA-based algorithm is designed to be calibrated (i.e., fit on a calibration
signal) at the beginning of the recording session: during calibration, the decomposition
model learns relevant parameters, namely the mean vector µx̄, the whitening matrix
W, the separation matrix B and the thresholds for spike/noise classification Γ; such
parameters are stored, and can be used in an online fashion to efficiently decompose
raw sEMG signals during the same session [28, 27].

4.2.1 Pre-processing
The first pre-processing step is filtering: a fifth-order Butterworth band-pass filter
(20Hz–700Hz) is applied on the sEMG signal to reduce the effect of noise, followed
by several second-order infinite impulse response (IIR) notch filters to remove power
line interference (30Hz, 50Hz, 60Hz, 90Hz and 150Hz) [30]. The sEMG is then
extended with the procedure described in Section 4.1.

Afterwards, the standard pre-processing steps for ICA, namely centering and
whitening of the extended vector of observations x̄(t), are applied: after subtracting
its mean µx̄, the vector is whitened via the ZCA method, resulting in:

x̂(t) = Wx̄(t), W = U−1/2Vᵀ (4.2)

where UVᵀ is the singular value decomposition (SVD) of the covariance matrix
Kx̄x̄ = E[x̄(t)x̄ᵀ(t)]. The combination of extension and whitening is referred to as
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“convolutive sphering” [10, 26]. In particular, only the eigenvalues greater than
a certain threshold are considered, and such threshold is set to the average of
the smallest half of the eigenvalues [10]: this regularization procedure should help
reducing the effect of noise [10, 25].

Figure 4.2: Example of convolutive sphering: on the left, the correlation matrix of a
24-channel sEMG signal, extended using fext = 8; on the right, the correlation matrix after
the whitening process. The sEMG signal used in this example belongs to the putEMG
dataset [30].

4.2.2 Source extraction
The source extraction stage is described by the block diagram in Fig. 4.3.

Figure 4.3: Diagram of the source extraction step.

The FastICA algorithm, described in Alg. 1, is applied to obtain an initial
estimation for the MUAPT. The log hyberbolic cosine contrast function is used,
since it is more robust to outliers [10]. Gram-Schmidt orthogonalization is employed
to prevent the algorithm from converging to the same MUAPT multiple times [10,
25]. A fast convergence of FastICA requires a suitable initialization point of the
projection vector [25], therefore, as per [10, 27], (i) the whitened observations are
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squared and summed along the channels dimension, (ii) peak detection is performed
on the resulting signal, and (iii) each separation vector is initialized to the value of
a peak, chosen randomly among the 25% highest peaks.

Algorithm 1 FastICA iteration
Input:

x̂: pre-whitened observations with shape Mfe ×D;
B: estimated separation matrix for previous sources;
winit: initial estimate for separation vector;
max_iter = 100: maximum n. of iterations;
th_conv = 1e-4: threshold for convergence.

1: function fast_ica(x̂, B, winit, max_iter, th_conv)
2: wi ← winit
3: converged← ⊥
4: iter_idx← 0
5: while iter_idx < max_iter do
6: wi+ ← E[x̄G′ (wiᵀx̄)]− E[G′′ (wiᵀx̄)]wi . compute new vector
7: wi+ ← wi+ − BᵀBwi+ . apply Gram-Schmidt orthogonalization
8: wi+ ← wi+/‖wi+‖ . normalize
9: distance← 1− |wiᵀwi+|

10: wi← wi+ . update vector
11: if distance < th_conv then
12: converged← >
13: break
14: end if
15: iter_idx← iter_idx + 1
16: end while
17: return wi, converged
18: end function

The MUAPTs estimated by FastICA may be unreliable. Therefore, a second
iterative procedure, described in Alg. 2, is employed: spike trains are estimated by
performing peak detection on the squared source and by classifying the detected peaks
with K-means with K = 2 to discriminate between actual spikes and noise; then,
the estimated MUAPT is refined in order to reduce the variability of its discharge
timings. This source improvement iteration is repeated until the variability reaches
a minimum [10, 12, 28, 27].

A silhouette measure (SIL), defined as the normalized difference between the
sum of point-to-centroid distances within cluster and between clusters—quantifying
the quality of the K-means spike/noise classification—is computed on the estimated
spike train, and the corresponding separation vector is kept only if SIL ≥ 0.9 [10,
28, 27, 31, 29]. The process is repeated Mt times, where Mt is a hyper-parameter
indicating the number of target MUs [10, 28, 27, 31, 29] (i.e., the number of MUs
the system tries to extract): eventually, the separation matrix B will contain at most
Mt rows, namely the separation vectors for at most Mt source MUAPTs. The whole
source extraction procedure is summarized in Alg. 3.
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Algorithm 2 Source improvement iteration
Input:

x̂: pre-whitened observations with shape Mfe ×D;
B: separation matrix estimated for previous sources;
wi: estimate for separation vector;
max_iter = 100: maximum n. of iterations;
th_conv = 1e-4: threshold for convergence.

1: function source_improvement(x̂, B, wi, max_iter, th_conv)
2: CoV←∞ . initialize coefficient of variation (CoV)
3: iter_idx← 0
4: while iter_idx < max_iter do
5: si(t)← wiᵀx̂(t)
6: [pk1, . . . , pkU ]← peak_detection(s2i (t)) . detect potential spikes
7: [sp1, . . . , spV ]← k-means([pk1, . . . , pkU ], k = 2) . classify actual spikes
8: wi+ ← 1

V

∑V
v=1 x̂(spv) . refine vector by taking mean at spike locations

9: wi+ ← wi+ − BᵀBwi+ . apply Gram-Schmidt orthogonalization
10: wi+ ← wi+/‖wi+‖ . normalize
11: isi← diff([sp1, . . . , spV ]) . compute inter-spike interval (ISI)
12: CoV+ ← σisi/µisi . compute new CoV
13: if |CoV+ − CoV| < th_conv then
14: wi← wi+ . update vector
15: break
16: end if
17: if CoV+ > CoV then
18: break
19: end if
20: wi← wi+ . update vector
21: CoV← CoV+ . update CoV
22: iter_idx← iter_idx + 1
23: end while
24: return wi
25: end function

4.2.3 Post-processing
Finally, a post-processing step is applied in order to remove either inactive MUs,
namely MUs firing less than a given threshold (in spike/s) [27, 29, 31], and duplicates:
in fact, as mentioned before, the extension step in Eq. 4.1 introduces delayed replicas
of the sources, and thus the decomposition algorithm may converge to such duplicates,
despite the orthogonalization step. In particular, delayed replicas are detected by
checking those MUAPTs that share more than 50% firing events within a ±1ms
tolerance window, and only the MU with the highest SIL is kept [29, 31].

4.2.4 Re-calibration
Since ICA does not guarantee a consistent ordering of the extracted sources across
different sessions, the model can be re-calibrated on sEMG data from a new recording
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Algorithm 3 Source extraction
Input:

x̂: pre-whitened observations with shape Mfe ×D;
Mt: n. of target sources to extract;
max_iter = 100: maximum n. of iterations;
th_conv = 1e-4: threshold for convergence;
th_sil = 0.9: threshold for SIL.

1: B← [ ] . separation matrix initially empty
2: for i← 0,Mt do
3: . 1. Perform FastICA for current unit
4: wi← init_w(i) . initialize separation vector
5: [wi, converged]← fast_ica(x̂,B,winit, max_iter, th_conv)
6: if ¬converged then
7: continue
8: end if
9: . 2. Perform source improvement

10: wi← source_improvement(x̂,B,wi, max_iter, th_conv)
11: . 3. Check SIL
12: SIL← compute_sil(wiᵀx̂(t))
13: if SIL ≥ th_sil then
14: B← [B,wiᵀ] . append separation vector to matrix
15: end if
16: end for

session. First of all, the mean vector µx̄ and the whitening matrix W are updated
via the following momentum-controlled rule:

µx̄ ← (1− β) · µx̄ + β · µ(new data)
x̄ , W← (1− β) ·W + β ·W(new data) (4.3)

where β is momentum, and new data refers to parameters fit on the new session only.
Then, assuming that in the previous session P MUs (P < Mt) were extracted (i.e.,
the separation matrix B has P rows), the model estimates up to (Mt − P ) new MUs
from the current session; the corresponding separation vectors are used to update the
separation matrix B by vertically concatenating them to B itself (i.e., the new rows
represent the coefficients of the new extracted MUs). The orthogonalization step
prevents the estimation of separation vectors already identified during the previous
session (i.e., already present in B), and for this reason the model may estimate fewer
MUs than Mt. If Q MUs are extracted in total (P ≤ Q ≤Mt), the separation matrix
B has Q rows, and the vector of spike/noise thresholds Γ(new data) has Q entries.
Finally, the first P entries of the vector of spike/noise thresholds Γ are updated with
the same momentum-controlled rule as µx̄ and W:

Γi ← (1− β) · Γi + β · Γ(new data)
i , i = 1, . . . , P

Γj ← Γ
(new data)
j , j = P + 1, . . . , Q

(4.4)

In this master thesis, a momentum β = 0.5 was employed.
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4.3 Classification models
After the calibration of the ICA-based algorithm, let us assume P MUs were identified.
D-sample-long windows of sEMG signals are decomposed online, and the estimated
MUAPTs are encoded as a binary matrix S with shape P ×D where sij = 1 if the
i-th MU fired a MUAP at the j-th time sample, or sij = 0 otherwise. Such binary
matrix is classified by ML models to predict the actual hand gesture (see Fig. 4.4).

Three models were tested: a linear SVM and two MLPs, one standard and one
lightweight. To better test the effectiveness of the decomposition stage, all the three
classifiers are very simple such that complex feature learning is avoided.

Figure 4.4: Overview of the classification pipeline: windows of a sEMG signal are decom-
posed into MUAPTs, which are encoded as binary matrices and fed into a classifier that
predicts the gesture label.

4.3.1 Linear SVM
The linear support vector machine (SVM) [32] is a ML model that classifies data
points in two classes by finding a hyperplane maximizing the distance between the
nearest points of either class and the hyperplane itself. Multi-class classification is
achieved by means of the “one-vs-one” approach: given C classes, C(C − 1)/2 binary
classifiers are trained on data from two classes; each binary classifier predicts one
class label, and the class with most predictions is considered the predicted class.

Due to their high training complexity, it is not practicable to process high-
dimensional feature vectors with SVMs: therefore, instead of processing whole
(flattened) P ·D binary matrices representing the MUAPTs, the linear SVM employed
in this thesis processes a P -dimensional vector representing the number of MUAPs
generated by each MU.

4.3.2 MLP
The multilayer perceptron (MLP) is a fully connected feedforward artificial neural
network (ANN) consisting of at least three layers of nodes: an input layer, a hidden
layer and an output layer; except for the input nodes, each node uses a non-linear
activation function. MLPs are trained via a supervised learning technique called
backpropagation.

The MLP employed in this thesis features a single hidden layer with 32 hidden
nodes, each using the ReLU activation function, and processes whole flattened P ·D
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binary matrices; for typical values of P and D, this results in a very high number of
parameters.

4.3.3 Lightweight MLP
The last model tested is a variant of the MLP featuring “separable” layers to reduce
the number of parameters: the whole P ×D binary matrices are first processed by
a temporal aggregation layer with NTA nodes, resulting in a P ×NTA intermediate
matrix; this matrix is then flattened and processed by a channel aggregation layer with
NCA nodes, which outputs a NCA-dimensional vector. Such vector is finally processed
by the classification layer. Both temporal aggregation and channel aggregation layers
use the ReLU activation function. The block diagram in Fig. 4.5 provides an overview
of the lightweight MLP architecture.

Figure 4.5: Overview of lightweight MLP.
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The proposed system was tested in two scenarios: an offline scenario focused on
analyzing intra-session and inter-session variability, and an online scenario focused
on profiling the parallel implementation of the algorithm for real-time inference on
the parallel ultra low power (PULP) platform, an architecture organized in a cluster
of RISC-V cores targeting high energy-efficiency [8].

5.1 Offline scenario
The algorithm for the offline scenario was implemented using the Python language; in
particular, the downstream classification stage was implemented using PyTorch [33]
and scikit-learn [34] libraries. The project is organized as follows:

• all the experiments were performed in Jupyter notebooks;

• the actual logic is implemented in the semg_bss package:

– the emg_separator.py module contains the EMGSeparator class, expos-
ing the methods calibrate, recalibrate and decompose for initial cali-
bration, re-calibration and decomposition using pre-computed parameters,
respectively;

– the preprocessing.py module contains the functions for sEMG signals
pre-processing;

– the clf sub-package contains the modules for the classification stage:
∗ the mlp.py module contains the MUAPTClassifierMLP class, imple-

menting the standard MLP model;
∗ the mlp_light.py module contains the MUAPTClassifierMLPLight

class, implementing the lightweight MLP model;
– the datasets sub-package contains the modules for managing the different

datasets used;
– the plt.py module contains the functions for plotting and visualization.

The Python implementation is available at https://github.com/nihil21/semg-bss.

5.2 Online scenario
A parallel implementation of the decomposition and classification pipeline for the
online scenario was developed using the C language; the implementation was profiled
on the PULP platform [8] using the GVSoC simulator [35]:

https://github.com/nihil21/semg-bss
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• in the decomposition stage, each core processes a subset of the extended
channels;

• in the classification stage, parallelism involves either the input features of the
lightweight MLP or the binary classifiers of the SVM.

The project is organized as a Docker container [36], with the PULP-SDK pre-
installed; the logic is implemented in the semg-bss-online directory: in particular,
the decomposition stage is implemented in the decomp module, and the classification
stage is implemented in the clf module. The program can be compiled and executed
using make. The C implementation is available at https://github.com/nihil21/
semg-bss-pulp.

https://github.com/nihil21/semg-bss-pulp
https://github.com/nihil21/semg-bss-pulp
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The system was validated through both a synthetic sEMG dataset with known
ground truth MUAPTs and real sEMG signals recorded during the execution of a
set of gestures, for which a ground truth label is provided. As per [10, 28, 31, 29], I
set (i) the maximum number of FastICA and source improvement iterations to 100,
(ii) the threshold for convergence of FastICA and source improvement iterations to
10−4, and (iii) the threshold for SIL to 0.9.

6.1 Task n. 1: decomposition validation
To assess the decomposition accuracy of the system, a synthetic dataset was used.
The dataset was provided by Mohebian et al. [37]: it was generated using a planar
volume conductor model, and consists of 15 simulated sEMG signals with 90 channels,
a length of 16 s and a sampling frequency of 4096Hz. The muscle excitation for each
simulated signal was set to either 10%, 30% or 50% MVC.

As per [37], a MU was considered correctly identified when at least 30% of its
firings were time-locked in a window of ±0.5ms with a ground truth MU. For each
identified MU, the accuracy of the decomposition was assessed by computing the
following metrics [37]:

• rate of agreement (RoA): TP
TP+FN+FP

• precision: TP
TP+FP

• recall: TP
TP+FN

The number of target MUs Mt was set to 300, 400 and 500 for signals with MVC
of 10%, 30% and 50%, respectively. As per [10], the extension factor was set to
fext = 16.

Results are shown in Table 6.1: “#MUs GT” is the number of active ground-truth
MUs, “#MUs extracted” is the actual number of MUs the system manages to extract,
and “#MUs (identified)” is the number of extracted MUs correlating with a ground
truth MU based on the time-locking criteria explained before. As it can be seen,
our system is able to detect only a small portion of the ground-truth MUs (the
ones simulated near the locations of the electrodes): this is expected, since MUs
far from the electrodes contribute to the physiological noise; as a comparison, the
modified gradient convolution kernel compensation (gCKC) extracted on average
16.41± 4.18 MUs [37]. Noteworthily, the identified MUs are very strongly correlated
with the ground truth: in particular, the larger the MVC, the fewer the extracted and
identified MUs are, whereas the correlation metrics remain firmly high. Differently
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MVC Mt
#MUs

GT
#MUs

extracted
#MUs

identified RoA Precision Recall

10% 300 262 90.80± 14.27 24.40± 2.87 0.94± 0.17 0.94± 0.16 0.98± 0.05

30% 400 388 72.40± 26.42 19.80± 2.99 0.98± 0.09 0.99± 0.08 0.99± 0.04

50% 500 446 51.20± 4.07 14.20± 2.86 0.97± 0.11 0.98± 0.09 0.98± 0.08

Table 6.1: Number of extracted and identified MUs, RoA, precision and recall, averaged
over five simulated signals for each MVC value: results are reported as mean± std.

from [37], in which the authors added gaussian noise with a given signal-to-noise
ratio (SNR) to the simulated sEMG signals, these results were obtained without
considering any additional noise, apart from the simulated physiological noise and
the contribution of unidentified distant MUs.

6.2 Task n. 2: variability analysis
The proposed system was tested on the putEMG dataset, collected by Kaczmarek
et al. [30] using a 24-electrode matrix placed on the forearm. It includes recordings
sampled at 5120Hz from 44 healthy subjects and from two sessions, separated by at
least one week. Each recording contains repetitions of seven active gestures separated
by an idle state. For each subject and session, the dataset provides three signals:

• repeats_long: seven action blocks (one per gesture), each containing eight
repetitions of the same gesture;

• repeats_short: seven action blocks (one per gesture), each containing six
repetitions of the same gesture;

• sequential: six action blocks, each containing all the seven gestures in se-
quence.

In particular, I considered a simplified scenario with only one subject (subject 03,
a 37-year-old male), and two gestures (the n. 2 and 3, namely hand flexion and
extension). As per [10, 28, 27, 29], all signals were pre-processed beforehand using
a 20Hz to 700Hz band-pass filter and several notch filters at 30Hz, 50Hz, 60Hz,
90Hz and 150Hz to attenuate power-line noise.

Three decomposition approaches were tested:

Firing Rate Ordering Two distinct decomposition models were employed, one
calibrated on a signal recorded during the first session and the other on a signal
recorded during the second session. In both cases the extracted MUs were
ordered by their firing rate, from the highest to the lowest (the order was kept
unchanged when performing inference).

Negative Entropy Ordering As before, two distinct decomposition models were
employed for the two sessions, but instead of being ordered by firing rate the
extracted MUs were ordered by negative entropy (or neg-entropy), from the
highest to the lowest (the order was kept unchanged during inference); the
rationale behind neg-entropy ordering is that FastICA uses neg-entropy as



6.2 Task n. 2: variability analysis 29

contrast function to estimate MUAPTs, and thus the same MU in different
recording sessions may have a similar neg-entropy value.

Re-calibration A single decomposition model was employed: it was calibrated on
a signal from the first session, and the estimated decomposition parameters
(such as the mean vector, the whitening matrix, the separation vectors and the
spike thresholds) were updated by re-calibrating the model on a signal from
the second session, using a momentum β = 0.5.

In all the above tests, the same calibration signal was used, namely the slice from
50 s to 150 s of the repeats_long signal: such slice contains the sEMG recording
during the performance of both flexion and extension gestures in sequence. Multiple
values for the hyper-parameter Mt were tested; moreover, I examined the effect
of re-sampling the sEMG signal at a lower frequency by applying an eighth-order
type I Chebyshev filter and decimating at 2560Hz and 1280Hz (i.e., one half and
one quarter of the original sampling frequency). The extension factor was fixed to
fext = 8 regardless of the sampling rate, since, as per [10, 28], it was observed that
the decomposition performance is similar for fext ∈ {8, . . . , 31}). The relationship
between the sampling frequency, the number of target MUs and the actual number
of extracted MUs can be observed in Fig. 6.1.

Figure 6.1: Number of extracted MUs with respect to the number of target MUs obtained
by calibrating the model on the first, second and both sessions (re-calibration).

6.2.1 Dataset preparation
After calibration, the dataset for gesture classification was prepared as follows:

1. the slices corresponding to the gestures of interest from all the three sEMG
signals (i.e., repeats_long, repeats_short and sequential) were considered;

2. since the duration of the gestures may differ, each slice was divided in several
windows with a fixed length of 500ms and with an overlap of 400ms;

3. MUAPTs were extracted from each window using the calibrated decomposition
model;

4. extracted MUAPTs were encoded as a P ×D matrix of zeros and ones (the
latter representing a spike), where P is the number of extracted MUs and
D = 0.5s · fs[Hz] is the number of samples;
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5. the P ×D matrix was flattened and fed into the standard MLP binary classifier
described in Section 4.3.

6.2.2 Intra-session and inter-session classification
Two subtasks were considered:

• intra-session classification subtask, in which the MLP was trained on the
flattened spikes extracted from the repeats_long and repeats_short signals
recorded in the first session and was tested on the flattened spikes extracted
from the sequential signal recorded in the first session;

• inter-session classification subtask, in which the MLP was trained on the
flattened spikes extracted from all the signals recorded in the first session and
was tested on the flattened spikes extracted from all the signals recorded in
the second session.

Intra-session subtask

Regardless of the decomposition approach, the sampling frequency and the number
of target MUs, the test accuracy in the intra-session subtask was 100%: this is
motivated by the fact that (i) the dataset considered is small, and (ii) flexion and
extension involve different MUs and the decomposition model already separates them
very neatly, as it can be observed in Fig. 6.2.

Figure 6.2: MUs extracted by the calibrated decomposition model, color coded by firing
rate (i.e., ratio between the number of spikes of a MU and the duration of the contraction):
each dot with coordinates (i, j) represent the MUAP generated by the j-th MU at time i.
The firings characterizing a flexion gesture are shown on the left, those characterizing an
extension are shown on the right: as it can be seen, the firing patterns are very different
(in this example Mt = 60 and fs = 5120Hz, but this difference in firing patterns was also
observed for other values of Mt and fs).

Inter-session subtask

Concerning the inter-session subtask, performance varied depending on the approach
used, on the sampling frequency and on the number of target MUs, as shown in
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Fig. 6.3. In general, neg-entropy ordering seems to be more reliable than firing rate
ordering, especially when there are only few extracted MUs (i.e., Mt ∈ 20) and the
sampling frequency is high (i.e., fs ∈ {5120, 2560}): this can be confirmed also by
a visual inspection of the firing pattern obtained using both ordering (Fig. 6.4).
As expected, the approach yielding the best accuracy overall (almost always above
90%) is the re-calibration: since it extends the original separation matrix with
new information from the new session, the ordering is guaranteed to be consistent.
However, the position of the electrodes must be roughly the same between different
recording session, otherwise the old separation vectors would become meaningless
and may actually harm the decomposition.

Figure 6.3: Inter-session test accuracy by varying decomposition approach and number of
target MUs.

Figure 6.4: Comparison between firing rate ordering (left), negative entropy ordering
(middle), and re-calibration (right) with Mt = 20: each bar with coordinates (i, j) represent
the MUAP generated by the j-th MU at time i; the color indicates the session in which the
MUAPTs were estimated. The MUAPs from 0 s to ∼12 s correspond to two repetitions of
the flexion gesture, whereas the MUAPs from ∼12 s to ∼24 s correspond to two repetitions
of the extension gesture: in the ideal case, the same MUs should be active during the same
gestures in both session.

6.3 Task n. 3: online decomposition in real-time
The focus of this task is the profiling of the decomposition and classification pipeline
for inference on the PULP platform.
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6.3.1 Dataset acquisition
The complete system for sEMG signal acquisition employed in this task is presented in
Fig. 6.5. The bracelet features eight pairs of dry gold-plated electrodes, interconnected
through elastic bands to provide a flexible fit for different arm sizes. Each electrode
uses a first amplification stage directly on the gold-plated pads to minimize the
stray capacitance of the noise sensitive pads. Reference and ground electrodes are
adhesive and placed at the elbow. Signals from the bracelet are sampled at 4 ksps
with BioWolf16, a low-power HMI device for ExG signals [38, 39]. BioWolf16 features
three main components: Mr. Wolf MCU, a Nordic SoC and two Texas Instruments
analog front-ends (AFEs). Mr. Wolf is a 1 GFLOP/s energy-proportional PULP
processor featuring a cluster of eight processing units and a fabric controller [40].

Figure 6.5: Complete acquisition system including a 3D representation of the 16-channel
dry bracelet, its placement on the arm during experimentation, and the top view of the
acquisition device (BioWolf16).

A single healthy subject participated in data collection, conducted in an office
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environment, performing four hand gestures: open hand, fist (power grip), pointing
index, ok (thumb up). The subject repeated every gesture two times during the
experimental session. Gesture contractions were maintained for ∼5 s, followed by
∼5 s of rest. The bracelet was placed in the vicinity of the flexor carpi ulnaris muscle,
as depicted in Fig. 6.5.

Gesture labelling

Contractions were labeled by computing the 200ms-RMS of the sEMG then perform-
ing K-means (with K = 2 to discriminate rest and contractions) on the contractions
with the lowest amplitude; this procedure finds the minimum sEMG threshold de-
noting the transition from rest to contraction and vice versa. The 400ms windows
centered in the rest-contraction transitions timing were considered as transients,
namely sEMG segments whose corresponding gesture class cannot be defined exactly.

6.3.2 Dataset preparation
The decomposition described in the previous section was calibrated off-device on the
raw sEMG data of one whole repetition per gesture, including transients and the
adjacent rests. An extension factor fext = 4 and a number of target MUs Mt = 60
were employed: after the post-processing step, the model extracted 19 MUs.

The training set was built (i) considering all the 200ms-slices (i.e., 800 samples
with sampling at 4 ksps) corresponding to either contraction or rest (i.e., transients
were discarded), from the first four repetitions of each gesture (and adjacent rests);
(ii) performing online decomposition on these windows; and (iii) producing binary
matrices S with size 19 × 800 where sij = 1 if the i-th MU fired at the j-th time
sample, or sij = 0 otherwise. The test set was prepared in the same way, using the
remaining one repetition of each gesture (and adjacent rests), yielding no overlap
with the calibration and training data. The window length of 200ms was chosen as a
tradeoff between the algorithm’s space and time complexity and sufficient information
content for classification.

In the classification stage, the linear SVM and the lightweight MLP described
in Section 4.3 were tested. The SVM processes 19-dimensional vectors containing
the number of spikes for each MU, instead of whole 19 × 800 binary matrices, to
reduce computation. The MLP processes full 19× 800 binary matrices, and consists
of three sequential fully connected layers: (i) a 4-neuron layer aggregating the time
dimension, with parameters shared across channels; (ii) a 16-neuron layer aggregating
the channel dimension; and (iii) a 5-neuron layer returning a score for each class.
All hidden neurons have ReLU activation. The MLP was trained for 20 epochs with
mini-batch size 32, cross-entropy loss function, Adam optimizer, initial learning rate
0.001, and weight decay 0.01 for regularization. The training of the two classifiers
was performed off-device.

Since the rest class alone constitutes the 48% of the data, the class-imbalance
was compensated by training both the linear SVM and the MLP using weighted
random sampling based on the inverse frequency of each class, and assessing their
performance based on both imbalanced and balanced accuracy. The final accuracy
assesses not only the classifier, but the decomposition and classification pipeline in a
joint fashion: a high accuracy means that the decomposition is able to extract spikes
carrying valuable information about the movement.
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6.3.3 Pipeline profiling
The speedup curves of the pipeline are shown in Fig. 6.6: using 8 cores, both
decomposition and classification stages (either using the lightweight MLP or the
SVM) achieve a speedup > 6×; the sub-optimality compared to the ideal speedup is
due to the frequent memory transfers between the fabric controller and the cluster
(decomposition stage and MLP) and to sequential operations (SVM’s one-vs-one
voting).

Figure 6.6: Speedup curve of the parallel implementation.

The profiling results of decomposition and classification (both for the linear SVM
and the MLP option) are reported in Tabs. 6.2, 6.3.

STAGE Memory MAC Latency Energy
(kB) Cycles Time (ms) (µJ)

Decomposition 73.0 4249k 2902k 29.02 536.87

Classification option 1: MLP 18.1 62k 115k 1.15 21.27
option 2: SVM 1.0 15k 20k 0.20 3.70

Table 6.2: Profiling of decomposition and classification on the PULP platform [8]. Latency
and energy are referred to parallelization on all the cluster’s 8 cores, running at 100MHz.

STAGE Test accuracy
Unbalanced Balanced

Classification option 1: MLP 95.28% 92.48%
option 2: SVM 95.38% 92.63%

Table 6.3: Classification accuracy of the SVM and lightweight MLP, averaged over 10
repetitions of training from scratch.

As to memory footprint, the decomposition stage is the most demanding, but
the 73 kB it requires are within the typical memory budget of embedded platforms;
downstream, the MLP only requires 18 kB, whereas the SVM has negligible footprint
thanks to the linear kernel. A similar trend is found for computation energies, with
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each decomposition employing 536.87 µJ, and the MLP and SVM consuming 21.27 µJ
and 3.70 µJ per inference, respectively. Moreover, the number of multiply-accumulate
(MAC) operations required involves a number of clock cycles that results in a latency
below 50ms for each decomposition and inference run. For this reason, all the 8
PULP cores running at 100MHz—their most energy-efficient frequency [40]—are
exploited. This makes the implementation suitable for working in real-time, since each
execution processes a time window of 200ms of data, which is twice the computation
latency.

As to accuracy (cf. Tab. 6.3), both the linear SVM and the MLP yield an
unbalanced accuracy > 95% and a balanced accuracy > 92% on the test data. An
unbalanced accuracy higher than the balanced accuracy is due to the fact that
the rest class is both the most represented in the data (48%) and the easiest to
recognize, a common situation in sEMG-based ML, that motivates the use of balanced
accuracy as a fairer metric. The obtained accuracy proves that this setup matches the
performance of SoA implementations targeting a comparable number of classes but
ignoring any physiological insight [20]. These results show that the decomposition
stage reconstructs neural spikes which carry relevant information about the movement
and are accurately separable by linear classifiers.

Power consumption and estimated battery life

The total power consumption and battery life of an embedded real-time implementa-
tion of the system was estimated, including the contribution of the AFEs, providing
a complete power budgeting. The results show that the complete system can operate
at a power envelope of ∼ 17mW (for either MLP or SVM), providing < 20 h of
continuous operation with a single 100mA h-battery charge. From this power, only
15% is due to the computation itself, thanks to Mr Wolf’s parallel computing capa-
bilities and energy efficiency. From this, ∼ 84% is due to signal sampling, while the
rest is due to computation. Using MLP or SVM does not change the overall power
consumption, as their computational loads are negligible compared to decomposition
(25× and 145× fewer clock cycles, respectively).





7 | Conclusions and future work

This master thesis tackles the problem of sEMG-based hand gesture recognition
via the extraction of MUAPTs. Two scenarios were considered: one focused on
off-device execution for intra-session and inter-session variability analysis, and one
focused on profiling the end-to-end pipeline for inference on the PULP platform, an
architecture organized in a cluster of RISC-V cores and designed targeting at high
energy-efficiency.

Concerning the first scenario, a subset of the publicly available putEMG dataset
was employed: in particular, only one subject and two opposite gestures was con-
sidered. For the classification stage, a standard 3-layer MLP was employed. The
proposed pipeline proved to be very effective in the intra-session scenario: the
MUAPTs estimated by the decomposition stage were linearly separable, thus the
downstream MLP could easily classify them, resulting in an accuracy on the test
set of 100%. In the inter-session scenario, the problem of ICA not guaranteeing a
consistent MU ordering across different sessions was addressed with three approaches:
two ordering criteria based on firing rate and negative entropy, and a re-calibration
procedure that allows the decomposition model to retain information about pre-
vious recording sessions when decomposing new data. While both firing rate and
neg-entropy orderings proved to be not very robust, the results obtained with the
re-calibration procedure seem promising, as this approach yielded an accuracy on
the test set up to 99.4%.

As to the second scenario, the sEMG dataset was acquired from one subject using
BioWolf16, a low-power HMI device for ExG signals, and consisted of five classes
(four hand gestures and rest). Both the calibration of the decomposition model
and the training of SVM and lightweight MLP were performed off-device: the SVM
and the lightweight MLP yielded an accuracy on the test set of 92.6% and 92.5%,
respectively. A parallel, end-to-end pipeline for inference was then implemented
and profiled on the PULP architecture, showing a latency < 50ms and an energy
consumption < 1mJ.

These results prove that the system proposed in this thesis is not only suitable for
real-time execution on resource-constrained embedded platforms, but is also capable
of matching the recognition accuracy of SoA approaches, while also giving some
physiological insight on the neuromuscular spikes underlying the sEMG.

Future work will continue this research line, testing the generalization capabilities
of the system on more subjects, more gestures and more recording sessions.
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