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ABSTRACT

High dimensionality brings both opportunities and challenges to the study of applied
mathematics. This thesis consists of two parts. The first part explores the singularity
formation of the axisymmetric incompressible Euler equations with no swirl in R𝑛,
which is closely related to the Millennium Prize Problem on the global singularity
of the Navier-Stokes equations. In this part, the high dimensionality contributes
to the singularity formation in finite time by enhancing the strength of the vortex
stretching term. The second part focuses on sampling from a high-dimensional
distribution using deep generative networks, which has wide applications in the
Bayesian inverse problem and the image synthesis task. The high dimensionality in
this part becomes a significant challenge to the numerical algorithms, known as the
curse of dimensionality.

In the first part of this thesis, we consider the singularity formation in two scenarios.
In the first scenario, for the axisymmetric Euler equations with no swirl, we consider
the case when the initial condition for the angular vorticity is𝐶𝛼 Hölder continuous.
We provide convincing numerical examples where the solutions develop potential
self-similar blow-up in finite time when the Hölder exponent 𝛼 < 𝛼∗, and this upper
bound 𝛼∗ can asymptotically approach 1 − 2

𝑛
. This result supports a conjecture

from Drivas and Elgindi [27], and generalizes it to the high-dimensional case.
This potential blow-up is insensitive to the perturbation of initial data. Based on
assumptions summarized from numerical experiments, we study a limiting case of
the Euler equations, and obtain 𝛼∗ = 1 − 2

𝑛
which agrees with the numerical result.

For the general case, we propose a relatively simple one-dimensional model and
numerically verify its approximation to the Euler equations. This one-dimensional
model might suggest a possible way to show this finite-time blow-up scenario
analytically. Compared to the first proved blow-up result of the 3D axisymmetric
Euler equations with no swirl and Hölder continuous initial data by Elgindi in
[30], our potential blow-up scenario has completely different scaling behavior and
regularity of the initial condition. In the second scenario, we consider using smooth
initial data, but modify the Euler equations by adding a factor Y as the coefficient
of the convection terms to weaken the convection effect. The new model is called
the weak convection model. We provide convincing numerical examples of the
weak convection model where the solutions develop potential self-similar blow-up
in finite time when the convection strength Y < Y∗, and this upper bound Y∗ should
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be close to 1− 2
𝑛
. This result is closely related to the infinite-dimensional case of an

open question [27] stated by Drivas and Elgindi. Our numerical observations also
inspire us to approximate the weak convection model with a one-dimensional model.
We give a rigorous proof that the one-dimensional model will develop finite-time
blow-up if Y < 1 − 2

𝑛
, and study the approximation quality of the one-dimensional

model to the weak convection model numerically, which could be beneficial to a
rigorous proof of the potential finite-time blow-up.

In the second part of the thesis, we propose the Multiscale Invertible Generative
Network (MsIGN) to sample from high-dimensional distributions by exploring the
low-dimensional structure in the target distribution. The MsIGN models a transport
map from a known reference distribution to the target distribution, and thus is very
efficient in generating uncorrelated samples compared to MCMC-type methods.
The MsIGN captures multiple modes in the target distribution by generating new
samples hierarchically from a coarse scale to a fine scale with the help of a novel prior
conditioning layer. The hierarchical structure of the MsIGN also allows training
in a coarse-to-fine scale manner. The Jeffreys divergence is used as the objective
function in training to avoid mode collapse. Importance sampling based on the
prior conditioning layer is leveraged to estimate the Jeffreys divergence, which is
intractable in previous deep generative networks. Numerically, when applied to two
Bayesian inverse problems, the MsIGN clearly captures multiple modes in the high-
dimensional posterior and approximates the posterior accurately, demonstrating
its superior performance compared with previous methods. We also provide an
ablation study to show the necessity of our proposed network architecture and
training algorithm for the good numerical performance. Moreover, we also apply
the MsIGN to the image synthesis task, where it achieves superior performance
in terms of bits-per-dimension value over other flow-based generative models and
yields very good interpretability of its neurons in intermediate layers.
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C h a p t e r 1

INTRODUCTION

1.1 Overview
High dimensionality brings both opportunities and challenges to the study of applied
mathematics. This thesis consists of two parts. The first part explores the singularity
formation of the axisymmetric incompressible Euler equations with no swirl in R𝑛,
which is closely related to the Millennium Prize Problem on the global singularity
of the Navier-Stokes equations. In this part, the high dimensionality contributes
to the singularity formation in finite time by enhancing the strength of the vortex
stretching term. The second part focuses on sampling from a high-dimensional
distribution using deep generative networks, which has wide applications in the
Bayesian inverse problem and the image synthesis task. The high dimensionality in
this part becomes a significant challenge to the numerical algorithms, known as the
curse of dimensionality.

In the first part of this thesis, we consider the singularity formation in two scenarios:
the axisymmetric Euler equations with no swirl and with Hölder continuous initial
data, and a weak convection model of the axisymmetric Euler equations with no swirl
and with smooth initial data. In both scenarios, we provide convincing numerical
evidence of the potential finite-time blow-up in R𝑛 that has not been studied before.
The potential finite-time blow-up is computationally robust with respect to the
perturbation of initial data, implying that the potential blow-up mechanism should
be quite generic and insensitive to the initial data. We propose simplified models
to understand the mechanism of the potential blow-up. Our numerical results also
support several conjectures on the finite-time blow-up of the Euler equations as
proposed in a recent survey paper [27].

In the second part of this thesis, we propose the Multiscale Invertible Generative
Network to sample from a high-dimensional distribution. The Multiscale Invertible
Generative Network generates samples by transporting a simple reference distribu-
tion to the target distribution. As a deep generative network, the Multiscale Invertible
Generative Network can control its capacity and computational cost by the number of
network parameters, thus making it quite scalable to the high-dimensional problems.
By exploring the low-dimensional structure in the high-dimensional distribution, we
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achieve superior performance over other approaches on the tested examples in the
Bayesian inverse problem and the image synthesis task, especially in distribution
approximation and multiple mode capturing.

1.2 Singularity Formation in the Euler Equations
Intentionally redacted.

1.3 Sampling of High-Dimensional Distributions
In this part, we introduce the Multiscale Invertible Generative Network, which is ab-
breviated as the MsIGN, to sample from high-dimensional distributions. Sampling
from a distribution provides convenient ways to access the information carried by the
distribution, for example, mean, variance, and the expected value of any function of
the random variable. When the dimension of the distribution is high, calculating an
integral of the distribution becomes computationally infeasible, but using the Monte
Carlo method with samples of the distribution is still efficient. However, sampling
from a high-dimensional distribution is very challenging. The curse of dimen-
sionality significantly slows down algorithms that work well for low-dimensional
problems and spoils the quality of the samples.

The MsIGN is a deep generative network that maps samples from a simple reference
distribution to the target distribution. It makes use of the multiscale structure that
widely appears in many high-dimensional distributions in applications to design its
network architecture. As a deep generative network, the MsIGN can control its
capacity and computational cost by the number of network parameters, thus making
it quite scalable to the high-dimensional problems. We use the MsIGN to solve two
high-dimensional distribution sampling problems: the Bayesian inverse problem,
whose applications widely appear in fluid dynamics, geophysics and medical imag-
ing, and the image synthesis task, which is one of the core problems in machine
learning.

The Bayesian Inverse Problem
The inference of a parameter of interest of a complicated system from limited and
noisy observation is a far-reaching problem that has a wide range of applications,
including various scenarios in geophysics, fluid dynamics, and materials science. A
popular setting is when the noise is an additive Gaussian to the observation:

𝑦 = F (𝑥) + Y, Y ∼ N(0, Γ), (1.1)
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where 𝑥 ∈ 𝑋 is the parameter of interest, and we assume that (𝑋, ∥ · ∥𝑋) is a
Banach space. Here 𝑦 ∈ R𝑑𝑦 is the finite-dimensional observation, Y ∈ R𝑑𝑦 is the
centered Gaussian observational noise, and its covariance Γ is a 𝑑𝑦 × 𝑑𝑦 positive
definite matrix. F is referred to as the forward map that describes some underlying
dynamics of the system. We define the data-misfit functional from (1.1) as

Φ(𝑥; 𝑦) = −1
2
∥𝑦 − F (𝑥)∥2Γ, (1.2)

where we introduce the notation ∥𝑧∥2
Γ

:= 𝑧𝑇Γ−1𝑧, for 𝑧 ∈ R𝑑𝑦 .

The Bayesian approach provides a powerful framework to the “inversion” from the
observation 𝑦 to the parameter 𝑥 that organically blends the prior knowledge with
the observation matching. More specifically, the Bayesian inverse problem casts a
posterior distribution a𝑦 on the parameter 𝑥 by

da𝑦

d`
(𝑥) = 1

𝑍 (𝑦) L(𝑥; 𝑦), (1.3)

with

L(𝑥; 𝑦) = exp (−Φ(𝑥; 𝑦)) (1.4)

where ` is the Borel prior probability measure on 𝑋 , L(𝑥; 𝑦) is the likelihood, and
the normalizing constant 𝑍 (𝑦) is given by

𝑍 (𝑦) =
∫
L(𝑥; 𝑦)d`(𝑥). (1.5)

The posterior (1.3) gives full characterization of all possible solutions to the inverse
inference of 𝑥 based on 𝑦 in (1.1), and this framework is very convenient in modeling
and quantification of uncertainty in the inference problem. We refer the reader to
[88, 22] for more theoretical discussion about the Bayesian framework presented
here.

When 𝑋 is an infinite-dimensional Banach space, the practical treatment of the
posterior a𝑦 requires discretization to a finite-dimensional space. This is typically
the case when the parameter 𝑥 is a function or a field. Following Section 4.1 of
[42], we assume 𝑋 admits an unconditional normalized Schauder basis, and project
𝑥 to a finite number of them. Under proper assumptions on the prior ` in [42], the
projected posterior is consistent with the original posterior defined in (1.3) in the
sense of the Hellinger distance. More examples of the consistency of the projected
posterior to the original posterior can be found in [18, 88, 21, 49, 89]. Therefore, we
will let 𝑋 = R𝑑 from now on, based on the practical and simplicity consideration.



4

The posterior distribution a𝑦 in (1.3) can be also characterized by its density 𝑞𝑦,
which is the Radon-Nikodym derivative da𝑦/d𝑥 to the Lebesgue measure d𝑥 on R𝑑:

𝑞𝑦 (𝑥) = 1
𝑍 (𝑦) 𝜌(𝑥)L(𝑥; 𝑦), (1.6)

where 𝜌 is the density function of the prior `. We remark that the normalizing
constant 𝑍 (𝑦) defined in (1.5) is often computationally intractable, due to the high
dimensionality of 𝑥.

In the following, since the observation 𝑦 in (1.1) only helps in defining the posterior
distribution, but does not play an active role in our purposed method and analysis,
we will write a𝑦 as a in (1.3), and 𝑞𝑦 as 𝑞 in (1.6) to simplify the notation.

We target at generating samples from the posterior distribution defined in (1.6) given
its unnormalized density function, which is a long-standing challenge especially
when the dimension of 𝑥 is high. Since samples help build the estimate of quantities
like E𝑥∼a [ 𝑓 (𝑥)] for any measurable function 𝑓 on R𝑑 by the Monte Carlo method,
the sample generation is of great importance in the Bayesian framework.

The Curse of Dimensionality
While the posterior (1.3) in Bayesian inverse problems is very informative, its sam-
ples are needed for building statistical quantification, like mean and variance, of the
inverse inference of 𝑥 based on 𝑦. However, when 𝑥 ∈ R𝑑 is high-dimensional, sam-
pling the posterior a becomes a long-standing challenge. For example, an arbitrary
posterior can have its importance regions, also known as “modes”, anywhere in the
high-dimensional space, and as a consequence there will be an exponential growth
of computational cost with respect to the problem dimension, for example, see [58,
39].

To deal with the curse of dimensionality, various Markov Chain Monte Carlo
(MCMC) algorithms [4, 5, 95, 75, 94, 19, 39, 16, 9, 26, 20] have been proposed
to improve the convergence rate by designing favorable proposals. For example,
the Langevin diffusion is leveraged to design a better proposal distribution with
advantages like higher acceptance rate in [4, 5, 94, 20]. The Hamiltonian dynamics,
due to its energy preserving property, is also utilized to improve acceptance rate and
lower sample correlation in [75, 16]. By considering proposal distributions well-
defined on the function space, [19, 20] designed MCMC samplers to be independent
of the discretization of the function. In [32, 95], the tempering method is used to
accelerate mixing for multimodal distributions. In [39, 26], the multi-level MCMC
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samples a telescopic expansion of the discretization error using multiple correlated
MCMC chains at different levels. However, when it comes to high-dimensional
problems, MCMC-type methods still face challenges in computational cost, algo-
rithm tuning, sample correlation and mode collapse. For example, the Langevin
diffusion tends to move the MCMC chain toward the high density region, which
would easily lead to mode collapse in the high-dimensional case. For the MCMC
samplers independent of the discretization, detecting modes away from the current
state could also be difficult when the dimension is high, and thus might also suffer
from the mode collapse. The multi-level MCMC usually needs a lot of uncorrelated
samples from the coarse scale to run the MCMC chain in the fine scale, which would
be time consuming for high-dimensional problems. And for the tempering method,
the parameter tuning could be sensitive in order to control the computational cost
and avoid mode collapse, especially when the dimension is high.

Concurrently, the sampling problem is framed into a deterministic optimization by
variational inference, and numerous methods are based on different formulations of
the optimization, including the Stein variational gradient descent (SVGD) [69] and
its related methods [64, 10, 14, 13], and the transport map approach [17, 74, 29,
78, 85, 48, 7, 57]. Despite the better robustness in algorithm tuning and reduced
sample correlation, these methods can still have a scalability issue or suffer from
mode collapse in high-dimensional cases. We will give a more detailed description
on the transport map approach in Section 5.1. We remark that [78, 85, 98, 14, 7, 13]
invoked the low-dimensional structure in the likelihood, and showed good potential
in overcoming the high-dimension challenge. We will give a detailed discussion on
the comparison of the low-dimensional structure in our MsIGN and other literature
in Section 5.2.

The Image Synthesis Task
The image synthesis task looks for new, unseen samples 𝑥 from a target distribution
𝑞 characterized by a data set of ground-truth example samples {𝑥𝑖}𝑁𝑖=1, where 𝑥 is an
image stored as a matrix or tensor. The density function of the target distribution 𝑞
is in general unknown. The dimension of the target distribution is determined by the
resolution of the image 𝑥 (for example, 64 × 64), and the number of color channels
(for example, 3 for the RGB format of images). As a consequence, the problem
dimension can easily go beyond 103 or 104.

The image synthesis task is one of the core problems in machine learning. As an
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example of unsupervised learning (because there are no labels in the data), the image
synthesis task is an important tool to learn the realistic world model from a large
amount of data and can be extended to other similar tasks like image inpainting,
denoising, and colorization. Solutions to the image synthesis task can potentially
lead to more robust and data-efficient ways to simulate interactions with the real
world.

The image synthesis task gives a good show case on the model capacity of the
MsIGN, or in other words, the richness of the parametric family of transport maps
modeled by the MsIGN. Due to different types of objects appearing in the images,
the distribution of images is naturally multi-modal, and therefore, the result on the
image synthesis task can show the capacity of our method for very complicated
and multimodal target distribution. Besides, by benchmarking with other recent
flow-based generative models, we can also demonstrate the parameter efficiency of
our MsIGN design, and show the interpretability of internal neurons of our MsIGN.

There has been an enormous amount of studies on the image synthesis task, espe-
cially in the recent decade. Most studies follow the approach of generative adversar-
ial networks (GANs) [34] or likelihood-based methods. Among the likelihood-based
methods, autoregressive models [40, 36, 92, 91] generate new images pixel by pixel
by sampling from the conditional distribution on the existing pixels. However, due to
the sequential sampling strategy, it becomes troublesome for the high-dimensional
problems like high-resolution images. The variational autoencoders [52, 55, 51]
directly capture the distribution of the whole image by optimizing a lower bound
on the log-likelihood of the data. The indirect optimization on the lower bound
of the objective makes the training of variational autoencoders relatively challeng-
ing. The diffusion models [83, 37, 84] employ a stochastic differential equation to
diffuse the image distribution to random noise. For sample generation, they solve
the reverse-time diffusion process to move random noises to images, which could
be very time-consuming for high-dimensional problems. Another category of the
likelihood-based methods is the flow-based generative models, like the NICE [23],
the Real NVP [24], the Glow [54], and the MsIGN, which look for a bijective trans-
port map between a simple reference distribution, which is also called the latent
space, and the target distribution. Compared to the generative adversarial networks
and variational autoencoders, the flow-based generative models allow density eval-
uation and are very efficient in latent-variable inference. As a bijective map, the
representation of an image in the latent space can be simply obtained by the inverse
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of the map. Since the log determinant of the Jacobian of the map is also accessible
for flow-based generative models, the density evaluation of images is also possi-
ble. Furthermore, the efficient latent-variable inference of the flow-based generative
models favors downstream tasks on the latent space, like image manipulation and
conditional image synthesis.

Summary of Our Results
We propose the Multiscale Invertible Generative Network (MsIGN) to sample from
high-dimensional distributions by exploring the low-dimensional structure in the
target distribution. The MsIGN models a transport map from a known reference
distribution to the target distribution, and thus is very efficient in generating uncor-
related samples compared to MCMC-type methods. The MsIGN captures multiple
modes in the target distribution by generating new samples hierarchically from a
coarse scale to a fine scale with the help of a novel prior conditioning layer. The
hierarchical structure of the MsIGN also allows training in a coarse-to-fine scale
manner. The Jeffreys divergence is used as the objective function in training to
avoid mode collapse. Importance sampling based on the prior conditioning layer is
leveraged to estimate the Jeffreys divergence, which is intractable in previous deep
generative networks. In our numerical experiments applied to two Bayesian inverse
problems, our results show that the MsIGN clearly captures multiple modes in the
high-dimensional posterior and approximates the posterior accurately, demonstrat-
ing its superior performance compared with previous methods. We also provide the
ablation study to show the necessity of our proposed network architecture and train-
ing algorithm to the good numerical performance. Moreover, we apply the MsIGN
to the image synthesis task, where it achieves superior performance in terms of
bits-per-dimension value over other flow-based generative models and yields very
good interpretability of its neurons in intermediate layers.

1.4 Roadmap of the Thesis
In Part I, we discuss the singularity formation of the Euler equations in Chapter 2,
3, and 4.

We first consider the 3D axisymmetric Euler equations with no swirl in Chapter
2, where we present detailed numerical evidence of the potential finite-time self-
similar blow-up in Section 2.2, 2.3, and 2.4. Then we study two factors that influence
the behavior of the potential blow-up: the Hölder exponent 𝛼 in Section 2.5, and
the stretching factor 𝛿 in 𝑧-axis in Section 2.6. Since recently Elgindi proved
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the first blow-up result in the 3D axisymmetric Euler equations with no swirl and
with Hölder continuous initial data in [30], we make a comprehensive comparison
between our scenario and his scenario in Section 2.7. We also study the robustness
of the potential blow-up to the initial data in Section 2.8.

In Chapter 3, we extend our blow-up scenario in Chapter 2 to the high-dimensional
case. To start with, we discuss the formulation of the 𝑛-D axisymmetric Euler
equations with no swirl in Section 3.1, and present detailed numerical evidence of
the potential finite-time self-similar blow-up in Section 3.2. Then in Section 3.3
we study the potential blow-up in different settings of the Hölder exponent 𝛼, the
stretching factor 𝛿, and the dimension 𝑛 and summarize our results. In Section 3.4,
a potential mechanism is proposed for the limiting case of 𝛿→ 0, and together with
observations from numerical experiments, we derive the asymptotic behavior of the
scaling factor 𝑐𝑙 and the upper bound 𝛼∗ for 𝛼 that could develop singularity. Both
of these results match our numerical results very well. In Section 3.5, we propose
a relatively simple one-dimensional model that approximates the original equations
pretty well, which could potentially benefit the analytical study of our scenario.

In Chapter 4, we propose the weak convection model. In Section 4.1 we discuss our
motivation of the model, compare the model with previous models and study some
properties of our model. In Section 4.2, we present detailed numerical evidence
of the potential finite-time self-similar blow-up in the weak convection model. We
summarize the influence of the convection strength Y and the dimension 𝑛 on the
potential blow-up in Section 4.3. And in Section 4.4, we propose a one-dimensional
model, and study its approximation to the weak convection model numerically. We
also give a rigorous proof of the finite-time blow-up in the one-dimensional model
in Section 4.4.

In Part II, we discuss the sampling of high-dimensional distributions in Chapter 5.

In Section 5.1, we review several important concepts and recent studies in high-
dimensional distribution sampling using deep generative networks. The motivation
of the MsIGN is discussed in Section 5.2. In Section 5.3 and 5.4, we introduce
the network architecture and training strategy of the MsIGN in order to solve the
Bayesian inverse problem. Numerical results of the MsIGN on two Bayesian inverse
problems are shown in Section 5.5, and the ablation study that verifies the necessity
of our proposals is presented in Section 5.6. Then, we move on to the image
synthesis task and discuss the network architecture and training strategy of the
MsIGN in Section 5.7, and present our numerical results in Section 5.8. In Section
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5.9, we provide discussion on interesting topics for future study.



Part I

Singularity Formation in the
High-Dimensional Euler Equations

10
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C h a p t e r 2

SELF-SIMILAR FINITE-TIME SINGULARITY FORMATION
FOR HÖLDER CONTINUOUS SOLUTIONS TO THE

INCOMPRESSIBLE EULER EQUATIONS ON R3

2.1 Problem Settings and Initial Data
Hölder Continuous Initial Data
In this chapter, we study the 3D axisymmetric Euler equations with no swirl and
with Hölder continuous initial angular vorticity. The initial data for𝜔\ is𝐶𝛼 Hölder
continuous, and is of the form 𝜔\ ∼ 𝑟𝛼 near 𝑟 = 0, where 𝛼 is the Hölder exponent.
Such Hölder continuity of the angular vorticity implies that the velocity field 𝑢 is
𝐶1,𝛼 continuous. To remove the formal singularity in (??) near 𝑟 = 0 and improve
regularity of the vorticity field in favor of numerical computation, we introduce the
new variables

𝜔1(𝑟, 𝑧) =
1
𝑟𝛼
𝜔\ (𝑟, 𝑧), 𝜓1(𝑟, 𝑧) =

1
𝑟
𝜓\ (𝑟, 𝑧). (2.1)

In terms of the new variables (𝜔1, 𝜓1), the 3D axisymmetric Euler equations with
no swirl have the following equivalent form

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = −(1 − 𝛼)𝜓1,𝑧𝜔1, (2.2a)

−𝜓1,𝑟𝑟 − 𝜓1,𝑧𝑧 −
3
𝑟
𝜓1,𝑟 = 𝜔1𝑟

𝛼−1, (2.2b)

𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 = 2𝜓1 + 𝑟𝜓1,𝑟 . (2.2c)

Self-Similar Solution
For nonlinear PDEs, people are particularly interested in studying self-similar blow-
up solutions. A self-similar solution is when the local profile of the solution remains
nearly unchanged in time after rescaling the spatial and the temporal variables of
the physical solution. For example, for (2.2), the self-similar profile is the ansatz

𝜔1(𝑥, 𝑡) ≈
1

(𝑇 − 𝑡)𝑐𝜔 Ω
(
𝑥 − 𝑥0
(𝑇 − 𝑡)𝑐𝑙

)
,

𝜓1(𝑥, 𝑡) ≈
1

(𝑇 − 𝑡)𝑐𝜓 Ψ
(
𝑥 − 𝑥0
(𝑇 − 𝑡)𝑐𝑙

)
,

(2.3)

for some parameters 𝑐𝜔, 𝑐𝜓 , 𝑐𝑙 , 𝑥0 and 𝑇 . Here 𝑇 is considered as the blow-up time,
and 𝑥0 is the location of the self-similar blow-up. The parameters 𝑐𝜔, 𝑐𝜓 , 𝑐𝑙 are
called scaling factors.
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The 3D Euler equations (??) enjoy the following scaling invariant property: if (𝑢, 𝑝)
is a solution to (??), then (𝑢_,𝜏, 𝑝_,𝜏) is also a solution, where

𝑢_,𝜏 (𝑥, 𝑡) =
_

𝜏
𝑢

( 𝑥
_
,
𝑡

𝜏

)
, 𝑝_,𝜏 (𝑥, 𝑡) =

_2

𝜏2 𝑝
( 𝑥
_
,
𝑡

𝜏

)
, (2.4)

and _ > 0, 𝜏 > 0 are two constant scaling factors. In terms of the equivalent
form (2.2) of 3D Euler equations, the scaling invariant property is equivalent to: if
(𝜔1, 𝜓1) is a solution of (2.2), then{

1
_𝛼𝜏

𝜔1

( 𝑥
_
,
𝑡

𝜏

)
,
_

𝜏
𝜓1

( 𝑥
_
,
𝑡

𝜏

)}
(2.5)

is also a solution.

If we assume the existence of the self-similar solution (2.3), then the new solutions
in (2.5) should also admit the same ansatz, regardless of the values of _ and `. As
a result, we must have

𝑐𝜔 = 1 + 𝛼𝑐𝑙 , 𝑐𝜓 = 1 − 𝑐𝑙 . (2.6)

Therefore, the self-similar profile (2.5) of (2.2) only has one degree of freedom, for
example 𝑐𝑙 , in scaling factors. In fact, 𝑐𝑙 cannot be determined by straightforward
dimensional analysis.

As a consequence of the ansatz (2.3) and the scaling relation (2.6), we have

∥𝜔\ (𝑥, 𝑡)∥𝐿∞ ∼
1

𝑇 − 𝑡 , ∥𝜓1,𝑧 (𝑥, 𝑡)∥𝐿∞ ∼
1

𝑇 − 𝑡 , (2.7)

which should always hold true regardless of the value of 𝑐𝑙 .

Boundary Condition and Symmetry
We consider the axisymmetric Euler equations with no swirl (2.2) in a cylinder
region

Dcyl = {(𝑟, 𝑧) : 0 ≤ 𝑟 ≤ 1} ,

We impose a periodic boundary condition in 𝑧 with period 1

𝜔1(𝑟, 𝑧) = 𝜔1(𝑟, 𝑧 + 1), 𝜓1(𝑟, 𝑧) = 𝜓1(𝑟, 𝑧 + 1). (2.8)

In addition, we enforce that (𝜔1, 𝜓1) are odd in 𝑧 at 𝑧 = 0,

𝜔1(𝑟, 𝑧) = −𝜔1(𝑟,−𝑧), 𝜓1(𝑟, 𝑧) = −𝜓1(𝑟,−𝑧). (2.9)
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And this symmetry will be preserved dynamically by the 3D Euler equations.

At 𝑟 = 0, it is easy to see that 𝑢𝑟 (0, 𝑧) = 0, so there is no need for the boundary
condition for 𝜔1 at 𝑟 = 0. Since 𝜓\ = 𝑟𝜓1 will at least be 𝐶2-continuous, according
to [66, 65], 𝜓\ must be an odd function of 𝑟. Therefore, we impose the following
pole condition for 𝜓1

𝜓1,𝑟 (0, 𝑧) = 0. (2.10)

Since we assume a solid “wall” at the boundary at 𝑟 = 1, we impose the no-flow
boundary condition

𝜓1(1, 𝑧) = 0. (2.11)

This implies that 𝑢𝑟 (1, 𝑧) = 0. So there is no need for the boundary condition for
𝜔1 at 𝑟 = 1 as well.

Due to the periodicity and odd symmetry along the 𝑧 direction, the equations (??)
only need to be solved on the half-periodic cylinder

D = {(𝑟, 𝑧) : 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝑧 ≤ 1/2} .

It is important to notice that the above boundary conditions of D allow no trans-
portation across its boundaries. Indeed, we have

𝑢𝑟 = 0 on 𝑟 = 0, and 𝑟 = 1,

and
𝑢𝑧 = 0 on 𝑧 = 0, and 𝑧 = 1/2.

Initial Data
Inspired by the potential blow-up scenario in [43], we propose the following initial
data for 𝜔1 in D,

𝜔◦1 =
−12000

(
1 − 𝑟2)18 sin(2𝜋𝑧)

1 + 12.5 cos2(𝜋𝑧)
. (2.12)

Later we will see in Section 2.8 that the self-similar singularity formation has some
robustness to the choice of initial data. We solve the Poisson equation (??) to get
the initial value 𝜓◦1 of 𝜓1.

The 3D profile and pseudocolor plot of (𝜔◦1, 𝜓
◦
1) can be found in Figure 2.1. Since

most parts of 𝜔◦1 and 𝜓◦1 are negative, we negate them for better visual effect when
generating figures.
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Figure 2.1: 3D profiles and pseudocolor plots of the initial value −𝜔◦1 and −𝜓◦1.

Figure 2.2: Angular vorticity 𝜔\ at 𝑡 = 0.

In Figure 2.2, we show the 3D profile and pseudocolor plot of the angular vorticity
𝜔\ at 𝑡 = 0. We can see that there is a sharp drop to zero of −𝜔\ near 𝑟 = 0, which
is due to the Hölder continuous of 𝜔\ at 𝑟 = 0.

We plot the initial velocity field 𝑢𝑟 and 𝑢𝑧 in Figure 2.3. We can see that 𝑢𝑟 is
primarily positive near 𝑧 = 0 and negative near 𝑧 = 1/2 when 𝑟 is small, and 𝑢𝑧 is
mainly negative when 𝑟 is small. Such a pattern suggests a hyperbolic flow near
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Figure 2.3: Initial velocity fields 𝑢𝑟 and 𝑢𝑧.

Figure 2.4: A heuristic diagram of the hyperbolic flow.

(𝑟, 𝑧) = (0, 0) as depicted in the heuristic diagram Figure 2.4, which will extend
periodically in 𝑧.

2.2 Numerical Evidence for the Potential Blow-Up
From this section to Section 2.4, we will stick to the case with Hölder exponent
𝛼 = 0.1. We will present the results with different values of Hölder exponent 𝛼 in
Section 2.5, Section 2.6, and afterwards.

On 1024 × 1024 spatial resolution, we use the adaptive mesh method to solve (2.2)
with Hölder exponent 𝛼 = 0.1, until the time when the local resolution of adaptive
mesh gets close to the machine precision. The adaptive mesh method is described in
details in Appendix A. The stopping time is reported as 𝑡 = 1.6524635× 10−3, after
more than 6.5 × 104 iterations of computation. We plot the 3D profiles of 𝜔1, 𝜓1,
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Figure 2.5: Profiles of −𝜔1, −𝜓1, −𝜔\ , −𝜓\ , 𝑢𝑟 and −𝑢𝑧 at 𝑡 = 1.6524635 × 10−3

on the whole domain D.

𝜔\ , 𝜓\ , 𝑢𝑟 , and 𝑢𝑧 at this time in Figure 2.5. We can see that 𝜔1 is very concentrated
near the origin, and so is 𝜔\ . Therefore, we zoom-in around the origin and plot the
local near field profiles of 𝜔1, 𝜓1, 𝜔\ , 𝜓\ , 𝑢𝑟 , and 𝑢𝑧 in Figure 2.6.

From Figure 2.6, we observe that the “peak” of −𝜔1 locates at the 𝑧-axis where
𝑟 = 0, and is being pushed toward the origin as implied by the velocity field 𝑢𝑟 , 𝑢𝑧.
Let (𝑅1(𝑡), 𝑍1(𝑡)) be the point to achieve maximum magnitude of −𝜔1 at time 𝑡, we
have 𝑅1(𝑡) = 0. And at (𝑅1(𝑡), 𝑍1(𝑡)), the radial velocity 𝑢𝑟 is zero, and the axial
velocity 𝑢𝑧 is negative, so 𝑍1(𝑡) should decrease in time.
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Figure 2.6: Zoomed-in profiles of −𝜔1, −𝜓1, −𝜔\ , −𝜓\ , 𝑢𝑟 , and −𝑢𝑧 near the origin
(0, 0) at 𝑡 = 1.6524635 × 10−3.

In Figure 2.7, we plot the local velocity field near the maximum of −𝜔\ and −𝜔1,
respectively. We use the pseudocolor plots of −𝜔\ and −𝜔1 as the background,
respectively for the figure in left and right, and mark the maximum of −𝜔\ or
−𝜔1 with the red dot. The velocity field demonstrates a clear hyperbolic structure
as depicted by Figure 2.4. And the velocity field clearly pushes the maximum
(𝑅1(𝑡), 𝑍1(𝑡)) of −𝜔1 toward the origin.

In Figure 2.8, we show the local streamlines near the maximum of −𝜔\ in R3.
The maximum of −𝜔\ locates in the red ring around the 𝑧-axis. In the left figure,
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Figure 2.7: The local velocity field near the maximum of −𝜔\ and −𝜔1. The
pseudocolor plot of −𝜔\ or −𝜔1 is the background, and the red dot is its maximum.

Figure 2.8: The local streamlines near the origin. The green pole is the 𝑧-axis, and
the red ring is where −𝜔\ achieves its maximum.

we plot a set of streamlines that travel through the maximum ring from top to
bottom. And in the right figure, we plot a set of streamlines that travel around the
maximum ring from top to bottom. From Figure 2.8, we notice that the streamlines
are axisymmetric, and do not form swirl around the 𝑧-axis.

In Figure 2.9, we record curves of important quantities of the system. The magnitude
of 𝜔1 has grown significantly, especially near the end of the computation. At the
final time of the computation, ∥𝜔1∥𝐿∞ has increased by a factor of around 5400, and
∥𝜔∥𝐿∞ has increased by a factor of more than 560. We also observe that the double
logarithm curve of the maximum vorticity magnitude, log log ∥𝜔∥𝐿∞ , maintains a
super-linear growth, and the time integral

∫ 𝑡
0 ∥𝜔(𝑠)∥𝐿∞d𝑠 has rapid growth with

strong growth inertia close to the stopping time. This provides strong evidence for
a potential finite-time blow-up of the 3D Euler equations by the Beale-Kato-Majda
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Figure 2.9: Curves of ∥𝜔1∥𝐿∞ , 𝑍1, ∥𝜔∥𝐿∞ , log log ∥𝜔∥𝐿∞ ,
∫ 𝑡
0 ∥𝜔(𝑠)∥𝐿∞d𝑠 and 𝐸 as

functions of time 𝑡.

blow-up criterion (??).

The kinetic energy 𝐸 , which is defined as

𝐸 =
1
2

∫
D
|𝑢 |2 d𝑥 = 𝜋

∫ 1

0

∫ 1/2

0

(
|𝑢𝑟 |2 + |𝑢𝑧 |2

)
𝑟d𝑟d𝑧,

for our axisymmetric case with no swirl, is a conservative quantity of the 3D Euler
equations. Despite the discretization error, numerical dissipation, round-up error,
and other numerical errors in our numerical method, the kinetic energy 𝐸 should
still be bounded from below and above. In Figure 2.9, we can see that there is little
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change of the kinetic energy 𝐸 as a function of time 𝑡. In fact, the major reason for
the change of 𝐸 in our computation is due to the update of adaptive mesh, where
we need to interpolate 𝜔1 and 𝜓1 from an old mesh to a new mesh. Since the new
adaptive mesh will be more focusing on the near field around the origin, the far field
velocity field might lose some accuracy, leading to a change in the kinetic energy
𝐸 . However, such an update of adaptive mesh happens occasionally (35 times out
of 65000 iterations), and each such change in the kinetic energy 𝐸 is negligible. By
the end of the computation, the change in the kinetic energy 𝐸 is at most 1.4× 10−4

of the magnitude of 𝐸 .

From Figure 2.9, we can also see that 𝑍1(𝑡) monotonically decreases to zero with
𝑡. The curve of 𝑍1(𝑡) seems to be convex, especially in time windows close to the
stopping time. We refer to Section 2.3 for more study of the behavior of 𝑍1(𝑡).

Figure 2.10: Top row: Local profiles of −�̂�1 at 𝑡 = {1.6507447 , 1.6520384}×10−3.
Bottom row: Local contours of −�̂�1 at 𝑡 = {1.6507447 , 1.6512953, 1.6517173,
1.6520384} × 10−3.

To check the self-similar property of the solution, we visualize the local profile of
the scaled 𝜔1 near the origin. We define

�̂�1(b, Z , 𝑡) = 𝜔1 (𝑍1(𝑡)b, 𝑍1(𝑡)Z, 𝑡) /∥𝜔1(𝑡)∥𝐿∞ ,
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Figure 2.11: Cross sections of −�̂�1 at different times.

as the scaled version of 𝜔1. The above definition pins the magnitude of |�̂�1 | to 1,
and pins the maximum location of |�̂�1 | to (b, Z) = (0, 1). We plot the profiles of
−�̂�1 near the origin at different time instants in the top row of Figure 2.10, and plot
the contours of −�̂�1(b, Z) at different time in the bottom row. The profile of −�̂�1

seems to change slowly in the late time, indicating a potential self-similar structure
of the blow-up profile near the origin. In other words, 𝑥0 = 0 in the self-similar
ansatz (2.3). In Figure 2.11, we plot the cross sections of −�̂�1 at b = 0 and Z = 1.
The cross section at b = 0 shows a good potential for a self-similar blow-up, while
the cross section at Z = 1 shows that the blow-up profile has not converged to a
self-similar profile yet. This is reasonable because although we are very close to the
potential blow-up time, the strong collapsing along the 𝑧-direction and the effect of
round-off errors prevent us from continuing the computation. We refer to Section
2.4 where we use the dynamic rescaling method and indeed observe numerically the
convergence to the potential self-similar profile.

Resolution Study
We perform resolution study on the numerical solutions of (2.2) to verify the validity
of our numerical results. We first simulate the equations on spatial resolutions of
256𝑘 × 256𝑘 with 𝑘 = 1, 2, . . . , 6. The highest resolution we used is 1536 × 1536.
Next, for the numerical solution at resolution 256𝑘×256𝑘 , we compute its sup-norm
relative error in several chosen quantities at selected time instants using the numerical
solution at resolution 256(𝑘 + 1) × 256(𝑘 + 1) as the reference, for 𝑘 = 1, 2, . . . , 5.
Finally, we use the relative error obtained above to estimate the convergence order
of the numerical method.

We consider two types of quantities. The first type is the function of the solutions.
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Here we consider the magnitude of 𝜔1, ∥𝜔1∥𝐿∞ , the maximum norm of vorticity,
∥𝜔∥𝐿∞ , and the kinetic energy, 𝐸 . We remark that ∥𝜔1∥𝐿∞ and ∥𝜔∥𝐿∞ only depend
on the local field near the origin, and 𝐸 should be considered as a global quantity.
The second type is the vector fields of𝜔1,𝜓1, 𝑢𝑟 , and 𝑢𝑧 that are actively participating
in the simulated system (2.2).

Figure 2.12: Relative errors and convergence orders of ∥𝜔1∥𝐿∞ , ∥𝜔∥𝐿∞ , and 𝐸 in
sup-norm.

For each quantity, we use 𝑞𝑘 to represent the estimate we get at resolution 256𝑘 ×
256𝑘 . Then the sup-norm relative error 𝑒𝑘 is defined as

𝑒𝑘 = ∥𝑞𝑘 − 𝑞𝑘+1∥𝐿∞/∥𝑞𝑘+1∥𝐿∞ .
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If 𝑞𝑘 is a vector field, we first interpolate it to the reference resolution 256(𝑘 + 1) ×
256(𝑘 + 1), and then compute the relative error as above. The convergence order of
the error 𝛽𝑘 at this resolution can be estimated via

𝛽𝑘 = log
(
𝑒𝑘−1
𝑒𝑘

) /
log

(
𝑘

𝑘 − 1

)
.

In Figure 2.12, we plot the relative error of the quantities ∥𝜔1∥𝐿∞ , ∥𝜔∥𝐿∞ and
𝐸 for 𝑡 ∈

[
0, 1.6 × 10−3] , and the convergence order of the error in the late time

𝑡 ∈
[
1 × 10−3, 1.6 × 10−3] . We observe a numerical convergence with order slightly

higher than 2. The convergence order is quite stable in the time interval of our
computation.

mesh size Sup-norm relative error at 𝑡 = 1.6 × 10−3

𝜔1 order 𝜓1 order
256 × 256 2.545 × 10−1 - 5.912 × 10−3 -
512 × 512 5.478 × 10−2 2.216 1.168 × 10−3 2.340
768 × 768 1.969 × 10−2 2.524 4.136 × 10−4 2.560

1024 × 1024 9.189 × 10−3 2.655 1.926 × 10−4 2.656
1280 × 1280 5.008 × 10−3 2.720 1.050 × 10−4 2.719

mesh size Sup-norm relative error at 𝑡 = 1.6 × 10−3

𝑢𝑟 order 𝑢𝑧 order
256 × 256 2.035 × 10−2 - 8.095 × 10−3 -
512 × 512 3.954 × 10−3 2.364 1.533 × 10−3 2.310
768 × 768 1.405 × 10−3 2.552 5.793 × 10−4 2.556

1024 × 1024 6.540 × 10−4 2.658 2.699 × 10−4 2.655
1280 × 1280 3.594 × 10−4 2.682 1.472 × 10−4 2.719

Table 2.1: Relative errors and convergence orders of 𝜔1, 𝜓1, 𝑢𝑟 and 𝑢𝑧 in sup-norm.

In Table 2.1, we list the relative error and convergence order of the vector fields at
𝑡 = 1.6 × 10−3. The convergence order stays well above 2, suggesting an at least
second-order convergence for our numerical solver of the 3D Euler equations.

Effectiveness of the Adaptive Mesh
Using the initial data (2.12), 𝜔1 will quickly become very singular near the origin.
Our adaptive mesh is designed to resolve the singular profile of 𝜔1. The idea of the
adaptive mesh is to introduce two variables

(𝜌, [) ∈ [0, 1] × [0, 1] ,
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and the maps
𝑟 = 𝑟 (𝜌), 𝑧 = 𝑧([),

such that we map the physical domain in (𝑟, 𝑧) to a computational domain in (𝜌, [).
The maps 𝑟 = 𝑟 (𝜌), 𝑧 = 𝑧([) are designed to resolve the profile of 𝜔1 well in the
plane of (𝜌, [). The detailed settings of the adaptive mesh can be found in Appendix
A.2. In this section, we test the effectiveness of our adaptive mesh.

Figure 2.13: Profiles of −𝜔1(𝑟 (𝜌), 𝑧([)) and −𝜓1(𝑟 (𝜌), 𝑧([)) as functions of (𝜌, [)
from two different angles at 𝑡 = 1.65 × 10−3.

We first visualize𝜔1(𝑟 (𝜌), 𝑧([)) and 𝜓1(𝑟 (𝜌), 𝑧([)) as functions of (𝜌, [) in Figure
2.13 at 𝑡 = 1.65 × 10−3. Although 𝜔1 is very singular as a function of (𝑟, 𝑧) as in
Figure 2.5, it is clear that 𝜔1 is well-resolved in the (𝜌, [)-plane. We can also see
that 𝜓1 is already relatively smooth in the (𝑟, 𝑧)-plane, especially when far away
from the origin. Therefore, we do not need to place many points in the far field to
resolve 𝜓1.

In Figure 2.14, we visualize the local mesh view of 𝜔1 and 𝜓1 at 𝑡 = 1.65 × 10−3

from which we can see how the density of the adaptive mesh distributes in different
regions. We can see that along the 𝑟-direction, the adaptive mesh has three different
phases from 𝑟 = 0 to the far field: intermediate density, high density, and low
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Figure 2.14: Local mesh view of 𝜔1 and 𝜓1 at 𝑡 = 1.65 × 10−3.

density. Along the 𝑧-direction, the adaptive mesh has two phases from 𝑧 = 0 to the
far field: high density and low density. Most of the mesh concentrates around 𝑧 = 0
where the solution is most singular in the profiles of 𝜔1 and 𝜓1.

Figure 2.15: Mesh effectiveness functions ME𝜌 and ME[ of 𝜔1 and 𝜓1 at 𝑡 =

1.65 × 10−3.

Following [44], we define the mesh effectiveness functions to quantify the quality



26

of the adaptive mesh. For some function 𝑣 on the (𝑟, 𝑧)-plane, we define

ME𝜌 (𝑣) =
ℎ𝜌𝑣𝜌

∥𝑣∥𝐿∞
=
ℎ𝜌𝑟𝜌𝑣𝑟

∥𝑣∥𝐿∞
, ME[ (𝑣) =

ℎ[𝑣[

∥𝑣∥𝐿∞
=
ℎ[𝑧[𝑣𝑧

∥𝑣∥𝐿∞
,

where ℎ𝜌, ℎ[ is the resolution on the plane of (𝜌, [). We further define the mesh
effectiveness measures as follows:

MEM𝜌 (𝑣) = ∥ME𝜌 (𝑣)∥𝐿∞ , MEM𝜌 (𝑣) = ∥ME[ (𝑣)∥𝐿∞ .

According to [44], the mesh effectiveness measures estimate the greatest relative
growth of a function in a single mesh cell on the (𝜌, [)-plane. Small mesh effec-
tiveness measure values indicate that the adaptive mesh has resolved the function
well. Thus, we study the mesh effectiveness measures for our adaptive mesh.

We can see from Figure 2.15 that the mesh effectiveness functions are all uniformly
bounded. Their magnitude has a relatively small absolute value.

mesh size Mesh effectiveness measures at 𝑡 = 1.65 × 10−3

MEM𝜌 (𝜔1) MEM[ (𝜔1) MEM𝜌 (𝜓1) MEM[ (𝜓1)
256 × 256 0.087 0.046 0.095 0.075
512 × 512 0.044 0.027 0.048 0.037
768 × 768 0.029 0.017 0.032 0.025

1024 × 1024 0.022 0.014 0.024 0.019
1280 × 1280 0.017 0.010 0.019 0.015
1536 × 1536 0.014 0.008 0.016 0.012

Table 2.2: Mesh effectiveness measures MEM𝜌 and MEM[ of𝜔1 and 𝜓1 at different
mesh sizes at 𝑡 = 1.65 × 10−3.

time Mesh effectiveness measures at mesh size 1024 × 1024
MEM𝜌 (𝜔1) MEM[ (𝜔1) MEM𝜌 (𝜓1) MEM[ (𝜓1)

1.60 × 10−3 0.028 0.009 0.024 0.019
1.61 × 10−3 0.027 0.010 0.024 0.019
1.62 × 10−3 0.025 0.010 0.024 0.019
1.63 × 10−3 0.024 0.010 0.024 0.019
1.64 × 10−3 0.023 0.011 0.024 0.019
1.65 × 10−3 0.022 0.014 0.024 0.019

Table 2.3: Mesh effectiveness measures MEM𝜌 and MEM[ of𝜔1 and 𝜓1 at different
time instants at mesh size 1024 × 1024.

In Table 2.2 and 2.3, we list the mesh effectiveness measures MEM𝜌 and MEM[ of
𝜔1 and 𝜓1 at different mesh sizes and different time instants. Mesh effectiveness
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measures decrease as the resolution increases, which is reasonable because higher
resolution is expected to be more powerful to resolve the singular part of the solution.
Despite that mesh effectiveness measures might slightly increase with the time,
they all remain relatively small throughout the computation, which means that our
adaptive mesh method has done a good job in resolving the singular solution of the
3D Euler equations.

2.3 Scaling Analysis of the Potential Blow-Up
In this section, we quantify the scaling property of the potential blow-up observed
in our computation. This scaling analysis will give more supporting evidence that
the potential blow-up satisfies the Beale-Kato-Majda blow-up criterion (??). It also
uncovers more properties of the potential blow-up.

Figure 2.16: Linear fitting of 1/∥𝜔∥𝐿∞ and 1/∥𝜓1,𝑧∥𝐿∞ with time.

As discussed in (2.7) of Section 2.1, if there is a self-similar blow-up, the scaling
invariant property of the 3D Euler equations will ensure that ∥𝜔∥𝐿∞ ∼ 1/(𝑇 − 𝑡) and
∥𝜓1,𝑧∥𝐿∞ ∼ 1/(𝑇 − 𝑡). Therefore, we examine this property by regressing ∥𝜔∥−1

𝐿∞

and ∥𝜓1,𝑧∥−1
𝐿∞ again 𝑡, respectively. More specifically, for a quantity 𝑣, which is

either ∥𝜔∥−1
𝐿∞ or ∥𝜓1,𝑧∥−1

𝐿∞ , we perform the least square fitting of the model

𝑣 ∼ 𝑎 · (𝑏 − 𝑡),

in searching for constants 𝑎 and 𝑏, where 𝑎 is the negated slope of the fitted line, and 𝑏
can be considered as the estimate time of the blow-up. In Figure 2.16, we visualize
the data points and the fitted line using data between 𝑡 = 1.6500174 × 10−3 and
𝑡 = 1.6520384×10−3. The 𝑅2 of the fitting between ∥𝜔∥−1

𝐿∞ and 𝑡 is 1−1.28×10−4,
and the 𝑅2 of the fitting between ∥𝜓1,𝑧∥−1

𝐿∞ and 𝑡 is 1 − 1.21 × 10−5. Such high 𝑅2

values show strong linear relation between ∥𝜔∥−1
𝐿∞ , ∥𝜓1,𝑧∥−1

𝐿∞ and 𝑡. Moreover, the



28

fittings of the two quantities estimate the blow-up time to be 𝑏 = 1.6529356 × 10−3

and 𝑏 = 1.6529325 × 10−3 respectively. These two blow-up times agree with each
other up to 6 digits. Therefore, Figure 2.16 provides further evidence that the 3D
Euler equations develop a potential finite-time singularity.

We next move to fit the scaling factors 𝑐𝑙 and 𝑐𝜔 used in the self-similar ansatz (2.3)
of the solutions. Since the functions Ω and Ψ are time-independent in (2.3), we
should have that

𝑍1 ∼ (𝑇 − 𝑡)𝑐𝑙 , ∥𝜔1∥−1
𝐿∞ ∼ (𝑇 − 𝑡)𝑐𝜔 ,

where we recall that 𝑍1 = 𝑍1(𝑡) is the 𝑧-coordinate of the maximum location of
−𝜔1. Due to the unknown powers 𝑐𝑙 and 𝑐𝜔, the direct fitting of the above model
is nonlinear. Therefore, we turn to a searching algorithm for the power variable.
Specifically, for a quantity 𝑣, that is either 𝑍1 or ∥𝜔1∥−1

𝐿∞ , we search for a power 𝑐
such that the linear regression of

𝑣1/𝑐 ∼ 𝑎 · (𝑏 − 𝑡),

has the largest 𝑅2 value up to some error tolerance. We will start with a guessed
window of the power 𝑐, and then exhaust the value of 𝑐 within the window up to
some error tolerance, and choose 𝑐 with the largest 𝑅2 value. If the optimal 𝑐 we
searched falls on the boundary of the current window, we then adaptively adjust
the window size and location, and repeat the above procedure. When the optimal
searched 𝑐 falls within the interior of the window, we stop the searching.

Figure 2.17: Linear fitting of 𝑍1/𝑐
1 and ∥𝜔1∥−1/𝑐

𝐿∞ with time.

In Figure 2.17, we demonstrate the result of the searching. We can see that with the
chosen 𝑐, the linear regression achieves a very high 𝑅2 value, suggesting a strong
linear relation. The estimated blow-up times only relatively differ from the previous
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estimate by at most 7.8 × 10−5. Moreover, the searching suggests that 𝑐𝑙 ≈ 4.20
and 𝑐𝜔 ≈ 1.41, and these estimated values of 𝑐𝑙 and 𝑐𝜔 satisfy the scaling relation
𝑐𝜔 = 1 + 𝛼𝑐𝑙 as in (2.6) approximately.

It is worth emphasizing that the estimated 𝑐𝑙 is well above 1, and this explains the
convex curve of 𝑍1(𝑡) as observed in Figure 2.9 in Section 2.2.

We remark that we did not perform the searching algorithm with ∥𝜓1∥𝐿∞ to find out
the scaling factor 𝑐𝜓 , so that we could check the other scaling relation 𝑐𝜓 = 1 − 𝑐𝑙
in (2.6). This is because ∥𝜓1∥𝐿∞ is mainly affected by the far field behavior of 𝜓1,
as shown in Figure 2.5. However, the self-similar ansatz (2.3) is only valid in the
near field, so such fitting is meaningless. In fact, the good fitting between ∥𝜓1,𝑧∥−1

𝐿∞

and 𝑡 already implies that 𝑐𝜓 = 1 − 𝑐𝑙 , because the self-similar ansatz suggests that
∥𝜓1,𝑧∥−1

𝐿∞ ∼ (𝑇 − 𝑡)𝑐𝜓+𝑐𝑙 .

mesh size 1/∥𝜔∥𝐿∞ 1/∥𝜓1,𝑧∥𝐿∞
103 × 𝑏 𝑅2 103 × 𝑏 𝑅2

1024 × 1024 1.6529356 0.99987 1.6529325 0.99999
1280 × 1280 1.6527953 1.00000 1.6528189 1.00000
1536 × 1536 1.6525824 1.00000 1.6527396 1.00000

mesh size 𝑍1 1/∥𝜔1∥𝐿∞
𝑐 103 × 𝑏 𝑅2 𝑐 103 × 𝑏 𝑅2

1024 × 1024 4.20 1.6529889 0.99994 1.41 1.6530613 0.99986
1280 × 1280 4.21 1.6527877 0.99999 1.42 1.6527894 1.00000
1536 × 1536 4.25 1.6526864 1.00000 1.41 1.6526953 1.00000

Table 2.4: Fitting results of ∥𝜔∥−1
𝐿∞ , ∥𝜓1,𝑧∥−1

𝐿∞ , 𝑍1 and ∥𝜔1∥−1
𝐿∞ at different mesh

sizes.

Finally, we perform the above fitting work in different spatial resolutions, and
summarize the results in Table 2.4. We can see that the fitting has excellent quality
at all spatial resolutions, and the fitted parameters are consistent across different
spatial resolutions.

2.4 Dynamic Rescaling Method with Operator Splitting
The Dynamic Rescaling Method
As we have observed in Section 2.2, if we pin the magnitude of maximum of |𝜔1 |
to a constant, and if we pin the maximum location of |𝜔1 | to a fixed point, then the
profile of 𝜔1 seems to remain unchanged over time. This implies that the 3D Euler
equations might have a self-similar blow-up with the given initial data (2.12).
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In order to better study the potential self-similar singularity, we add extra scaling
terms to (2.2) and write

�̃�1,𝜏 +
(
𝑐𝑙b + �̃�b

)
�̃�1,b +

(
𝑐𝑙Z + �̃�Z

)
�̃�1,Z =

(
𝑐𝜔 − (1 − 𝛼)�̃�1,Z

)
�̃�1, (2.13a)

−�̃�1,bb − �̃�1,Z Z −
3
b
�̃�1,b = �̃�1b

𝛼−1, (2.13b)

�̃�b = −b�̃�1,Z , �̃�Z = 2�̃�1 + b�̃�1,b , (2.13c)

where 𝑐𝑙 = 𝑐𝑙 (𝜏), 𝑐𝜔 = 𝑐𝜔 (𝜏) are scalar functions of 𝜏. In (2.13a), the terms
𝑐𝑙b𝜕b and 𝑐𝑙Z𝜕Z stretch the solutions in space to counter the self-similar focusing
effect. The term 𝑐𝜔�̃�1 rescales the magnitude of �̃�1. The combined effect of
these terms dynamically rescales the solutions to capture the potential self-similar
singularity. Such dynamic rescaling strategy has widely been used in the study of
singularity formation of nonlinear Schrödinger equations as in [73, 61, 63, 60, 77].
And recently it was also used in the study of singularity formation of the 3D Euler
and Navier-Stokes equations as in [44, 11, 12].

If we define

𝑐𝜓 (𝜏) = 𝑐𝜔 (𝜏) + (1 + 𝛼)𝑐𝑙 (𝜏), (2.14)

we can check that (2.13) admits the following solution

�̃�1(b, Z , 𝜏) = �̃�𝜔 (𝜏)𝜔1
(
�̃�𝑙 (𝜏)b, �̃�𝑙 (𝜏)Z, 𝑡 (𝜏)

)
,

�̃�1(b, Z , 𝜏) = �̃�𝜓 (𝜏)𝜓1
(
�̃�𝑙 (𝜏)b, �̃�𝑙 (𝜏)Z, 𝑡 (𝜏)

)
,

(2.15)

where (𝜔1, 𝜓1) is the solution to (2.2), and

�̃�𝜔 (𝜏) = exp
(∫ 𝜏

0
𝑐𝜔 (𝑠)d𝑠

)
, �̃�𝜓 (𝜏) = exp

(∫ 𝜏

0
𝑐𝜓 (𝑠)d𝑠

)
,

�̃�𝑙 (𝜏) = exp
(
−
∫ 𝜏

0
𝑐𝑙 (𝑠)d𝑠

)
, 𝑡′(𝜏) = �̃�𝜓 (𝜏)�̃�𝑙 (𝜏) = �̃�𝜔 (𝜏)�̃�−𝛼𝑙 (𝜏).

The new equations (2.13) leave us with two degrees of freedom: we are free to choose
{𝑐𝑙 (𝜏), 𝑐𝜔 (𝜏)}. This allows us to impose the following normalization conditions

�̃�1(0, 1, 𝜏) = −1, �̃�1,Z (0, 1, 𝜏) = 0, for 𝜏 ≥ 0. (2.16)

One way to enforce the normalization conditions, as used in many literatures like
[44, 67], is to first enforce them at 𝜏 = 0 using the scaling invariant relation (2.4),
and then enforce their time derivatives to be zero

𝜕

𝜕𝜏
�̃�1(0, 1, 𝜏) = 0,

𝜕

𝜕𝜏
�̃�1,Z (0, 1, 𝜏) = 0, for 𝜏 ≥ 0. (2.17)
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Using (2.13a), the above conditions are equivalent to

𝑐𝑙 (𝜏) = − 2�̃�1(0, 1, 𝜏) − (1 − 𝛼)�̃�1,Z Z (0, 1, 𝜏)
�̃�1(0, 1, 𝜏)
�̃�1,Z Z (0, 1, 𝜏)

,

𝑐𝜔 (𝜏) =(1 − 𝛼)�̃�1,Z (0, 1, 𝜏).
(2.18)

However, it is hard to evaluate (2.18) accurately, because it requires calculating
second-order derivatives. More importantly, due to the complicated nonlinear nature
of (2.13a), even if (2.18) can be accurately evaluated, the temporal discretization
(Runge-Kutta method) makes it difficult to enforce (2.16) exactly for the next time
step. As a result, imposing (2.17) is not as helpful to preserve the normalization
conditions (2.16) in the following time steps. The maximum magnitude and location
will gradually change in time, which makes it difficult to compute the self-similar
profile numerically.

Operator Splitting
To enforce the normalization conditions (2.16) accurately at every time step, we
utilize the operator splitting method and rewrite (2.13a) as

�̃�1,𝜏 = 𝐹 (�̃�1) + 𝐺 (�̃�1), (2.19)

where
𝐹 (�̃�1) = −�̃�b�̃�1,b − �̃�Z �̃�1,Z − (1 − 𝛼)�̃�1,Z �̃�1,

contains the original terms in (2.2a), and

𝐺 (�̃�1) = −𝑐𝑙b�̃�1,b − 𝑐𝑙Z�̃�1,Z + 𝑐𝜔�̃�1,

is the linear part that controls the rescaling. Here we view �̃�1 as a function of �̃�1

through the Poisson equation (2.13b). The operator splitting method allows us to
solve (2.13a) by solving �̃�1,𝜏 = 𝐹 (�̃�1) and �̃�1,𝜏 = 𝐺 (�̃�1) alternatively.

We can use the standard Runge-Kutta method to solve �̃�1,𝜏 = 𝐹 (�̃�1). As for
�̃�1,𝜏 = 𝐺 (�̃�1), we notice that there is a closed form solution for the initial value
problem

�̃�1(b, Z , 𝜏) = �̃�𝜔 (𝜏)�̃�1
(
�̃�𝑙 (𝜏)b, �̃�𝑙 (𝜏)Z, 0

)
, (2.20)

where �̃�𝜔 (𝜏) = exp
(∫ 𝜏

0 𝑐𝜔 (𝑠)d𝑠
)

and �̃�𝑙 (𝜏) = exp
(
−
∫ 𝜏

0 𝑐𝑙 (𝑠)d𝑠
)
.

In the first step, solving �̃�1,𝜏 = 𝐹 (�̃�1) will violate the normalization conditions
(2.16). But we will correct this error in the second step by solving �̃�1,𝜏 = 𝐺 (�̃�1)
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with a smart choice of �̃�𝑙 and �̃�𝜔 in (2.20). In other words, at every time step when
we solve �̃�1,𝜏 = 𝐺 (�̃�1), we can perfectly enforce (2.16) by properly choosing �̃�𝑙
and �̃�𝜔 in (2.20). We could also adopt the Strang’s splitting [87] for better temporal
accuracy.

Numerical Settings
Now we numerically solve the dynamic rescaling formulation (2.13). For the initial
condition, we use the result from the final iteration of the adaptive mesh method
in Section 2.2, and use the relation (2.5) to enforce the normalization conditions
(2.17). Now that the maximum location of �̃�1 is pinned at (b, Z) = (0, 1), we focus
on a large computational domain

D′ =
{
(b, Z) : 0 ≤ b ≤ 1 × 105, 0 ≤ Z ≤ 5 × 104} .

This choice of the computational domain implies that the dynamic rescaling formula-
tion effectively solves the original equations in the domain (𝑟, 𝑧) ∈ [0, 100000𝑍1] ×
[0, 50000𝑍1].

Figure 2.18: Decay of the derivatives of 𝜓1.

We adopt the boundary conditions and symmetry of (2.2) in Section 2.1, except
the far field boundary conditions for �̃�1. Due to extra stretching terms, the far
field boundary for �̃�1 will no longer correspond to the far field boundary for 𝜓1,
namely 𝑟 = 1 and 𝑧 = 1/2. However, we notice that 𝜓1,𝑟 decays rapidly with respect
to 𝑟, and 𝜓1,𝑧 decays rapidly with respect to 𝑧. For example, Figure 2.18 shows
the decay of 𝜓1,𝑟 as 𝑟 → 1 and the decay of 𝜓1,𝑧 as 𝑧 → 1/2 for the solution
to (2.2) at 𝑡 = 1.6524635 × 10−3. Therefore, it is reasonable to impose the zero
Neumann boundary condition at the far field boundaries of D′: b = 100000 and
Z = 50000. Due to the size of the computation domain D′ and the presence of the
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vortex stretching terms, the error introduced by this boundary condition will have
little influence on the near field around (b, Z) = (0, 1).

We remark that we still need the adaptive mesh in 𝑟- and 𝑧-direction, because we not
only need to cover a vary large field, but also need to focus around (b, Z) = (0, 1).
The adaptive mesh in solving the dynamic rescaling formulation will not change
during the computation, since the dynamically rescaled vorticity has its maximum
location fixed at (b, Z) = (0, 1) for all times instead of traveling toward the origin.

Convergence to the Steady State
We solve (2.13) until it converges to a steady state. In Figure 2.19, we monitor how
the normalization conditions (2.17) are enforced. The two normalized quantities are
visually fixed at 1. In fact, they deviate from 1 by less than 5.14 × 10−4. In Figure
2.20, we view the system (2.13) as an ODE of �̃�1 as in (2.19), and plot the relative
strength of the time derivative

∥�̃�1,𝜏∥𝐿∞
∥�̃�1∥𝐿∞

=
∥𝐹 (�̃�1) + 𝐺 (�̃�1)∥𝐿∞

∥�̃�1∥𝐿∞
,

as a function of time 𝜏. This relative strength of the time derivative has a decreasing
trend and drops below 8.18 × 10−6 near the end of the computation, which implies
that we are very close to the steady state.

Figure 2.19: Curves of the normalized quantities ∥�̃�1(𝜏)∥𝐿∞ and 𝑍1(𝜏).

When the solution of (2.13) converges to a steady state, �̃�1 and �̃�1 should be
independent of the time 𝜏. Therefore, we should have the following relation from
(2.15)

𝜔1(𝑟, 𝑧, 𝑡) ∼ �̃�−1
𝜔 (𝜏(𝑡))�̃�1

(
�̃�−1
𝑙 (𝜏(𝑡))𝑟, �̃�

−1
𝑙 (𝜏(𝑡))𝑧

)
,

𝜓1(𝑟, 𝑧, 𝑡) ∼ �̃�−1
𝜓 (𝜏(𝑡))�̃�1

(
�̃�−1
𝑙 (𝜏(𝑡))𝑟, �̃�

−1
𝑙 (𝜏(𝑡))𝑧

)
,
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Figure 2.20: Curve of the relative time derivative strength ∥�̃�1,𝜏 (𝜏)∥𝐿∞/∥�̃�1(𝜏)∥𝐿∞ .

where 𝜏 = 𝜏(𝑡) is the rescaled time variable. Comparing the above relation with the
ansatz stated in (2.3), we conclude that

𝑐𝑙 = −
𝑐𝑙

𝑐𝜔 + 𝛼𝑐𝑙
, 𝑐𝜔 =

𝑐𝜔

𝑐𝜔 + 𝛼𝑐𝑙
, 𝑐𝜓 =

𝑐𝜓

𝑐𝜔 + 𝛼𝑐𝑙
. (2.21)

We remark that assuming (2.14), the above relation naturally guarantees that the
scaling relation (2.6) holds true.

In Figure 2.21, we show the curves of scaling factors 𝑐𝑙 , 𝑐𝜔 for the dynamic rescaling
formulation (2.13) and 𝑐𝑙 , 𝑐𝜔 for the self-similar ansatz (2.3). We observe a relatively
fast convergence to the steady state as time increases. The converged values 𝑐𝑙 =
4.549 and 𝑐𝜔 = 1.455 are close to the approximate values obtained in Section 2.3.
Moreover, they also satisfy the relation (2.6).

The approximate steady states of �̃�1 and �̃�1 are plotted in Figure 2.22. We see that
both �̃�1 and �̃�1 are quite smooth in b, suggesting a possible 1D structure of their
profiles. While both functions have weak dependence on b, −�̃�1 seems to tilt up
around b = 0 a little bit. The shape of the steady states looks similar to the shape of
the profiles we obtained via the adaptive mesh at the stopping time in Figure 2.6.

2.5 Hölder Exponent in Potential Blow-Up Formation
Intentionally redacted.

2.6 Anisotropic Scaling of the Potential Self-Similar Solutions
Intentionally redacted.
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Figure 2.21: Convergence curves of the scaling factors using dynamic rescaling
method. Top row: 𝑐𝑙 and 𝑐𝜔. Bottom row: 𝑐𝑙 and 𝑐𝜔.

Figure 2.22: Steady states of −�̃�1 and −�̃�1.

2.7 Comparison with Elgindi’s Singularity Formation
In this section, we compare our blow-up scenario with the scenario in [30] studied
by Elgindi.

Elgindi introduced a polar coordinate system on the (𝑟, 𝑧)-plane to construct his
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blow-up solution. More specifically, he introduced

𝜌 =
√︁
𝑟2 + 𝑧2, \ = arctan

( 𝑧
𝑟

)
.

Then for a Hölder exponent 𝛼, he introduced a change of variable 𝑅 = 𝜌𝛼 and define
the variables

Ω(𝑅, \) = 𝜔\ (𝑟, 𝑧), Ψ(𝑅, \) = 1
𝜌2𝜓

\ (𝑟, 𝑧).

In this setting, (??) can be rewritten as

Ω𝑡 + (3Ψ + 𝛼𝑅Ψ𝑅)Ω\ − (Ψ\ − Ψ tan \)Ω𝑅 = (2Ψ tan \ + 𝛼𝑅Ψ𝑅 tan \ + Ψ\)Ω,
(2.22a)

− 𝛼2𝑅2Ψ𝑅𝑅 − 𝛼(5 + 𝛼)𝑅Ψ𝑅 − Ψ\\ + (Ψ tan \)\ − 6Ψ = Ω. (2.22b)

We remark that we do not adopt the convention (??’) as in [30], instead we stick to
our convention (??).

Elgindi’s analysis of (2.22b) establishes the following leading order approximation
for small 𝛼

Ψ(𝑅, \) = 1
4𝛼

sin(2\)𝐿12(Ω) (𝑅) + lower order terms, (2.23)

where

𝐿12(Ω) (𝑅) =
∫ ∞

𝑅

∫ 𝜋
2

0
Ω(𝑠, \)𝐾 (\)

𝑠
d𝑠d\,

with 𝐾 (\) = 3 sin \ cos2 \. If we plug in the approximation (2.23) to (2.22a),
neglecting lower order terms of 𝛼, and (time) scaling out some constant factor, we
arrive at Elgindi’s fundamental model

Ω𝑡 =
1
𝛼
𝐿12(Ω)Ω, (2.24)

which admits self-similar finite-time blow-up. In his analysis, Elgindi chose the
following self-similar solution of the fundamental model (2.24)

Ω(𝑅, \, 𝑡) = 𝑐

1 − 𝑡 𝐹
(
𝑅

1 − 𝑡

) (
sin \ cos2 \

)𝛼/3
, (2.25)

where 𝑐 > 0 is some fixed constant, and 𝐹 (𝑧) = 2𝑧/(1 + 𝑧)2.

One difference between our blow-up scenario and Engindi’s blow-up scenario is
how the scaling factor 𝑐𝑙 depends on 𝛼. We rewrite (2.25) as

Ω =
𝑐

1 − 𝑡 𝐹
(
𝜌𝛼

1 − 𝑡

) (
𝑟2𝑧

𝜌3

)𝛼/3
=

𝑐

1 − 𝑡 𝐹
((

𝜌

(1 − 𝑡)1/𝛼

)𝛼) (
𝑟2/3𝑧1/3

𝜌

)𝛼
.
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If we let 𝐺 (𝑧) = 𝐹 (𝑧𝛼), we see

Ω =
𝑐

1 − 𝑡 𝐺
(

𝜌

(1 − 𝑡)1/𝛼

) (
𝑟2/3𝑧1/3

𝜌

)𝛼
.

Since 𝑟2/3𝑧1/3/𝜌 is homogeneous, we may conclude that the scaling factors for the
self-similar blow-up solution (2.25) are

𝑐𝑙 = 1/𝛼, 𝑐𝜔 = 2.

Note that this also satisfies the relation 𝑐𝜔 = 1 + 𝛼𝑐𝑙 in (2.6). This implies that 𝑐𝑙
decreases as 𝛼 increases, and 𝑐𝑙 will tend to infinity as 𝛼 → 0. However, as shown
in Figure ??, our 𝑐𝑙 increases as 𝛼 increases, and 𝑐𝑙 → +∞ when 𝛼 tends to some
𝛼∗ below 1/3, and 𝛼∗ is approaching 1/3 as the parameter 𝛿 approaches zero.

Furthermore, the regularity of our initial data as a function of 𝜌 is different from
that of Elgindi’s initial data. Around (𝑟, 𝑧) = (0, 0), Elgindi’s initial condition has
the following leading order behavior

Ω ∼ 𝜌𝛼
(
sin \ cos2 \

)𝛼/3
= 𝑟2𝛼/3𝑧𝛼/3.

However, our initial condition gives

𝜔\ = 𝑟𝛼𝜔◦1 ∼ 𝑟
𝛼𝑧 = 𝜌1+𝛼 cos𝛼 \ sin \.

These two leading order behaviors differ from each other in that

• Elgindi’s initial condition has a 𝐶𝛼 Hölder continuity in 𝜌, whereas ours is
𝐶1,𝛼 smooth,

• Elgindi’s initial condition has a Hölder continuity near 𝑧 = 0, whereas ours is
smooth in 𝑧.

In Conjecture 8 of [27], the authors conjectured that the initial data could be 𝐶∞

in 𝜌 for finite-time blow-up of the 3D axisymmetric Euler equations with no swirl.
Our initial data slightly improves the regularity of the initial data in 𝜌. In the next
Section, we will briefly explore the initial data with higher regularity in 𝜌.

In Lemma 4.33 of [27], the authors stated that the limiting equations at 𝛼 = 0 of
(2.22), can blow up in finite time for initial data of Ω that only has a 𝐶𝛼-Hölder
continuity near 𝑟 = 0 for 𝛼 < 1/3. Our study shows that even for the original Euler
equations, it is not essential to have Hölder continuity in the initial data along the
𝑧-direction. The essential driving force for the finite-time blow-up comes from the
Hölder continuity of the initial vorticity along the 𝑟-direction.
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2.8 Sensitivity of the Potential Blow-Up to Initial Data
We also study the sensitivity of the potential self-similar blow-up to initial data. In
addition to the initial data (2.12), we consider the following cases,

𝜔
◦,1
1 = −12000

(
1 − 𝑟2

)18
sin(2𝜋𝑧),

𝜔
◦,2
1 = −6000 cos

(𝜋𝑟
2

)
sin(2𝜋𝑧)

(
2 + exp

(
−𝑟2 sin2(𝜋𝑧)

))
,

𝜔
◦,3
1 =

−12000
(
1 − 𝑟2)18 sin(2𝜋𝑧)3

1 + 12.5 sin2(𝜋𝑧)
.

(2.26)

Figure 2.23: Profiles of the initial data in all three cases.

We show the profiles of these three initial data in Figure 2.23. Here, in case 1, 𝜔◦,11
is a perturbation of 𝜔◦1 by setting the denominator to be 1. In case 2, 𝜔◦,21 has a
decay rate in 𝑟 slower than

(
1 − 𝑟2)18, and is no longer a tensor product of 𝑟 and 𝑧.

In case 3, 𝜔◦,31 has an improved regularity in 𝜌 near the origin. Indeed, we have,
with 𝜔1(𝑟, 𝑧, 0) = 𝜔◦,31 (𝑟, 𝑧),

𝜔\ (𝑟, 𝑧, 0) = 𝑟𝛼𝜔◦,31 (𝑟, 𝑧) ∼ 𝑟
𝛼𝑧3 = 𝜌3+𝛼 cos𝛼 \ sin3 \.

For all three cases, we only solve the 3D Euler equations with 𝛼 = 0.3 and 𝛿 = 1,
due to the limited computational resources. As shown in Table ??, for our original
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initial data, 𝑐𝑙 = 112.8 is already very large. It suggests that our choice of 𝛼 and 𝛿 is
very close to the borderline between the blow-up and non-blow-up. If the blow-up
profile of the above initial data agrees with our original initial data well, we then
have good confidence that they should have the same behavior for other settings of
𝛼 and 𝛿.

We solve the 3D Euler equations with the above initial data by first using the adaptive
mesh method to get close enough to the potential blow-up time, and then using the
dynamic rescaling method to capture the potential self-similar solution.

Figure 2.24: Fitting of 1/∥𝜔∥𝐿∞ with time 𝑡 in the first and second cases.

Figure 2.25: Curves of the scaling factor 𝑐𝑙 in the first and second cases.

For the first and second cases, we show the fitting of 1/∥𝜔∥𝐿∞ with time 𝑡 in Figure
2.24, and the curve of the scaling factor 𝑐𝑙 in Figure 2.25. We can see that in both
cases, ∥𝜔∥𝐿∞ scales like 1/(𝑇 − 𝑡), which implies a finite-time blow-up. Moreover,
𝑐𝑙 converges to 112.8, matching the value of 𝑐𝑙 we obtained using the original initial
data well. In Figure 2.26, we show the cross sections of the steady state of −�̃�1

in comparison with the result obtained using the original initial data. There is no
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Figure 2.26: Cross sections of the steady states of −�̃�1 in the first and second cases.

visible difference between the three steady states presented. In fact, even on the
whole computational domain D′ =

{
(b, Z) : 0 ≤ b ≤ 1 × 105, 0 ≤ Z ≤ 5 × 104} in

the dynamic rescaling computation, the steady states in the first and second cases
only differ by 7.03× 10−10 and 5.29× 10−10 respectively from the steady state using
our original initial data 𝜔◦1 in relative sup-norm sense.

Figure 2.27: Fitting of 1/∥𝜔∥𝐿∞ and curve of the scaling factor 𝑐𝑙 in the third case.

For the third case, the fitting of 1/∥𝜔∥𝐿∞ and the curve of the scaling factor 𝑐𝑙 is
shown in Figure 2.27. We observe that 1/∥𝜔∥𝐿∞ has a good linear fitting with time,
suggesting a finite-time blow-up. However, 𝑐𝑙 converges to 19.44 which is clearly
different from 112.8, suggesting that there might be a new blow-up mechanism. In
Figure 2.28, we compare the steady states of 𝜔◦,31 and 𝜔◦1 in the 3D profiles and the
2D contours. The steady state of 𝜔◦,31 has a slower change near 𝑧 = 0. This might
be caused by the smoothness of the initial data near 𝑧 = 0. We have 𝜔◦,31 ∼ 𝑟

𝛼𝑧3, in
contrast to 𝜔◦1 ∼ 𝑟

𝛼𝑧 near (𝑟, 𝑧) = (0, 0). The steady state of the third case develops
a channel-like structure that is not parallel to either axis.
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Figure 2.28: Profiles and contours of the steady states of −�̃�1 in the original and
third cases.

The new blow-up scenario in the third case provides some support of Conjecture
9 of [27], in which the authors conjectured that the 3D Euler equations could still
develop a finite-time blow-up for initial data that are 𝐶∞ in 𝜌. In our future study,
we plan to investigate the potential blow-up using a class of initial data of the form

𝜔
◦,4
1 = −12000

(
1 − 𝑟2

)18
sin(2𝜋𝑧)2𝑘+1,

with a positive integer 𝑘 , so that 𝜔◦,41 ∼ 𝑟
𝛼𝑧2𝑘+1 = 𝜌2𝑘+1+𝛼 cos𝛼 \ sin2𝑘+1 \ is 𝐶2𝑘+1

smooth in 𝜌.
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C h a p t e r 3

SELF-SIMILAR FINITE-TIME SINGULARITY FORMATION
FOR HÖLDER CONTINUOUS SOLUTIONS TO THE

INCOMPRESSIBLE EULER EQUATIONS ON R𝑛

3.1 𝑛-D Axisymmetric Euler Equations with No Swirl
In this chapter, we study the self-similar finite-time blow-up for 𝑛-D axisymmetric
Euler equations with no swirl.

To start with, we introduce the 𝑛-dimensional axisymmetric Euler equations. Let

𝑢(𝑥, 𝑡) : R𝑛 × [0, 𝑇) → R𝑛,

be an 𝑛-D vector field of the velocity, and

𝑝(𝑥, 𝑡) : R𝑛 × [0, 𝑇) → R,

be an 𝑛-D scalar field of the pressure, where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛. Then the
𝑛-D Euler equations are written as

𝑢𝑡 + 𝑢 · ∇𝑢 = −∇𝑝, (3.1a)

∇ · 𝑢 = 0. (3.1b)

We then consider hyper-cylindrical coordinate system (𝑟, \1, . . . , \𝑛−2, 𝑧), which is
related to the Cartesian coordinate system (𝑥1, 𝑥2, . . . , 𝑥𝑛) via the following relation

𝑥1 = 𝑟 cos \1,

𝑥2 = 𝑟 sin \1 cos \2,

...

𝑥𝑛−1 = 𝑟 sin \1 · · · sin \𝑛−2

𝑥𝑛 = 𝑧.

We can see that the hyper-cylindrical coordinate system is simply the direct product
of a (𝑛 − 1)-D spherical coordinate system with a 1D Cartesian coordinate system.
We write down the frame of the hyper-cylindrical coordinate system in the Cartesian
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coordinate as

𝑒𝑟 = (cos \1, sin \1 cos \2, . . . , sin \1 · · · cos \𝑛−2, sin \1 · · · sin \𝑛−2, 0),
𝑒\1 = (− sin \1, cos \1 cos \2, . . . , cos \1 · · · cos \𝑛−2, cos \1 · · · sin \𝑛−2, 0),
...

𝑒\𝑛−2 = (0, 0, . . . ,− sin \𝑛−2, cos \𝑛−2, 0),
𝑒𝑧 = (0, 0, . . . , 0, 0, 1).

Similar to the 3D case, we call an 𝑛-D vector field 𝑣 to be axisymmetric if the
following ansatz applies

𝑣 = 𝑣𝑟 (𝑟, 𝑧)𝑒𝑟 + 𝑣\1 (𝑟, 𝑧)𝑒\1 + 𝑣𝑧 (𝑟, 𝑧)𝑒𝑧,

in other words, 𝑣𝑟 , 𝑣\1 , and 𝑣𝑧 are only functions of (𝑟, 𝑧). For such vector field, the
calculus on the curvilinear coordinate [25] of (𝑟, \1, . . . , \𝑛−2, 𝑧) gives

∇ · 𝑣 =𝑣𝑟𝑟 +
𝑛 − 2
𝑟

𝑣𝑟 + (𝑛 − 3) cot \1
𝑟

𝑣\1 + 𝑣𝑧𝑧,

(𝑣 · ∇) 𝑣 =
(
𝑣𝑟𝑣𝑟𝑟 + 𝑣𝑧𝑣𝑟𝑧 −

1
𝑟
𝑣\1𝑣\1

)
𝑒𝑟 +

(
𝑣𝑟𝑣\1

𝑟 + 𝑣𝑧𝑣\1
𝑧 +

1
𝑟
𝑣𝑟𝑣\1

)
𝑒\1

+
(
𝑣𝑟𝑣𝑧𝑟 + 𝑣𝑧𝑣𝑧𝑧

)
𝑒𝑧,

where again we use subscripts to denote derivatives for simplicity, except that it
does not apply to the unit vectors 𝑒𝑟 , 𝑒\1 , and 𝑒𝑧.

We can see that if there is “swirl” 𝑢\1 ≠ 0 in the initial condition for dimension
𝑛 ≠ 3, then the incompressibility condition ∇ · 𝑢 = 0 will inevitably introduce the
dependence on \1 for the equations, which implies that we cannot obtain a truly
axisymmetric Euler equations for dimension greater than 3. Note that when 𝑛 = 3,
the incompressibility condition does not introduce any trouble since the third term
in ∇ · 𝑣 vanishes exactly for 𝑛 = 3 even if there is swirl.

Therefore, to derive the 𝑛-dimensional axisymmetric Euler equations with 𝑛 > 3, we
need to impose the “no swirl” assumption 𝑢\1 = 0. Luckily, the “no swirl” assump-
tion will be preserved dynamically by the 𝑛-D Euler equations. We remark that the
axisymmetric Euler equations offer tremendous computational saving, which en-
ables us to investigate potential finite time singularity for the general 𝑛-dimensional
Euler equations using our current computational resources.
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Thus, the axisymmetric 𝑛-D Euler equations with no swirl can be written in the
vorticity-stream function form as

𝜔\𝑡 + 𝑢𝑟𝜔\𝑟 + 𝑢𝑧𝜔\𝑧 =
𝑛 − 2
𝑟

𝑢𝑟𝜔\ , (3.2a)

−𝜓\𝑟𝑟 − 𝜓\𝑧𝑧 −
𝑛 − 2
𝑟

𝜓\𝑟 +
𝑛 − 2
𝑟2 𝜓\ = 𝜔\ , (3.2b)

𝑢𝑟 = −𝜓\𝑧 , 𝑢𝑧 =
𝑛 − 2
𝑟

𝜓\ + 𝜓\𝑟 . (3.2c)

Similarly, since we plan to use 𝐶𝛼 continuous initial data for the angular vorticity
𝜔\ , we make the following change-of-variables

𝜔\ (𝑟, 𝑧) = 𝑟𝛼𝜔1(𝑟, 𝑧), 𝜓\ (𝑟, 𝑧) = 𝑟𝜓1(𝑟, 𝑧). (3.3)

Using (𝜔1, 𝜓1), an equivalent form of the 𝑛-D axisymmetric Euler equations with
no swirl is given below

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = −(𝑛 − 2 − 𝛼)𝜓1,𝑧𝜔1, (3.4a)

−𝜓1,𝑟𝑟 − 𝜓1,𝑧𝑧 −
𝑛

𝑟
𝜓1,𝑟 = 𝜔1𝑟

𝛼−1, (3.4b)

𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 = (𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟 . (3.4c)

Roughly speaking, the dimension 𝑛 controls the strength of the vortex stretching
term −(𝑛 − 2 − 𝛼)𝜓1,𝑧𝜔 and the 𝑧-advection speed 𝑢𝑧 = (𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟 . It
also modifies the Poisson equation for 𝜓1. It seems natural to conjecture that the
singularity formation will be more likely in the high-dimensional case because of
the stronger vortex stretching.

3.2 Numerical Evidence for the Potential Blow-Up
Settings of the Problem
We provide numerical evidence for the finite-time blow-up in the high-dimensional
case. We will use the setting 𝑛 = 10, 𝛼 = 0.5 for this section. More exploration of
different parameters will be studied in the Section 3.4 and 3.5.

For this 10-dimensional case, we use the same computational domain D for (𝑟, 𝑧),
and the same numerical solver as for the 3D Euler equations, see Appendix A. To
expedite the computation, we use a modified version of the initial data (2.12),

𝜔◦1 =
−12000

(
1 − 𝑟2)18 sin(2𝜋𝑧)

1 + 12.5 sin2(𝜋𝑧)
, (3.5)

because the initial vorticity will concentrate more near the origin than (2.12).
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Figure 3.1: Zoomed-in 3D profiles of −𝜔1, −𝜓1, 𝑢𝑟 and −𝑢𝑧 at 𝑡 = 7.9582242×10−4

near the origin (0, 0).

Adaptive Mesh Method
On 1024×1024 spatial resolution, we solve the equations until 𝑡 = 7.9582242×10−4,
where the solution becomes too singular to be resolved by our numerical method.
The zoomed-in profiles of−𝜔1, −𝜓1, and the velocity fields 𝑢𝑟 , −𝑢𝑧 are shown in 3.1.
We can see that−𝜔1 seems to mostly depend on 𝑧 instead of 𝑟. In Figure 3.2, we show
the curves of important quantities of the solution. At the end of the computation,
∥𝜔1∥𝐿∞ has increased by a factor of around 6.5 × 106, and ∥𝜔∥𝐿∞ has increased
by a factor of around 515. We recall that (𝑅1(𝑡), 𝑍1(𝑡)) is the maximum location
of |𝜔1 |. We still observe that 𝑅1(𝑡) = 0, and −𝜔1 becomes very one-dimensional.
We observe that 𝑍1(𝑡) decays very fast towards zero, acting like (𝑇 − 𝑡)𝑐 with some
terminal time 𝑇 and an exponent 𝑐 > 1.

The double logarithm curve log log ∥𝜔∥𝐿∞ grows superlinear in time, giving us a
first sign that the solution will form potential singularity in finite time. Another
sign comes from the Beale-Kato-Majda blow-up criterion (??), as the time integral∫ 𝑡
0 ∥𝜔(𝑠)∥𝐿∞d𝑠 grows rapidly in time.

We remark that the kinetic energy 𝐸 is also a conservative quantity in the 𝑛-
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dimensional case. After more than 5.5 × 104 iterations, the change in the kinetic
energy is less than 1.17×10−4 of its own scale. The conservation of energy provides
additional support for the accuracy of our numerical solution.

Figure 3.2: Curves of ∥𝜔1∥𝐿∞ , 𝑍1, ∥𝜔∥𝐿∞ , log log ∥𝜔∥𝐿∞ ,
∫ 𝑡
0 ∥𝜔(𝑠)∥𝐿∞d𝑠 and 𝐸 as

a function of time.

Scaling Analysis
In Figure 3.3, we perform scaling analysis for the potential blow-up. Similar to the
3D case, the scaling invariant property of the 𝑛-D Euler equations implies that if the
self-similar blow-up exists, then ∥𝜔∥𝐿∞ and ∥𝜓1,𝑧∥𝐿∞ should scale like 1/(𝑇 − 𝑡),
where 𝑇 is the blow-up time. In the top row of Figure 3.3, 1/∥𝜔∥𝐿∞ or 1/∥𝜓1,𝑧∥𝐿∞
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Figure 3.3: Fitting the scales of ∥𝜔∥𝐿∞ , ∥𝜓1,𝑧∥𝐿∞ , and ∥𝜔1∥𝐿∞ , 𝑍1.

as a function of t gives excellent linear fitting with 𝑅2 value higher than 0.9998. The
blow-up times estimated by the fitting of these two quantities also match each other
very well, with one 8.0134092 × 10−4 and another 8.0134974 × 10−4. It provides
further evidence that the our 10-D Euler equations develop a potential finite-time
self-similar singularity.

In the second row of Figure 3.3, we use the fitting method described in Section
2.3 to find out the scaling factors 𝑐𝑙 and 𝑐𝜔. The self-similar ansatz implies that
∥𝜔1∥𝐿∞ ∼ 1/(𝑇 − 𝑡)𝑐𝜔 and 𝑍1 ∼ (𝑇 − 𝑡)𝑐𝑙 . Therefore, we find the best constant 𝑐 for
∥𝜔∥−1/𝑐

𝐿∞ or 𝑍1/𝑐
1 such that they achieve the highest 𝑅2 values when fitting with 𝑡. Our

results give 𝑐𝑙 = 5.75 and 𝑐𝜔 = 3.95, which satisfies the relation (2.6) 𝑐𝜔 = 1 + 𝛼𝑐𝑙
approximately. Moreover, the estimated blow-up times in both cases agree with
each other quite well.

Dynamic Rescaling Method
The scaling analysis suggests that the potential singularity is very likely to be self-
similar. Therefore, we use the dynamic rescaling method to study the potential
self-similar profile of the solution. In the high-dimensional case, the dynamic
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rescaling formulation becomes

�̃�1,𝜏 +
(
𝑐𝑙b + �̃�b

)
�̃�1,b +

(
𝑐𝑙Z + �̃�Z

)
�̃�1,Z =

(
𝑐𝜔 − (𝑛 − 2 − 𝛼)�̃�1,Z

)
�̃�1, (3.6a)

−�̃�1,bb − �̃�1,Z Z −
𝑛

b
�̃�1,b = �̃�1b

𝛼−1, (3.6b)

�̃�b = −b�̃�1,Z , �̃�Z = (𝑛 − 1)�̃�1 + b�̃�1,b . (3.6c)

We adopt the same settings for the computational domain D′, the normalization
conditions (2.16), and the operator splitting method (2.19) as in Section 2.4.

Figure 3.4: Curve of the relative time derivative strength ∥�̃�1,𝜏 (𝜏)∥𝐿∞/∥�̃�1(𝜏)∥𝐿∞ .

We observe fast convergence to the steady state using the solution from the last
iteration of the adaptive mesh method as the initial condition for the dynamic
rescaling formulation. In Figure 3.4, we plot the relative time derivative strength
∥�̃�1,𝜏 (𝜏)∥𝐿∞/∥�̃�1(𝜏)∥𝐿∞ . This relative strength of the time derivative has a de-
creasing trend and goes down below 1.78 × 10−6 near the end of the computation,
which provides strong evidence that we are close to the steady state.

In Figure 3.5, we plot the curves of the scaling factors. In the top row, the scaling
factors 𝑐𝑙 , 𝑐𝜔 that are used in the dynamic rescaling method demonstrate good
convergence to a constant value. In the second row, the scaling factors 𝑐𝑙 , 𝑐𝜔
that appear in the self-similar ansatz converge to the value of 5.897 and 3.949
respectively. The estimated values for 𝑐𝑙 , 𝑐𝜔 not only match the estimated values
from the scaling analysis, but also satisfy the relation 𝑐𝜔 = 1 + 𝛼𝑐𝑙 approximately.
This provides another verification of the validity of our results.

The steady states of −�̃�1 and �̃�1 are plotted in Figure 3.6. We can see that −�̃�1 is
very close to be one-dimensional, with little tilt towards b = 0.
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Figure 3.5: Convergence curves of the scaling factors using dynamic rescaling
method. Top row: 𝑐𝑙 ; and 𝑐𝜔. Bottom row: 𝑐𝑙 and 𝑐𝜔.

Figure 3.6: Steady states of −�̃�1 and −�̃�1, with 𝑛 = 10 and 𝛼 = 0.5.

3.3 Hölder Exponent, Anisotropic Scaling, and Dimension in the Potential
Self-Similar Blow-Up

Intentionally redacted.

3.4 Possible Mechanism of the Potential Singularity Formation
Intentionally redacted.
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3.5 A One-Dimensional Model for the Potential Self-Similar Blow-Up
Intentionally redacted.
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C h a p t e r 4

FINITE-TIME SINGULARITY FORMATION OF THE WEAK
CONVECTION MODEL OF THE IMPRESSIBLE EULER

EQUATIONS ON R𝑛

4.1 Motivation of the Model
In this chapter, we turn to study the axisymmetric Euler equations with smooth
initial data. It is known that 3D axisymmetric Euler equations with no swirl have
global regularity if the initial data is sufficiently smooth [90]. In fact, as observed
by [66], any smooth solution (𝑢\ , 𝜔\ , 𝜓\) of the axisymmetric Euler equations (??)
(no need to be swirl-free) must satisfy the compatible conditions:

𝑢\ (0, 𝑧, 𝑡) = 𝜔\ (0, 𝑧, 𝑡) = 𝜓\ (0, 𝑧, 𝑡) = 0.

Therefore, we may define the new variables, as introduced by Hou and Li in [45]:

𝑢1 = 𝑢\/𝑟, 𝜔1 = 𝜔\/𝑟, 𝜓1 = 𝜓\/𝑟. (4.1)

In the new variables, the vorticity equation becomes

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = 2𝑢1𝑢1,𝑧 .

If we assume the no swirl condition, the vorticity equation simplifies to

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = 0,

which implies that the maximum of |𝜔1 | is conserved. At the same time, the vorticity
vector in the axisymmetric and no swirl setting can be simplified to 𝜔 = 𝜔\𝑒\ . As
a result, 𝜔 = 𝑟𝜔1𝑒\ would violate the Beale-Kato-Majda blow-up criterion (??).

The reason for the global regularity of the 3D axisymmetric Euler equations with no
swirl is due to the balance of the vortex stretch term and the convection terms. In the
equation of the angular vorticity 𝜔\ , the vortex stretching term 1

𝑟
𝑢𝑟𝜔\ gets canceled

by a part of the convection term 𝑢𝑟𝜔\𝑟 after the change-of-variable 𝜔\ = 𝑟𝜔1.

To better understand the balancing effect between the vortex stretch term and the
convection terms, we modify the 3D axisymmetric Euler equations with no swirl so
that the vortex stretch term has different strength than the convection terms. We also
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generalize this design to the 𝑛-dimensional case. Recall that the 𝑛-D axisymmetric
Euler equations with no swirl have the form

𝜔\𝑡 + 𝑢𝑟𝜔\𝑟 + 𝑢𝑧𝜔\𝑧 =
𝑛 − 2
𝑟

𝑢𝑟𝜔\ , (4.2a)

−𝜓\𝑟𝑟 − 𝜓\𝑧𝑧 −
𝑛 − 2
𝑟

𝜓\𝑟 +
𝑛 − 2
𝑟2 𝜓\ = 𝜔\ , (4.2b)

𝑢𝑟 = −𝜓\𝑧 , 𝑢𝑧 =
𝑛 − 2
𝑟

𝜓\ + 𝜓\𝑟 . (4.2c)

We introduce the weak convection model by adding a parameter Y ∈ [0, 1] to control
the strength of the convection terms:

𝜔\𝑡 + Y𝑢𝑟𝜔\𝑟 + Y𝑢𝑧𝜔\𝑧 =
𝑛 − 2
𝑟

𝑢𝑟𝜔\ , (4.3a)

−𝜓\𝑟𝑟 − 𝜓\𝑧𝑧 −
𝑛 − 2
𝑟

𝜓\𝑟 +
𝑛 − 2
𝑟2 𝜓\ = 𝜔\ , (4.3b)

𝑢𝑟 = −𝜓\𝑧 , 𝑢𝑧 =
𝑛 − 2
𝑟

𝜓\ + 𝜓\𝑟 . (4.3c)

If we still introduce the change-of-variable (4.1), the equations in (4.3) becomes

𝜔1,𝑡 + Y𝑢𝑟𝜔1,𝑟 + Y𝑢𝑧𝜔1,𝑧 = −(𝑛 − 2 − Y)𝜓1,𝑧𝜔1, (4.4a)

−𝜓1,𝑟𝑟 − 𝜓1,𝑧𝑧 −
𝑛

𝑟
𝜓1,𝑟 = 𝜔1, (4.4b)

𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 = (𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟 . (4.4c)

The case of Y = 1 resumes the original 𝑛-D axisymmetric Euler equations with no
swirl (3.2). We can see that indeed for the 3D case, the vortex stretching term 𝜓1,𝑧𝜔

vanishes when Y = 1.

We remark that the weak convection model (4.3) is different from the models studied
in [62, 47, 44, 46]. In [62, 47], the authors directly dropped the convection terms
in 3D axisymmetric Euler equations using the variables (𝜔1, 𝜓1). In [44, 46], the
authors generalized the previous model by modifying the Biot-Savart law (4.2c) to

𝑢𝑟 = Y
(
−𝑟𝜓1,𝑧

)
, 𝑢𝑧 = Y

(
(𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟

)
.

This modification has some good properties like preserving some modified kinetic
energy. In the no swirl case, the above modification can be written in the form of
the equations in our model (4.4) with only (4.4a) replaced by

𝜔1,𝑡 + Y𝑢𝑟𝜔1,𝑟 + Y𝑢𝑧𝜔1,𝑧 = −Y(𝑛 − 3)𝜓1,𝑧𝜔1.

In other words, the no swirl case of the model in [44, 46] only rescales the time by
the parameter Y, and does not change the balance between the convection terms and
the vortex stretching term. In contrast, the weak convection model (4.4) gives more
degrees of freedom to study the balancing effect.
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No Energy Conservation
An important difference of the weak convection model (4.4) to the original 𝑛-D
axisymmetric Euler equations is that the kinetic energy is not conserved in our
weak convection model. In fact, since we would like an imbalance between the
convection terms and the vortex stretching terms, it would be hard to maintain the
energy conservation.

Specifically, in the 𝑛-D axisymmetric setting, we define the kinetic energy 𝐸 as

𝐸 =
1
2

∫
D

(
(𝑢𝑟)2 + (𝑢𝑧)2

)
𝑟𝑛−2d𝑟d𝑧, (4.5)

where D is the cylinder domain

D = {(𝑟, 𝑧) : 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝑧 ≤ 1/2} .

We first notice that,∫
D

(
(𝑢𝑟)2 + (𝑢𝑧)2

)
𝑟𝑛−2d𝑟d𝑧 =

∫
D

( (
−𝑟𝜓1,𝑧

)2 + ((𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟
)2)

𝑟𝑛−2d𝑟d𝑧

=

∫
D

(
𝜓2

1,𝑟 + 𝜓
2
1,𝑧

)
𝑟𝑛d𝑟d𝑧

+ (𝑛 − 1)
∫
D

(
(𝑛 − 1)𝜓2

1𝑟
𝑛−2 + 2𝜓1𝜓1,𝑟𝑟

𝑛−1
)

d𝑟d𝑧.

Using the Poisson equation (4.4b) and integration by part, we have∫
D

(
𝜓2

1,𝑟 + 𝜓
2
1,𝑧

)
𝑟𝑛d𝑟d𝑧 =

∫
D

(
−𝜓1,𝑟𝑟 − 𝜓1,𝑧𝑧 −

𝑛

𝑟
𝜓1,𝑟

)
𝜓1𝑟

𝑛d𝑟d𝑧

=

∫
D
𝜔1𝜓1𝑟

𝑛d𝑟d𝑧.

Furthermore, the integration by part also gives∫
D

(
(𝑛 − 1)𝜓2

1𝑟
𝑛−2 + 2𝜓1𝜓1,𝑟𝑟

𝑛−1
)

d𝑟d𝑧 =
∫
D

(
𝜓2

1𝑟
𝑛−1

)
𝑟
d𝑟d𝑧 = 0.

So we have an equivalent formula for the kinetic energy 𝐸

𝐸 =
1
2

∫
D
𝜔1𝜓1𝑟

𝑛d𝑟d𝑧.

Now we use (4.4a) and find

2
d
d𝑡
𝐸 =

∫
D

(
−Y𝑢𝑟𝜔1,𝑟 − Y𝑢𝑧𝜔1,𝑧 − (𝑛 − 2 − Y)𝜓1,𝑧𝜔1

)
𝜓1𝑟

𝑛d𝑟d𝑧

= −Y
∫
D

(
𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧

)
𝜓1𝑟

𝑛d𝑟d𝑧 − (𝑛 − 2 − Y)
∫
D
𝜓1𝜓1,𝑧𝜔1𝑟

𝑛d𝑟d𝑧

= I + II.
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For the first term I in the right-hand side of the above equation, we do integration
by part and plug in the incompressible condition ∇ · 𝑢 = 𝑢𝑟𝑟 + 𝑛−2

𝑟
𝑢𝑟 + 𝑢𝑧𝑧 = 0:

I = − Y
∫
D

(
𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧

)
𝜓1𝑟

𝑛d𝑟d𝑧

=Y

∫
D

(
𝑢𝑟𝑟 +

𝑛

𝑟
𝑢𝑟 + 𝑢𝑧𝑧

)
𝜔1𝜓1𝑟

𝑛d𝑟d𝑧 + Y
∫
D

(
𝑢𝑟𝜓1,𝑟 + 𝑢𝑧𝜓1,𝑧

)
𝜔1𝑟

𝑛d𝑟d𝑧

=Y

∫
D

2
𝑟
𝑢𝑟𝜔1𝜓1𝑟

𝑛d𝑟d𝑧 + Y
∫
D

(
𝑢𝑟𝜓1,𝑟 + 𝑢𝑧𝜓1,𝑧

)
𝜔1𝑟

𝑛d𝑟d𝑧,

and then we plug in the Biot-Savart law (4.4c) for 𝑢𝑟 , 𝑢𝑧:

I =Y
∫
D

2
𝑟

(
−𝑟𝜓1,𝑧

)
𝜔1𝜓1𝑟

𝑛d𝑟d𝑧

+ Y
∫
D

( (
−𝑟𝜓1,𝑧

)
𝜓1,𝑟 +

(
(𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟

)
𝜓1,𝑧

)
𝜔1𝑟

𝑛d𝑟d𝑧,

=Y(𝑛 − 3)
∫
D
𝜓1𝜓1,𝑧𝜔1𝑟

𝑛d𝑟d𝑧.

Therefore, we can conclude that

d
d𝑡
𝐸 =

1
2
Y(𝑛 − 3)

∫
D
𝜓1𝜓1,𝑧𝜔1𝑟

𝑛d𝑟d𝑧 − 1
2
(𝑛 − 2 − Y)

∫
D
𝜓1𝜓1,𝑧𝜔1𝑟

𝑛d𝑟d𝑧

= −1
2
(𝑛 − 2) (1 − Y)

∫
D
𝜓1𝜓1,𝑧𝜔1𝑟

𝑛d𝑟d𝑧.

We can see that in general the kinetic energy 𝐸 is conserved only if 𝑛 = 2 or Y = 1.

4.2 Numerical Evidence for the Potential Blow-Up
Settings of the Problem
In this section, we present numerical evidence for the potential blow-up. We will use
the setting 𝑛 = 3, Y = 0.1 for this section. More exploration of different parameters
will be studied in the Section 4.3.

We use the computational domain D defined in the previous section for (𝑟, 𝑧). We
impose a periodic boundary condition in 𝑧:

𝜔1(𝑟, 𝑧, 𝑡) = 𝜔1(𝑟, 𝑧 + 1, 𝑡) = 0.

We enforce the initial data for 𝜔1 to be an odd function of 𝑧:

𝜔1(𝑟, 𝑧, 𝑡) = −𝜔1(𝑟,−𝑧, 𝑡),
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and this will be dynamically preserved by the equations. So we only need to solve
the equations in a half period in 𝑧. We impose a no-flow boundary condition at
𝑟 = 1:

𝜓1(0, 𝑧, 𝑡) = 0.

We use the same numerical solver as for the 3D Euler equations, see Appendix A.
The initial condition for 𝜔1 is the same as we used in Chapter 3:

𝜔◦1 =
−12000

(
1 − 𝑟2)18 sin(2𝜋𝑧)

1 + 12.5 sin2(𝜋𝑧)
. (4.6)

Figure 4.1: 3D profiles of −𝜔1, −𝜓1 at 𝑡 = 1.3002048 × 10−2.

Adaptive Mesh Method
On 1024 × 1024 spatial resolution, we solve the equations for more than 1.3 × 105

iterations until 𝑡 = 1.3002048 × 10−2, where the solution becomes too singular in
space to be resolved by our numerical method due to the round-off error. At the
end of the computation, ∥𝜔1∥𝐿∞ has increased by a factor of around 2.9 × 1016,
and the maximum vorticity ∥𝜔∥𝐿∞ has increased by a factor of around 2.0 × 1014.
The profiles of −𝜔1, −𝜓1 are plotted in Figure 4.1. We see that −𝜔1 is significantly
large near the origin (𝑟, 𝑧) = (0, 0). The zoomed-in profiles of −𝜔1, −𝜓1, and the
velocity fields 𝑢𝑟 , −𝑢𝑧 are shown in Figure 4.2. It is very interesting to notice that
even though the scale of the plotted 𝑟 axis is 2.5× 105 larger than the plotted 𝑧 axis,
−𝜔1, −𝜓1 seem to be very one-dimensional and depend on 𝑧 only.

We show the curves of important quantities of the solution in Figure 4.3. We observe
a clear superlinear curve for log log ∥𝜔∥𝐿∞ in time. This provides a first sign that the
solution will form potential singularity in finite time. Another sign comes from the
Beale-Kato-Majda blow-up criterion (??), as we observe a remarkably fast growth of
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the integral
∫ 𝑡
0 ∥𝜔(𝑠)∥𝐿∞d𝑠. Let 𝑍1(𝑡) be the 𝑧-coordinate of the maximum location

of |𝜔1 |, we see that it collapses to zero very fast in time. We also observe that, since
we do not have energy conservation here, the kinetic energy 𝐸 grows rapidly in the
late stage of the computation.

Figure 4.2: Zoomed-in 3D profiles of−𝜔1, −𝜓1, 𝑢𝑟 , and−𝑢𝑧 at 𝑡 = 1.3002048×10−2

near the origin. Note that the 𝑟 axis scale is 2.5 × 106 of the 𝑧 axis scale.

Self-Similar Profile
Since the solution is very one-dimensional and seems to only depend on 𝑧, it is
reasonable to assume that the self-similar profile, if exists, would be anisotropic.
In fact, let (𝑅(𝑡), 𝑍 (𝑡)) be the the maximum location of |𝜔\ |. In other words, we
have |𝜔\ (𝑅(𝑡), 𝑍 (𝑡)) | = ∥𝜔\ (𝑡)∥𝐿∞ . In Figure 4.4, we plot the ratio 𝑅(𝑡)/𝑍 (𝑡) and
the trajectory of (𝑅(𝑡), 𝑍 (𝑡)) in time 𝑡. We can clearly see that 𝑅/𝑍 grows very
fast in late time, and the value of this ratio even goes beyond 107. The trajectory
of (𝑅(𝑡), 𝑍 (𝑡)) also demonstrates a clear anisotropic nature of the solution. The
change of 𝑅(𝑡) in time is significantly slower than the change of 𝑍 (𝑡) in time.
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Figure 4.3: Curves of ∥𝜔1∥𝐿∞ , 𝑍1, ∥𝜔∥𝐿∞ , log log ∥𝜔∥𝐿∞ ,
∫ 𝑡
0 ∥𝜔(𝑠)∥𝐿∞d𝑠 and 𝐸 as

functions of time.

Therefore, instead of the self-similar ansatz (2.3), we would now assume

𝜔1(𝑥, 𝑡) ≈
1

(𝑇 − 𝑡)𝑐𝜔 Ω
(

𝑟

(𝑇 − 𝑡)𝑐′𝑙
,

𝑧

(𝑇 − 𝑡)𝑐𝑙

)
,

𝜓1(𝑥, 𝑡) ≈
1

(𝑇 − 𝑡)𝑐𝜓 Ψ
(

𝑟

(𝑇 − 𝑡)𝑐′𝑙
,

𝑧

(𝑇 − 𝑡)𝑐𝑙

)
,

(4.7)

with the parameter 𝑐′
𝑙
≤ 𝑐𝑙 . We use the parameter 𝑐′

𝑙
to model the anisotropic

behavior in 𝑟 and 𝑧. We remark that it could also be possible that Ω and Ψ in (4.7)
are independent of 𝑟. However, we choose the current ansatz (4.7) because it is
capable to model all these cases.
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Figure 4.4: Curve of the ratio 𝑅(𝑡)/𝑍 (𝑡) as a function of time and the trajectory of
(𝑅(𝑡), 𝑍 (𝑡)) over time.

If we plug in this ansatz back to the weak convection model (4.4), and expect the
leading order terms of both sides match with each other, we should still have the
scaling relation, as the special case 𝛼 = 1 of (2.6):

𝑐𝜔 = 1 + 𝑐𝑙 , 𝑐𝜓 = 1 − 𝑐𝑙 .

As a consequence, we should still expect that

∥𝜓1,𝑧 (𝑡)∥𝐿∞ ∼
1

𝑇 − 𝑡 .

However, we no longer have ∥𝜔\ (𝑡)∥𝐿∞ ∼ 1/(𝑇 − 𝑡), and instead we have

∥𝜔\ (𝑡)∥𝐿∞ ∼
1

(𝑇 − 𝑡)𝑐𝜔−𝑐′𝑙
.

We notice that the exponent 𝑐𝜔 − 𝑐′𝑙 ≥ 𝑐𝜔 − 𝑐𝑙 = 1, so our ansatz (4.7) still allows
the self-similar solution to satisfy the Beale-Kato-Majda blow-up criterion (??).

Due to the one-dimensional structure of the solution, we only plot the 𝑧-cross section
to check if the solution is potentially self-similar. Specifically, we plot

�̂�1(Z, 𝑡) = 𝜔1(0, Z 𝑍1(𝑡), 𝑡)/∥𝜔1∥𝐿∞ ,

at different time instants. In Figure 4.5, we show the profiles of −�̂�1 at the 1.0×105-
th, 1.1 × 105-th, 1.2 × 105-th, 1.3 × 105-th iteration of our computation. We see no
visible difference in −�̂�1. In fact, during this time, the maximum vorticity ∥𝜔∥𝐿∞
has increased by a factor of 8.2 × 103. This gives us a strong evidence that there
exists a self-similar blow-up profile.
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Figure 4.5: Profiles of −�̂�1 at different time instants.

Scaling Analysis
Similar as we did in Section 2.3 and Section 3.2, we perform scaling analysis on the
curves of important quantities.

For ∥𝜓1,𝑧∥𝐿∞ , since our self-similar ansatz (4.7) predicts it to scale like 1/(𝑇 − 𝑡),
we will directly fit ∥𝜓1,𝑧∥−1

𝐿∞ with 𝑡 and check the quality of the fitting. For quantities
like ∥𝜔∥𝐿∞ , ∥𝜔1∥𝐿∞ and 𝑍 , we do not know their exponents. Therefore, we follow
our searching algorithm, described in Chapter 2, for the exponent 𝑐, and then fit a
linear model.

In Figure 4.6, we can see that the fitting quality is all very good, with very high 𝑅2

values. Besides, the estimated blow-up times from different quantities match each
other up to 7 digits. From the fitting of 𝑍1/𝑐

1 and ∥𝜔1∥−1/𝑐
𝐿∞ , we obtain the estimate

𝑐𝜔 ≈ 2.08 and 𝑐𝑙 ≈ 1.08. This matches with our scaling relation 𝑐𝜔 = 1 + 𝑐𝑙
approximately. In addition, we notice that ∥𝜔∥𝐿∞ scales like 1/(𝑇 − 𝑡)1.88. The
exponent 1.88 is clearly larger than 1, which is the case for the isotropic self-similar
blow-up (2.3). This also matches with our assumption that 𝑐′

𝑙
≤ 𝑐𝑙 .

Dynamic Rescaling Method
Numerical results in the previous sections suggest that the potential blow-up of
the solution is very likely to be self-similar. In this section, we use the dynamic
rescaling method to study this potential self-similar profile. From the zoomed-in
profiles of −𝜔1 and −𝜓1 in Figure 4.2, we can see that there is little dependence
on 𝑟 in −𝜔1 and −𝜓1. Thus, we tend to think that there is no dependence on 𝑟 in
the self-similar ansatz (4.7). However, in favor of a closed-form equation, we still
add same stretching term in 𝑟 and 𝑧, as we did in (2.13). The dynamic rescaling
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Figure 4.6: Linear fitting of ∥𝜓1,𝑧∥−1
𝐿∞ , ∥𝜔∥−1/𝑐

𝐿∞ , 𝑍1/𝑐
1 and ∥𝜔1∥−1/𝑐

𝐿∞ with time.

formulation for the weak convection model (4.4) is

�̃�1,𝜏 +
(
𝑐𝑙b + Y�̃�b

)
�̃�1,b +

(
𝑐𝑙Z + Y�̃�Z

)
�̃�1,Z =

(
𝑐𝜔 − (𝑛 − 2 − Y)�̃�1,Z

)
�̃�1, (4.8a)

−�̃�1,bb − �̃�1,Z Z −
𝑛

b
�̃�1,b = �̃�1, (4.8b)

�̃�b = −b�̃�1,Z , �̃�Z = (𝑛 − 1)�̃�1 + b�̃�1,b . (4.8c)

Similarly, if we plug in our new ansatz (4.7) and ignore the lower order terms, we
should have following identities

𝑐𝑙 = −
𝑐𝑙

𝑐𝜔 + 𝑐𝑙
, 𝑐𝜔 =

𝑐𝜔

𝑐𝜔 + 𝑐𝑙
, 𝑐𝜓 =

𝑐𝜓

𝑐𝜔 + 𝑐𝑙
,

which can be seen as the special case of 𝛼 = 1 of (2.21).

For our computation of the dynamic rescaling formulation (4.8), we still use the same
computational domain D′, the normalization conditions (2.16), and the operator
splitting method (2.19) as in Section 2.4.

In Figure 4.7, the curves of the scaling factors are plotted. In the top row, the scaling
factors 𝑐𝑙 and 𝑐𝜔 in the dynamic rescaling method demonstrate good convergence to
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Figure 4.7: Convergence curves of the scaling factors using dynamic rescaling
method with 𝑛 = 3 and Y = 0.1. Top row: 𝑐𝑙 ; and 𝑐𝜔. Bottom row: 𝑐𝑙 and 𝑐𝜔.

a constant value. In the second row, the scaling factors 𝑐𝑙 and 𝑐𝜔 in our self-similar
ansatz (4.7) converge to the value of 1.077 and 2.077 respectively. The estimated
values for 𝑐𝑙 and 𝑐𝜔 not only match the estimated values of the scaling analysis, but
also satisfy the relation 𝑐𝜔 = 1+𝑐𝑙 approximately. This provides another verification
of the validity of our results.

Figure 4.8: Steady states of −�̃�1 and −�̃�1, with 𝑛 = 3 and Y = 0.1.

In Figure 4.8, we show the steady states of −�̃�1 and −�̃�1. Despite that the scales
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Figure 4.9: Steady states of the derivatives −�̃�1,b , −�̃�1,Z and −�̃�1,b , −�̃�1,Z , with
𝑛 = 3 and Y = 0.1.

for 𝑟 axis and 𝑧 axis are quite different in the figures, the steady states of −�̃�1 and
−�̃�1 seem to depend on 𝑧 only. In other words, the steady states are also very one-
dimensional. In Figure 4.9, we show the derivatives of the steady states of −�̃�1 and
−�̃�1. The b-derivatives, −�̃�1,b and −�̃�1,b , are at the magnitude of at most 2.5×10−9,
much smaller than the magnitude of the Z-derivatives, −�̃�1,Z and −�̃�1,Z , who are at
the scale of 100. Figure 4.9 gives a strong evidence of the one-dimensional profile in
the self-similar blow-up. In the meanwhile, the highly one-dimensional self-similar
profile we captured also endorses our anisotropic self-similar ansatz we assumed
in (4.7), where the collapsing along the 𝑟-axis is much weaker than the collapsing
along the 𝑧-axis.

Sensitivity to Initial Data
The potential self-similar blow-up solutions we described above seem to be robust
with the initial data. We perturb the original initial condition (4.6) a lot and design
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the following initial conditions for 𝜔1:

𝜔
◦,1
1 =

−6000 cos2 ( 𝜋𝑟
2
)
sin(2𝜋𝑧)

1 + 12.5 sin2(𝜋𝑧)
,

𝜔
◦,2
1 = −6000 cos2

(𝜋𝑟
2

)
sin(2𝜋𝑧)

(
2 + exp

(
−𝑟2 sin2(𝜋𝑧)

))
.

In both cases, the decay as 𝑟 → 1 is much slower than the original (1 − 𝑟2)18. The
second case 𝜔◦,21 also introduces non-tensor-product part of 𝑟 and 𝑧.

Figure 4.10: Comparison of cross sections of steady states of −�̃�1 and −�̃�1 with
different initial data with 𝑛 = 3, Y = 0.1.

Due to the limited computational resources, we only solve the weak convection
model (4.4) with 𝑛 = 3 and Y = 0.1. For both cases, we first use the adaptive mesh
method to solve the equations (4.4), and then use the solutions in the last iteration
as initial conditions to the dynamic rescaling method. In Figure 4.10, we compare
the cross sections of steady states of �̃�1 and �̃�1 in cases 1 and 2 with those of
the original case of initial data. It is interesting to notice that the cross sections
of all three cases have no visible difference. We report that the sup-norm relative
difference of the steady states of �̃�1 in (b, Z) ∈ [0, 200] × [0, 20] among these three
cases is at most 5.4 × 10−9. We also report that the scaling factors 𝑐𝑙 estimated by
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these three methods are all 1.722, agreeing each other by at least 4 digits. The steady
states and scaling factors provide a strong evidence that the potential self-similar
blow-up solution is not sensitive to the choice of the initial condition for 𝜔1.

4.3 Influence of the Convection Strength and Dimension on Potential Finite-
Time Blow-Up

In this section, we explore how the convection strength Y and the dimension 𝑛

influence the blow-up of the weak convection model (4.4). For each combination
of Y and 𝑛 in the following, the equations (4.4) are first solved by the adaptive
mesh method close enough to the potential blow-up time, and then we switch to the
dynamic rescaling method to continue the computation in a local region near the
origin (𝑟, 𝑧) = (0, 0).

Figure 4.11: Cross sections in b of steady states of −�̃�1 and −�̃�1 with different Y in
R3.

In Figure 4.11 and 4.12, we compare the cross sections of steady states with different
convection strength Y. We can see from Figure 4.11 that regardless of the convection
strength Y, the steady states of−�̃�1 and −�̃�1 seem to be very one-dimensional. From
Figure 4.12, we see that the larger Y is, the wider spread −�̃�1 is. This could be
caused by the stronger convection effect on 𝜔1 with larger Y. We can also see that
the magnitude of �̃�1 grows fast with Y, which further implies stronger convection
along the 𝑧-axis, because 𝑢Z = (𝑛 − 1)�̃�1 when b = 0.

In Figure 4.13 and 4.14, we compare the cross sections of steady states in different
dimensions 𝑛. Similarly, we still observe that the steady states for both �̃�1 and �̃�1

are very one-dimensional. In Figure 4.14, we can also see that the steady state of �̃�1

becomes slightly more compact, and the magnitude of �̃�1 becomes slightly smaller
as the dimension 𝑛 increases. There seems to be a non-trivial limit case as 𝑛→ +∞.
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Figure 4.12: Cross sections in Z of steady states of −�̃�1 and −�̃�1 with different Y in
R3. Top row: on a local window. Bottom row: on a larger window.

Figure 4.13: Cross sections in b of steady states of −�̃�1 and −�̃�1 with different
dimensions 𝑛 with Y = 0.1.

𝑐𝑙 Y

𝑛 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
3 0.5000 1.072 2.742 76.61 - - - - -
10 0.5000 0.7578 1.101 1.588 2.356 3.818 7.949 118.3 -

Table 4.1: The scaling factor 𝑐𝑙 for different choice of 𝑛 and Y.



66

Figure 4.14: Cross sections in Z of steady states of −�̃�1 and −�̃�1 with different
dimensions 𝑛 with Y = 0.1. Top row: on a local window. Bottom row: on a larger
window.

In Table 4.1, we list the estimated scaling factor 𝑐𝑙 we observed for different com-
binations of (𝑛, Y). The empty entries mean that the combination of (𝑛, Y) does not
develop finite-time blow-up. The scaling factor 𝑐𝑙 grows fast as Y approaches the
critical value Y∗ that separates the region between the blow-up and non-blow-up.
As Y approaches Y∗, it seems that 𝑐𝑙 tends to infinity. Based on the data points in
Table 4.1, it is natural to conjecture that Y∗ = 1 − 2

𝑛
. In Section 4.4, we will provide

a heuristic explanation for this critical value.

4.4 A One-Dimensional Model for the Finite-Time Blow-Up
The numerical results in Section 4.2 strongly suggest that the profiles of 𝜔1 and 𝜓1

can be well approximated by their dependence on 𝑧 only. Based on this observation,
we assume that

𝜔1(𝑟, 𝑧) = 𝜔1(0, 𝑧),

and derive a one-dimensional model for the weak convection model (4.4).

We simply assume 𝜕𝑟 = 0 for all quantities in the weak convection model (4.4). We
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slightly abuse the symbols and consider 𝜔1 and 𝜓1 as the 1D profile of the original
𝜔1 and 𝜓1 in 𝑧. The 1D model of the weak convection model can be written as

𝜔1,𝑡 + Y(𝑛 − 1)𝜓1𝜔1,𝑧 = −(𝑛 − 2 − Y)𝜓1,𝑧𝜔1, (4.9a)

−𝜓1,𝑧𝑧 = 𝜔1. (4.9b)

In fact, the Poisson equation (4.9b) under the given zero Dirichlet boundary condition
has the following closed-form solution:

𝜓1(𝑧) = 𝐿 (𝐿 − 𝑧)
∫ 𝑧/𝐿

0
𝑠𝜔1(𝐿𝑠)d𝑠 + 𝐿𝑧

∫ 1

𝑧/𝐿
(1 − 𝑠)𝜔1(𝐿𝑠)d𝑠,

where 𝐿 = 1/2 is the domain size in 𝑧-axis. The 1D model (4.9) is very easy to
compute numerically, because there is no need to solve the 2D Poisson equation.

Numerical Verification
We run direct numerical simulation to check how well the 1D model (4.9) approx-
imates the original model (4.4). For the 1D model, we use the 𝑧-cross section of
the original initial data (4.6) at 𝑟 = 0 as our initial data. Similarly, we first solve the
1D model (4.9) using the adaptive mesh method, and then use the result in the late
stage to start the dynamic rescaling computation.

Figure 4.15: Comparison of the estimated scaling factor 𝑐𝑙 from the original model
and the 1D model.

We first look at their estimate of the scaling factor 𝑐𝑙 . In Figure 4.15, we compare the
1/𝑐𝑙 curve versus Y. In both cases of 𝑛 = 3 and 𝑛 = 10, the curves from the original
model and the 1D model look very close to each other. In Table 4.2, we listed the
estimated 𝑐𝑙 for different combinations of (𝑛, Y). We can see that the difference is
very small when Y is small. However, the scaling factors 𝑐𝑙 between our 1D model
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𝑛 = 3 Y

0.0 0.1 0.2 0.3
𝑐𝑙,original 0.5000 1.072 2.742 76.61
𝑐𝑙,1D 0.5000 1.072 2.564 52.17

𝑛 = 10 Y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
𝑐𝑙,original 0.5000 0.7578 1.101 1.588 2.356 3.818 7.946 118.3
𝑐𝑙,1D 0.5000 0.7572 1.101 1.586 2.343 3.758 7.670 74.13

Table 4.2: The scaling factors 𝑐𝑙 from the original model 𝑐𝑙,original and the 1D model
𝑐𝑙,1D for different combinations of (𝑛, Y).

and the original model will become inconsistent when Y is approaching its critical
value Y∗.

Next we compare the steady states of their converged solutions. We consider the
combinations (𝑛, Y) = (3, 0.1), (3, 0.3), (10, 0.3), and (10, 0.7), because they cover
the situations when Y is small and Y is close to Y∗ in both dimensions. We report that
for all cases, the steady state of the original model has very good one-dimensional
structure. Therefore, in Figure 4.16, we show the comparison between Z-cross
section of the original model (4.8) and the steady state of our 1D model (4.9). We
notice that there is no visible difference in the steady states of −�̃�1 in all cases.
In fact, even for Z ∈ [0, 1000], the steady states of −�̃�1 only differ in the relative
sup-norm by 2.4 × 10−4, 4.6 × 10−4, 4.4 × 10−4, and 3.3 × 10−4 in four cases
respectively. However, the comparison of the steady states of −�̃�1 show that the 1D
model approximates the original model well only when Y is small. The profiles of the
steady states of −�̃�1 differ in relative sup-norm by 1.4×10−2, 7.2×10−2, 5.6×10−3

and 6.9 × 10−2 in four cases respectively. The difference in the steady states of
−�̃�1 is mainly located in the far field, especially in the cases of (𝑛, Y) = (3, 0.3)
and (10, 0.7). In fact, the difference grows as Z increases. An explanation for this
phenomenon is that in the far field, the second-order Z-derivative −�̃�1,Z Z becomes
very small, so the b-derivative terms −�̃�1,bb − 𝑛

b
�̃�1,b should not be neglected in the

Poisson equation (4.8b). Therefore, in the far field, (4.9b) needs some correction to
better approximate (4.4b).

As a conclusion, the numerical simulation verifies that the 1D model (4.9) is a good
approximation of the original model (4.4) when Y is small. When the parameter Y
is approaching Y∗, the 𝜓1 of the original model is different from the 1D model in the
far field, although the profiles of 𝜔1 of both models are very close.
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Figure 4.16: Comparison of the 1D steady states of −�̃�1 and −�̃�1 for the 1D model
and the original model.
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A Heuristic Explanation of the Blow-Up
The proposed 1D model (4.9) has a much simpler structure than the original model
(4.4), and this gives hope to derive more explicit explanation of the numerical
phenomenon.

In (4.9), let us introduce 𝑣 = −𝜓1,𝑧, the model can be re-written as

𝜔1,𝑡 + Y(𝑛 − 1)𝜓1𝜔1,𝑧 = (𝑛 − 2 − Y)𝑣𝜔1,

𝑣𝑧 = 𝜔1,

−𝜓1,𝑧 = 𝑣.

We then integrate the dynamic equation for 𝜔1 from 0 to 𝑧. Due to the second
equation 𝑣𝑧 = 𝜔1, we have

𝑣𝑡 + Y(𝑛 − 1)
∫ 𝑧

0
𝜓1𝜔1,𝑧 = −(𝑛 − 2 − Y)

∫ 𝑧

0
𝜓1,𝑧𝜔1 + 𝐶 (𝑡), (4.10)

where 𝐶 is a function of time 𝑡 only.

Now we add Y(𝑛 − 1)
∫ 𝑧

0 𝜓1,𝑧𝜔1 to both sides of (4.10). Using the product rule, the
left-hand side of (4.10) becomes,

𝑣𝑡 + Y(𝑛 − 1)
∫ 𝑧

0

(
𝜓1𝜔1,𝑧 + 𝜓1,𝑧𝜔1

)
= 𝑣𝑡 + Y(𝑛 − 1)

∫ 𝑧

0
(𝜓1𝜔1)𝑧

= 𝑣𝑡 + Y(𝑛 − 1)𝜓1𝜔1

= 𝑣𝑡 + Y(𝑛 − 1)𝜓1𝑣𝑧 .

And using integration by part, the right-hand side of (4.10) becomes

−(𝑛 − 2 − 𝑛Y)
∫ 𝑧

0
𝜓1,𝑧𝜔1 + 𝐶 (𝑡) = (𝑛 − 2 − 𝑛Y)

∫ 𝑧

0
𝑣𝑣𝑧 + 𝐶 (𝑡)

=
1
2
(𝑛 − 2 − 𝑛Y)

∫ 𝑧

0

(
𝑣2
)
𝑧
+ 𝐶 (𝑡)

=
1
2
(𝑛 − 2 − 𝑛Y)𝑣2 + 𝐶′(𝑡).

The constant in the last line is related to the previous constant by 𝐶′(𝑡) = 𝐶 (𝑡) −
1
2 (𝑛 − 2 − 𝑛Y)𝑣(0)2. However, we slightly abuse the symbols and still use 𝐶 for 𝐶′

in the following. So we now have

𝑣𝑡 + Y(𝑛 − 1)𝜓1𝑣𝑧 =
1
2
(𝑛 − 2 − 𝑛Y)𝑣2 + 𝐶 (𝑡). (4.11)
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To fix the constant𝐶 (𝑡), we notice that 𝜓1 has the zero Dirichlet boundary condition
at both sides 𝑧 = 0 and 𝑧 = 1/2, so

∫ 1/2
0 𝑣(𝑧)d𝑧 = 𝜓1(0) −𝜓1(1/2) = 0 is a constant.

Therefore, we integrate (4.11) from 𝑧 = 0 to 𝑧 = 1/2, and we must have that

Y(𝑛 − 1)
∫ 1/2

0
𝜓1(𝑧)𝑣𝑧 (𝑧)d𝑧 =

1
2
(𝑛 − 2 − 𝑛Y)

∫ 1/2

0
𝑣2(𝑧)d𝑧 + 1

2
𝐶 (𝑡).

Using integration by part again, we have∫ 1/2

0
𝜓1(𝑧)𝑣𝑧 (𝑧)d𝑧 = (𝜓1𝑣) |1/20 −

∫ 1/2

0
𝜓1,𝑧 (𝑧)𝑣(𝑧)d𝑧,

=

∫ 1/2

0
𝑣2(𝑧)d𝑧.

Plugging this relation back, we have

𝐶 (𝑡) = 2Y(𝑛 − 1)
∫ 1/2

0
𝜓1(𝑧)𝑣𝑧 (𝑧)d𝑧 − (𝑛 − 2 − 𝑛Y)

∫ 1/2

0
𝑣2(𝑧)d𝑧,

= 2Y(𝑛 − 1)
∫ 1/2

0
𝑣2(𝑧)d𝑧 − (𝑛 − 2 − 𝑛Y)

∫ 1/2

0
𝑣2(𝑧)d𝑧,

= ((3𝑛 − 2)Y − 𝑛 + 2)
∫ 1/2

0
𝑣2(𝑧)d𝑧.

This gives rise to the following equations for 𝑣:

𝑣𝑡 + Y(𝑛 − 1)𝜓1𝑣𝑧 =
1
2
(𝑛 − 2 − 𝑛Y)𝑣2 + ((3𝑛 − 2)Y − 𝑛 + 2)

∫ 1/2

0
𝑣2(𝑧)d𝑧,

(4.12a)

−𝜓1,𝑧 = 𝑣. (4.12b)

Figure 4.17: 1D profile of 𝑣 = −𝜓1,𝑧 and 𝜓1 at 𝑡 = 0.

In Figure 4.17, we plot the initial state of 𝑣 and 𝜓1 for the initial data 𝜔◦1 we used.
We can see that 𝑣 achieves its maximum at 𝑧 = 0, and it is positive near 𝑧 = 0. The
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negative value of 𝜓1 suggests that at 𝑡 = 0, 𝑣 is transported towards 𝑧 = 0. In fact,
𝜔1 = 𝑣𝑧 satisfies the equation

𝜔1,𝑡 + Y(𝑛 − 1)𝜓1𝜔1,𝑧 = −(𝑛 − 2 − Y)𝜓1,𝑧𝜔1.

Since the initial condition (4.6) for 𝜔1 is negative in (0, 1/2) and zero at the bound-
aries 𝑧 = 0 and 𝑧 = 1/2, 𝜔1 will remain negative inside the domain and zero at the
boundaries. The negativity of of 𝜔1 = 𝑣𝑧 inside the domain leads to the following
lemma:

Lemma 4.4.1. 𝑣(𝑧, 𝑡) is always monotonically decreasing in 𝑧.

Therefore, the maximum of 𝑣 will always locate at 𝑧 = 0. Thus, we let𝑉 (𝑡) = 𝑣(0, 𝑡).

We first drop the constant term 𝐶 (𝑡). Because 𝜓1(0) = 0, the convection term
vanishes in the equation for 𝑉 , so we have

𝑉𝑡 =
1
2
(𝑛 − 2 − 𝑛Y)𝑉2. (4.13)

Therefore, if and only if Y < 1 − 2
𝑛
, 𝑉 will have a finite-time blow-up near 𝑧 = 0

at the rate of 1/(𝑇 − 𝑡), where 𝑇 is the blow-up time. Since we have 𝜔1 = 𝑣𝑧,
we naturally claim a finite-time blow-up at 𝑧 = 0 for 𝜔1 when Y < 1 − 2

𝑛
. In

fact, in Section 4.2, the scaling analysis for self-similar ansatz (4.7) implies that
we must have ∥𝑣∥𝐿∞ = ∥𝜓1,𝑧∥𝐿∞ ∼ 1/(𝑇 − 𝑡), which has been verified by our
numerical simulation in Figure 4.6. This exactly agrees with the corollary here that
𝑉 ∼ 1/(𝑇 − 𝑡).

In addition, (4.13) suggests that if Y > 1 − 2
𝑛
, 𝑉 will decay like 1/(𝑡 + 𝑐) for some

constant 𝑐. In Figure 4.18, we plot 1/∥𝑣∥𝐿∞ against time 𝑡 for two no-blow-up cases:
(𝑛, Y) = (3, 0.4) and (10, 0.9). Surprisingly, the behavior of 1/∥𝑣∥𝐿∞ = 1/∥𝜓1,𝑧∥𝐿∞
is quite linear with the time 𝑡, which agrees with the prediction from (4.13) fairly
well.

Roughly speaking, if there is a focusing self-similar blowup for 𝑣 = −𝜓1,𝑧, we can
easily show that the growth of its 𝐿2 norm is much slower than 𝑉2 = 𝑣(0, 𝑡)2.
Therefore, the effect of dropping the constant term 𝐶 (𝑡) can be neglected. In the
following, we will show this rigorously.

If 𝑛−2
3𝑛−2 ≤ Y ≤ 1 − 2

𝑛
, we have (3𝑛 − 2)Y − 𝑛 + 2 ≥ 0, and as a result

𝐶 (𝑡) = ((3𝑛 − 2)Y − 𝑛 + 2)
∫ 1/2

0
𝑣2(𝑧)d𝑧 ≥ 0.
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Figure 4.18: Linear fitting of 1/∥𝜓1,𝑧∥𝐿∞ with time 𝑡 for the no-blow-up cases.

Therefore we must have
𝑉𝑡 >

1
2
(𝑛 − 2 − 𝑛Y)𝑉2,

with 𝑛 − 2 − 𝑛Y > 0, which implies that 𝑣 = −𝜓1,𝑧 will blow-up in finite time.

If 0 ≤ Y < 𝑛−2
3𝑛−2 , we still have 𝑛 − 2 − 𝑛Y > 0, but now 𝐶 (𝑡) < 0. We need to

establish a bound for the constant term 𝐶 (𝑡).

Let𝑊 (𝑡) = 𝑣(1/2, 𝑡) be the minimum of 𝑣 at time 𝑡. We first claim that

Lemma 4.4.2. If𝑊 < 0, then
∫ 1/2
0 𝑣2(𝑧)d𝑧 ≤ −1

2𝑉𝑊.

Proof. From Lemma 4.4.1 we know that 𝑣 is monotonic decreasing. Since 𝑉 > 0
and 𝑊 < 0, we know that there is exactly one zero of 𝑣 between 0 and 1/2. Let 𝑧∗

be this zero. We have that 0 < 𝑣 ≤ 𝑉 for 𝑧 < 𝑧∗, and 0 > 𝑣 ≥ 𝑊 for 𝑧 > 𝑧∗.

Since 𝑣 = −𝜓1,𝑧, and 𝜓1(0) = 𝜓1(1/2) = 0, we know that
∫ 1/2
0 𝑣d𝑧 = 0. In other

words, ∫ 𝑧∗

0
𝑣(𝑧)d𝑧 = −

∫ 1/2

𝑧∗
𝑣(𝑧)d𝑧.

Let 𝐴 =
∫ 𝑧∗

0 𝑣(𝑧)d𝑧, we have that

𝐴 =

∫ 𝑧∗

0
𝑣(𝑧)d𝑧 ≤ 𝑉𝑧∗.

On the other hand,

𝐴 = −
∫ 1/2

𝑧∗
𝑣(𝑧)d𝑧 ≤ −𝑊 (1/2 − 𝑧∗).
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So we must have
𝐴 ≤ min(𝑉𝑧∗,−𝑊 (1/2 − 𝑧∗)).

It is not hard to show that

max
𝑧∗∈(0,1/2)

min(𝑉𝑧∗,−𝑊 (1/2 − 𝑧∗)) = −𝑉𝑊
2(𝑉 −𝑊) ,

and therefore, we have 𝐴 ≤ −𝑉𝑊
2(𝑉−𝑊) .

Finally, we have ∫ 1/2

0
𝑣2(𝑧)d𝑧 =

∫ 𝑧∗

0
𝑣2(𝑧)d𝑧 +

∫ 1/2

𝑧∗
𝑣2(𝑧)d𝑧

≤ 𝑉
∫ 𝑧∗

0
𝑣(𝑧)d𝑧 +𝑊

∫ 1/2

𝑧∗
𝑣(𝑧)d𝑧

= (𝑉 −𝑊)𝐴 ≤ −1
2
𝑉𝑊,

which finishes the proof.

The equation for𝑊 reads

𝑊𝑡 =
1
2
(𝑛 − 2 − 𝑛Y)𝑊2 + 𝐶 (𝑡).

And therefore,

d
dt
(𝑉 +𝑊) = 1

2
(𝑛 − 2 − 𝑛Y)

(
𝑉2 +𝑊2

)
+ 2𝐶 (𝑡).

Since
∫ 1/2
0 𝑣(𝑧)d𝑧 = 0, and by the monotonicity of 𝑣 as stated in Lemma 4.4.1, we

must have𝑊 (𝑡) = 𝑣(1/2, 𝑡), as the minimum of 𝑣 in [0, 1/2], is smaller than zero.

Since 𝑊 < 0, we use Lemma 4.4.2 to bound the right-hand side of the above
equation. Noticing that 𝑛 − 2 − 𝑛Y > 0 and (3𝑛 − 2)Y − 𝑛 + 2 < 0, we have

1
2
(𝑛 − 2 − 𝑛Y)

(
𝑉2 +𝑊2

)
+ 2𝐶 (𝑡)

=
1
2
(𝑛 − 2 − 𝑛Y)

(
𝑉2 +𝑊2

)
+ 2 ((3𝑛 − 2)Y − 𝑛 + 2)

∫ 1/2

0
𝑣2d𝑧

≥1
2
(𝑛 − 2 − 𝑛Y)

(
𝑉2 +𝑊2

)
− ((3𝑛 − 2)Y − 𝑛 + 2)𝑉𝑊

=Y(𝑛 − 1)
(
𝑉2 +𝑊2

)
+ 1

2
(𝑛 − 2 − (3𝑛 − 2)Y) (𝑉 +𝑊)2 ≥ 0.
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And thus we know that d
dt (𝑉 +𝑊) ≥ 0. Since at 𝑡 = 0, we have 𝑉 (0) +𝑊 (0) > 0

(which can also be verified by Figure 4.17). So 𝑉 (𝑡) +𝑊 (𝑡) > 0 for 𝑡 ≥ 0, which
means that 𝑉 > −𝑊 . Together with Lemma 4.4.2, we have that∫ 1/2

0
𝑣2(𝑧)d𝑧 ≤ −1

2
𝑉𝑊 ≤ 1

2
𝑉2.

As a consequence, we always have

𝐶 (𝑡) = ((3𝑛 − 2)Y − 𝑛 + 2)
∫ 1/2

0
𝑣2d𝑧 >

1
2
((3𝑛 − 2)Y − 𝑛 + 2)𝑉2.

Therefore, we turn back to the governing equation for 𝑉 , and obtain

𝑉𝑡 =
1
2
(𝑛 − 2 − 𝑛Y)𝑉2 + 𝐶 (𝑡)

≥ 1
2
(𝑛 − 2 − 𝑛Y)𝑉2 + 1

2
((3𝑛 − 2)Y − 𝑛 + 2)𝑉2

= Y(𝑛 − 1)𝑉2.

So when 0 < Y < 𝑛−2
3𝑛−2 , 𝑉 will blow up in finite time.

Lastly, when Y = 0, the 1D model (4.12) can be simplified as

𝑣𝑡 =
1
2
(𝑛 − 2)𝑣2 − (𝑛 − 2)

∫ 1/2

0
𝑣2(𝑧)d𝑧.

Since𝑊 < 0, we have, by Lemma 4.4.2:

d
dt
(𝑉 +𝑊) = 1

2
(𝑛 − 2)

(
𝑉2 +𝑊2

)
+ 2𝐶 (𝑡)

=
1
2
(𝑛 − 2)

(
𝑉2 +𝑊2

)
− 2(𝑛 − 2)

∫ 1/2

0
𝑣2(𝑧)d𝑧

≥ 1
2
(𝑛 − 2)

(
𝑉2 +𝑊2

)
+ (𝑛 − 2)𝑉𝑊

=
1
2
(𝑛 − 2) (𝑉 +𝑊)2 .

Since𝑉 (0) +𝑊 (0) > 0,𝑉 +𝑊 will become infinite in finite time, and so will 𝑣(0, 𝑡),
because 𝑣(0, 𝑡) = 𝑉 > 𝑉 +𝑊 . Therefore, we also have a finite-time blow-up for 𝜔1

in this case.

We conclude our result in the below:

Theorem 4.4.1. For any Y < 1 − 2
𝑛
, there exist smooth solutions of our 1D model

(4.9) in R𝑛 that form singularity in finite time.
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For the future study, it would be interesting to study the quality of the approximation
to the original model (4.3) by our 1D model (4.9), especially for Y close to 1 − 2

𝑛
. It

is worthwhile to mention that if we could generalize Theorem 4.4.1 to the original
model (4.3), then we notice that as 𝑛→ +∞, the upper bound 1− 2

𝑛
for Y that admits

finite-time blow-up would approach 1, whose case would asymptotically recover the
𝑛-D axisymmetric Euler equations with no swirl. Since in Theorem 4.4.1 we only
use a smooth initial condition for 𝜔1, this would give a numerical answer to the
Question 7 of [27] in the infinite-dimensional limit case, where the authors ask if the
𝑛-D axisymmetric Euler equations with no swirl can form singularity in finite-time
from smooth initial data when 𝑛 ≥ 4.
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C h a p t e r 5

MULTISCALE INVERTIBLE GENERATIVE NETWORKS FOR
HIGH-DIMENSIONAL DISTRIBUTIONS

5.1 Background Review
In this section, we review several important concepts and recent studies in high-
dimensional distribution sampling using deep generative networks.

The Transport Map Approach
The transport map is a deterministic nonlinear transformation that links two proba-
bility measures and their samples, and it has become a very popular approach to the
Bayesian inverse problem recently. Specifically, a map 𝑇 : R𝑑𝛾 → R𝑑 is a transport
map if it pushes forward a reference probability measure 𝛾 in R𝑑𝛾 to a probability
measure of interest a in R𝑑 , for example, the one defined in (1.6). The push forward
relation, denoted as 𝑇♯𝛾 = a, means that

a(𝐴) = 𝛾(𝑇−1(𝐴)), where 𝑇−1(𝐴) := {𝑥 ∈ R𝑑𝛾 |𝑇 (𝑥) ∈ 𝐴}, (5.1)

for any Borel measurable set 𝐴 ⊂ R𝑑 . It is well-known that when the target
distribution a is non-atomic, there exists a transport map that pushes forward 𝛾 to
a, see [6, 72, 93]. However, the uniqueness is not guaranteed in general.

Compared to the MCMC-type methods [4, 5, 75, 79, 20] and the SVGD-related
methods [69, 14, 13], the transport map approach is more advantageous in the
efficient sampling process. Given the transport map𝑇 between the reference measure
𝛾 and the target meaure a, and given independent and identically distributed (i.i.d.)
samples {𝑥𝑘 }𝑛𝑘=1 from 𝛾, which is usually chosen as some simple and well-known
distribution like Gaussian, we get i.i.d. samples of a immediately as {𝑇 (𝑥𝑘 )}𝑛𝑘=1.

If 𝑑𝛾 = 𝑑 and 𝑇 is a diffeomorphism (invertible, and both 𝑇 and 𝑇−1 are differen-
tiable), the density function 𝜋 of 𝛾 is linked with the density function 𝑞 of a by the
change-of-variable rule. Let J𝑥𝑇 be the Jacobian of 𝑇 with respect to 𝑥. We have

𝑞(𝑥) = 𝜋(𝑇−1(𝑥)) | det J𝑥𝑇−1(𝑥) |. (5.2)

The existence of such an invertible transport map with Jacobian almost everywhere
with respect to 𝛾 can be guaranteed by the absolute continuity of reference mea-
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sure 𝛾 and target measure a when 𝑑𝛾 = 𝑑. For example, the Knothe–Rosenblatt
rearrangement [81, 56] is a special example of such a transport map.

In Bayesian inverse problems, we design a parametric family {𝑇\ : \ ∈ Θ} for the
transport map and choose the parameter \ via variational inference. Essentially,
it seeks the optimizer of a learning objective over the parameter \, which usually
measures the approximation of our working distribution 𝑇\♯𝛾 to the target a such
as in (5.1), and applies some regularization or constraint. For example, in [29],
the transport map is represented by multi-variate polynomials, and the Kullback-
Leibler divergence (which we will denote as the KL divergence for short) is used
to assess the approximation quality. The optimization is further regularized by the
Wasserstein metric, and the transport map is constrained to be a Knothe–Rosenblatt
re-arrangement. In [69], the transport map is a perturbation of the identity map
by elements from a reproducing kernel Hilbert space, and the approximation is
measured by the KL divergence. Other designs also include certain implicit maps
[17, 74]. Sometimes the uniqueness of the optimum is sacrificed because any
transport map satisfying (5.1) is sufficient for sample generation.

Deep Generative Network as a Transport Map
The recent development of deep learning techniques offers an alternative to represent
the transport map. In fact, the deep generative network has already been very
successful in machine learning tasks like natural image synthesis [54, 96], where it
is used to model a transport map from a reference distribution to the distribution of
natural images. The deep generative network has the advantage of large capacity and
that its complexity has weak dimension dependence. It also has flexible scalability,
in that the more computational resources we have, the larger the network we can
use, and better the result we can expect.

As examples of deep generative networks, generative adversarial network (GAN)
[34] and variational autoencoder (VAE) [53] learn a non-invertible transport map,
while flow-based generative models (also called invertible flows) [23, 24, 54] repre-
sent an invertible transport map whose log determinant of Jacobian is also accessible.
The difference in modeling an invertible or non-invertible transport map leads to
different available choices of the learning objective. We would like to point out
that the GAN and the VAE are both originally designed for sample generation in the
natural image synthesis task. The image synthesis task defines the target distribution
by giving a large number of i.i.d. samples from that distribution, but the Bayesian
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inverse problem defines the target by its unnormalized probability density.

One typical flow-based generative model considered here is known as the Glow [54],
which is also originally designed for the image synthesis task. The Glow model
designs an invertible transport map 𝑇 by composition of units of the transport map:

𝑇 = 𝑇1 ◦ 𝑇2 ◦ · · · ◦ 𝑇𝑛,

where 𝑇𝑖 is a unit of the transport map called invertible blocks. In [54], each
invertible block 𝑇𝑖 is a concatenation of three invertible units: actnorm, invertible
1 × 1 convolution, and affine coupling.

Let 𝑥 and 𝑦 both be 3D tensors of size ℎ × 𝑤 × 𝑐, which is the popular format to
store objects of images in original applications of the Glow. In the following, we
will use 𝑥 and 𝑦 to show the operations encoded in each invertible unit. We remark
that 𝑐 is used to denote the color channel dimension, and so is usually assumed to
be a small number.

The actnorm unit essentially performs element-wise shifting and scaling: if 𝑦 is the
output of 𝑥 through the actnorm unit, then

𝑦𝑖, 𝑗 ,𝑘 = 𝑠𝑘𝑥𝑖, 𝑗 ,𝑘 + 𝑏𝑘 ,

for 𝑖 = 1, . . . , ℎ, 𝑗 = 1, . . . , 𝑤 and 𝑘 = 1, . . . , 𝑐. Here 𝑠 and 𝑏 are the parameters
of the actnorm unit, which encode the scaling and shift information. In the reverse
direction, to map from 𝑦 to 𝑥, we have

𝑥𝑖, 𝑗 ,𝑘 = (𝑦𝑖, 𝑗 ,𝑘 − 𝑏𝑘 )/𝑠𝑘 ,

as long as elements in 𝑏 are non-zero. More interestingly, the Jacobian matrix of
the forward map from 𝑥 to 𝑦 is diagonal, and therefore the log determinant of the
Jacobian can be given as ℎ𝑤

∑𝑐
𝑘=1 log |𝑠𝑘 |. Due to the scaling and shift operation,

the actnorm unit can serve as a normalization to increase numerical stability and
robustness.

The unit of invertible 1 × 1 convolution can be seen as the generalization of the
actnorm unit. It performs linear transformation on the third dimension: if 𝑦 is the
output of 𝑥 through the invertible 1 × 1 convolution unit, then

𝑦𝑖, 𝑗 ,: = 𝑊𝑥𝑖, 𝑗 ,:,
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for 𝑖 = 1, . . . , ℎ and 𝑗 = 1, . . . , 𝑤. Here 𝑊 is an invertible 𝑐 × 𝑐 matrix, and 𝑥𝑖, 𝑗 ,:,
𝑦𝑖, 𝑗 ,: are vectors of length 𝑐. Due to the fact that the third dimension 𝑐 is small, the
matrix𝑊 is easy to invert, so the inversion from 𝑦 to 𝑥 can be given by

𝑥𝑖, 𝑗 ,: = 𝑊
−1𝑦𝑖, 𝑗 ,:.

Similarly, the Jacobian matrix of the unit of invertible 1 × 1 convolution is block
diagonal with many small-sized blocks, making the log determinant easy to com-
pute: ℎ𝑤 log det |𝑊 |. The invertible 1 × 1 convolution unit not only scales the
third dimension, but also introduces permutation along the third dimension. The
parameters of the invertible 1 × 1 convolution unit are the 𝑐 × 𝑐 matrix𝑊 , which in
practice is stored in its PLU decomposition for easy inversion and easy access to its
determinant.

The affine coupling unit is a triangular transform which introduces nonlinearity. We
first split the tensor 𝑥 into 𝑥1 and 𝑥2, so that dim(𝑥) = dim(𝑥1) + dim(𝑥2). Splitting
can be done by simply cutting the tensor into two parts. For example, we can cut 𝑥
along the first dimension and get 𝑥1 = 𝑥1:ℎ1,:,: and 𝑥2 = 𝑥ℎ1+1:ℎ,:,: with some number
1 < ℎ1 < ℎ. Then we choose two arbitrary nonlinear maps 𝑓 and 𝑔 from the space
of 𝑥2 to the space of 𝑥1, and map

𝑠 = 𝑓 (𝑥2), 𝑏 = 𝑔(𝑥2).

Finally, we let
(𝑦1)𝑖, 𝑗 ,𝑘 = 𝑠𝑖, 𝑗 ,𝑘 (𝑥1)𝑖, 𝑗 ,𝑘 + 𝑏𝑖, 𝑗 ,𝑘 , 𝑦2 = 𝑥2,

for 𝑖 = 1, . . . , ℎ, 𝑗 = 1, . . . , 𝑤 and 𝑘 = 1, . . . , 𝑐. The output 𝑦 is the concatenation
of 𝑦1 and 𝑦2, so that dim(𝑦) = dim(𝑦1) + dim(𝑦2). For example, if 𝑦1 has size
ℎ1×𝑤× 𝑐, and 𝑦2 has size (ℎ− ℎ1) ×𝑤× 𝑐, then we can concatenate 𝑦1 and 𝑦2 along
the first dimension to get an ℎ × 𝑤 × 𝑐 tensor 𝑦. The Jacobian matrix of this affine
coupling unit is a block-triangular matrix, and surprisingly the log determinant of
the Jacobian can be written as

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑐∑︁
𝑘=1

log
��( 𝑓 (𝑥2))𝑖, 𝑗 ,𝑘

�� .
Due to the block-triangular structure, we can also map backward from 𝑦 to 𝑥 by first
splitting 𝑦 into 𝑦1 and 𝑦2, then obtaining 𝑥1 and 𝑥2 by

(𝑥1)𝑖, 𝑗 ,𝑘 =
(
(𝑦1)𝑖, 𝑗 ,𝑘 − 𝑏𝑖, 𝑗 ,𝑘

)
/𝑠𝑖, 𝑗 ,𝑘 , 𝑥2 = 𝑦2,
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where 𝑠 = 𝑓 (𝑦2), and 𝑏 = 𝑔(𝑦2), and in the end, concatenating 𝑥1 and 𝑥2 to recover
𝑥. The parameters of the affine coupling unit only appear in the parametric functions
𝑓 and 𝑔. The functions 𝑓 and 𝑔 introduce nonlinearity to the affine coupling unit.
In practice, the functions 𝑓 and 𝑔 are modeled by deep neural networks.

The chain rule allows us to pile up these invertible units together as a transport map
unit 𝑇𝑖, and pile up 𝑇𝑖 together as the transport map 𝑇 , with its inverse available and
the log determinant of its Jacobian computable. Consequently, the Glow model is a
parametric transport map 𝑇 = 𝑇\ , where parameters \ is the collection of parameters
in the invertible units. Since the map 𝑇 = 𝑇\ is invertible, we can evaluate the
density using (5.2).

The application of deep generative networks to the Bayesian inverse problem is not
new to us. The authors in [48] represented the transport map by non-invertible
generative networks, and the works in [80, 2, 59, 57] used invertible networks. As
shown by (5.2), the invertibility of the map enables the evaluation of density, which
in turn allows more effective learning objectives. The works in [80, 2, 59] used
learning objectives like the maximum mean discrepancy, or the KL divergence, while
the training presented in [57] resembles a GAN. Algorithms in [80, 57] can face
potential difficulties in scaling up for high-dimensional problems. Also, due to the
tricky non-convex optimization problem and the property of the learning objective,
the approaches in both invertible [2, 59] and non-invertible [48] generative networks
could encounter some challenges such as mode collapse as the dimension grows.
Our proposed method is different from them both in the network architecture and
in the training strategy, and targets at the high-dimensional cases of the Bayesian
inverse problem.

5.2 Low-Dimensional Structure in the Posterior Distribution
We propose the Multiscale Invertible Generative Network, which we denote as
MsIGN for short. The MsIGN makes use of the low-dimensional structure in the
posterior distribution and generates samples via the transport map approach. In this
section, we discuss the low-dimensional structure in the posterior distribution that
motivates our method.

The target Bayesian posterior a essentially re-factorizes the prior ` with respect
to the likelihood L. As implied by (1.6), the Radon-Nikodym derivative da

d` (𝑥)
is proportional to the likelihood function L(𝑥; 𝑦). Roughly speaking, due to the
limited number of observations or measurements, which is usually small compared



83

to the problem dimension (𝑠 < 𝑑), the difference between the high-dimensional
posterior a and the prior ` most likely lies in a low-dimensional subspace. We
refer to [86, 98] for detailed discussion about this low-dimensional difference.
Since the prior ` is usually tractable and easy to sample from, we attack the high-
dimensional challenge by exploring the low-dimensional structure in the likelihood,
and sequentially approximating the high-dimensional posterior by low-dimensional
surrogates.

Surrogate Distribution for the Posterior
A typical and common case of such low-dimensional approximation to the Bayesian
posterior arises when the hidden system states 𝑥 ∈ R𝑑 represent the parameterization
of some spatial or temporal quantities. An example of such quantity can be the
permeability field as a variable of space position in the Darcy flow, or the reaction
rate as a variable of time in chemical kinetics. For such spatial or temporal 𝑥, it is
very common that spatial or temporal variation of 𝑥 comes from some multiscale
structure from coarse (a low-dimensional version of 𝑥) to fine (the original 𝑥). In
other words, the concept of resolution or scale naturally arises in 𝑥. To build
the low-dimensional approximation, we first introduce a deterministic upscaling
operator A : R𝑑 → R𝑑𝑐 such that 𝑥𝑐 = A(𝑥) links the original fine-scale 𝑥 ∈ R𝑑 to
its coarse-scale version 𝑥𝑐 ∈ R𝑑𝑐 . Since the coarse-scale variable is always lower-
dimensional, we have 𝑑𝑐 < 𝑑. The upscaling operator A can either be a linear
operator that averages the value of 𝑥 in individual regions, like the average pooling
operator, or be a nonlinear operator that homogenizes the fine-scale variation of 𝑥,
like methods in [28, 1, 8]. Despite unavoidable inaccuracy due to the information
loss, the coarse-scale version 𝑥𝑐 should still preserve the ability to give informative
prediction of system observables. The corresponding forward map based on the
coarse-scale 𝑥𝑐 is denoted by F𝑐 : R𝑑𝑐 → R𝑑𝑦 .

We say a Bayesian inverse problem has the multiscale property, if the original fine-
scale forward map F in (1.1) can be well approximated by the coarse-scale forward
map (5.6) associated with the upscaled coarse-scale variable by A:

F𝑐 (A(𝑥)) ≈ F (𝑥), for 𝑥 ∈ R𝑑 . (5.3)

To quantitatively define the multiscale property, we introduce the definitions and
assumptions

Assumption 5.2.1. Assume that the forward map F has a finite bound with respect
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to the prior,

𝐶0 :=
∫
∥F (𝑥)∥2Γ𝜌(𝑥)d𝑥 < +∞, (5.4)

and assume the approximation of (5.3) satisfies

𝛿A :=
∫
∥F (𝑥) − F𝑐 (A(𝑥))∥2Γ𝜌(𝑥)d𝑥 < +∞. (5.5)

Using the above notations, the multiscale property of a Bayesian inverse problem is
characterized by the quantity 𝛿A .

A popular example of a multiscale Bayesian inverse problem is, for example, in sys-
tems like elliptic equations with multiscale coefficients, numerical homogenization
provides a very good approximation using coarse-scale features, see [28, 1, 8]. The
approximation (5.3) then essentially characterizes the low-dimensional structure in
the likelihood functionL. A similar idea has also been exploited in other approaches
to the Bayesian inverse problem, including [98, 7, 14, 13].

Similar to (1.4), we can define a coarse-scale likelihood function:

L𝑐 (𝑥𝑐; 𝑦) = exp
(
−1

2
∥𝑦 − F𝑐 (𝑥𝑐)∥2Γ

)
. (5.6)

The approximation (5.3) motivates us to define a surrogate posterior distribution ã
by dã

d` (𝑥) ∝ L𝑐 (A(𝑥); 𝑦) such that ã is close to the target posterior a. The probability
density 𝑞 of ã for 𝑥 ∈ R𝑑 is given by

𝑞(𝑥) :=
1
�̃�
𝜌(𝑥)L𝑐 (A(𝑥); 𝑦), (5.7)

where the normalizing constant �̃� is given by

�̃� (𝑦) =
∫

𝜌(𝑥)L𝑐 (A(𝑥); 𝑦)d𝑥.

Roughtly speaking, since F𝑐 (A(𝑥)) ≈ F (𝑥), we expect L𝑐 (A(𝑥); 𝑦) ≈ L(𝑥; 𝑦),
and therefore we have

𝑞(𝑥) = 1
�̃�
𝜌(𝑥)L𝑐 (A(𝑥); 𝑦) ≈

1
�̃�
𝜌(𝑥)L(𝑥; 𝑦) = 𝑍

�̃�
𝑞(𝑥). (5.8)

In [98], authors used a similar low-rank approximation of the target distribution as
our ã in (5.8), whereas they focused on a linear upscaling operator A, and targeted
at searching for an optimal low-rank approximation. The surrogate distribution ã
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in our framework, however, is designed as an intermediate step to capture the target
distribution a. We will build a transport map to bridge the difference between ã and
a as in Algorithm 1.

We recall that the definition of the Jeffreys divergence [50] between two distributions
𝑞 and 𝑞 is given by

𝐷J(𝑞∥𝑞) := 𝐷KL(𝑞∥𝑞) + 𝐷KL(𝑞∥𝑞), (5.9)

where 𝐷KL is the Kullback-Leibler divergence, which is given by

𝐷KL(𝑞∥𝑞) = E𝑥∼𝑞
[
log

𝑞(𝑥)
𝑞(𝑥)

]
, 𝐷KL(𝑞∥𝑞) = E𝑥∼𝑞

[
log

𝑞(𝑥)
𝑞(𝑥)

]
.

In fact, the approximation of the surrogate 𝑞 to the posterior 𝑞 can be characterized
by the following theorem, inspired by [14]:

Theorem 5.2.1. Assume that Assumption 5.2.1 holds, and further assume that
𝛿A is smaller than some constant 𝛿0 = 𝛿0(𝑦, 𝐶0, 𝑍), which only depends on the
observation data 𝑦, the forward map bound in the prior 𝐶0, and the normalizing
constant 𝑍 . Then the Jeffreys divergence between 𝑞 in (1.6) and 𝑞 in (5.8) is bounded
by

𝐷J(𝑞∥𝑞) ≤ 𝐶𝛿1/2
A . (5.10)

Here the constant 𝐶 = 𝐶 (𝑦, 𝐶0, 𝑍) only depends on 𝑦, 𝐶0, and 𝑍 .

Proof. Let 𝐼 (𝑥) := |logL(𝑥; 𝑦) − logL𝑐 (A(𝑥); 𝑦) |, we have

2𝐼 (𝑥) =
��∥𝑦 − F (𝑥)∥2Γ − ∥𝑦 − F𝑐 (A(𝑥))∥2Γ��

=
��(2𝑦 − F (𝑥) − F𝑐 (A(𝑥)))𝑇 Γ−1 (F (𝑥) − F𝑐 (A(𝑥)))

�� .
Using the Cauchy-Schwarz inequality and the triangular inequality, we have

2𝐼 (𝑥) ≤ (2∥𝑦∥Γ + ∥F (𝑥) − F𝑐 (A(𝑥))∥Γ + 2∥F (𝑥)∥Γ) × ∥F (𝑥) − F𝑐 (A(𝑥))∥Γ.

Therefore, we proceed to bound the integral
∫
𝐼 (𝑥)𝜌(𝑥)d𝑥 as∫

𝐼 (𝑥)𝜌(𝑥)d𝑥 ≤∥𝑦∥Γ
∫
∥F (𝑥) − F𝑐 (A(𝑥))∥Γ𝜌(𝑥)d𝑥

+ 1
2

∫
∥F (𝑥) − F𝑐 (A(𝑥))∥2Γ𝜌(𝑥)d𝑥

+
∫
∥F (𝑥)∥Γ∥F (𝑥) − F𝑐 (A(𝑥))∥Γ𝜌(𝑥)d𝑥.

(5.11)
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On the other hand, the weighted integral Cauchy-Schwarz inequality gives∫
∥F (𝑥) − F𝑐 (A(𝑥))∥Γ𝜌(𝑥)d𝑥 ≤ 𝛿1/2

A .

Here we recall that 𝛿A =
∫
∥F (𝑥) − F𝑐 (A(𝑥))∥2Γ𝜌(𝑥)d𝑥. We also recall that

𝐶0 =
∫
∥F (𝑥)∥2

Γ
𝜌(𝑥)d𝑥, so we also have∫
∥F (𝑥)∥Γ∥F (𝑥) − F𝑐 (A(𝑥))∥Γ𝜌(𝑥)d𝑥 ≤ 𝐶1/2

0 𝛿
1/2
A .

Thus the bound (5.11) can be given explicitly∫
𝐼 (𝑥)𝜌(𝑥)d𝑥 ≤ ∥𝑦∥Γ𝛿1/2

A + 𝐶
1/2
0 𝛿

1/2
A +

1
2
𝛿A =

(
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A .

Now for the KL divergence 𝐷KL(𝑞∥𝑞), we have

𝐷KL(𝑞∥𝑞) =
∫

log
(
L(𝑥; 𝑦) �̃�

L𝑐 (A(𝑥); 𝑦)𝑍

)
1
𝑍
L(𝑥; 𝑦)𝜌(𝑥)d𝑥

=
1
𝑍

∫
log

(
L(𝑥; 𝑦)

L𝑐 (A(𝑥); 𝑦)

)
L(𝑥; 𝑦)𝜌(𝑥)d𝑥 + log

�̃�

𝑍
.

Since 0 < L(𝑥; 𝑦) = exp(−1
2 ∥𝑦 − F (𝑥)∥

2
Γ
) ≤ 1, we can go further by

𝐷KL(𝑞∥𝑞) ≤
1
𝑍

∫ ����log
(
L(𝑥; 𝑦)

L𝑐 (A(𝑥); 𝑦)

)���� 𝜌(𝑥)d𝑥 + log
�̃�

𝑍

=
1
𝑍

∫
𝐼 (𝑥)𝜌(𝑥)d𝑥 + log

�̃�

𝑍

≤ 1
𝑍

(
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A + log

�̃�

𝑍
.

For the other KL divergence 𝐷KL(𝑞∥𝑞), similarly we have

𝐷KL(𝑞∥𝑞) ≤
1
�̃�

(
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A + log

𝑍

�̃�
.

Putting these estimates together, we have

𝐷J(𝑞∥𝑞) = 𝐷KL(𝑞∥𝑞) + 𝐷KL(𝑞∥𝑞) ≤
(

1
�̃�
+ 1
𝑍

) (
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A .

(5.12)

Finally, we deal with the constant terms. We observe that

|𝑍 − �̃� | =
����∫ L(𝑥; 𝑦)𝜌(𝑥)d𝑥 − ∫ L𝑐 (A(𝑥); 𝑦)𝜌(𝑥)d𝑥����
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≤
∫
|L(𝑥; 𝑦) − L𝑐 (A(𝑥); 𝑦) |𝜌(𝑥)d𝑥.

Noticing that |𝑒𝑥 − 𝑒𝑦 | ≤ |𝑥− 𝑦 | for 𝑥, 𝑦 ≤ 0, and logL(𝑥; 𝑦) = −1
2 ∥𝑦−F (𝑥)∥

2
Γ
< 0,

logL𝑐 (A(𝑥); 𝑦) = −1
2 ∥𝑦 − F𝑐 (A(𝑥))∥

2
Γ
< 0. Thus, we further obtain

|𝑍 − �̃� | ≤
∫
| logL(𝑥; 𝑦) − logL𝑐 (A(𝑥); 𝑦) |𝜌(𝑥)d𝑥 =

∫
𝐼 (𝑥)𝜌(𝑥)d𝑥

≤
(
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A .

This bound suggests that there exists 𝛿0 = 𝛿0(𝑦, 𝐶0, 𝑍) which only depends on 𝑦, 𝐶0

and 𝑍 , such that if 𝛿A < 𝛿0, then |𝑍 − �̃� | < 𝑍/2. Therefore, the bound (5.12) can
be simplified to

𝐷J(𝑞∥𝑞) ≤
(

1
𝑍/2 +

1
𝑍

) (
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A

=
3
𝑍

(
∥𝑦∥Γ + 𝐶1/2

0 + 1
2
𝛿

1/2
A

)
𝛿

1/2
A .

Let𝐶 = 3
𝑍

(
∥𝑦∥Γ + 𝐶1/2

0 + 1
2𝛿

1/2
0

)
, which only depends on 𝑍, 𝐶0 and 𝑦. We conclude

that when 𝛿A < 𝛿0, 𝐷J(𝑞∥𝑞) ≤ 𝐶𝛿1/2
A .

Scale Decoupling
When 𝑥 follows the prior `, the distribution of 𝑥𝑐 = A(𝑥) is `𝑐 = A♯`, which is
the push-forward of ` byA. Let 𝜌𝑐 be the density function ofA♯`, the conditional
probability rule gives that 𝜌(𝑥 |A(𝑥)) = 𝜌(𝑥)/𝜌𝑐 (A(𝑥)). So we conclude

𝜌(𝑥) = 𝜌𝑐 (A(𝑥))𝜌(𝑥 |A(𝑥)). (5.13)

We interpret (5.13) as a recovery game for sample generation. To sample 𝑥 from 𝜌,
one can first sample its coarse-scale versionA(𝑥) from 𝜌𝑐, and then recover missing
fine-scale details while preserving the coarse-scale structure by sampling from the
conditional distribution 𝜌(𝑥 |A(𝑥)).

With the coarse-scale prior `𝑐 and the coarse-scale likelihood L𝑐 in (5.6), we define
a coarse-scale posterior a𝑐 by da𝑐

d`𝑐 (𝑥𝑐) ∝ L𝑐 (𝑥𝑐; 𝑦), whose density function is

𝑞𝑐 (𝑥𝑐) =
1

𝑍𝑐 (𝑦)
𝜌𝑐 (𝑥𝑐)L𝑐 (𝑥𝑐; 𝑦). (5.14)

where the constant is given by

𝑍𝑐 (𝑦) =
∫

𝜌𝑐 (𝑥𝑐)L𝑐 (𝑥𝑐; 𝑦)d𝑥𝑐 .
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An important observation is that the coarse-scale posterior (5.14) and the surrogate
posterior in (5.8) can be bridged by our conditional prior (5.13):

𝑞(𝑥) = 1
�̃�
𝜌(𝑥)L𝑐 (A(𝑥); 𝑦) =

1
�̃�
𝜌𝑐 (A(𝑥))𝜌(𝑥 |A(𝑥))L𝑐 (A(𝑥); 𝑦)

=
𝑍𝑐

�̃�
𝜌(𝑥 |A(𝑥))𝑞𝑐 (A(𝑥)) ∝ 𝜌(𝑥 |A(𝑥))𝑞𝑐 (A(𝑥)).

(5.15)

The scale decoupling of the surrogate distribution in (5.15) can be used to construct
samples from the target posterior a as summarized in Algorithm 1. Since it as-
sumes the capture of the coarse-scale distribution a𝑐, Algorithm 1 only serves as a
conceptual guideline of our strategy.

Algorithm 1 An Ideal Sampling Algorithm
Output: Sample 𝑥 from the target distribution a

1: Sample 𝑥𝑐 from the coarse-scale distribution a𝑐.
2: Sample 𝑥 from the prior conditional distribution 𝜌(𝑥 |A(𝑥) = 𝑥𝑐).
3: Learn a transport map 𝐹 that pushes forward ã to a.
4: Obtain sample 𝑥 from the target distribution a by 𝑥 = 𝐹 (𝑥).

As a remark, in step 2, 𝑥 ideally will follow the surrogate distribution ã. Since
Theorem 5.2.1 implies that ã is not far away from a, there exists a transport map
𝐹 that is close to the identity map. We introduce the details of the learning of the
transport map 𝐹 in Sections 5.3 and 5.4.

Comparison with the Low-Dimensional Structure in Other Works
In [78], the authors proposed a similar formulation as (5.15). In their setting,
a likelihood function has the multiscale structure, if there exists a coarse-scale
random variable 𝛾 of dimension 𝑑𝑐 with 𝑑𝑐 < 𝑑 and a likelihood L𝑐 such that

L(𝑥, 𝛾; 𝑦) = L𝑐 (𝛾; 𝑦). (5.16)

Here L(𝑥, 𝛾; 𝑦) is the joint likelihood of (𝑥, 𝛾) given the observation 𝑦. Then the
joint posterior distribution of the fine- and coarse-scale parameters (𝑥, 𝛾) can be
decoupled as

𝑞(𝑥, 𝛾) ∝ 𝜌(𝑥, 𝛾)L(𝑥, 𝛾; 𝑦) (𝑖)= 𝜌(𝑥, 𝛾)L𝑐 (𝛾; 𝑦)
(𝑖𝑖)
= 𝜌(𝑥 |𝛾)𝜌(𝛾)L𝑐 (𝛾; 𝑦) (𝑖𝑖𝑖)= 𝜌(𝑥 |𝛾)𝑞𝑐 (𝛾), (5.17)

with normalizing constants omitted in the equivalence relations. Here, we use
the definition of multiscale structure (5.16) in [78] in (𝑖). For (𝑖𝑖) we apply the
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conditional probability rule 𝜌(𝑥, 𝛾) = 𝜌(𝑥 |𝛾)𝜌(𝛾). In (𝑖𝑖𝑖), the authors in [78]
defined the posterior in the coarse scale as 𝑞𝑐 (𝛾) := 𝜌(𝛾)L𝑐 (𝛾; 𝑦).

There are two important differences in these two definitions. First of all, our coarse-
scale parameter 𝑥𝑐 is a deterministic function of the fine-scale parameter 𝑥, while
in [78], 𝛾 is a random variable that may contain extra randomness outside 𝑥 (as
demonstrated in numerical examples in [78]). This difference in definition results in
significant difference in modeling: our invertible model has 𝑑-dimensional random
noise 𝑧 as input to approximate the target posterior 𝑞(𝑥), while models in [78]
have (𝑑 + 𝑑𝑐)-dimensional random noise as input to approximate the joint-posterior
𝑞(𝑥, 𝛾). Another consequence is that users need to define the joint prior 𝜌(𝑥, 𝛾) in
[78], while in our definition the prior of 𝑥𝑐 is naturally induced by the prior of 𝑥.

Secondly, our multiscale structure (5.8) is an approximate relation and we use
an invertible flow in our MsIGN to model this approximation, while in [78] the
multiscale structure (5.17) is an exact relation and authors treat the prior-upsampled
solution 𝜌(𝑥 |𝛾)𝑞𝑐 (𝛾), which is in the right-hand side of (5.17), as the final solution.
Our approximate multiscale relation and further treatment by the invertible flow
enable us to apply the method recursively in a multiscale fashion, while in [78] the
proposed method is essentially a two-scale method and there is not further correction
based on the prior-upsampled solution 𝜌(𝑥 |𝛾)𝑞𝑐 (𝛾) at the fine-scale.

Finally, the invertible model in [78] consists of multivariate polynomials, which
suffer from the exponential growth of polynomial coefficients as dimension grows.
In our work, the invertible model is deep generative networks, whose parameter
dimension has a weak dependence on the problem dimension.

We also observe that [86, 14, 13] seek a best low-rank approximation of the posterior,
and treat the approximation as the final solution with no extra modification. As we
will see in Section 5.5, the true posterior could still be far away from the prior-
upsampled solution, especially in the first few coarse scales.

In addition, while in [2], flow-based generative models are also used to approximate
the distribution of inverse problems, their definition of posterior is not equivalent to
ours, as they assume no error in measurement (1.1). Furthermore, as their training
strategy looks to capture the target distribution while simultaneously learning the
forward map F , they mainly focus on low-dimensional Bayesian inverse problems,
in contrast with our high-dimensional setting here.
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5.3 Network Architecture of Multiscale Invertible Generative Networks
To carry out the ideal step 1 of Algorithm 1, we apply the above procedure recursively
until the dimension of the coarsest scale is small enough so that the corresponding
coarsest-scale posterior a𝑐 can be easily sampled by a standard method. To elaborate
this hierarchical divide-and-conquer strategy, we introduce the following rule of
notations to distinguish between scales: let 𝐿 be the number of scales, and for
1 ≤ 𝑙 ≤ 𝐿, let 𝑥𝑙 ∈ R𝑑𝑙 be the quantity of interest at scale 𝑙, andA𝑙 : R𝑑𝑙 → R𝑑𝑙−1 be
the upscaling operator connecting scale 𝑙 and 𝑙 − 1: 𝑥𝑙−1 = A𝑙 (𝑥𝑙). The final scale
𝑥𝐿 coincides with our original target 𝑥, and the dimension goes up as 𝑙 increases:
𝑑1 < 𝑑2 < . . . < 𝑑𝐿 = 𝑑.

At the final scale 𝐿, 𝑥𝐿 inherits the original prior distribution `𝐿 = `, whose density
is 𝜌𝐿 = 𝜌, likelihood function L𝐿 (𝑥𝐿; 𝑦) = L(𝑥; 𝑦) and the posterior distribution
a𝐿 = a, whose density is 𝑞𝐿 = 𝑞, as defined in (1.4) and (1.6). At scale 𝑙,
1 ≤ 𝑙 ≤ 𝐿 − 1, the forward map F𝑙 (𝑥𝑙) : R𝑑𝑙 → R𝑠 is a coarse-scale approximation
of the next scale: F𝑙 (A𝑙+1(𝑥𝑙+1)) ≈ F𝑙+1(𝑥𝑙+1), analog to (5.3). Following (5.14),
we define the posterior a𝑙 at scale 𝑙 by da𝑙

d`𝑙 ∝ L𝑙 (𝑥𝑙 ; 𝑦), whose density is

𝑞𝑙 (𝑥𝑙) =
1

𝑍𝑙 (𝑦)
𝜌𝑙 (𝑥𝑙)L𝑙 (𝑥𝑙 ; 𝑦), (5.18)

with

𝑍𝑙 (𝑦) =
∫

𝜌𝑙 (𝑥𝑙)L𝑙 (𝑥𝑙 ; 𝑦)d𝑥𝑙 .

Here 𝜌𝑙 is the density of the prior distribution `𝑙 at scale 𝑙, which is defined as:
`𝑙 := A𝑙+1♯`𝑙+1 = (A𝑙+1 ◦ · · · ◦ A𝐿)♯ `𝐿 . And L𝑙 (𝑥𝑙 ; 𝑦) is the likelihood at scale 𝑙:

L𝑙 (𝑥𝑙 ; 𝑦) := exp
(
−1

2
∥𝑦 − F𝑙 (𝑥𝑙)∥2Γ

)
.

In an analogous manner, the surrogate distribution ã𝑙 is an approximation to a𝑙 for
2 ≤ 𝑙 ≤ 𝐿. Its density 𝑞𝑙 is given by

𝑞𝑙 (𝑥𝑙) =
1

�̃�𝑙 (𝑦)
𝜌𝑙 (𝑥𝑙)L𝑙−1(A𝑙 (𝑥𝑙); 𝑦), (5.19)

with

�̃�𝑙 (𝑦) =
∫

𝜌𝑙 (𝑥𝑙)L𝑙−1(A𝑙 (𝑥𝑙); 𝑦)d𝑥𝑙 .

Following (5.15), ã𝑙 is closely connected to the last-scale posterior a𝑙−1 by a prior
conditional distribution:

𝑞𝑙 (𝑥𝑙) ∝ 𝜌𝑙 (𝑥𝑙 |A𝑙 (𝑥𝑙))𝑞𝑙−1(A𝑙 (𝑥𝑙)).
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Using the notations above, a conceptually workable modification of Algorithm 1
can be summarized in Algorithm 2.

Algorithm 2 The Hierarchical Sampling Strategy of the MsIGN
Output: Sample 𝑥 = 𝑥𝐿 from the target distribution a = a𝐿

1: Sample 𝑥1 from the coarsest-scale distribution a1 by a standard method.
2: for 𝑙 ← 2 to 𝐿 do
3: Sample 𝑥𝑙 from the conditional distribution 𝜌𝑙 (𝑥𝑙 |A𝑙 (𝑥𝑙) = 𝑥𝑙−1).
4: Learn a transport map 𝐹𝑙 that pushes forward ã𝑙 to a𝑙 .
5: Obtain sample 𝑥𝑙 from the distribution a𝑙 by 𝑥𝑙 = 𝐹𝑙 (𝑥𝑙).
6: end for

Sampling from the Coarsest-Scale Distribution
In the step 1 of Algorithm 2, we learn a transport map 𝐹1 that pushes forward
𝛾1, the 𝑑1-dimensional standard Gaussian distribution, to a1. Because the problem
dimension 𝑑1 can be chosen to be very small, many standard methods of transport
maps can be applied here, like [80, 48, 57].

Sampling from the Conditional Distribution
In the step 3 of Algorithm 2, the prior conditional distribution (5.13) only depends on
the original prior `𝐿 = ` andA𝑙 ′, 𝑙 ≤ 𝑙′ ≤ 𝐿, which are all known in advance to the
observation 𝑦. Therefore, we can compute a transport map 𝑃𝐶𝑙 : R𝑑𝑙−1 ×R𝑑𝑙−𝑑𝑙−1 →
R𝑑𝑙 named as prior conditional map, such that a sample 𝑥𝑙 ∈ R𝑑𝑙 from the prior
conditional distribution 𝜌𝑙 (𝑥𝑙 |A𝑙 (𝑥𝑙) = 𝑥𝑙−1) can be generated by 𝑥𝑙 = 𝑃𝐶𝑙 (𝑥𝑙−1, 𝑧𝑙),
where 𝑧𝑙 ∈ R𝑑𝑙−𝑑𝑙−1 follows 𝛾𝑙 , the (𝑑𝑙 − 𝑑𝑙−1)-dimensional standard Gaussian
distribution. And 𝑥𝑙−1 ∈ R𝑑𝑙−1 is the sample from the last scale posterior 𝑞𝑙 .
Again, we remark that the sample 𝑥𝑙 generated in this way will follow the surrogate
distribution ã𝑙 .

Since the prior conditional map 𝑃𝐶𝑙 only depends on the prior distribution 𝜌𝑙 and
upscaling operator A𝑙 , it can be pre-computed before giving the observation 𝑦,
and will be fixed afterwards. The existence of the map 𝑃𝐶𝑙 is guaranteed by the
following theorem.

Theorem 5.3.1. If there is a map B𝑙 : R𝑑𝑙 → R𝑑𝑙−𝑑𝑙−1 such that the map C𝑙 : R𝑑𝑙 →
R𝑑𝑙 given by

C𝑙 (𝑥) =
[
A𝑙 (𝑥)
B𝑙 (𝑥)

]
,
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is a diffeomorphism, then there exists a bijective transport map 𝑆𝑙 : R𝑑𝑙 → R𝑑𝑙 ,
such that 𝑆𝑙♯`𝑙 = `𝑙−1 ⊗ 𝛾𝑙 , and 𝑃𝑙−1 ◦ 𝑆𝑙 = A𝑙 , where 𝑃𝑙−1 : R𝑑𝑙 → R𝑑𝑙−1 is the
linear projector to the first 𝑑𝑙−1 dimension.

Our prior conditional map 𝑃𝐶𝑙 can then be taken as 𝑃𝐶𝑙 = 𝑆−1
𝑙

. Specifically, 𝑥𝑙 and
(𝑥𝑙−1, 𝑧𝑙−1) have one-to-one correspondence under 𝑆𝑙 . Thus

{𝑆−1(𝑥𝑙−1, 𝑧𝑙) |𝑧𝑙 ∈ R𝑑𝑙−𝑑𝑙−1} = {𝑥𝑙 |A𝑙 (𝑥𝑙) = 𝑥𝑙−1},

which means the one-to-one correspondence between {(𝑥𝑙−1, 𝑧𝑙) |𝑧𝑙 ∈ R𝑑𝑙−𝑑𝑙−1} and
the conditional set {𝑥𝑙 |A𝑙 (𝑥𝑙) = 𝑥𝑙−1} under 𝑆𝑙 . Since 𝑧𝑙 ∼ 𝛾𝑙 and

𝑆−1
𝑙♯
(`𝑙−1 ⊗ 𝛾𝑙) = `𝑙 ,

𝑆−1
𝑙
(𝑥𝑙−1, 𝑧𝑙) should follow the conditional distribution 𝜌𝑙 (𝑥𝑙 |A𝑙 (𝑥𝑙) = 𝑥𝑙−1).

We give a constructional proof of Theorem 5.3.1 below:

Proof. Consider the new distribution ˆ̀𝑙 = C𝑙♯`𝑙 . Since the first 𝑑𝑙−1 dimensions of
C𝑙 is A𝑙 , and `𝑙−1 = A𝑙♯`𝑙 by definition, we know that the marginal distribution
of ˆ̀𝑙 in the first 𝑑𝑙−1 dimension is exactly `𝑙−1. Let ( ˆ̀𝑙)𝑖, (`𝑙−1 ⊗ 𝛾𝑙)𝑖 be their
marginal distributions in the first 𝑖 dimensions. We have ( ˆ̀𝑙)𝑑𝑙−1 = `𝑙−1.

Now we consider constructing a triangular map 𝑅𝑙 : R𝑑𝑙 → R𝑑𝑙 that pushes forward
ˆ̀𝑙 to `𝑙−1⊗𝛾𝑙 . Our construction mimics the way to construct the K-R rearrangement
[82, 93]. We start by setting 𝑅𝑙,𝑑𝑙−1 = id𝑑𝑙−1 to be the 𝑑𝑙−1-dimensional identity map.
We have 𝑅𝑙,𝑑𝑙−1♯ ( ˆ̀𝑙)𝑑𝑙−1 = (`𝑙−1 ⊗ 𝛾𝑙)𝑑𝑙−1 because both sides are `𝑙−1.

Our construction works recursively. Suppose we have 𝑅𝑙,𝑖 : R𝑖 → R𝑖 that pushes
forward ( ˆ̀𝑙)𝑖 to (`𝑙−1 ⊗ 𝛾𝑙)𝑖 for 𝑖 ≥ 𝑑𝑙−1. Since ˆ̀𝑙 , `𝑙−1 ⊗ 𝛾𝑙 are non-atomic, we
can find a non-decreasing map �̂�𝑙,𝑖+1 : R𝑖+1 → R such that for any fixed 𝑥1, . . . , 𝑥𝑖,

�̂�𝑙,𝑖+1(𝑥1, . . . , 𝑥𝑖, ·)♯
(
( ˆ̀𝑙)𝑖+1 (d𝑥𝑖+1 |𝑥1, . . . , 𝑥𝑖)

)
= (`𝑙−1 ⊗ 𝛾𝑙)𝑖+1 (d𝑥𝑖+1 |𝑥1, . . . , 𝑥𝑖).

Specifically, let 𝐹𝑖+1(𝑥𝑖+1; 𝑥1, . . . , 𝑥𝑖) be the cumulative density function of the 1D
distribution ( ˆ̀𝑙)𝑖+1 (d𝑥𝑖+1 |𝑥1, . . . , 𝑥𝑖), 𝐺𝑖+1(𝑥𝑖+1; 𝑥1, . . . , 𝑥𝑖) be the cumulative den-
sity function of the 1D distribution (`𝑙−1 ⊗ 𝛾𝑙)𝑖+1 (d𝑥𝑖+1 |𝑥1, . . . , 𝑥𝑖), so they are both
monotonically increasing because we assume all distributions here are absolutely
continuous to the Lebesgue measure. We could simply set

�̂�𝑙,𝑖+1(𝑥1, . . . , 𝑥𝑖, 𝑥𝑖+1) = 𝐹𝑖+1(𝑥𝑖+1; 𝑥1, . . . , 𝑥𝑖)−1𝐺𝑖+1(𝑥𝑖+1; 𝑥1, . . . , 𝑥𝑖).
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This construction also ensures that �̂�𝑙,𝑖+1(𝑥1, . . . , 𝑥𝑖, 𝑥𝑖+1) is monotonically increas-
ing in 𝑥𝑖+1. Therefore, setting 𝑅𝑙,𝑖+1 : R𝑖+1 → R𝑖+1 as

𝑅𝑙,𝑖+1(𝑥1, . . . , 𝑥𝑖, 𝑥𝑖+1) =
[

𝑅𝑙,𝑖 (𝑥1, . . . , 𝑥𝑖)
�̂�𝑙,𝑖+1(𝑥1, . . . , 𝑥𝑖, 𝑥𝑖+1)

]
,

we can verify that 𝑅𝑙,𝑖+1♯ ( ˆ̀𝑙)𝑖+1 = (`𝑙−1 ⊗ 𝛾𝑙)𝑖+1, as in Section 2.3 of [82].

This recursive construction for 𝑑𝑙−1 ≤ 𝑖 < 𝑑𝑙 finally gives us a lower-triangular
bijective map 𝑅𝑙 : R𝑑𝑙 → R𝑑𝑙 such that 𝑅𝑙♯ ˆ̀𝑙 = `𝑙−1 ⊗ 𝛾𝑙 , and 𝑃𝑙−1 ◦ 𝑅𝑙 = 𝑃𝑙−1,
because 𝑅𝑙,𝑑𝑙−1 = id𝑑𝑙−1 .

Finally we consider 𝑆𝑙 = 𝑅𝑙 ◦ C𝑙 . On the one hand, we have

𝑆𝑙♯`𝑙 = (𝑅𝑙 ◦ C𝑙)♯ `𝑙 = 𝑅𝑙♯
(
C𝑙♯`𝑙

)
= 𝑅𝑙♯ ˆ̀𝑙 = `𝑙−1 ⊗ 𝛾𝑙 ,

and on the other hand, when we apply the linear projector 𝑃𝑙−1, we get

𝑃𝑙−1 ◦ 𝑆𝑙 = 𝑃𝑙−1 ◦ (𝑅𝑙 ◦ C𝑙) = (𝑃𝑙−1 ◦ 𝑅𝑙) ◦ C𝑙 = 𝑃𝑙−1 ◦ C𝑙 = A𝑙 .

By construction, 𝑆𝑙 is a bijective, and from [82], given the regularity of `𝑙 and `𝑙−1,
the constructed 𝑅𝑙 is a diffeomorphism and so is 𝑆𝑙 . Finally we remark that the
uniqueness of 𝑆𝑙 is not necessarily guaranteed.

It is interesting to notice that in the special case of linear upscaling operatorA𝑙 (𝑥𝑙) =
𝐴𝑙𝑥𝑙 with 𝐴𝑙 ∈ R𝑑𝑙−1×𝑑𝑙 , and the Gaussian prior `𝑙 = N(0, Σ𝑙), there is a closed
form formula for the map 𝑃𝐶𝑙 .

Theorem 5.3.2. For linear upscaling operator A𝑙 (𝑥𝑙) = 𝐴𝑙𝑥𝑙 with a matrix 𝐴𝑙 ∈
R𝑑𝑙−1×𝑑𝑙 that has full row rank, and a Gaussian prior `𝑙 = N(0, Σ𝑙) withΣ𝑙 symmetric
positive definite, the transport map 𝑃𝐶𝑙 can be chosen as

𝑥𝑙 = 𝑃𝐶𝑙 (𝑥𝑙−1, 𝑧𝑙) = 𝑈𝑙−1𝑥𝑙−1 +𝑉𝑙𝑧𝑙 , (5.20)

where𝑈𝑙−1 = Σ𝑙𝐴
𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

−1, 𝑉𝑙 ∈ R𝑑𝑙×(𝑑𝑙−𝑑𝑙−1) is any matrix satisfying

𝑉𝑙𝑉
𝑇
𝑙 = Σ𝑙 − Σ𝑙𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙Σ𝑙 ,

and the existence of 𝑉𝑙 is guaranteed. Furthermore, 𝑃𝐶𝑙 defined here is a bijective
between 𝑥𝑙 and (𝑥𝑙−1, 𝑧𝑙).
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Theorem 5.3.2 is very helpful in pre-computing the map 𝑃𝐶𝑙 in the popular cases
of a Gaussian prior. The transport map 𝑃𝐶𝑙 is called the prior conditioning layer in
our MsIGN framework.

To prove Theorem 5.3.2, we first notice that since 𝐴𝑙 ∈ R𝑑𝑙−1×𝑑𝑙 (𝑑𝑙−1 < 𝑑𝑙), we
can always find a matrix 𝐵𝑙 ∈ R(𝑑𝑙−𝑑𝑙−1)×𝑑𝑙 , such that 𝐴𝑙𝐵𝑇𝑙 = 0. We now state the
following lemma, called the partition of unity.

Lemma 5.3.1. Since 𝐴𝑙 ∈ R𝑑𝑙−1×𝑑𝑙 , 𝐵𝑙 ∈ R(𝑑𝑙−𝑑𝑙−1)×𝑑𝑙 , 𝐴𝑙𝐵𝑇𝑙 = 0 and the covariance
matrix Σ𝑙 is symmetric positive definite, we have the following decomposition of the
identity matrix 𝐼𝑑𝑙 ∈ R𝑑𝑙×𝑑𝑙 :

𝐼𝑑𝑙 = Σ
1
2
𝑙
𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙Σ

1
2
𝑙
+ Σ−

1
2

𝑙
𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
−1𝐵𝑙Σ

− 1
2

𝑙
. (5.21)

Proof. Consider the following matrix Ω𝑙 ∈ R𝑑𝑙×𝑑𝑙 :

Ω𝑙 = [Σ
1
2
𝑙
𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
− 1

2 Σ
− 1

2
𝑙
𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
− 1

2 ] .

We claim that Ω𝑙 is an orthonormal matrix because

Ω𝑇𝑙 Ω𝑙 =

[
𝐼𝑑𝑙−1 ∗
∗𝑇 𝐼𝑑𝑙−𝑑𝑙−1

]
= 𝐼𝑑𝑙 ,

as ∗ = (𝐴𝑙Σ𝑙𝐴𝑇𝑙 )
− 1

2 𝐴𝑙𝐵
𝑇
𝑙
(𝐵𝑙Σ−1

𝑙
𝐵𝑇
𝑙
)− 1

2 = 0 due to the assumption 𝐴𝑙𝐵𝑇𝑙 = 0.

Therefore, Ω𝑙 is a 𝑑𝑙 × 𝑑𝑙 orthonormal matrix, and Ω𝑙Ω
𝑇
𝑙
= 𝐼𝑑𝑙 , which means

𝐼𝑑𝑙 = Ω𝑙Ω
𝑇
𝑙 =

[
Σ

1
2
𝑙
𝐴𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

− 1
2 Σ

− 1
2

𝑙
𝐵𝑇
𝑙
(𝐵𝑙Σ−1

𝑙
𝐵𝑇
𝑙
)− 1

2

] 
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

− 1
2 𝐴𝑙Σ

1
2
𝑙

(𝐵𝑙Σ−1
𝑙
𝐵𝑇
𝑙
)− 1

2𝐵𝑙Σ
− 1

2
𝑙


= Σ

1
2
𝑙
𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙Σ

1
2
𝑙
+ Σ−

1
2

𝑙
𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
−1𝐵𝑙Σ

− 1
2

𝑙
.

Finally, we prove Theorem 5.3.2.

Proof. First we notice that 𝐴𝑙𝑈𝑙−1 = 𝐼𝑑𝑙−1 and 𝐴𝑙𝑉𝑙 = 0, so 𝐴𝑙𝑥𝑙 = 𝑥𝑙−1. Fol-
lowing Theorem 5.3.1 and the remark in Section 5.2, we now only need to prove
that 𝑃𝐶𝑙♯ (`𝑙−1 ⊗ 𝛾𝑙) = `𝑙 to show that 𝑥𝑙 = 𝑃𝐶𝑙 (𝑥𝑙−1, 𝑧𝑙) follows the conditional
distribution 𝜌𝑙 (𝑥𝑙 |A𝑙 (𝑥𝑙) = 𝑥𝑙−1) for a fixed 𝑥𝑙−1 and 𝑧𝑙 ∼ 𝛾𝑙 .
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Since the map 𝑃𝐶𝑙 is linear, and 𝑥𝑙−1, 𝑧𝑙 are independent Gaussians, both sides of
(5.13) are Gaussian distributions. It remains to check that their moments match
each other, which translates to

Σ𝑙 = 𝑈𝑙−1𝐴𝑙Σ𝑙𝐴
𝑇
𝑙 𝑈

𝑇
𝑙−1 +𝑉𝑙𝑉

𝑇
𝑙 . (5.22)

Here 𝐴𝑙Σ𝑙𝐴𝑇𝑙 is the covariance matrix for 𝑥𝑙−1 = 𝐴𝑙𝑥𝑙 .

Recalling the definitions of 𝑉𝑙 and 𝑈𝑙−1 in Theorem 5.3.2, we have 𝑉𝑙𝑉𝑇𝑙 = Σ𝑙 −
Σ𝑙𝐴

𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

−1𝐴𝑙Σ𝑙 and 𝑈𝑙−1𝐴𝑙Σ𝑙𝐴
𝑇
𝑙
𝑈𝑇
𝑙−1 = Σ𝑙𝐴

𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

−1𝐴𝑙Σ𝑙 . So (5.22)
holds and the first part is proved. We are left to show the existence of 𝑉𝑙 and the
invertibility of 𝑃𝐶𝑙 .

Let Σ𝑙 |𝑙−1 = 𝑉𝑙𝑉
𝑇
𝑙
= Σ𝑙 − Σ𝑙𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙
)−1𝐴𝑙Σ𝑙 . We notice that

Σ𝑙 |𝑙−1 = Σ𝑙 − Σ𝑇𝑙 (𝐴𝑙Σ𝑙𝐴
𝑇
𝑙 )
−1𝐴𝑙Σ𝑙 = Σ

1
2
𝑙

(
𝐼𝑑𝑙 − Σ

1
2
𝑙
𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙Σ

1
2
𝑙

)
Σ

1
2
𝑙
.

Using the partition of unity in Lemma 5.3.1, we have

Σ𝑙 |𝑙−1 = Σ
1
2
𝑙
Σ
− 1

2
𝑙
𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
−1𝐵𝑙Σ

− 1
2

𝑙
Σ

1
2
𝑙
= 𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
−1𝐵𝑙 .

Therefore, the existence of 𝑉𝑙 ∈ R𝑑𝑙×(𝑑𝑙−𝑑𝑙−1) such that Σ𝑙 |𝑙−1 = 𝑉𝑙𝑉
𝑇
𝑙

is guaranteed,
because taking any orthonormal matrix 𝑃𝑙 ∈ R(𝑑𝑙−𝑑𝑙−1)×(𝑑𝑙−𝑑𝑙−1) , the construction
𝑉𝑙 = 𝐵

𝑇
𝑙
(𝐵𝑙Σ−1

𝑙
𝐵𝑇
𝑙
)− 1

2𝑃𝑙 satisfies the requirement.

To show the invertibility of 𝑃𝐶𝑙 , let 𝑥𝑙 = 𝑃𝐶𝑙 (𝑥𝑙−1, 𝑧𝑙) = 𝑈𝑙−1𝑥𝑥−𝑙 + 𝑉𝑙𝑧𝑙 . We claim
that the inversion can be given by

𝑥𝑙−1 = 𝐴𝑙𝑥𝑙 , and 𝑧𝑙 = 𝑃
𝑇
𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
− 1

2𝐵𝑙Σ
−1
𝑙 𝑥𝑙 ,

where 𝑃𝑙 is the orthonormal matrix such that 𝑉𝑙 = 𝐵𝑇𝑙 (𝐵𝑙Σ
−1
𝑙
𝐵𝑇
𝑙
)− 1

2𝑃𝑙 . To see this,
we compute, under the above claim,

𝑈𝑙−1𝑥𝑙−1 +𝑉𝑙𝑧𝑙 = 𝑈𝑙−1𝐴𝑙𝑥𝑙 +𝑉𝑙𝑃𝑇𝑙 (𝐵𝑙Σ
−1
𝑙 𝐵

𝑇
𝑙 )
− 1

2𝐵𝑙Σ
−1
𝑙 𝑥𝑙

= (𝑈𝑙−1𝐴𝑙 +𝑉𝑙𝑃𝑇𝑙 (𝐵𝑙Σ
−1
𝑙 𝐵

𝑇
𝑙 )
− 1

2𝐵𝑙Σ
−1
𝑙 )𝑥𝑙 .

We will show𝑈𝑙−1𝐴𝑙 +𝑉𝑙𝑃𝑇𝑙 (𝐵𝑙Σ
−1
𝑙
𝐵𝑇
𝑙
)− 1

2𝐵𝑙Σ
−1
𝑙

= 𝐼𝑑𝑙 to complete the proof.

Since 𝑈𝑙−1 = Σ𝑙𝐴
𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

−1 and 𝑉𝑙 = 𝐵𝑇
𝑙
(𝐵𝑙Σ−1

𝑙
𝐵𝑇
𝑙
)− 1

2𝑃𝑙 , we have 𝑈𝑙−1𝐴𝑙 =

Σ𝑙𝐴
𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

−1𝐴𝑙 and 𝑉𝑙𝑃𝑇𝑙 (𝐵𝑙Σ
−1
𝑙
𝐵𝑇
𝑙
)− 1

2𝐵𝑙Σ
−1
𝑙

= 𝐵𝑇
𝑙
(𝐵𝑙Σ−1

𝑙
𝐵𝑇
𝑙
)−1𝐵𝑙Σ

−1
𝑙

. So we
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proceed to obtain

𝑈𝑙−1𝐴𝑙 +𝑉𝑙𝑃𝑇𝑙 (𝐵𝑙Σ
−1
𝑙 𝐵

𝑇
𝑙 )
− 1

2𝐵𝑙Σ
−1
𝑙

=Σ𝑙𝐴
𝑇
𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙 + 𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
−1𝐵𝑙Σ

−1
𝑙

=Σ
1
2
𝑙

(
Σ

1
2
𝑙
𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙Σ

1
2
𝑙
+ Σ−

1
2

𝑙
𝐵𝑇𝑙 (𝐵𝑙Σ

−1
𝑙 𝐵

𝑇
𝑙 )
−1𝐵𝑙Σ

− 1
2

𝑙

)
Σ
− 1

2
𝑙

=Σ
1
2
𝑙
𝐼𝑑𝑙Σ

− 1
2

𝑙
= 𝐼𝑑𝑙 .

Here in the last line we invoked the partition of unity in Lemma 5.3.1.

Sampling from the Transport Map
In the step 4 of Algorithm 2, due to the resemblance between ã𝑙 and a𝑙 as shown by
Theorem 5.2.1, the transport map 𝐹𝑙 that modifies 𝑥𝑙 ∼ ã𝑙 to 𝑥𝑙 ∼ a𝑙 can be seen as
a perturbation of the identity map. Therefore, we stack multiple invertible blocks
of the Glow [54] introduced in Section 5.1 as the invertible flow 𝐹𝑙 , and initialize
it to be an identity map in R𝑑𝑙 , which is quite different from [54]. Specifically,
for every invertible block in 𝐹𝑙 , the parameters 𝑠 and 𝑏 in the actnorm unit will be
initialized as the all-one vector and all-zero vector respectively. In the invertible
1 × 1 convolution unit, the matrix𝑊 is initialized as the identity matrix. And in the
affine coupling unit, we initialize the parameterized map 𝑓 and 𝑔 such that 𝑓 returns
a constant all-one tensor, and 𝑔 returns a constant all-zero tensor.

Overall Architecture
We conclude the network architecture for the pipeline described in Algorithm 2 in
Figure 5.1. The network architecture is also formally written in Table 5.1. We recall
that for 1 ≤ 𝑙 ≤ 𝐿, 𝛾𝑙 is the (𝑑𝑙 − 𝑑𝑙−1)-dimensional standard Gaussian distribution,
assuming 𝑑0 = 0, and 𝑧𝑙 is a sample to 𝛾𝑙 .

scale distribution perspective sample perspective

𝑙 = 1 𝐹1♯𝛾1 = a1 𝑥1 = 𝐹1(𝑧1)

2 ≤ 𝑙 ≤ 𝐿 𝑃𝐶𝑙♯ (𝛾𝑙 ⊗ a𝑙−1) = ã𝑙
𝐹𝑙♯ ã𝑙 = a𝑙

𝑥𝑙 = 𝑃𝐶𝑙 (𝑥𝑙−1, 𝑧𝑙)
𝑥𝑙 = 𝐹𝑙 (𝑥𝑙)

Table 5.1: The multiscale strategy of the MsIGN to approximate a = a𝐿 and generate
a sample 𝑥𝐿 from it.

Let 𝑇𝑙 = 𝐹𝑙 ◦ 𝑃𝐶𝑙 for 𝑙 ≥ 2 and 𝑇1 = 𝐹1 be the transport map at scale 𝑙 = 1. The
hierarchical sampling strategy in Algorithm 2 can now be formulated as learning 𝑇𝑙
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Figure 5.1: A diagram of the network architecture of the MsIGN.

such that

𝑇1♯𝛾1 = a1, 𝑇𝑙♯ (𝛾𝑙 ⊗ a𝑙−1) = a𝑙 , 2 ≤ 𝑙 ≤ 𝐿. (5.23)

The overall transport map represented by the MsIGN can then be written as 𝑇 =

𝑇𝐿 ◦ · · · ◦ 𝑇1, where 𝑇𝑙 : R𝑑 → R𝑑 is the extension of 𝑇𝑙 : R𝑑𝑙 → R𝑑𝑙 to the
full dimensions by the direct product with the identity map for the dimensions not
considered by 𝑇𝑙 . Setting 𝛾 = 𝛾𝐿 ⊗ · · · ⊗ 𝛾2 ⊗ 𝛾1, we have 𝑇♯𝛾 = a𝐿 .

5.4 Training Strategy of Multiscale Invertible Generative Networks
The MsIGN adopts the variational inference approach to learn the network parame-
ters. To avoid abuse of notations, we omit the scale indicator (subscript 𝑙 in Section
5.3) when there is no ambiguity, since the whole pipeline in Algorithm 2 is pro-
cessed scale by scale. We use 𝑞 as the density function of the target distribution,
which can be any a𝑙 for 1 ≤ 𝑙 ≤ 𝐿. And similarly we use 𝑝\ as the density function
of the working distribution, which is 𝐹1♯𝛾1 when 𝑙 = 1, or 𝐹𝑙♯ ã𝑙−1 when 𝑙 ≥ 2. Here
\ denotes the network parameter of the invertible flow 𝐹𝑙 , and belongs to a proper
set Θ. Variational inference learns the parameter \ by solving the optimization

min
\∈Θ

𝐷 (𝑝\ , 𝑞) (5.24)

for some hand-picked discrepancy 𝐷.

We remark that the prior conditional layer 𝑃𝐶 does not need training. With the
existence guaranteed by Theorem 5.3.1, we can learn 𝑃𝐶 offline as it only depends
on our choice of the prior ` and upscaling operator A. Particularly, for linear
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upscaling operator A and Gaussian prior `, it has a closed form according to
Theorem 5.3.2.

Choice of Learning Objective
Multiple choices of the discrepancy 𝐷 are available here for the training of the
MsIGN, since the invertibility allows the density evaluation of 𝑝\ by (5.2). In the
literature of Bayesian inverse problems, the Kullback-Leibler (KL) divergence is
easy to compute and has been widely used as the learning objective in variational
inference. However, its landscape could admit local minima that don’t favor the
optimization. The authors in [76] suggest that minimizing the KL divergence
𝐷KL(𝑝\ ∥𝑞) = E𝑥∼𝑝\

[
log 𝑝\ (𝑥)

𝑞(𝑥)

]
is zero-forcing, meaning that it mostly enforces

that 𝑝\ is small whenever 𝑞 is small, because when 𝑝\ is large and 𝑞 is small, both
the density 𝑝\ and the weight log 𝑝\ (𝑥)

𝑞(𝑥) are significant, resulting in a large objective
value. But when 𝑝\ is small and 𝑞 is large, 𝐷KL(𝑝\ ∥𝑞) can still be small, as we have
little weight 𝑝\ in this area. As a consequence, 𝐷KL(𝑝\ ∥𝑞) primarily penalizes 𝑝\
in the less important region of 𝑞. However, the case of mode missing, where 𝑝\ is
small but 𝑞 is large, can still be a local minimum. Therefore, we turn to the Jeffreys
divergence [50] which is a symmetrization of the KL divergence:

𝐷J(𝑝\ ∥𝑞) = 𝐷KL(𝑝\ ∥𝑞) + 𝐷KL(𝑞∥𝑝\)

= E𝑥∼𝑝\

[
log

𝑝\ (𝑥)
𝑞(𝑥)

]
+ E𝑥∼𝑞

[
log

𝑞(𝑥)
𝑝\ (𝑥)

]
.

(5.25)

We use a toy example of a 1D Gaussian mixture model to illustrate this observation.
Given 𝜎 > 0, let 𝑞 be the density of a Gaussian mixture model with parameter
` = (`1, `2) unknown but fixed:

𝑞(𝑥) = 1
2

(
N(𝑥; `1, 𝜎

2) + N (𝑥; `2, 𝜎
2)
)
. (5.26)

Here N(𝑥; `, 𝜎2) is the density function of a Gaussian distribution N(`, 𝜎2). Our
working distribution admits a density 𝑝 that is also a 1D Gaussian mixture model
with parameter \ = (\1, \2) to be determined:

𝑝\ (𝑥) =
1
2

(
N(𝑥; \1, 𝜎

2) + N (𝑥; \2, 𝜎
2)
)
. (5.27)

Setting `1 = −`2 = 1.5, and𝜎 = 0.25, we plot the landscapes of the KL divergences
𝐷KL(𝑝\ ∥𝑞) and 𝐷KL(𝑞∥𝑝\), and the Jeffreys divergence 𝐷J(𝑝\ ∥𝑞) as functions of
\ in Figure 5.2. We mark the global minima (ground-truth) by golden crosses, and
other local minima by green crosses. Notice the difference of scale as shown by
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the color bar. We can see that 𝐷KL(𝑝\ ∥𝑞) admits two undesired local minima as
compared to 𝐷J(𝑝\ ∥𝑞). This suggests that using the KL divergence 𝐷KL(𝑝\ ∥𝑞) as
the learning objective here can lead to a mode collapse, while the Jeffreys divergence
𝐷J(𝑝\ ∥𝑞) can capture both modes correctly.
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Figure 5.2: Landscapes of the KL divergences and Jeffreys divergence between 𝑝\
and 𝑞.

We also mention here that the other single-sided KL divergence 𝐷KL(𝑞∥𝑝\) alone
could lead to undesired local minima. Similar to what we discussed above, if 𝑝\ cap-
tures all modes in 𝑞 but also contains some extra modes, described as “zero-avoiding”
in [76], we could also observe a small value of𝐷KL(𝑞∥𝑝\) = E𝑥∼𝑞

[
log 𝑞(𝑥)

𝑝\ (𝑥)

]
, which

can be a potential local minimum of the objective landscape. Therefore, we choose
the Jeffreys divergence as a robust learning objective to capture multi-modes.

Multi-Stage Optimization
Estimating the Jeffreys divergence in (5.9) requires computing the expectation
E𝑥∼𝑞

[
log 𝑞(𝑥)

𝑝\ (𝑥)

]
, where the distribution is the target 𝑞. Thus it is usually pro-

hibitively expensive. Since the MsIGN constructs a good approximation 𝑞 to 𝑞,
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as in (5.8), we do importance sampling for the 𝑞-expectation part in the Jeffreys
divergence. Therefore, we can use the Monte Carlo method to estimate

𝐷J(𝑝\ ∥𝑞) =E𝑥∼𝑝\
[
log

𝑝\ (𝑥)
𝑞(𝑥)

]
+ E𝑥∼𝑞

[
𝑞(𝑥)
𝑞(𝑥) log

𝑞(𝑥)
𝑝\ (𝑥)

]
. (5.28)

Moreover, we can estimate the derivatives of the Jeffreys divergence to parameters
\ by

𝜕

𝜕\
𝐷J(𝑝\ ∥𝑞) =E𝑥∼𝑝\

[(
1 + log

𝑝\ (𝑥)
𝑞(𝑥)

)
𝜕 log 𝑝\ (𝑥)

𝜕\

]
− E𝑥∼𝑞

[
𝑞(𝑥)
𝑞(𝑥)

𝜕 log 𝑝\ (𝑥)
𝜕\

]
.

(5.29)

Here in (5.29) we use the identity E𝑥∼𝑝\ [𝜕\ log 𝑝\ (𝑥)] = 0 as lim∥𝑥∥→+∞ 𝑝\ (𝑥) = 0.
We remark that due to the limited number 𝑑𝑦 of observations in (1.1), 𝑞 and 𝑞
are both equivalent to 𝜌. As a result, 𝑞 is equivalent to 𝑞 and the validity of the
importance sampling is guaranteed. We also remark that the normalizing constant
𝑍 of 𝑞 in (1.6) is usually unknown, so we can only evaluate 𝑍𝑞(𝑥) as a whole.
Fortunately, (5.28) and (5.29) are invariant to such multiplicative constant since we
have

𝐷J(𝑝\ ∥𝑞) = E𝑥∼𝑝\
[
log

𝑝\ (𝑥)
𝑞(𝑥)

]
+ E𝑥∼𝑞

[
𝑞(𝑥)
𝑞(𝑥) log

𝑞(𝑥)
𝑝\ (𝑥)

]
= E𝑥∼𝑝\

[
log

𝑝\ (𝑥)
𝑍𝑞(𝑥)

]
+ E𝑥∼𝑞

[
𝑞(𝑥)
𝑞(𝑥) log

𝑍𝑞(𝑥)
𝑝\ (𝑥)

]
.

(5.30)

Here we do not need to worry about the multiplicative constant in the importance
weight 𝑞(𝑥)/𝑞(𝑥) since it can be eliminated by importance sampling with self-
normalization weights. Similarly, (5.29) is also invariant to the normalizing constant
𝑍 .

Finally we solve the optimization (5.24) by stochastic gradient descent. Optimization
strategies for 𝐷J(𝑝\ ∥𝑞) are summarized in Algorithm 3.

As shown by Algorithm 2, the multiscale strategy in the sample generation process
of the MsIGN enables a coarse-to-fine multi-stage training, which also benefits our
importance sampling strategy of the Jeffreys divergence. At stage 𝑙 of Algorithm
2, we target at capturing 𝑞𝑙 , and only train invertible flows before or at this scale:
𝐹𝑙 ′, 𝑙

′ ≤ 𝑙. (5.8) implies that 𝑞𝑙 can be well approximated by the surrogate 𝑞𝑙 , which
is the conditional upsampling from 𝑞𝑙−1 as in (5.15). So we use 𝑞𝑙 to initialize
our model by setting 𝐹𝑙 ′, 𝑙

′ < 𝑙 as the trained model at stage 𝑙 − 1 and setting
𝐹𝑙 as the identity map. To initialize the multi-stage training at scale 𝑙 = 1, the
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Algorithm 3 Optimization of the Jeffreys divergence
Input: Unnormalized density 𝑞 of a, density 𝑞 of ã, sample size 𝑁 , learning

rate [, initializer \0, number of iterations 𝑀
Output: Optimizer \ for (5.24) with 𝐷 being the Jeffreys divergence

1: for 𝑡 ← 0 to 𝑀 − 1 do
2: Sample {𝑥∗

𝑖
}𝑁
𝑖=1 i.i.d. from 𝑝\𝑡 , sample {𝑥′

𝑗
}𝑁
𝑗=1 i.i.d. from 𝑞

3: Evaluate 𝑝∗
𝑖
= 𝑝\𝑡 (𝑥∗𝑖 ), 𝑞∗𝑖 = 𝑞(𝑥∗

𝑖
), 𝑝′

𝑗
= 𝑝\𝑡 (𝑥′𝑗 ), 𝑞′𝑗 = 𝑞(𝑥′

𝑗
), and 𝑞′

𝑗
=

𝑞(𝑥′
𝑗
) for 𝑖, 𝑗 = 1, . . . , 𝑁

4: Compute the self-normalized importance weight 𝑤′
𝑗
= �̂�′

𝑗
/𝑊′, for 𝑗 =

1, . . . , 𝑁 , where �̂�′
𝑗
= 𝑞′

𝑗
/𝑞′

𝑗
and𝑊′ =

∑𝑁
𝑗=1 �̂�

′
𝑗

5: Obtain 𝑔∗
𝑖
= 𝜕 log 𝑝\𝑡 (𝑥∗𝑖 )/𝜕\𝑡 and 𝑔′

𝑗
= 𝜕 log 𝑝\𝑡 (𝑥′𝑗 )/𝜕\𝑡 by the back

propagation of the MsIGN for 𝑖, 𝑗 = 1, . . . , 𝑁
6: Estimate the gradient 𝐺 𝑡 of the Jeffreys divergence (5.29) by

𝐺 𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

(
1 + log 𝑝∗𝑖 − log 𝑞∗𝑖

)
𝑔∗𝑖 −

1
𝑁

𝑁∑︁
𝑗=1
𝑤′𝑗𝑔

′
𝑗

Update the parameter by \𝑡+1 = \𝑡 − [𝐺 𝑡

7: end for

Jeffreys divergence 𝐷J(𝑝\ ∥𝑞) is directly estimated by the Monte Carlo method
with samples from distribution 𝑝\ and 𝑞. The 𝑝\ samples come from the model
itself and the 𝑞 samples come from a pretrained MCMC chain, or other standard
methods. We remark that at 𝑙 = 1, the problem dimension is very low (in our
example the dimension 𝑑1 = 4), so it should be easy for standard methods to capture
𝑞1. Numerical experiments demonstrate that such multi-stage strategy significantly
stabilizes the training process and improves the performance. The overall training
strategy at one scale is summarized in Algorithm 4.

5.5 Numerical Experiment on the Bayesian Inverse Problem
In this section, we present numerical experiments on two high-dimensional Bayesian
inverse problems. To make the high-dimensional inference more challenging, we
design the target distributions to have at least two equally important modes. In one
of the problems called the synthetic Bayesian inverse problem, true samples to the
target distribution are available. In another problem named the elliptic Bayesian
inverse problem, true samples are not available but the problem is close to real-
world applications in the subsurface flow study. We also report the ablation study
of the MsIGN in Section 5.6 on these two Bayesian inverse problems, where we
compare the performance of different network architectures and training methods to
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Algorithm 4 Training Process of the MsIGN at Stage 𝑙
Input: Well trained 𝐹𝑙 ′, 𝑙′ < 𝑙 and pre-computed 𝑃𝐶𝑙 ′, 𝑙′ ≤ 𝑙
Output: Well trained 𝐹𝑙

1: if 𝑙 = 1 then
2: Sample from the coarsest-scale 𝑞1 by standard methods
3: Learn 𝐹1 by solving min\∈Θ 𝐷J(𝑝\ ∥𝑞1) by stochastic gradient descent, the

gradient is estimated by the Monte Carlo method
4: else
5: Initialize 𝐹𝑙 as an identity map to model the working distribution 𝑝\ , together

with layers trained from last stage: 𝐹𝑙 ′, 𝑙′ < 𝑙, and 𝑃𝐶𝑙 ′, , 𝑙′ ≤ 𝑙
6: Duplicate 𝐹𝑙 ′, 𝑙′ < 𝑙 and 𝑃𝐶𝑙 ′, 𝑙′ ≤ 𝑙 to model the surrogate 𝑞𝑙
7: Learn 𝐹𝑙 by solving min\∈Θ 𝐷J(𝑝\ ∥𝑞𝑙) by stochastic gradient descent as in

Algorithm 3 with the help of the surrogate 𝑞𝑙
8: end if

demonstrate the effectiveness of our proposed strategy.

General Settings
In our numerical examples of two high-dimensional Bayesian inverse problems,
the target posterior a is a distribution of discretized 2D field on the unit square
Ω = [0, 1]2 which can be seen as a vector of 64 × 64 = 4096 dimension. For both
examples, we place a centered Gaussian with a Laplacian-type covariance as the
prior:

` = N
(
0, 𝛽2(−Δ)−1−𝛼

)
, (5.31)

which is very common in geophysics and electric tomography. Here the covariance
operator admits zero Dirichlet boundary condition. The likelihoods will be specified
individually for each problem. As illustrated by Algorithm 2, we plan to learn the
4096-dimensional posterior a = a𝐿 at the end of 𝐿 = 6 scales, and set problem
dimension at each scale as 𝑑𝑙 = 2𝑙 × 2𝑙 = 4𝑙 . Since we are interested in the
inference of a 2D field, it is natural to set the pooling operatorA as the local average
operator. Specifically, on the discretized field, A gives the local average in every
non-overlapping 2 × 2 patch, and reduces the dimension by 4.

We equip our target distribution a with multimodality by designing a symmetric
distribution with carefully-chosen parameters. Combining properties of the prior `
defined above and the likelihood L defined afterwards, the posterior is designed to
be mirror-symmetric:

𝑞(𝑥) = 𝑞(𝑥′), if 𝑥(𝑠1, 𝑠2) = 𝑥′(𝑠1, 1 − 𝑠2) for every (𝑠1, 𝑠2) ∈ Ω. (5.32)
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We carefully select the prior and the likelihood so that our posterior 𝑞 has at least
two modes, which will be demonstrated for both problems. The two modes are
mirror-symmetric to each other and possess equal importance.

We benchmark our MsIGN from some state-of-the-art approaches in the litera-
ture: the Hamilton Monte Carlo (HMC) [75], the Stein variational gradient descent
(SVGD) [69], the projected Stein variational gradient descent (pSVGD) [13], and the
amortized Stein variational gradient descent (A-SVGD) [31]. The HMC is a typical
MCMC approach that is empirically successful in high-dimensional problems. The
SVGD is a recent particle-based method that moves particles along the gradient
of the Kullback-Leibler divergence with respect to the target distribution. And the
pSVGD further applies adaptive dimensional reduction in the process of the SVGD.
The A-SVGD is another deep generative network approach that trains the network
by the gradient signal in the SVGD. We use the Glow model [54] for the network
architecture in the A-SVGD, which is proven to be very successful in other sample
generation tasks, like image synthesis. The number of parameters of the network
for the A-SVGD is guaranteed to be comparable to that for the MsIGN, so that the
A-SVGD can serve as a fair benchmark in deep generative network approaches.

We measure the computational cost by the number of forward simulations, because
simulating the forward map F in (1.1) contributes to most of the training time,
especially for the elliptic Bayesian inverse problem (more than 75% of the wall
clock time). For each method, we budget the same number of forward simulations
to generate the same number of target samples for fair comparison.

More parameter settings of network architecture and training strategy can be found
in Appendix B.

The Synthetic Bayesian Inverse Problem
The synthetic Bayesian inverse problem allows access to ground-truth samples of
the target distribution a so the comparison is clear and solid. The prior ` is set as
(5.31) with 𝛼 = 0.1, 𝛽 = 2.0. As for the likelihood, the forward map is given by

F (𝑥) = ⟨𝜑, 𝑥⟩2 =

(∫
Ω

𝜑(𝑠)𝑥(𝑠)d𝑠
)2
,

with 𝜑(𝑠) = sin(𝜋𝑠1) sin(2𝜋𝑠2) for 𝑠 = (𝑠1, 𝑠2) ∈ Ω. We remark that due to
the symmetry 𝜑(𝑠1, 𝑠2) = 𝜑(1 − 𝑠1, 𝑠2), we have F (𝑥) = F (𝑥′) if 𝑥(𝑠1, 𝑠2) =

𝑥′(𝑠1, 1 − 𝑠2) for (𝑠1, 𝑠2) ∈ Ω. Therefore, the likelihood is guaranteed to be mirror
symmetric. The ground-truth for 𝑥 is 𝑥(𝑠1, 𝑠2) = sin(𝜋𝑠1) sin(2𝜋𝑠2), see Figure 5.3.
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We generate the observed data 𝑦 by (1.1) with Y ∼ N(0, 0.04). The computation
budget in the number of forward simulations is fixed at 8 × 106 for generating 2500
samples in every computation.
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Figure 5.3: The ground-truth 𝑥 and its mirror symmetry. The dashed line is the
symmetry axis.

With the prior and likelihood designed above, our posterior at all scales can be
factorized into one-dimensional sub-distributions, namely

𝑞𝑙 (𝑥) =
𝑑𝑙∏
𝑘=1

𝑞𝑙,𝑘 (⟨𝑤𝑙,𝑘 , 𝑥⟩), for 1 ≤ 𝑙 ≤ 6,

for some orthonormal basis {𝑤𝑙,𝑘 }𝑑𝑙𝑘=1. In fact, 𝑤𝑙,𝑘 can be taken as the first few 2D
Fourier basis functions, because they are the eigenvectors of the covariance matrix
of the prior (5.31), and the measurement function 𝜑 is one of their members. This
property gives us access to true samples via the inversion cumulative function sam-
pling along each direction 𝑤𝑘 . In fact, all these 1D sub-distributions are unimodal
Gaussians except that there is one with two symmetric modes. This double-modal
sub-distribution is the marginal distribution 𝑞𝑙,∗ along direction 𝑤𝑙,∗ = 𝜑. This
confirms our construction of two equally important modes.

For each method, we estimate a quantity of interest 𝑄 using the Monte Carlo
method with generated samples. We run each method for multiple times, and obtain
estimates 𝑄𝑘 , 𝑘 = 1, . . . , 𝐾 . To assess the distribution approximation, we consider
the root mean square error of the estimation, which is defined as√√√

1
𝐾

𝐾∑︁
𝑘=1
|𝑄 −𝑄𝑘 |2.
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We may generalize this definition for vector or tensor𝑄, with now the absolute value
| · | replaced by the Frobenius norm. We report the root mean square errors of each
method for the following quantity of interest in Figure 5.4: the sub-distributional
mean, which is a vector in R𝑑𝑙 with entries E

[
⟨𝑤𝑙,𝑘 , 𝑥⟩

]
for 𝑘 = 1, . . . , 𝑑𝑙 at scale

𝑙, the sub-distributional standard deviation, which is a vector in R𝑑𝑙 with entries
Sd

[
⟨𝑤𝑙,𝑘 , 𝑥⟩

]
for 𝑘 = 1, . . . , 𝑑𝑙 at scale 𝑙, and the sub-distributional correlation,

which is a 𝑑𝑙 × 𝑑𝑙 matrix with entries Corr
[
⟨𝑤𝑙,𝑘 , 𝑥⟩, ⟨𝑤𝑙,𝑘 ′, 𝑥⟩

]
for 𝑘, 𝑘′ = 1, . . . , 𝑑𝑙

at scale 𝑙. To better compare between different scales, these root mean square errors
are divided by their dimensions. The bar range in Figure 5.4 indicates the variation
of the error estimates in 5 independent runs.

We observe that the MsIGN is more accurate among other methods in distribution
approximation, especially at finer scale when the problem dimension is high. We also
remark that the pSVGD achieves a very good result because the target distribution
is intrinsically low-rank. In Table 5.2, we report the Jeffreys divergence between
the target distribution 𝑞 and the distributions 𝑝\ captured by the A-SVGD and our
MsIGN, since they both allow density evaluation of 𝑝\ . We can see that the MsIGN
has superior accuracy in distribution approximation, especially in high-dimensional
problems.

Scale Dimension MsIGN A-SVGD

𝑙 = 1 𝑑𝑙 = 22 = 4 (3.00 ± 0.07) × 10−1 (8.59 ± 5.45) × 10−1

𝑙 = 2 𝑑𝑙 = 42 = 16 (4.85 ± 0.28) × 10−1 (2.87 ± 0.21) × 10+0
𝑙 = 3 𝑑𝑙 = 82 = 64 (8.49 ± 0.87) × 10−1 (9.21 ± 0.29) × 10+0
𝑙 = 4 𝑑𝑙 = 162 = 256 (2.74 ± 0.13) × 10+0 (3.90 ± 0.67) × 10+1
𝑙 = 5 𝑑𝑙 = 322 = 1024 (1.34 ± 0.04) × 10+1 (4.26 ± 0.49) × 10+2
𝑙 = 6 𝑑𝑙 = 642 = 4096 (5.89 ± 0.17) × 10+1 (3.62 ± 0.36) × 10+3

Table 5.2: Distribution approximation errors by Jeffreys divergence. The values in
the parenthesis indicate the fluctuation in 5 independent runs.

To visualize the mode capture, we plot the marginal distributions along the critical
direction𝑤𝑙,∗, from which we expect to observe double-modality by our construction.
The marginal distribution is reconstructed by the kernel density estimation from 2500
generated samples for each method. As our MsIGN works by sequentially capturing
𝑞𝑙 for 𝑙 from 1 to 6, we show the mode capture results at each scale in Figure 5.5.
We can see that as the dimension increases, the A-SVGD and the SVGD become
less robust in mode capture and eventually collapse to a single mode. Moreover,
the HMC becomes imbalanced between modes, and the marginal distribution of the
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Figure 5.4: Root mean square errors of sub-distributional statistics at different scales
1 ≤ 𝑙 ≤ 6.

pSVGD is a bit biased for 𝑙 = 6. In contrast, our MsIGN successfully captures
these two modes and its marginal distribution is the best among these methods when
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compared with the ground-truth.
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Figure 5.5: Comparison of the marginal distributions along the critical direction
𝑤𝑙,∗ for the synthetic Bayesian inverse problem at all scales 𝑙 = 1, . . . , 6.

We remark that since our MsIGN is a transport map approach, the generated samples
are naturally independent. The sample correlation trouble that could potentially
occur to the MCMC-type or the SVGD-related methods does not appear in our
approach.

The Elliptic Bayesian Inverse Problem
The elliptic Bayesian inverse problem originates from geophysics and fluid dy-
namics. It is known to be very challenging due to its high-dimensionality and its
complicated forward map F . The prior ` is set as (5.31) with 𝛼 = 0.5, 𝛽 = 2.0.
The forward map is given by linear measurement of the solution to an elliptic partial
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differential equation (PDE) associated with 𝑥. We define

F (𝑥) =
[∫

Ω
𝜑1(𝑠)𝑢(𝑠)d𝑠

∫
Ω
𝜑2(𝑠)𝑢(𝑠)d𝑠 . . .

∫
Ω
𝜑15(𝑠)𝑢(𝑠)d𝑠

]𝑇
∈ R15,

(5.33)

where 𝜑𝑘 (𝑠), 1 ≤ 𝑘 ≤ 15, are measurement functions, and 𝑢(𝑠) is the solution of
the following elliptic PDE with zero Dirichlet boundary condition

−∇ ·
(
𝑒𝑥(𝑠)∇𝑢(𝑠)

)
= 𝑓 (𝑠), 𝑠 ∈ Ω. (5.34)

The measurement functions 𝜑𝑘 are designed to be the characteristic functions of
certain regions. As shown in Figure 5.6, for 1 ≤ 𝑘 ≤ 10, 𝜑𝑘 is the characteristic
function of two red squares that are mirror-symmetric to each other. For 11 ≤ 𝑘 ≤
15, 𝜑𝑘 is the characteristic function of one red square that is mirror-symmetric to
itself. The force term 𝑓 , also shown in Figure 5.6, is chosen as

𝑓 (𝑠) = 100
𝜋
𝑒−10∥𝑠− 𝑓1∥2 + 100

𝜋
𝑒−10∥𝑠− 𝑓2∥2 − 50

𝜋
𝑒−10∥𝑠− 𝑓3∥2 − 50

𝜋
𝑒−10∥𝑠− 𝑓4∥2 ,

where 𝑓1 = (0.25, 0.3), 𝑓2 = (0.25, 0.7), 𝑓3 = (0.7, 0.3), 𝑓4 = (0.7, 0.3), and ∥ · ∥
is the Euclidean norm in R2. The force term is also mirror symmetric along the 𝑠2
direction. We assume the error Y in (1.1) followsN(0, (0.02)2𝐼15) and generate our
observational data 𝑦 using the same ground-truth of 𝑥 shown in Figure 5.3. We set
a budget of 5 × 105 number of forward simulations on our computation cost. We
remark that the PDE (5.34) is always solved by the finite element method with fixed
mesh size 1/64, regardless of the resolution of 𝑥.
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Figure 5.6: The measurement functions 𝜑𝑘 , 𝑘 = 1, 2, . . . , 15, and the force term 𝑓

for the elliptic Bayesian inverse problem. The dashed lines are the symmetry axes.
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Figure 5.7: The two intrinsically different MAP points 𝑥∗ and 𝑥∗∗, and the sliced
landscape between 𝑥∗ and 𝑥∗∗.

In the problem design, the trick of imposing symmetry condition (5.32) guarantees
at least two equally important modes in the posterior. One evidence of the existence
of two equally important modes is from the Maximum-A-Posterior (MAP) search.
We use the gradient descent method from randomly generated points to search for
the MAP point. In other words, we solve the optimization

arg max
𝑥

log 𝑞(𝑥).

Two intrinsically different MAP points 𝑥∗ and 𝑥∗∗ are identified from numerical
computation with the same log 𝑞 value in Figure 5.7. We see that the two MAP points
𝑥∗ and 𝑥∗∗ are mirror symmetric to each other. We also plot the sliced landscape of
log 𝑞 between 𝑥∗ and 𝑥∗∗ in Figure 5.7, which is the curve of log 𝑞

(
1+_
2 𝑥
∗ + 1−_

2 𝑥∗∗
)

against _. We can clearly see a double-modal feature of the landscape, suggesting
that these two MAP points are highly possible to be representatives from two different
modes.
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Due to the lack of ground-truth samples, we first compare sample means obtained
by different methods. In Figure 5.8 we plot the mean estimates of different methods
using 2500 samples. They all look similar and mirror-symmetric along the 𝑠2-
direction. The comparison of sample means indirectly suggests the effective target
posterior approximation of our MsIGN.
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MsIGN HMC A-SVGD SVGD pSVGD

PC
A 

an
d

 C
lu

st
er

in
g

Cl
us

te
r 1

 M
ea

n
Cl

us
te

r 2
 M

ea
n

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 5.9: Visualization of samples from each method by dimension reduction.

Since the posterior is designed to have at least two mirror symmetric modes with
equal importance, we examine the multiple modes capture of different methods. We
report the K-means clustering result of 2500 generated samples and means of each
cluster in Figure 5.9. In the first row, we embed the high-dimensional samples to a
2D plane by the Principle Component Analysis (PCA) method, and mark the cluster
result by the K-means algorithm using colors of red and blue. We can see that
samples of the MsIGN and the HMC capture two well-separated modes in the target
posterior distribution, but the others fail. Moreover, the HMC captures two modes
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but is less balanced than the MsIGN and shows an undesired sample correlation. In
the second and third rows, we show the means of each cluster. It is interesting to
see that two cluster means from all methods are approximately mirror-symmetric to
each other. Meanwhile, the means from the MsIGN agree with the HMC. This result
also supports that the MsIGN captures double modes of the posterior distribution.
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Figure 5.10: Comparison of the marginal distributions along the critical direction
𝑤𝑙,∗ for the elliptic Bayesian inverse problem at all scales 𝑙 = 1, . . . , 6.

We also check the marginal distributions of the posterior along eigenvectors of
the prior covariance matrix, and pick a particular one, which is the eigenvector
corresponding to sin(𝜋𝑠1) sin(2𝜋𝑠2), to demonstrate that we can capture double
modes. The choice of this eigenvector is because the ground-truth of 𝑥, as shown
in Figure 5.3, is exactly sin(𝜋𝑠1) sin(2𝜋𝑠2). Therefore, it is highly likely that
the two modes of the posterior are very close to the ground-truth of 𝑥 and its
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mirror-symmetry, so along this direction the marginal distribution is likely to be
double-modal. Furthermore, we observe that some of the tested methods can stably
capture multiple modes in the marginal distribution along this direction. We show
the mode capture results for all scales 𝑙 = 1, . . . , 6 in Figure 5.10. All methods
except the MsIGN and the HMC failed in detecting all modes, and could even get
stuck in the middle. The HMC has acceptable performance, but still suffers from
imbalanced modes at some scales. We remark that when 𝑙 = 1, the HMC also fails
to capture both modes. This phenomenon might be caused by the aliasing effect.
Very rough resolution at this scale pushes the prior to penalize the smoothness too
much, and also adds the sensitivity of the likelihood function. Therefore, there is a
larger log density gap between modes in the posterior 𝑞1 than other scales, which
adds up to the difficulty of multiple modes capture.

5.6 Ablation Study on the Bayesian Inverse Problem
Our MsIGN algorithm introduces new network architecture, as in Section 5.3, and
new training strategy, as in Section 5.4. To better under the mechanism of the
mode capture ability of the MsIGN and the interplay between network architecture
and training strategy, we run extensive experiments with different combinations of
choices of network architecture and training strategy. For this purpose, we plot the
critical sample marginal distribution along 𝑤𝑙,∗ to verify the mode capture, as we
did in Figure 5.10 in Section 5.5.

For the network architecture, we replace the prior conditioning layer by two direct
alternatives:

• the split and squeeze layer in the original design of the Glow [54],

• a stochastic nearest-neighbor upsampling layer, which is the prior condition-
ing layer if assuming the prior is a standard Gaussian distribution whose
covariance matrix is an identity matrix.

In the first case, our MsIGN model essentially recovers the Glow. However, for the
Glow model, we cannot use the Jeffreys divergence as the objective, because it is
infeasible to estimate 𝐷KL(𝑞∥𝑝\). Instead, we use the KL divergence 𝐷KL(𝑝\ ∥𝑞)
as the objective, as in the original design of the Glow [54]. In the second case, the
stochastic nearest-neighbor upsampling layer ignores the prior information when it
upscales the samples. We call the model in this case as the MsIGN-SNN.
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Figure 5.11: Comparison of the marginal distributions at the finest scale (𝑙 = 6) of
models with different network architectures.

Figure 5.11 shows that the prior conditioning layer design is crucial to the perfor-
mance of the MsIGN on both problems, because neither the MsIGN-SNN nor the
Glow has a successful mode capture.

As for the training strategy, we study the effectiveness of the Jeffreys divergence
objective and multi-stage training. For the choice of objective function, we try
replacing the Jeffreys divergence by:

• the Kullback-Leibler (KL) divergence, which is defined as

𝐷KL(𝑝∥𝑞) = E𝑥∼𝑝
[
log

𝑝(𝑥)
𝑞(𝑥)

]
,

• the kernelized Stein (KS) discrepancy, which is defined as

KSD(𝑝, 𝑞) = E𝑥,𝑦∼𝑝
[
𝛿𝑞,𝑝 (𝑥)𝑇 𝑘 (𝑥, 𝑦)𝛿𝑞,𝑝 (𝑥)

]
,

for some positive kernel 𝑘 , where 𝛿𝑞,𝑝 (𝑥) = ∇ log 𝑞(𝑥) −∇ log 𝑝(𝑥), see [68].

For the choice of training manner, in addition to the default multi-stage training, we
also consider:

• the single-stage training that directly trains our model on the fine-scale prob-
lem.

In other words, the single-stage training does not go from the coarse-scale prob-
lem to the fine-scale problem. We remark that the single-stage training using the
Jeffreys divergence is infeasible because of the difficulty to estimate 𝐷KL(𝑞∥𝑝\) in
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the Jeffreys divergence (5.9). We combine different objective choices with differ-
ent training manner choices, and obtain new methods named the MsIGN-KL, the
MsIGN-KL-S, the MsIGN-KS, and the MsIGN-KS-S. For example, the MsIGN-KL
trains our MsIGN using the KL divergence as the objective in a multi-stage manner,
while the MsIGN-KL-S uses the KL divergence as the objective in a single-stage
manner. Similarly, the MsIGN-KS, and the MsIGN-KS-S are two methods using the
kernelized Stein discrepancy as the objective in multi-stage manner and single-stage
manner, respectively.
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Figure 5.12: Comparison of the marginal distributions at the finest scale (𝑙 = 6) of
models with different training strategy.

Figure 5.12 shows that all models trained in the single-stage manner (the MsIGN-
KL-S, the MsIGN-AS-S) face serious mode collapse. Furthermore, our multi-stage
training strategy can benefit the training of other objectives, because the MsIGN-KL
and the MsIGN-AS are much better than the MsIGN-KL-S and the MsIGN-AS-S
respectively. The Jeffreys divergence objective, as used in the MsIGN, leads to more
balanced samples in both modes, especially for the complicated elliptic Bayesian
inverse problem.
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5.7 Multiscale Invertible Generative Networks for the Image Synthesis Task
In this section, we turn to the image synthesis task. When we adopt the same
network architecture from the Multiscale Invertible Generative Network (MsIGN)
described in Section 5.3, there is no known prior distributions 𝜌 for images, and the
density function of the target distribution 𝑞 is also unknown. In fact, information of
the image distribution 𝑞 is given by its samples {𝑥𝑖}𝑁𝑖=1.

Modification to the Network Architecture
Despite the absence of the prior distribution for images, it is still reasonable to think
that the image distribution 𝑞 has some multiscale structure. Roughly speaking,
images of different resolutions usually convey the same set of information to human
eyes, but only with different details. For example, let the deterministic upscaling
operatorA be the local average operator that downsamples an image from resolution
𝑑 × 𝑑 to resolution 𝑑/2 × 𝑑/2. In Figure 5.13, we show a 128 × 128 sample image
from the data set CelebA, and the downsampled images after recursively applying
A. We can see that as resolution goes down, details in the image is gradually lost,
but we could still recognize a human face in the images.

Figure 5.13: One 128 × 128 sample image from CelebA data set, and its lower
resolution versions in 64 × 64, 32 × 32 and 16 × 16, from left to right.

Thus, we recall the definition of the surrogate distribution (5.7) and the scale de-
coupling relation (5.15):

𝑞(𝑥) ∝ 𝜌(𝑥 |A(𝑥))𝑞𝑐 (A(𝑥)) ≈ 𝑞(𝑥). (5.35)

Here 𝑞 is the surrogate distribution, A is the local average operator, and 𝑞𝑐 is the
target distribution at the coarser resolution. In Bayesian inverse problems, (5.35)
holds true because we assume the likelihood has some multiscale structure.

In the image synthesis task, 𝑞 and 𝑞𝑐 are taken as the distributions of images in
fine and low resolutions. We should still expect (5.35) to hold true because the low
resolution imageA(𝑥) has already outlined objects in the original image 𝑥. In other
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words,A(𝑥) is already very close to the original image 𝑥, with only details in pixel
level needed to recover. Here we consider 𝜌 as the distribution that approximates
the pixel-level recovery of 𝑥 from A(𝑥), and we will use a Gaussian distribution
to model 𝜌. We remark that we do not need to find the optimal 𝜌, because the
difference between the surrogate 𝑞 and the target 𝑞 will be corrected by a transport
map, as in step 3 of Algorithm 1.

Similar to Algorithm 2, we apply the relation (5.35) recursively until the resolution
of image is small enough, so that the coarest-scale image distribution can be easily
captured by standard methods. In other words, we still use the settings and notations
in Section 5.3. Let 𝐿 be the number of scales, and for 1 ≤ 𝑙 ≤ 𝐿, let 𝑥𝑙 ∈ R𝑑𝑙 be
the image at scale 𝑙, and A𝑙 : R𝑑𝑙 → R𝑑𝑙−1 be the upscaling operator connecting
scale 𝑙 and 𝑙 − 1: 𝑥𝑙−1 = A𝑙 (𝑥𝑙). For the target distribution 𝑞𝑙 at scale 𝑙, although
we cannot define it via density as in (5.18), it can be defined as the distribution of
downsampled image data 𝑥𝑙 at scale 𝑙 from the data set. The final scale 𝑥𝐿 has the
same resolution as the target image 𝑥, and the dimension and resolution increase as
𝑙 decreases: 𝑑1 < 𝑑2 < . . . < 𝑑𝐿 = 𝑑.

To construct the prior conditional layer 𝑃𝐶𝑙 at scale 𝑙 , we assume a simple Gaussian
prior 𝜌𝑙 = N(0, Σ𝑙) with an isotropic covariance matrix for natural images, i.e,
Σ𝑙 = 𝜎

2
𝑙
𝐼𝑑𝑙 for some 𝜎𝑙 > 0. Then we determine 𝜎𝑙 from the data set and construct

our prior conditioning layer by Theorem 5.3.2.

To determine the prior standard deviation𝜎𝑙 and construct the prior conditional layer
𝑃𝐶𝑙 , we notice that the upscaling operator used here is the local average operator
𝐴𝑙 ∈ R𝑑𝑙−1×𝑑𝑙 , which gives average on every non-overlapping local 2 × 2 patch. In
other words, 𝐴𝑙𝑥𝑙 is the Frobenius inner product of[

1 1
1 1

]
and the local 2 × 2 patch of 𝑥𝑙 . Therefore, the orthogonal completion 𝐵𝑙 ∈
R(𝑑𝑙−𝑑𝑙−1)×𝑑𝑙 of the matrix 𝐴𝑙 on this local 2 × 2 patch can be equivalent to[

1 −1
1 −1

]
,

[
1 1
−1 −1

]
,

[
1 −1
−1 1

]
.

We properly choose a normalized version of 𝐴𝑙 and 𝐵𝑙 , so that
[
𝐴𝑇
𝑙
𝐵𝑇
𝑙

]
is an

orthonormal matrix. The orthonormality gives that 𝐴𝑇
𝑙
𝐴𝑙 + 𝐵𝑇𝑙 𝐵𝑙 = 𝐼𝑑𝑙 .
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Now using Theorem 5.3.2, we can find an explicit form for Σ𝑙 |𝑙−1, 𝑙 ≥ 2:

Σ𝑙 |𝑙−1 = Σ𝑙 − Σ𝑙𝐴𝑇𝑙 (𝐴𝑙Σ𝑙𝐴
𝑇
𝑙 )
−1𝐴𝑙Σ𝑙 = 𝜎

2
𝑙 𝐼𝑑𝑙 − 𝜎

2
𝑙 𝐴

𝑇
𝑙 (𝐴𝑙𝐴

𝑇
𝑙 )
−1𝐴𝑙

= 𝜎2
𝑙 𝐼𝑑𝑙 − 𝜎

2
𝑙 𝐴

𝑇
𝑙 𝐴𝑙 = 𝜎

2
𝑙 𝐵

𝑇
𝑙 𝐵𝑙 .

Therefore, we can choose 𝑉𝑙 = 𝜎𝑙𝐵𝑙 , such that Σ𝑙 |𝑙−1 = 𝑉𝑙𝑉
𝑇
𝑙

.

Now we are only left to estimate the scalar 𝜎𝑙 for each 𝑙 ≥ 2. We estimate 𝜎𝑙
according to Theorem 5.3.2:

𝑥𝑙 = 𝑈𝑙−1𝑥𝑙−1 +𝑉𝑙𝑧𝑙 = 𝑈𝑙−1𝑥𝑙−1 + 𝜎𝑙𝐵𝑙𝑧𝑙 , 𝑧𝑙 ∼ N(0, 𝐼𝑑𝑙−𝑑𝑙−1), (5.36)

where 𝑥𝑙 , 𝑥𝑙−1 are the natural images at the resolution 𝑑𝑙 × 𝑑𝑙 and 𝑑𝑙−1 × 𝑑𝑙−1. Here
𝑈𝑙−1 by definition is𝑈𝑙−1 = Σ𝑙𝐴

𝑇
𝑙
(𝐴𝑙Σ𝑙𝐴𝑇𝑙 )

−1 = 𝜎2
𝑙
𝐴𝑇
𝑙
(𝜎2

𝑙
𝐴𝑙𝐴

𝑇
𝑙
)−1 = 𝐴𝑇

𝑙
. Plugging

it back to (5.36), we have 𝑥𝑙 = 𝐴𝑇
𝑙
𝑥𝑙−1 + 𝜎𝑙𝐵𝑇𝑙 𝑧𝑙 . Now multiplying both sides with

𝐵𝑙 , noticing that 𝐵𝑙𝐵𝑇𝑙 = 𝐼𝑑𝑙−𝑑𝑙−1 and 𝐵𝑙𝐴𝑇𝑙 = 0, we obtain

𝐵𝑙𝑥𝑙 = 𝜎𝑙𝑧𝑙 .

Now we estimate 𝜎𝑙 by moment matching of both sides. The covariance of the
right-hand side is simply 𝜎2

𝑙
𝐼𝑑𝑙−𝑑𝑙−1 , because we assume 𝑧𝑙 ∼ N(0, 𝐼𝑑𝑙−𝑑𝑙−1). The

covariance of the left-hand side can be estimated from the data set using the Monte
Carlo method, because 𝐵𝑙 is known, and 𝑥𝑙 is the natural image at resolution 𝑑𝑙 . For
example, we use 10000 randomly sampled images from each data set and we report
our estimates of 𝜎𝑙 in Table 5.3. The estimate of 𝜎𝑙 is quite robust with the random
images chosen from the data set.

data set MNIST CIFAR-10 CelebA 64 ImageNet 32 ImageNet 64

𝜎2 0.67 0.48 0.22 0.32 0.28
𝜎3 – 0.46 0.30 0.42 0.36

Table 5.3: Estimates of 𝜎𝑙 for different data sets and scale 𝑙.

Modification to the Training Strategy
Since there is no density function for image distribution 𝑞, we modify our training
strategy for the MsIGN for the image synthesis task. We do not use the Jeffreys
divergence 𝐷J(𝑞∥𝑝\) here because we are not given the density of target distribution
𝑞 to evaluate the KL divergence 𝐷KL(𝑝\ ∥𝑞) = E𝑥∼𝑝\

[
log 𝑝\ (𝑥)

𝑞(𝑥)

]
.

The learning objective is now set as the KL divergence 𝐷KL(𝑞∥𝑝\), and we search
for the optimal network parameter \ ∈ Θ that minimizes the KL divergence. We
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remark that this is essentially the maximal likelihood estimation, i.e,

max
\∈Θ
E𝑥∼𝑞 [log 𝑝\ (𝑥)] ,

where 𝑝\ is the distribution modeled by the MsIGN. The expected value with
respect to image distribution 𝑞 can be estimated by the Monte Carlo method using
the samples of 𝑞 from the data set. We still maintain the hierarchical sampling and
multi-stage training strategy as in Algorithms 2 and 4.

5.8 Numerical Experiment on the Image Synthesis Task
We test our model on various data sets, for example, the MNIST, a 28×28-resolution
grey-scale handwriting digit data set of 60000 images, the CIFAR-10, a 32 × 32-
resolution color image data set of 60000 images in 10 selected classes, the CelebA
64, a 64×64-resolution color celebrity face data set of more than 2×105 images, the
ImageNet 32 and the ImageNet 64, 32 × 32-resolution and 64 × 64-resolution color
image data sets of more than 1 × 106 images in 1000 object classes respectively.
We remark that due to the presence of color channels (“RGB” format), the problem
dimension is, for example, 𝑑 = 3 × 64 × 64 = 12288 for the data set CelebA 64 and
ImageNet 64. Parameter settings of network architecture and training strategy of
the MsIGN can be found in Appendix B.

We report the bits-per-dimension (BPD) value, which is a shifted and scaled version
of the KL divergence:

BPD := −1
𝑑
E𝑥∼𝑞 [log 𝑝\ (𝑥)] =

1
𝑑

(
𝐷KL(𝑞∥𝑝\) − E𝑥∼𝑞 [log 𝑞(𝑥)]

)
.

Because E𝑥∼𝑞 [log 𝑞(𝑥)] is a constant that only depends on the target distribution 𝑞,
a small BPD value means better approximation quality of 𝑝 to the target distribution
𝑞. We compare the BPD value of our MsIGN with our baseline models of flow-
based generative networks in Table 5.4. Our MsIGN is superior in the BPD value
among the baseline models in almost every data set. Moreover, the MsIGN is more
efficient in terms of parameter size: for example, in the experiments shown in Table
5.4, the MsIGN uses 24.4% fewer parameters than the Glow for the CelebA 64 data
set, and uses 37.4% fewer parameters than the Residual Flow for the ImageNet 64
data set.

In Figure 5.14 and Figure 5.15, we show synthesized images from the MsIGN after
training on the MNIST data set or the CelebA data set. The synthesized images in
Figure 5.14 look like real human handwriting digits. And the synthesized human
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Model MNIST CIFAR-10 CelebA 64 ImageNet 32 ImageNet 64

Real NVP [24] 1.06 3.49 3.02 4.28 3.98
Glow [54] 1.05 3.35 2.20∗ 4.09 3.81

FFJORD [35] 0.99 3.40 – – –
Flow++ [38] – 3.29 – – –
i-ResNet [3] 1.05 3.45 – – –

Residual Flow [15] 0.97 3.28 – 4.01 3.76

MsIGN 0.93 3.28 2.15 4.03 3.73

Table 5.4: Comparison of the bits-per-dimension value with baseline models of flow-
based generative networks. *: Score obtained by our own reproducing experiment.
–: Score not reported.

Figure 5.14: Synthesized hand writing digits from the MsIGN after training on the
MNIST data set.

faces in Figure 5.15 are hard to distinguish from real human faces without careful
watching. It shows good performance of the MsIGN in capturing the data set
distribution and synthesizing natural images.

In Figure 5.16, we show linear interpolation of real images from the CelebA in the
latent feature space. In each row, the images at both ends, denoted as 𝑥1 and 𝑥2, are
randomly chosen from the data set. Recall that𝑇 = 𝑇\ is the invertible transport map
represented by the MsIGN, where \ is the network parameter. We do interpolation
in the latent space between the latent representation 𝑧1 = 𝑇−1(𝑥1) and 𝑧2 = 𝑇−1(𝑥2)
of 𝑥1 and 𝑥2 respectively, and plot images 𝑇 (_𝑧1 + (1 − _)𝑧2) in the intermediate
columns with _ = 1/8, 2/8, . . . , 7/8. In each row, the interpolated images in the
middle look like human faces with shared features of the faces at both ends. The
latent space seems to be semantically meaningful, which implies that the MsIGN
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Figure 5.15: Synthesized human faces from the MsIGN after training on the CelebA
data set.

Figure 5.16: Linear interpolation of real images in latent space. In each row, images
from left to right correspond to _ = 0, 1/8, . . . , 7/8, 1.

captures the data manifold well.

We visualize snapshots at internal checkpoints when the MsIGN maps Gaussian
noises to images in Figure 5.17. As Table 5.1 shows, the MsIGN generates a image
in the following way: first we generate Gaussian noises 𝑧1, . . . , 𝑧𝐿 , then we have
𝑥1 = 𝐹1(𝑧1), and recursively do

𝑥𝑙 = 𝑃𝐶𝑙 (𝑥𝑙−1, 𝑧𝑙), 𝑥𝑙 = 𝐹𝑙 (𝑥𝑙), for 2 ≤ 𝑙 ≤ 𝐿.
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Here 𝑃𝐶𝑙 is the prior conditioning layer, and 𝐹𝑙 is the invertible flow at scale 𝑙. The
output 𝑥𝐿 at the final scale is the image generated. The invertible flow 𝐹𝑙 is a stack
of multiple invertible blocks introduced in Section 5.1. In other words,

𝐹𝑙 = 𝑓1,𝑙 ◦ 𝑓2,𝑙 ◦ · · · ◦ 𝑓𝑛,𝑙 ,

where 𝑓𝑖,𝑙 , 𝑖 = 1, . . . , 𝑛 are the invertible blocks, and 𝑛 is the number of invertible
blocks. To visualize this process, from top to bottom in Figure 5.17, we plot four
snapshots at each scale 𝑙:

• 𝑥𝑙 from the surrogate distribution 𝑞𝑙 ,

• the intermediate state when 𝑥𝑙 go through 1/3 of the invertible blocks in 𝐹𝑙 ,

• the intermediate state when 𝑥𝑙 go through 2/3 of the invertible blocks in 𝐹𝑙 ,

• 𝑥𝑙 from the target distribution 𝑞𝑙 .

Notice that at 𝑙 = 1, 𝑥1 is not defined, but we can use 𝑧1 instead. Therefore, in each
column of Figure 5.17, we plot 4× 𝐿 = 4× 4 = 16 images. It demonstrates how the
MsIGN maps Gaussian noises at the top of the column to the images at the bottom
of the column.

The first five columns in Figure 5.17 show how the MsIGN maps the latent repre-
sentation to the image randomly chosen from the data set. The last five columns in
Figure 5.17 shows how new images are synthesized from Gaussian noises. From
top to bottom we can observe how Gaussian noise is transformed into a human
face, and how it grows from a low-resolution one (32 × 32) to a high-resolution one
(128 × 128). It demonstrates excellent interpretability of internal neurons of the
MsIGN, which to the best of our knowledge has not been reported for flow-based
generative models before.

5.9 Future Study and Discussion
The Multiscale Invertible Generative Network (MsIGN) and its associated train-
ing algorithms make use of the low-dimensional structure to approximate high-
dimensional distributions. The hierarchical structure and the multi-stage training
strategy benefit the approximation of high-dimensional distributions and help avoid
mode collapse. We demonstrate the potential of the MsIGN in the high-dimensional
problems like the Bayesian inference problem and the image synthesis task, leaving
several interesting topics to follow up.
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Due to the constraint from the convolution kernel in the invertible flow, in order to
apply the MsIGN to the Bayesian inverse problem, the physical space needs to be
discretized as a uniform grid. Besides, the ratio between two adjacent scales needs
to be an integer like 2. In fact, the MsIGN only approximates the finite-dimensional
discretization of the posterior distribution in the Bayesian inverse problem on a
uniform grid. The consistency of the discretizated posterior to the posterior in
the function space is guaranteed by the settings of the Bayesian inverse problem,
which holds true for most cases in practice. For example, see [18, 88, 21, 49, 89,
42]. It is then natural to ask if the MsIGN can be generalized to other settings of
discretization, which would give more flexibility to the MsIGN. To do so, we need
to generalize the prior conditional layer and the invertible flow. The generalization
of the prior conditional layer is not difficult, but it would be interesting to see if there
is a localized prior conditional layer, like the case for the uniform grid presented in
this chapter. A localized prior conditional layer would be very beneficial to control
the computational cost. On the other hand, the generalization of the invertible flow
is non-trivial. Building an invertible flow on a general mesh that is computationally
efficient would be an attractive topic to explore.

Recently, the authors in [70, 97] established estimates of the capacity of deep gen-
erative networks needed to approximate distributions in the Wasserstein distance,
maximum mean discrepancy, or kernelized Stein discrepancy. In the network ar-
chitecture of the MsIGN, the deep generative network is designed to bridge the
difference between the surrogate distribution 𝑞 and the target distribution 𝑞. It
would be interesting to study the capacity of deep generative networks needed to
push forward 𝑞 to 𝑞 up to certain error tolerance. This would require sharper
estimates of the difference between 𝑞 and 𝑞 in different metrics.

It is also interesting to ask if we could establish a better estimate of the Jeffery
divergence, or propose other choices of objective. Using the Jeffreys divergence
as the objective function is very helpful to avoid mode collapse in our numerical
examples. However, when the problem dimension is too high, or the target posterior
is too singular, the importance sampling strategy will become less effective. Thus,
building a better estimate of the Jeffery divergence, or proposing other choices of
objective, would be very helpful in the training of the MsIGN.

We are also interested in applying the MsIGN to other Bayesian inference problems,
for example, more challenging problems as considered in [49, 20], and the data
assimilation problems with multiscale structure in the temporal variation, such
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as those considered in [33]. It is interesting and looks promising to see how deep
neural networks can help attack the high-dimensional cases of the Bayesian inference
problem.
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Figure 5.17: Visualization of snapshots at internal checkpoints of the MsIGN when
it maps Gaussian noises to images. In each column, from top to bottom, we show
how the MsIGN progressively generates new samples from low to high resolution.
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A p p e n d i x A

DETAILS OF THE ADAPTIVE MESH METHOD

A.1 Adaptive Mesh Method
Since the solutions of Euler equations quickly become very singular and concentrate
in a rapidly shrinking region, despite that the initial data are very smooth, we use
the adaptive mesh method to resolve the singular profile of the solutions.

A detailed description of the adaptive mesh method can be found in [44, 71]. Here
we will give a brief introduction of the adaptive mesh method. In Appendix A.2,
we will list the parameter setting used for the experiments in Part 1.

We will take the following equivalent form of the axisymmetric Euler equations
with no swirl as an example in this section,

𝜔1,𝑡 + 𝑢𝑟𝜔1,𝑟 + 𝑢𝑧𝜔1,𝑧 = −(𝑛 − 2 − Y)𝜓1,𝑧𝜔1, (A.1a)

−𝜓1,𝑟𝑟 − 𝜓1,𝑧𝑧 −
𝑛

𝑟
𝜓1,𝑟 = 𝜔1, (A.1b)

𝑢𝑟 = −𝑟𝜓1,𝑧, 𝑢𝑧 = (𝑛 − 1)𝜓1 + 𝑟𝜓1,𝑟 , (A.1c)

which is (??) after making the change of variables: 𝜔1 → 1
𝑟
𝜔\ , 𝜓1 → 1

𝑟
𝜓\ . The

equations that we solve in Part 1 might be slightly different from this equation, but
it does not affect the numerical treatment.

The Euler equations (A.1) are posted as an initial-boundary value problem on
the computational domain (𝑟, 𝑧) ∈ [0, 1] × [0, 1/2]. We introduce two variables
(𝜌, [) ∈ [0, 1] × [0, 1], and the maps

𝑟 = 𝑟 (𝜌), 𝑧 = 𝑧([).

Here we assume these two maps and their derivatives are all analytically known.
We also assume that these two maps are monotonically increasing. We will use
these two maps to map the physical domain in (𝑟, 𝑧) to a computational domain in
(𝜌, [), so that𝜔1(𝑟 (𝜌), 𝑧([)) and 𝜓1(𝑟 (𝜌), 𝑧([)) as functions of (𝜌, [) are relatively
smooth.

Let 𝑛𝜌, 𝑛[ be the mesh resolutions along the 𝑟- and 𝑧- direction respectively. And let
ℎ𝜌 = 1/𝑛𝜌, ℎ[ = 1/𝑛[ be the mesh sizes along the 𝑟- and 𝑧- direction respectively.
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We place a uniform mesh on the computation domain of (𝜌, [):

M(𝜌,[) =
{
(𝑖ℎ𝜌, 𝑗 ℎ[) : 0 ≤ 𝑖 ≤ 𝑛𝜌, 0 ≤ 𝑗 ≤ 𝑛[

}
,

This is equivalent to covering the computation domain of (𝑟, 𝑧) with the tensor-
product mesh:

M(𝑟,𝑧) =
{
(𝑟 (𝑖ℎ𝜌), 𝑧( 𝑗 ℎ[)) : 0 ≤ 𝑖 ≤ 𝑛𝜌, 0 ≤ 𝑗 ≤ 𝑛[

}
.

The Vorticity Equation and The Velocity Equation
Let 𝑣 be some solution variable (either 𝜔1 or 𝜓1), and let 𝑣𝑖, 𝑗 = 𝑣(𝑟 (𝑖ℎ𝜌), 𝑧( 𝑗 ℎ[))
be the discretization of 𝑣 on the mesh. We can use the following formula to get
second-order (in space) approximation of the spatial derivatives of 𝑣 using the central
difference scheme:

(𝑣𝑟)𝑖, 𝑗 =
(
𝑣𝜌
)
𝑖, 𝑗(

𝑟𝜌
)
𝑖

≈ 1(
𝑟𝜌
)
𝑖

·
𝑣𝑖+1, 𝑗 − 𝑣𝑖−1, 𝑗

2ℎ𝜌
,

(𝑣𝑧)𝑖, 𝑗 =
(
𝑣[
)
𝑖, 𝑗(

𝑧[
)
𝑗

≈ 1(
𝑧[
)
𝑗

·
𝑣𝑖, 𝑗+1 − 𝑣𝑖, 𝑗−1

2ℎ[
.

At the boundary of the domain, we need to extend the discretization 𝑣 beyond the
boundary to use the formula above. This can be done by using the symmetry and
the boundary conditions. For example, since 𝑣 is an odd function of 𝑧 at 𝑧 = 0 and
at 𝑧 = 1/2, we have

𝑣𝑖,−1 = −𝑣𝑖,1, 𝑣𝑖,𝑛[+1 = −𝑣𝑖,𝑛[−1, 0 ≤ 𝑖 ≤ 𝑛𝜌 .

Since 𝑣 is an even function of 𝑟 at 𝑟 = 0, we have

𝑣−1, 𝑗 = 𝑣1, 𝑗 , 0 ≤ 𝑗 ≤ 𝑛[ .

At 𝑟 = 1, we could extend 𝑣 by extrapolation:

𝑣𝑛𝜌+1, 𝑗 = 3𝑣𝑛𝜌, 𝑗 − 3𝑣𝑛𝜌−1, 𝑗 + 𝑣𝑛𝜌−2, 𝑗 , 0 ≤ 𝑗 ≤ 𝑛[ .

With the spatial derivatives available, we can solve the velocity equation (A.1c). For
the vorticity equation (A.1a), the time evolution is solved by a second-order explicit
Runge–Kutta method.
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The Stream Function Equation
We use a B-spline-based Galerkin Poisson solver to solve 𝜓1 from (A.1b) on the
computation domain of (𝜌, [). To start with, we rewrite (A.1b) in the following
way:

− 1
𝑟𝑛𝑟𝜌

(
𝑟𝑛
𝜓1,𝜌

𝑟𝜌

)
𝜌

− 1
𝑧[

(
𝜓1,[

𝑧[

)
[

= 𝜔1. (A.2)

Next, we multiply both sides with 𝑟𝑛𝑟𝜌𝑧[𝜙1 for some suitable test function 𝜙1 ∈ 𝑉 to
be specified below, and integrate both sides over the domain (𝜌, [) ∈ [0, 1] × [0, 1].
After integration by part, we obtain the weak form of the equation (A.1b) for 𝜓1:
letting

𝑎 (𝜓1, 𝜙1) :=
∫
[0,1]2

(
𝜓1,𝜌

𝑟𝜌

𝜙1,𝜌

𝑟𝜌
+
𝜓1,[

𝑧[

𝜙1,[

𝑧[

)
𝑟𝑛𝑟𝜌𝑧[d𝜌d[,

and

𝑓 (𝜙1) :=
∫
[0,1]2

𝜔1𝜙1𝑟
𝑛𝑟𝜌𝑧[d𝜌d[,

we look for 𝜓1 ∈ 𝑉 such that for any 𝜙1 ∈ 𝑉 ,

𝑎 (𝜓1, 𝜙1) = 𝑓 (𝜙1) .

Considering the symmetry and boundary conditions of 𝜓1, we define the function
space 𝑉 as

𝑉 = span
{
𝜙1 ∈ 𝐻1

(
[0, 1]2

)
:𝜙1(−𝜌, [) = 𝜙1(𝜌, [), 𝜙1(1, [) = 0,

𝜙1(𝜌,−[) = −𝜙1(𝜌, [), 𝜙1(𝜌, 1 − [) = −𝜙1(𝜌, [)
}
.

We establish a finite-dimensional subspace 𝑉 𝑘
𝑤,ℎ

of the space 𝑉 using weighted
uniform B-splines of even order 𝑘 by

𝑉 𝑘𝑤,ℎ = span
{
𝑤(𝜌)𝐵𝑘𝑖,ℎ𝜌 (𝜌)𝐵

𝑘
𝑗 ,ℎ[
([), 0 ≤ 𝑖 ≤ 𝑛𝜌, 0 ≤ 𝑗 ≤ 𝑛[

}
.

The weight function 𝑤(𝜌) = 1 − 𝜌2 is to enforce the zero Dirichlet boundary
condition of 𝜓1 at 𝑟 = 1. The function 𝐵𝑘

𝑖,ℎ
is the shifted and scaled uniform

B-spline of order 𝑘 adjusted to satisfy the boundary condition. Specifically, we have

𝐵𝑘𝑖,ℎ𝜌 (𝜌) =
𝑏𝑘
𝑖,ℎ𝜌
(𝜌) + 𝑏𝑘

𝑖,ℎ𝜌
(−𝜌)

1 + 𝛿𝑖0
,

𝐵𝑘𝑗 ,ℎ[ ([) =
∑︁
𝑀∈Z

(
𝑏𝑘𝑗 ,ℎ[ (2𝑀 + [) − 𝑏

𝑘
𝑗 ,ℎ[
(2𝑀 − [)

)
,
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where 𝛿𝑖0 is the discrete Dirac delta function. We will see that 𝑏𝑘
𝑖,ℎ

has compact
support of size 𝑘ℎ, so the infinite sum in 𝐵𝑘

𝑗 ,ℎ[
([) will only have finite number of

non-zero terms. The function 𝑏𝑘
𝑖,ℎ

is the shifted and scaled uniform B-spline of order
𝑘:

𝑏𝑘𝑖,ℎ (𝑠) = 𝑏
𝑘

(
𝑠

ℎ
− 𝑖 + 𝑘

2

)
, 𝑠 ∈ [0, 1] , 𝑖 ∈ Z, 𝑘 is an even number,

such that it is centered at 𝑖ℎ. And 𝑏𝑘 is the standard B-spline functions, defined
recursively [41] by:

𝑏1(𝑥) =


1, 𝑥 ∈ [0, 1]

0, 𝑥 ∉ [0, 1]
, 𝑏𝑘 (𝑥) =

∫ 𝑥

𝑥−1
𝑏𝑘−1(𝑥)d𝑥, 𝑘 ≥ 2.

The Galerkin finite element method then discretizes and solves the Poisson equation
for 𝜓1 by finding 𝜓1ℎ ∈ 𝑉 𝑘𝑤,ℎ, such that for any 𝜙1ℎ ∈ 𝑉 𝑘𝑤,ℎ,

𝑎 (𝜓1ℎ, 𝜙1ℎ) = 𝑓 (𝜙1ℎ) .

Since 𝑉 𝑘
𝑤,ℎ

is a finite-dimensional space, the above equation can be converted to a
sparse linear system, and solved by developed sparse linear solvers.

In our computation, we use 𝑘 = 2, which balances the computational cost with
the accuracy. We also remark that, when the dimension 𝑛 is high, the weight 𝑟𝑛

in 𝑎(𝜓1, 𝜙1) and 𝑓 (𝜙1) is quite small, and this will make the linear system quite
ill-conditioned. To overcome this difficulty, for 𝑛 > 5, we will multiply both sides
of (A.2) with 𝑟𝑚𝑟𝜌𝑧[𝜙1, and this yields the weak form: letting

𝑎 (𝜓1, 𝜙1) :=
∫
[0,1]2

(
𝜓1,𝜌

𝑟𝜌

𝜙1,𝜌

𝑟𝜌
+
𝜓1,[

𝑧[

𝜙1,[

𝑧[
+ 𝑚 − 𝑛

𝑟

𝜓1,𝜌

𝑟𝜌
𝜙1

)
𝑟𝑚𝑟𝜌𝑧[d𝜌d[,

and

𝑓 (𝜙1) :=
∫
[0,1]2

𝜔1𝜙1𝑟
𝑚𝑟𝜌𝑧[d𝜌d[,

we look for 𝜓1 ∈ 𝑉 such that for any 𝜙1 ∈ 𝑉 ,

𝑎 (𝜓1, 𝜙1) = 𝑓 (𝜙1) .

If𝑚 ≠ 𝑛, the bilinear form 𝑎 (𝜓1, 𝜙1) is no longer symmetric, which would introduce
extra computational cost when solving the linear system. However, we still observe
robust second-order convergence in the Poisson equation solver. We choose 𝑚 = 1
for the case 𝑛 > 5 in our experiments.
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Adaptive Mesh
The key ingredient of the adaptive mesh method is to properly design the map
𝑟 = 𝑟 (𝜌) and 𝑧 = 𝑧([). In general, we want 𝜔1 to be smooth as a function of (𝜌, [)
throughout the computational time.

In the following, we will use 𝑦 to represent 𝑟 or 𝑧, and 𝑥 to represent 𝜌 or [, because
the construction of the adaptive mesh is the same for these two variables. The only
difference is the parameter settings. Following [44], we design the map as

𝑦(𝑥) = 𝑐
∫ 𝑥

0
𝑝(𝑠)d𝑠, (A.3)

where 𝑐 is a constant to adjust the size of the domain in 𝑦, 𝑝 is chosen from a
parametric family of positive functions. In our practice, we use two parametric
families for 𝑝. The first parametric family is 𝑝(𝑠) = 𝑝(𝑠, 𝑥1, 𝑥2, 𝑦1, 𝑦2), where there
are four parameters 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 0 < 𝑥1 < 𝑥2 < 1, 0 < 𝑦1 < 𝑦2 < 1. The
second parametric family is 𝑝(𝑠) = 𝑝(𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3), where there are six
parameters 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, and 0 < 𝑥1 < 𝑥2 < 𝑥3 < 1, 0 < 𝑦1 < 𝑦2 < 𝑦3 < 1.

We take the first parametric family as an example to illustrate the idea. Our design
principle is to enforce the following relation to hold approximately:

𝑦(𝑥1) ≈ 𝑦1, 𝑦(𝑥2) ≈ 𝑦2, (A.4)

while still guaranteeing the boundary conditions:

𝑦(0) = 0, 𝑦(1) = 1, (A.5)

if 𝑦 represents 𝑟, and

𝑦(0) = 0, 𝑦(1) = 1/2, (A.6)

if 𝑦 represents 𝑧.

Specifically, we have the following representation of 𝑝:

𝑝(𝑠, 𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑝0 + 𝑝1𝑞(𝑠 − 𝑥1) + 𝑝2𝑞(𝑠 − 𝑥2),

where 𝑝0, 𝑝1, 𝑝2 are coefficients to be determined by 𝑥1, 𝑥2, and 𝑦1, 𝑦2, and

𝑞(𝑥) = (1 + 𝑥)60

1 + (1 + 𝑥)60 ,
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is a smooth function that well approximates the Heaviside step function:

𝑞(𝑥) ≈


1 𝑥 ≥ 0,

0 𝑥 < 0.

The above approximation suggests that

𝑝(𝑠, 𝑥1, 𝑥2, 𝑦1, 𝑦2) ≈


𝑝0 𝑠 ∈ [0, 𝑥1) ,

𝑝0 + 𝑝1 𝑠 ∈ [𝑥1, 𝑥2) ,

𝑝0 + 𝑝1 + 𝑝2 𝑠 ∈ [𝑥2, 1] .

And this property simplifies the approximation relation (A.4) and the constraint
(take (A.5) for example) to

𝑝0𝑥1 = 𝑦1,

𝑝0𝑥1 + (𝑝0 + 𝑝1) (𝑥2 − 𝑥1) = 𝑦2,

𝑝0𝑥1 + (𝑝0 + 𝑝1) (𝑥2 − 𝑥1) + (𝑝0 + 𝑝1 + 𝑝2) (𝑥3 − 𝑥1) = 1,

where we use the design (A.3), and assume 𝑐 = 1 for now. We solve this linear system
for 𝑝0, 𝑝1, 𝑝2. It is worth noting that the above system is just an approximation,
because 𝑞 is not the exact Heaviside step function. Therefore, we need to choose an
appropriate constant 𝑐 to enforce that 𝑦(1) = 1. In other words, we could let

𝑐 =
1∫ 1

0 [𝑝0 + 𝑝1𝑞(𝑠 − 𝑥1) + 𝑝2𝑞(𝑠 − 𝑥2)] d𝑠
.

The construction of the second parametric family 𝑝(𝑠) = 𝑝(𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3)
is very similar to the first one. We refer the reader to [44] for detailed description.

The approximation relation (A.4) suggests that we could carefully design the pa-
rameters 𝑥1, 𝑥2, 𝑦1, 𝑦2, to “zoom-in” to the singular region of the solution. We will
describe the strategy to choose the parameters in Section A.2.

A.2 Update of the Adaptive Mesh
Experiments in Chapter 2 and 3
For the axisymmetric Euler equations with no swirl and with Hölder continuous
initial data, we use the first parametric family for the adaptive meshes both in 𝑟 and
𝑧 direction. The initial setting for the adaptive mesh is,

𝑥1 = 0.012, 𝑥2 = 0.1, 𝑦1 = 0.6, 𝑦2 = 0.9, for 𝑟 = 𝑟 (𝜌),
𝑥1 = 0.12, 𝑥2 = 0.1, 𝑦1 = 0.6, 𝑦2 = 0.9, for 𝑧 = 𝑧([).
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Because 𝜔1 will develop a potential self-similar blow-up near the origin, the max-
imum location (𝑃, 𝐻) of |𝜔1(𝑟 (𝜌), 𝑧([)) | as a function of (𝜌, [) will be monoton-
ically pushing toward the origin (0, 0). Since our computational mesh M(𝜌,[) is
uniform, and 𝜔1 = 0 at the origin, when 𝑃 or 𝐻 is too close to 0, there will be few
points between the origin and the maximum location, and thus 𝜔1 could become
unresolved.

Therefore, we update our adaptive mesh as long as

𝐻 < 0.2.

Since the singularity formulation is self-similar, this criterion can also monitor the
singularity formation along the 𝑟-direction.

The new adaptive mesh has the following parameters: for 𝑟 = 𝑟 (𝜌):

𝑥1 = 1.5𝑟 (0.2), 𝑥2 = 10𝑟 (0.2), 𝑦1 = 0.6, 𝑦2 = 0.9, for 𝑟 = 𝑟 (𝜌),
𝑥1 = 1.5𝑧(0.2), 𝑥2 = 10𝑧(0.2), 𝑦1 = 0.6, 𝑦2 = 0.9, for 𝑧 = 𝑧([).

This update rule guarantees that, take the 𝑧-direction for example, there will be
approximately 60% of the points placed between the origin and 1.5𝐻 after the
update. Moreover, there will be approximately 90% of the points placed between
the origin and 10𝐻.

When we update the adaptive mesh, we use a fourth-order piece-wise polynomial
interpolation to interpolate the solutions from the old mesh to the new mesh.

Experiments in Chapter 4
For the weak convection model with smooth initial data, we use the second para-
metric family for the adaptive meshes in 𝑟 and the first parametric family for the
adaptive meshes in 𝑧 direction. This is because the solution will soon develop a very
one-dimensional structure, as shown in Figure 4.2. The smoothness of 𝜔1 along the
𝑟− and 𝑧− directions becomes quite anisotropic. The initial setting for the adaptive
mesh is,

𝑥1 = 0.002, 𝑥2 = 0.012, 𝑥3 = 0.1, 𝑦1 = 0.05, 𝑦2 = 0.6, 𝑦3 = 0.9, for 𝑟 = 𝑟 (𝜌),
𝑥1 = 0.12, 𝑥2 = 0.1, 𝑦1 = 0.6, 𝑦2 = 0.9, for 𝑧 = 𝑧([).

Since 𝜔1 is quite anisotropic in 𝑟 and 𝑧, we update them separately.
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We update the adaptive mesh in 𝑧 direction as long as

𝐻 < 0.2.

The new adaptive mesh for 𝑧 has the following parameters:

𝑥1 = 1.5𝑧(0.2), 𝑥2 = 10𝑧(10), 𝑦1 = 0.6, 𝑦2 = 0.9.

As for the 𝑟 direction, Figure 4.2 suggests that −𝜔1 is very flat in 𝑟 near 𝑟 = 0,
but then decays to zero at the far field. The most singular part of −𝜔1 is not near
the 𝑟 = 0. Instead, we consider designing the new adaptive mesh to smooth the
derivative 𝜔1,𝑟 . Let 𝜒(𝜌) = |𝜔1,𝑟 (𝑟 (𝜌), 𝑧(𝐻)) |. Our numerical observation shows
that 𝜒 is a unimodal function: 𝜒(0) = 0, and it monotonically increases to its
maximum, and drops down a very small value. Letting 𝑋 = max𝜌∈[0,1] 𝜒(𝜌), we
define 𝑃1, 𝑃2 as

𝑃1 = inf
{
𝜌 : 𝜒(𝜌) > 1

5
𝑋

}
, 𝑃2 = sup

{
𝜌 : 𝜒(𝜌) > 1

5
𝑋

}
.

Then we update the adaptive mesh in 𝑟 direction as long as

𝑃2 − 𝑃1 < 0.2.

The new adaptive mesh for 𝑟 has the following parameters:

𝑥1 = 𝑟 (𝑃1), 𝑥2 = 𝑟 (𝑃2), 𝑥3 = 2𝑟 (𝑃2) − 𝑟 (𝑃1), 𝑦1 = 0.2, 𝑦2 = 0.6, 𝑦3 = 0.9.

Roughly speaking, if there are too few points near the maximum location of 𝜒,
which is where −𝜔1 drops fastest in 𝑟, we update the adaptive mesh in 𝑟 to place
more points in that region.

Similarly, when we update the adaptive mesh, we use a fourth-order piece-wise
polynomial interpolation to interpolate the solutions from the old mesh to the new
mesh.
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A p p e n d i x B

EXPERIMENTAL SETTINGS OF THE MULTISCALE
INVERTIBLE GENERATIVE NETWORKS

We describe detailed settings of the network architecture and training strategy of
the MsIGN in our numerical experiments in Part 2 in this section.

As shown in Figure 5.1, the MsIGN has 𝐿 scales, and at each scale 𝑙, the MsIGN
consists of two parts: the prior conditioning layer 𝑃𝐶𝑙 , and the invertible flow 𝐹𝑙 .
The prior conditioning layer 𝑃𝐶𝑙 is intrinsically a linear transformation. Theorem
5.3.2 gives the closed form formula for the prior conditioning layer 𝑃𝐶𝑙 . The
invertible flow 𝐹𝑙 is a stack of multiple invertible blocks of Glow [54]. We will use
𝐾 as the number of invertible blocks in each invertible flow. Each invertible block
consists of three invertible units: actnorm, invertible 1 × 1 convolution and affine
coupling. In each affine coupling unit, functions 𝑓 and 𝑔 are modeled by deep neural
networks to introduce nonlinearity to the unit. Following the practice in Glow [54],
the network structure of functions 𝑓 and 𝑔 is the concatenation of 3 convolution
neural networks and 2 ReLU activation layers in turn. The hidden channel size 𝐻
controls the capacity of the deep neural networks modeling functions 𝑓 and 𝑔.

As for the training of the MsIGN, the multi-stage training of the MsIGN follows
the Algorithm 4. At stage 𝑙 > 1, the specific training of the invertible flow of
the MsIGN follows the Algorithm 3, where we need to specify the sample size
(also called minibatch size) 𝑁 , learning rate [. We remark that for the Bayesian
inverse problem, the number of iterations 𝑀 is calculated based on the computation
budget for that problem. For the image synthesis task, the number of iterations 𝑀
is characterized by the number of epochs 𝐸 , which is the number of times that the
whole data set has been fed into the model.

We list the values of 𝐿, 𝐾 , 𝐻, 𝑁 , [ for the Bayesian inverse problem in Table B.1.
The column starting with “Synthetic” gives the settings for the synthetic Bayesian
inverse problems. The column starting with “Elliptic” gives the settings for the
elliptic Bayesian inverse problems. We also list the values of 𝐿, 𝐾 , 𝐻, 𝑁 , [, 𝐸 for
different data sets in the image synthesis task in Table B.2.
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Parameter Synthetic Elliptic

𝐿 6 6
𝐾 16 32
𝐻 32 64
𝑁 100 100
[ 1 × 10−4 1 × 10−4

Table B.1: Parameter settings for the MsIGN in the Bayesian inverse problem in
Section 5.5.

Parameter MNIST CIFAR-10 CelebA 64 ImageNet 32 ImageNet 64

𝐿 2 3 3 3 3
𝐾 32 32 32 32 32
𝐻 512 512 512 512 512
𝑁 400 400 200 400 400
[ 1 × 10−5 1 × 10−5 1 × 10−4 1 × 10−4 1 × 10−4

𝐸 2000 2000 1000 400 200

Table B.2: Parameter settings for the MsIGN on different data sets in the image
synthesis tasks in Section 5.8.


