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Open card sorting is a well-established method for discovering how people understand and catego-
rize information. This paper addresses the problem of quantitatively analyzing open card sorting
data using the K-means algorithm. Although the K-means algorithm is effective, its results are
too sensitive to initial category centers. Therefore, many approaches in the literature have focused
on determining suitable initial centers. However, this is not always possible, especially when the
number of categories is increased. This paper proposes an approach to improve the quality of the
solution produced by the K-means for open card sort data analysis. Results show that the proposed
initialization approach for K-means outperforms existing initialization methods, such as MaxMin,
random initialization and K-means++. The proposed algorithm is applied to a real-world open card
sorting dataset, and, unlike existing solutions in the literature, it can be used with any number of

participants and cards.

RESEARCH HIGHLIGHTS

• This paper proposes a new algorithm, called BMK-means, that combines for the first time partitional
category with insights from hierarchical categories to analyze open card sorting data.

• The proposed BMK-means algorithm identifies the optimal number of categories, creates the initial core
categories using the best merge method (BMM), identifies the initial centers and finally applies the K-
means to create categories from open card sorting data.

• The rationale for the proposed algorithm is that the category results heavily depend on the goodness of
the initialization technique and the chosen number of categories.

• The paper shows that the proposed algorithm is better for analyzing open card sort data compared to
three known K-means variations: MaxMin, random initialization, and K-means++.
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1. INTRODUCTION
Open card sorting is a method used to derive an information
architecture (IA) based on users’ groupings of the content
(Rosenfeld et al., 2002). IA represents the underlying structures

that give shape and meaning to the content and functionality of
an interactive system (Kalbach, 2007; Katsanos et al., 2019).
User-centered IA aims to increase the findability of informa-
tion (Morville and Rosenfeld, 2006) and enhance the user

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article/33/6/670/6650598 by U
niversity of the South Pacific Library Fiji user on 30 August 2022

https://doi.org/10.1093/iwc/iwac022


Using K-means Clustering and the BBM 671

experience and information integration processes (Bitan et al.,
2019). The most widely adapted method to support the design
of user-centered IAs is card sorting ( Katsanos et al., 2019; Paea
and Baird, 2018;Paea et al., 2020).

Quantitative analysis of open card sorting data can be viewed
as a clustering problem. The latter is defined as the problem of
finding homogeneous groups of data points in a dataset. These
groups are called clusters or categories and can be defined
as a region in which the density of objects is locally higher
than in other regions (Likas et al., 2003). In the context of
open card sorting, the aim is to form groups (i.e. categories) of
the provided cards (i.e. content items). There are two primary
branches of clustering algorithms: hierarchical and partitional
(Jain et al., 1999). Open card sorting datasets are typically
analyzed using hierarchical clustering algorithms (Paul, 2014;
Katsanos et al., 2019). Using partitional clustering algorithms
to analyze open card sorting datasets is still in its infancy and
therefore remains an open problem.

The K-means algorithm is one of the most popular parti-
tional clustering methods (Likas et al., 2003; Redmond and
Heneghan, 2007). Although it has the great advantage of being
easy to implement, it still has some drawbacks (Shukla and
Naganna, 2014; Fränti and Sieranoja, 2019). One important
drawback is that poor initialization can cause the iterations to
get stuck into an inferior local minimum (Fränti and Sieranoja,
2019). The K-means result, therefore, depends a lot on the
initialization. This paper proposes an improved K-means algo-
rithm that can resolve this problem. In specific, a method based
on the best merge method (BMM) is used to generate the initial
category centers to replace the random way in the original
K-means algorithm. The BMM is derived from hierarchical
cluster analysis, which is widely used in the industry to see the
patterns of users’ open card sorting datasets (Paea and Baird,
2018; Paea et al., 2020). Thus, our approach combines for the
first time partitional clustering with insights from hierarchical
clustering to analyze open card sorting data.

This paper presents a new algorithm for quantitative analysis
of open card sort data, named best merge K-means (BMK-
means) algorithm. The BMK-means algorithm uses a new
initialization method for the K-means algorithm in open card
sorting data analysis. We compare the BMK-means algorithm
with three existing initialization methods (random initializa-
tion, MinMax and K-means++) to analyze a real-world open
card sorting dataset. We found that the proposed algorithm
produces categories of better quality and converges faster com-
pared to the existing methods. Recently, Paea and Baird (2018)
proposed a promising method that also uses K-means clustering
to analyze open card sort data. However, they found that their
method works well for up to 30 participants and 30 cards. Our
method solves this limitation, as it is expected to work equally
well for any number of participants and cards.

In the following section, we start with a brief description
of the background and related works. Section 3 describes the
study methodology. Section 4 explains the proposed algorithm.

Section 5 presents the results. Section 6 compares the proposed
algorithm with three existing K-means initialization methods.
Finally, Section 7 provides conclusions and describes direc-
tions for future research and the limitations of this study.

2. BACKGROUND AND RELATED WORK

2.1. Card sorting

Card sorting applies to a wide variety of activities involving
ordering, grouping and/or naming objects or concepts. It can
provide insight into users’ mental models, illuminating the
way that they often tacitly group, sort and label tasks and
content within their own heads (Morville and Rosenfeld, 2006;
Katsanos et al., 2019). Card sorting is based on the assertion
that different participants categorize the content differently but
with enough commonality to understand each other (Harper et
al., 2003). The card sorting method is typically used to under-
stand how users classify and structure the content of interactive
systems, particularly websites. The aim is to produce an IA that
supports findability.

There are two primary alternatives, open and closed card
sorting. In an open card sorting, each participant is given a stack
of cards. The participants are then asked to group those cards
together in any way they want. Finally, they create labels for the
groups that they chose. In a closed card sorting, the researchers
create the labels for their respective groups. The participants
are given a stack of cards and are asked to put each card into a
group. The focus of this paper is on the analysis of open card
sort data.

A typical step-by-step roadmap to effectively apply the open
card sorting method is described in Paea et al. (2020). Various
methodological issues related to conducting an open card sort
have been explored in the literature. Previous research has
shown that open card sorts provide reliable results with 20 to
30 participants (Tullis and Wood, 2004) or even with 10 to 15
participants (Lantz et al., 2019). The number of cards to be
sorted should be between 30 and 100 so that the participants
can have enough items to form groups and the sorting is not
tiring for them (Spencer, 2009). For a large set of cards (e.g.
100), Tullis and Wood (2005) propose a technique in which
each participant only sorts a randomly selected subset of the
full set of cards. If each participant sorts 60% of the full set and
30–40 participants are involved, then the obtained results are
highly similar to sorting done on the full set of cards. Chaparro
et al. (2008) examined the usability of electronic card sorting
programs from the perspective of the researcher and the end-
user.

Recently, the reliability of the open card sorting method has
been studied. Katsanos et al. (2019) presented an empirical
evaluation of the method’s cross-study reliability. Six card sorts
involving 140 participants were conducted: three open sorts
for a travel website and three for an e-shop. Their findings
support the cross-study reliability of card sorting. A recent
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study (Pampoukidou and Katsanos, 2021) found that open card
sorting also has a high test–retest reliability. The study involved
the same participants performing open card sorts twice with
a time interval of 15–20 days for three websites: an e-shop, a
travel and tourism website and a university website. The results
showed that the participants provided significantly and highly
similar groupings and labels between the two card sorts per
domain.

The main quantitative data from an open card sort is a
similarity score per pair of cards (Righi et al., 2013). Two
cards would have 100% similarity if all participants grouped
them together, whereas they have 0% similarity if no users
categorized them together. These scores are usually organized
in an N × N similarity or dissimilarity/distance matrix, where
N is the number of cards, and each cell contains a similarity or
dissimilarity/distance score. Methods to quantitatively analyze
this matrix, such as hierarchical cluster analysis (Spencer,
2009), k-means clustering (Spencer, 2009; Paea and Baird,
2018) and multidimensional scaling (Paea and Baird, 2018),
are typically used to make sense of the card sort groupings.
Each method claims to determine an optimal solution in its
own way.

Nawaz (2012) work draws attention to the choice of card
sorting analysis and techniques and shows how it impacts the
results. His research focuses on three analysis methods: actual
merge method (AMM), BMM and edit distance. His study
concludes that it is important to understand the methodological
issues for tools supporting card sort analysis. Katsanos et
al. (2008) introduced a computational tool, AutoCardSorter,
that uses the semantic similarity between words, phrases and
passages of content items and hierarchical cluster analysis to
develop a website IA. In three validation studies, they found
that AutoCardSorter proved approximately 17 times faster
compared to an open card sort without expense in the quality
of results.

Paea and Baird (2018) applied the combination of the K-
means algorithm and multidimensional scaling to derive an
IA from an open card sorting dataset. They found that their
algorithm worked well for small card sorts of less than 30 par-
ticipants and 30 cards. Their method was compared with BMM,
AMM and participant-centric analysis. One of the contributions
and motivations of the new algorithm proposed in this paper
is that it overcomes the limitation of Paea and Baird (2018)
algorithm by providing a more robust algorithm that works well
for any number of participants and number of cards. The new
proposed algorithm also provides strong quantitative meanings
for open card sorting datasets.

2.2. K-means method

K-means is a popular partitional clustering algorithm (Likas
et al., 2003). K-means intends to partition n objects into k
categories in which each object belongs to the category with
the nearest centroid (mean) (Fränti and Sieranoja, 2019). Each

category is represented by an adaptively changing centroid,
starting from some initial values named seed points. K-means
computes the squared distances between the input data points
(inputs) and centroids and assigns inputs to the nearest centroid.
The Euclidean distance is selected as the similarity index, and
the produced categories minimize the sum of the squares of the
various types (Huang, 1998; Likas et al., 2003).

The algorithm starts by partitioning the input points into k
initial sets, either at random or using some heuristic data. It then
calculates the centroid of each set and constructs a new partition
by associating each point with the closest centroid. Then, the
centroids of each set are recalculated, and the algorithm is
repeated by alternate application of these two steps until con-
vergence, which is obtained when the points no longer switch
categories or centroids are no longer changed. One important
parameter of the algorithm is determining the central point of
each category, which depends on the choice of the number
of categories k. The best number of categories k leading to
the most significant separation (distance) is not prior known
and must be computed from the dataset. The next sections
discuss existing techniques to determine the optimal number
of categories k and algorithm initialization variations.

2.3. Techniques to determine the number of categories k

Although K-means has been widely used in data analysis and
pattern recognition, it has three major limitations (Žalik, 2008).
One of them is that the number of categories must be pre-
determined and fixed. The number of categories should match
the data. Various methods have been proposed to determine
the number of categories, and they are briefly described in the
following sections: (i) eigenvalue-one criterion, (ii) scree plot
(eigenvalue and percentage of variance), (iii) elbow method,
(iv) gap statistic method, (v) silhouette method and (vi) 3D
category view (3DCV)-average method.

2.3.1. Eigenvalue-one criterion
One of the most commonly used criteria for determining the
number of categories is the eigenvalue-one criterion, also
known as the Kaiser criterion (Kaiser, 1960). Katsanos et
al. (2008) used the eigenvalue-one criterion to identify the
optimal number of categories while analyzing open card
sort datasets. This method identifies the optimal number of
categories in terms of variance explained by implementing an
eigenvalue analysis of the similarity matrix and keeping only
the eigenvalues greater than one.

2.3.2. Scree plot (eigenvalue and percentage of variance)
Another method for determining the number of factors to
retain is the scree plot (Cattell, 1966). A scree plot provides
a good graphical representation of the ability of the principal
component analysis to explain the variation in the data (Cattell,
1966). The scree plot can be produced either by plotting the
eigenvalue against the number of categories or by plotting
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the percentage of variance explained against the number of
categories. According to this criterion, the significant factors
are disposed like a cliff, having a big slope while the trivial
factors are disposed at the base of the cliff. Nevertheless, this
method is considered to be very subjective because the curve’s
cut-off point is sometimes not clear.

2.3.3. Elbow method
The elbow method (Bholowalia and Kumar, 2014; Syakur et
al., 2018) is a method that looks at the sum of the squared
error (SSE) explained as a function of the number of cate-
gories. This method relies on the idea that one should choose
a number of categories so that adding another category does
not give much better modeling of the data. The percentage of
variance (within-category sum of squared errors) explained by
the categories is plotted against the number of categories. The
first category will add much information, but the marginal gain
will drop dramatically and give an angle in the graph. The
k number of categories is chosen at this point according to
this method.

2.3.4. Gap statistic method
Tibshirani et al. (2001) proposed another method for deciding
the number of categories called gap statistic. The gap statistic
method compares the total within intra-category variance for
different values of k (number of categories) with the expected
values under the dataset’s null reference distribution. After
categorizing the dataset for different values of k, we get the
intra-category variance for the observed dataset as well as the
reference dataset (uniform random reference datasets over the
range of the observed data are generated) and then calculate the
gap statistic as shown in Appendix 1.

2.3.5. Silhouette method
The silhouette method (Rousseeuw, 1987; Kaufman and
Rousseeuw, 1990) is another well-known method with decent
performance to estimate the potential optimal category number.
This method uses the average distance between one data point
and others in the same category and the average distance among
different categories to score the category result. This technique
provides a graphical representation of how well each object
lies within its category. For every item or point i, its silhouette
S(i) is calculated as shown in Appendix 1.The S(i) value
lies between −1 and 1. A value closer to 1 indicates that an
object is better categorized, and if it is closer to −1 the object
should be categorized into another neighboring category. If
there are too many or too few categories, as may occur when
a poor choice of k is used in the K-means algorithm, some
categories will typically display many narrow silhouettes than
the rest. Given that the silhouette width provides an evaluation
of category validity, silhouette plots and averages may be
used to determine the natural number of categories within
a dataset.

2.3.6. 3DCV-average method
The 3DCV algorithm used by OptimalSort, a well-known
online card sorting tool, simply uses the average (mean) of the
number of categories created by participants in the card sorts.
This average A is calculated as shown in Appendix 1.

2.4. K-means algorithm initialization variations

Fränti and Sieranoja (2019) compared nine initialization tech-
niques for K-means. They found that the maxmin heuris-
tics (MaxMin and K-means++) were the best initialization
techniques for K-means. In this paper, we compare the pro-
posed algorithm against these two techniques. The traditional
K-means algorithm that generates initial category centroids
randomly is also compared with the proposed algorithm. Thus,
three existing initialization methods are compared against the
proposed algorithm: (i) random centroids (RC), (ii) furthest
point heuristic (MaxMin) and (iii) K-means++. All the exist-
ing initialization methods used in this paper were repeated
100 times to reduce the errors. Then, we chose the lowest
total within the SSE. These existing initialization methods are
briefly discussed in the following and are delineated in the work
of Fränti and Sieranoja (2019):

• RC: By far, the most common technique is to select
k random data objects as the set of initial centroids
(MacQueen, 1967). The rationale behind this method is
that random selection is likely to pick points from dense
regions, that is, points that are good candidates to be
centered.

• K-means++: The K-means++ (Arthur and Vassilvit-
skii, 2007) is usually reported as an efficient approxima-
tion algorithm in overcoming the poor clustering prob-
lem with the standard K-means algorithm. K-means++
initializes the category centroids by finding the data
objects that are farther away from each other in a prob-
abilistic manner. In K-means++, the first category cen-
troid is randomly assigned, and the next ones are selected
such that the probability of choosing a point as centroid
is directly proportional to its distance from the nearest,
previously chosen centroid.

• Furthest point heuristic (MaxMin): The main idea of
the MaxMin algorithm is to isolate the category cen-
troids that are farthest apart. The algorithm selects an
arbitrary point as the first centroid and then adds new
centroids one by one. At each step, the next centroid is
the point that is furthest (max) from its nearest (min)
existing centroid (Gonzalez, 1985; Katsavounidis et al.,
1994). This method was originally developed as a 2-
approximation to the K-center clustering problem. It
should be noted that motivated by a vector quantisation
application, Katsavounidis et al.’s (1994) variant takes
the point with the greatest Euclidean norm as the first
center.
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2.5. The need for a K-means variation for open card sort
data analysis

Quantitative analysis of open card sort data using partitional
clustering algorithms is underexplored in the existing literature.
One of the most common partitional clustering algorithms
is the K-means algorithm (Likas et al., 2003; Redmond and
Heneghan, 2007). In the background, we discussed the K-
means algorithm, briefly explained the techniques to determine
the number of categories and discussed the existing initializa-
tion techniques. These are the gaps we identify in the existing
literature:

1) The usage of the K-means algorithm to analyze card
sorting datasets has yet to be widely applied.

2) The existing K-means algorithm variations have shown
that the final category quality depends on the goodness
of the initialization technique.

3) The challenge that arises in quantitative analysis of open
card sort data is deciding the number of categories.

These gaps lead us to propose a new K-means algorithm
variation that is appropriate for open card sort data analysis.
In the following sections, we first describe a real-world open
card sort dataset, and then compare the results of analyzing this
dataset with existing K-means variations and our proposal.

3. METHODOLOGY

Section 3.1 explains the open card sort dataset used in this
study. Section 3.2 presents the application of the selected
known K-means initialization methods to our dataset.

3.1. Open card sort dataset

The open card sorting was used to redesign the IA of the
learning content items of a university course on mathematics
available through the Moodle page. Fifty content items
were chosen for the card sort. The moodle team and the
researchers had close consultation and decided on the 50
cards. Examples of the cards chosen are the following: ‘Course
tour’, ‘Assignments’, ‘Practice quizzes’, ‘Case studies’, ‘Labs’,
‘Class News and Announcements’, ‘Contact us’, ‘Campus life’,
‘Course syllabus’ and ‘“Past test papers’. The titles of all 50
cards are provided in Appendix 2. The research office of the
university gave ethical approval for the study. The participants
were selected from third-year students, postgraduate students
and staff doing and teaching mathematics courses at a regional
university. This study recruited 112 (56 men and 56 women)
participants currently working and/or studying at the university.
The sample age range varies from 21 to 48 years (M = 28 and
SD = 6). All participants had at least 2 years of experience
using the mathematics Moodle page.

Due to COVID-19 restrictions, an online card sorting was
used using the Desmos Card Sorting Activity tool. A demon-

stration video and the information sheet were shared with the
participants beforehand for ease of reference regarding the
purpose and process of card sorting. The participants signed
the consent form on the day of the actual card sorting, and they
performed open card sorting with the researcher(s) online pres-
ence for meaning-making and clarification purposes. This was
arranged through Zoom and Big Blue Button (BBB) sessions.
A link was sent to the participants for the online card sorting.
There was no limitation set on the number of cards for each
group, and participants were free to create as many groups as
they wanted.

Some participants created three categories only, while others
created more complex classifications involving up to 15 cate-
gories (M = 6, SD = 2). There were no significant differences
between the number of categories formed by males (M = 6)
and females (M = 6), t(6) = 0.687, ns, and the number of
categories formed were unrelated to age (r = −0.29, ns).
Figure 1 shows the distribution of the number of categories
sorted by 112 participants. The participants created a total of
749 categories with a median of 6 categories and a mean of 6
categories.

3.2. Known initialization methods for K-means applied to
our dataset

We applied three known initialization methods for K-means
to our open card sorting dataset: (i) RC, (ii) MaxMin and
(iii) K-means++. We used a sampling without replacement
method to guarantee that we do not select the same card twice
regarding the centroids’ initialization methods. The selection is
independent of the order of the data.

For all three K-means variations, we took the following steps
to get our results:

1. Randomly choose a specific number of cards from the
data to be the initial centroids. This number is equal to the
optimal number of categories detected by the proposed
algorithm (see Section 4.1).

2. Determine the initial centroids. The initial centroid is
randomly assigned from the existing data, and the num-
ber of categories is equal to the number of initial cen-
troids.

3. Perform the K-means variation using these initial cen-
troids. From the results, we then find out the total within-
category sum of squared errors (TWSSE).

4. Repeat steps 1 to 3 for another 99 times (total runs is 100)
and get their respective TWSSE.

5. Compare all the TWSSE and choose the one that is the
smallest as the best category result.

6. Once we know the best category result from the previous
step (5), we can then check which card was its initial
centroid in each of the categories.

7. Finally, plot the best category result, the final centroids
and the initial centroids as well.
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FIGURE 1. Number of categories created by 112 participants in our open card sort dataset.

4. PROPOSED ALGORITHM

The K-means algorithm is very popular because of its ability to
categorize any kind of data and outliers quickly and efficiently.
However, as it has been aforementioned, it mainly suffers from
two challenges: (i) the optimal number of categories k should
be known as an input and (ii) the quality of the results is
susceptible to the designated initial starting points as category
centroids. This section describes the proposed algorithm called
the BMK-means algorithm, which provides a solution to these
challenges.

4.1. Determine the number of categories k

First, the proposed algorithm uses six methods to determine
the optimal number of categories (see Section 2.3 for a brief
discussion of the methods) for the given open card sort dataset:
(i) eigenvalue-one criterion, (ii) scree plot (eigenvalue and
percentage of variance), (iii) elbow method, (iv) gap statistic
method, (v) silhouette method and (vi) 3DCV-average method.
Then, the algorithm chooses the k number of categories that
was most often found by the aforementioned approaches. The
application of this step on our card sorting dataset is discussed
in the following:

1) Eigenvalue-one criterion
Table 1 shows that only the first six components have eigen-

values greater than one. So based on this proposal, six cate-
gories explaining 66.27% of the total variance are retained for
this dataset.

2) Scree plot (eigenvalue and percentage of variance)
Figure 2 presents scree plots of our open card sort data. The

scree plot (see Fig. 2a) shows that there is one break when the
number of categories is six and then the line begins to flatten
out. Figure 2(a,b) suggests that 6 categories should be used
based on this method.

a)

break

2. six categories are 

sufficient

1. draw a line through the 

smaller eigenvalues

Number of categories

b)

Number of categories

FIGURE 2. Determining the optimal number of categories for our
card sort dataset. (a) The scree plot for the initial variables. (b) The
scree plot for the cumulative variance
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TABLE 1. Eigenvalues, percentage of the variance and cumulative percentage of variance for our card sort dataset.

Component/category Initial eigenvalues Extraction sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1 16.766 33.531 33.531 16.766 33.531 33.531
2 7.474 14.948 48.479 7.474 14.948 48.479
3 3.849 7.698 56.177 3.849 7.698 56.177
4 2.621 5.242 61.419 2.621 5.242 61.419
5 1.287 2.574 63.993 1.287 2.574 63.993
6 1.138 2.276 66.269 1.138 2.276 66.269
7 0.96 1.92 68.189
8 0.888 1.776 69.965
9 0.818 1.637 71.601
10 0.807 1.614 73.216
11 0.764 1.527 74.743
12 0.722 1.443 76.187
13 0.697 1.394 77.58
14 0.654 1.309 78.889
15 0.63 1.26 80.149
16 0.6 1.199 81.349
17 0.572 1.144 82.493
18 0.564 1.128 83.621
19 0.543 1.086 84.707
20 0.523 1.046 85.754
21 0.517 1.034 86.788
22 0.482 0.964 87.751
– – – –
– – – –
– – – –
50 0 0 0

3) Elbow method
Figure 3 presents the results of the elbow method for our

card sort dataset. A sharp decrease is observed at k = 6,
which is the optimal number of categories according to this
method.

4) Gap statistic method
Figure 4 presents the results for the gap statistic method on

our open card sort dataset and shows that the optimal number
of categories k is two.

5) Silhouette method
Using the silhouette width method, Figure 5 shows that the

optimal number of categories k is 18.

6) 3DCV-average method.
Figure 1 shows that the participants created a total of

749 categories with a mean of 6 categories. Therefore, the
number of categories is six by using the 3DCV-average
method.

TABLE 2. Optimal number of categories from six methods used on
our open card sort dataset.

Number Method name k-value

1 Eigenvalue-one criterion 6
2a Scree plot (eigenvalue) 6
2b Scree plot (percentage of variance) 6
3 Elbow method 6
4 Gap statistic method 2
5 Silhouette sethod 18
6 3D category view (3DCV)—average method 6

7) Summary—determine the number of categories k
Table 2 summarizes the number of categories provided by

all the methods mentioned above. Most methods chose six
categories; thus, the proposed BMK-means algorithm chooses
six categories as the optimal number k for the dataset in this
study.
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Op�mal number of categories
Elbow method

Number of categories k

FIGURE 3. Determining the optimal number of categories k for our
open card sort dataset using the elbow method.

Number of categories k

Op�mal number of categories

FIGURE 4. Determining the optimal number of categories k for our
open card sort dataset using the gap statistic method.

4.2. BMM initialization

BMM (OptimalSort) is a method that can be used to examine
how categories are merged in hierarchical category analysis.
Appendix 3 presents the main steps of the BMM algorithm
along with two experiment scenarios that explain the BMM
steps and calculations.

The BMK-means algorithm locates the initialization
centers based on two design values, the categories’ size, the
participant’s agreement % and how the card merges. The two
design values that depend on the dataset are the following: (i)
k the optimal number of categories for the K-means algorithm

Op�mal number of categories

Number of categories k

FIGURE 5. Determining the optimal number of categories k for our
open card sort dataset using the silhouette method.

(see Section 4.1), and (ii) t the threshold on the dendrogram
produced by the BMM. Figure 6 presents an example of the
BMM dendrogram with a fixed threshold t value (red dash
line), the initialization centroid cards (open black circles), the
category size and names (blue box), the participant’s agreement
(0–100%) and the card merge.

Given a dendrogram (Fig. 6) produced using the BMM,
the BMK-means algorithm calculates the optimal number of
categories using the following formula at a particular t value:

k =
n∑

i=0

kn−i, (1)

where n is the highest number of cards in a category, kn
represents one category with maximum n cards and k is the
optimal number of the categories at a t value. For instance,
if t = 48% in Fig. 6, then there are 10 categories, with each
category containing two or more cards. Starting from the top
of Fig. 6, examples of these are: [Questionnaire, Surveys] with
two cards, [Read me first, Read an article, Required Readings]
with three cards, [Discussion forums, Chat room] with two
cards, [Web conferencing/webinar, Youtube, Software Mobile
applications] with four cards etc. Thus, Equation (1) calculates
the kvalue as

k =
n∑

i=0

kn−i = k2 + k3 + k2 + k4 + k7 + k2 + k4 + k9 + k2

+ k5 = k3 + k4 + k7 + k4 + k9 + k5 = 6.

One of the algorithm criteria is to count the number of
categories starting from the category containing the highest
number of cards (k = k9+k7+k5+k4+k4+k3 = 6). When kthe
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Category 1

Category 2

Category 3

Category 4

Category 5

Category 6

t = 48% threshold

initialisation 3

initialisation 6

initialisation 1

initialisation 5

initialisation 4

initialisation 2

FIGURE 6. The BMM dendrogram (OptimalSort) and the result of BMK-means algorithm. The thicker the lines, the more cards are merged
together. The results are from the dataset of this study involving 112 participants who completed an open card sort with 50 cards. BMK-means
found that the optimal number of categories k for this dataset is 6, and this is why there are six initialization cards. BMK-means set the threshold
t on the dendrogram to 48% participant’s agreement, which results in initial categories that contain at least three cards.

value from Equation (1) equals the calculated k value in Section
4.1, the algorithm stops counting and disregards the rest of the
categories (in this example, it disregards four categories with
two cards). For reading purposes, the categories are numbered
based on their order of appearance from top to bottom in Fig. 6.

Table 3 sketches the steps of the BMK-means algorithm
applied when selecting the initialization center cards in Fig. 6
(black open circle) and Table 4.

Table 4 shows the six initialization center cards, the number
of cards and the card names in each chosen category of Fig. 6.

It is argued that the proposed algorithm can make K-means
more efficient and, more importantly, to provide categories that
are more congruent to participants’ groupings when analyzing
open card sorting datasets. In addition, BMK-means overcomes
the limitation reported in Paea and Baird (2018), who proposed
an algorithm that combines Multidimensional Scaling (MDS)

and K-Means clustering to analyze open card sorting datasets.
They mention that their algorithm does not work well when the
number of participants and the number of cards are greater than
30. In addition, the BMK-means algorithm has more advan-
tages than Fred and Jain’s (2002) method because the proposed
algorithm calculates the optimal number kof categories before
using the dendrogram to locate the initial centers.

5. EXPERIMENTS METHODOLOGY

In the next sections, we study the overall performance of the
different K-means algorithm variations using the following
metrics: (i) the participant’s agreement score (PAS), (ii) cat-
egory validity score (CVS) and (ii) Initial and final centroids
distance (IFCD). This section presents these metrics, and Sec-
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Using K-means Clustering and the BBM 679

TABLE 3. The steps of the BMK-means algorithm used when selecting the initialization center cards.

1) Begin with the choosing of a threshold t value:
The algorithm will look at a t value (Fig. 6) that contains the optimal number of categories k presented in Section 4.1 for the dataset using
the following steps:

i. The algorithm starts by moving the dashed vertical line (threshold) from the right (0% agreement) to the left (100% agreement) side of the
BMM dendrogram (see Fig. 6 for an example);

ii. For a specific t value, the algorithm searches for the categories that contain two or more cards using Equation (1);
iii. Repeats the process in steps (i) and (ii) and stores the results in memory until the dashed line reaches 100% participant’s agreement;
iv. Compares all the calculated k values in (iii) and chooses the k value that each category contains the highest number of cards (see the

example above). Following steps (i) to (iv) in this study’s dataset, six categories lead to a threshold t = 48% participant’s agreement with
three or more cards in each category (categories 1 to 6 in Fig. 6);

v. Suppose step (iv) contains more categories than the calculated k value due to more similar categories of the same lowest number of cards.
In this case, the algorithm will include a category with the closest next merge to t value (dashed vertical line) from the right side. The new
category must not be part of any previously chosen categories.

2) The chosen categories must equal the number of k where the initialization centers are located;
3) Pick the strongest pair with the highest participant’s agreement in a chosen category (the pair that is closest to 100% participant’s

agreement in Fig. 6).
4) Select one card from the strongest pair in (3) that is grouped with the next strongest card positioned along the right edge of the similarity

matrix (Fig. 7) as a starting center of the category. For instance, the black open circle initialization 3 of category 3 in Fig. 6 and the
initialization 3 highlighted by the box in Fig. 7. The strongest pair in category 3 is ‘Course syllabus’ and ‘Course outline’. The algorithm
chose ‘Course outline’ as the starting center of category 3 because ‘Course outline’ pairs with the next related strongest card ‘Course
calendar’ (see Fig. 7). This process repeats for the rest of the categories to find the initialization cards.

TABLE 4. Number of cards from the k = 6 categories and the six
initial card centers

Category number Initialization card name Number of cards

1 Read an article 3
2 Software 4
3 Course outline 7
4 Lecture video 4
5 Assignments 9
6 Counseling 5

tion 6 presents the results of the comparative analysis of the
proposed BMK-means algorithm and the three existing K-
means initialization methods (RC, MaxMin and K-means++).

5.1. Metrics used to compare the algorithms

All three metrics used to compare the proposed algorithm
against existing ones are related to the similarity matrix. As
previously mentioned, the similarity matrix is a simple repre-
sentation of how frequently two cards were placed together by
open card sort participants. Figure 7 shows one way to visualize
the similarity matrix for our card sorting dataset. The darker the
blue, where two cards intersect, the more often the participants
paired them together. Figure 7 shows that the strongest pair is
placed in the top left corner, grouping them with the next related
strongest pair that either of those cards have, and the process

repeats for the new pair. This way, categories of cards that are
strongly related to each other appear together in the same shade
of blue on the matrix. Paea and Baird (2018) and Paea et al.
(2020) discuss the similarity matrix in more detail.

5.2. Participant’s agreement score

PAS measures the degree of participants’ agreement between
pairs. We calculate the PAS of each category by summing all the
percentages from the combination of cards (cells) in a category
and then dividing by the number n of combination cells. How-
ever, this is probably biased by the number of elements within
a category. The elements belonging to the smallest categories
tend to have a lower agreement. This bias could be corrected
by including 100% into the denominator of the formula. The
100% indicates that all participants agree to pair two cards
together.

The similarity matrix is a square m × m matrix, where m
represents the number of cards. Each cell Ci,j represents the
number of times the card i and the card j have been categorized
into the same group by participants. Given a partition of the ele-
ments (calculated, for instance, with the K-means algorithm),
we can calculate for each category the participant’s agreement
using the following formula:

PAS(A) =

I⊂A∑
I=1

Ci,j

n × 100%
,
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FIGURE 7. The similarity matrix (OptimalSort) displays how many participants agree with each pair from the combination of cards. The results
are from the 112 participants who submitted card sorts for a total of 50 cards.

where PAS(A) is the PAS of a category A, I ⊂ A are the
elements that belong to the A category and n is the number
of the combination cards (cells) inAcategory. The algorithm,
therefore, sums all the cells of the elements which belong to the
same category of k, then divides by n × 100%. The final step is
to sum all the category participant’s agreements. An example is
provided to help to explain the calculation better in Appendix 4.

5.3. Category validity score

Given a partition of the cards (e.g. calculated using the k-means
algorithm), we can calculate for each element the category
validity using the following formula:

CVS (k ⊂ A) =

I⊂A∑
i �=k

Ck,i

n
I⊂M∑
i �=k

Ck,i

,

where CVS(k) is the category validity of the card k, I ⊂ A are
the elements that belong to the same A category of k (except k
itself), I ⊂ M are all the elements (except, again, k) and n is the
number of cards inAcategory (Bussolon, 2009). The algorithm
sums all the cells of the elements that belong to the same cat-
egory k (except the diagonal value C(k, k)) divided by the sum
of all the given k row cells (except the diagonal value C(k, k)).
We include the size of the category (n) into the denominator of
the formula to overcome the bias by the number of elements
within a category especially if a category contains a small size.
An example is provided to help explain the calculation better in
Appendix 5.

5.4. Initial and final centroids distance

The distance between the initial and final centroids was calcu-

lated using the distance formula d =
√

(x2 − x1)
2 + (y2 − y1)

2.
It shows how far the final centroid moved away from the initial
center. For the three existing methods, we chose the lowest SSE
found after 100 repetitions. The proposed algorithm requires
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Using K-means Clustering and the BBM 681

TABLE 5. The proposed categories for our card sorting dataset using the BMK-means algorithm.

Level 1 Card numbers Category PAS CVS IFCD

Group 1 9 Cards20, 25, 42, 7, 48, 16, 24, 21, 47 833/3600 = 0.231 0.211 15.33
Group 2 6 Cards28, 22, 10, 50, 31,37 600/1500 = 0.4 0.26 7.92
Group 3 7 Cards13, 14, 38, 4, 27, 3, 1 917/2100 = 0.437 0.262 18.20
Group 4 6 Cards36, 11, 44, 43, 19, 49 635/1500 = 0.423 0.214 11.02
Group 5 9 Cards8, 18, 45, 26, 39, 23, 15, 46, 12 1626/3600 = 0.452 0.36 16.72
Group 6 13 Cards35, 29, 33, 34, 32, 2, 41, 5, 6, 30, 9, 17, 40 2345/7800 = 0.301 0.443 24.27

Total = 2.244 Total = 1.75 Total = 92.47

The card names that correspond to the card numbers in the second column are presented in Appendix 2.

TABLE 6. The proposed categories for our card sorting dataset using the K-means random initialization algorithm.

Level 1 Card numbers Category PAS CVS IFCD

Group 1 5 Cards13, 14, 38, 4, 3 523/1000 = 0.523 0.21 8.23
Group 2 13 Cards35, 29, 33, 34, 32, 2, 41, 5, 6, 30, 9, 17, 40 2345/7800 = 0.301 0.443 21.71
Group 3 6 Cards27, 42, 45, 48, 1, 46 486/1500 = 0.324 0.163 23.05
Group 4 6 Cards28, 37, 22, 10, 50, 31 600/1500 = 0.4 0.26 20.19
Group 5 13 Cards8, 18, 26, 36, 39, 11, 44, 43, 23, 19, 15, 49, 12 3096/7800 = 0.397 0.477 34.01
Group 6 7 Cards20, 25, 7, 16, 24, 21, 47 546/2100 = 0.26 0.184 46.81

Total = 2.205 Total = 1.737 Total = 154.00

The card names that correspond to the card numbers in the second column are presented in Appendix 2.

only one iteration due to its centroid points being already
identified. This is one additional advantage of the proposed
algorithm compared to the existing methods running times.

6. EXPERIMENTAL RESULTS

Four simulated experiments were carried out to test how the
K-means algorithm with four different initialization methods
(proposed one v three existing ones) perform on a real-world
card sorting dataset. The results per experiment are reported in
the following. To this end, a table is used per experiment that
includes these columns: (i) the primary level group number in
the first column, (ii) a list of the card numbers in the second
column. The card names that correspond to these card numbers
are presented in Appendix 2, (iii) the category PAS in the third
column, (iv) the CVS in the fourth column and (v) the distance
between the final and initial centers in the fifth column. The
findings from all four simulated experiments are summarized
and discussed at the end of this section.

6.1. Experiment 1: BMK-means algorithm result

The key findings from using the BMK-means algorithm on our
open card sort dataset are presented in Table 5.

6.2. Experiment 2: K-means random initialization

Table 6 shows the results from using the K-means random
initialization algorithm on our open card sort dataset.

6.3. Experiment 3: K-means MaxMin initialization

Table 7 shows the results from using the K-means MaxMin
algorithm on our open card sort dataset.

6.4. Experiment 4: K-means++ initialization

Table 8 shows the results from using the K-means++ algo-
rithm on our open card sort dataset.

6.5. Summary and comparisons

We summarize our main findings in Table 9 with the method
names in the first column, the number of algorithm rep-
etitions of each method in the second column, the total
category PAS in the third column, the total CVS in the
fourth column and the total distance score in the fifth
column.

This section compares the proposed algorithm (BMK-
means) with the three existing methods to provide valu-
able insights into which method obtains better category
quality.

6.5.1. Participant’s agreement score
Figure 8 shows the total value of the PAS in each method.
Measuring each method’s strength depends on the total value
of the PAS—the larger the total score, the better the technique.
Figure 8 shows that the BMK-means algorithm has the high-
est total score (2.244) compared to the others. This finding
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TABLE 7. The proposed categories for our card sorting dataset using the K-means MaxMin algorithm.

Level 1 Card numbers Category PAS CVS IFCD

Group 1 11 Cards20, 28, 7, 37, 22, 16, 24, 21, 10, 50, 27 1270/5500 = 0.231 0.292 81.99
Group 2 7 Cards8, 18, 26, 39, 23, 15, 12 1053/2100 = 0.501 0.299 10.40
Group 3 8 Cards25, 27, 42, 45, 48, 47, 1, 46 727/2800 = 0.260 0.186 16.05
Group 4 6 Cards36, 11, 44, 43, 19, 49 635/1500 = 0.423 0.214 47.65
Group 5 5 Cards13, 14, 38, 4, 3 523/1000 = 0.523 0.21 56.27
Group 6 13 Cards35, 29, 33, 34, 32, 2, 41, 5, 6, 30, 9, 17, 40 2345/7800 = 0.301 0.443 79.62

Total = 2.239 Total = 1.644 Total = 291.99

The card names that correspond to the card numbers in the second column are presented in Appendix 2.

TABLE 8. The proposed categories for our card sorting dataset using the K-means++ algorithm.

Level 1 Card numbers Category PAS CVS IFCD

Group 1 8 Cards20, 25, 42, 7, 48, 24, 21, 47 662/2800 = 0.236 0.187 10.36
Group 2 7 Cards29, 32, 30, 16, 3, 17, 40 475/2100 = 0.226 0.158 6.66
Group 3 15 Cards8, 18, 45, 26, 36, 39, 11, 44, 43, 23, 19, 15, 49, 46, 12 3962/10500 = 0.377 0.53 15.14
Group 4 8 Cards35, 33, 34, 2, 41, 5, 6, 9 999/2800 = 0.357 0.275 38.89
Group 5 6 Cards13, 14, 38, 4, 27, 1 727/1500 = 0.485 0.241 18.31
Group 6 6 Cards28, 37, 22, 10, 50, 31 600/1500 = 0.4 0.26 13.65

Total = 2.081 Total = 1.651 Total = 103.01

The card names that correspond to the card numbers in the second column are presented in Appendix 2.

TABLE 9. Summary of the main findings.

Method name Number of algorithm repetitions Total category PAS Total CVS Total IFCD

BMK-means 1 2.244 1.750 92.47
Random K-means 100 2.239 1.737 154
MaxMin K-means 100 2.239 1.644 291.99
K-means++ 100 2.081 1.651 103.01
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FIGURE 8. Total values of the PAS in the four methods.

shows that the BMK-means algorithm does combine the most
similar cards in the resulting categories. Similar cards were
selected based on their relationship and closeness depicted by

the participant’s agreement. The combination of cards in a
category plays a role in the PAS, as seen in Fig. 9, which shows
the PAS distribution in each discrete category and its corre-
sponding number of cards. Figure 9 indicates that the PAS does
depend on the combination of cards and the distribution of the
number of cards in a category is important. As seen in Fig. 9,
the red color bar is concentrated in the middle compared to
the other.

In addition, we calculate the total number of similar cards
(Tables 5, 6, 7 and 8) sorted under the same category. For
instance, Table 10 shows that BMK-means and MaxMin have
the highest number of similar cards (82%) sorted under the
same groups. The second highest is BMK-means and Ran-
dom K-means (78%), and the lowest is BMK-means and K-
means++. An example is provided to help explain the cal-
culations better (see Appendix 6). Table 10 further supports
the findings of Fig. 8 that the BMK-means algorithm has the
highest total PAS, the second is MaxMin, the third is Random
and the last is K-means++.

Interacting with Computers, Vol. 33 No. 6, 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article/33/6/670/6650598 by U
niversity of the South Pacific Library Fiji user on 30 August 2022



Using K-means Clustering and the BBM 683

5 6 6 7 8 8 9 9 11 13 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

BMK-means Random MaxMin K-means++

Discrete category and its corresponding number of cards

C
at

ec
o
ry

 p
ar

ti
ci

p
an

t'
s 

ag
re

em
en

t 
sc

o
re

FIGURE 9. Total values of the PAS in six categories of the four methods.

TABLE 10. Number of cards (%) that have been placed in the same
groups between two methods.

BMK-means Random MaxMin K-means++
BMK-means 78 82 74
Random 78 74 72
MaxMin 82 74 56
K-means++ 74 72 56

6.5.2. Category validity score
Figure 10 shows the total CVS of each method. The BMK-
means algorithm has the highest total CVS (1.75). This means
that the BMK-means algorithm categorizes the 50 cards into
the resulting groups more cohesively. The CVS indicates the
substantial similarity between a card and the combination of
the other cards in a category. The combination of cards in a
category plays a role in the CVS, as seen in Fig. 11, which
shows the CVS distribution in each discrete category and
its corresponding number of cards. Figure 11 indicates that
the CVS does depend on the combination of cards and the
distribution of the number of cards in a category is important.
In Fig. 10, the BMK-means algorithm appears to be a robust
method for analyzing cards meaningfully in relation to how the
open card sorting data collection is being carried out compared
to the other methods.

6.5.3. Total distance score
Figure 12 shows the total value of the distance between initial
and final centroids (IFCD) in each method. Measuring each
method’s initialization depends on the total value of the IFCD
score. This score measures how far the final centroid moved
away from the initial center. Figure 12 shows that the BMK-
means algorithm has the lowest total score (92.47) compared to
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FIGURE 10. Total CVS of the four methods.

the existing methods. This means that BMK-means had the best
initialization method compared to the other three approaches.

7. CONCLUSION

This paper presented BMK-means, an algorithm for computing
initial category centers for the K-means method in the context
of open card sort data analysis. In this algorithm, we first iden-
tify the optimal number of categories and then create the initial
core categories using the BMM, identify the initial center, and
finally apply the K-means to categorize the data. The rationale
for the proposed algorithm is that the category results heavily
depend on the goodness of the initialization technique. Indeed,
study results showed that the quality of initial categories is
critical and directly affects the final category quality.

The proposed algorithm is very effective and converges
to better category results. In specific, experimental results
show that the proposed algorithm compares favorably to other
algorithms, obtaining better category quality as operationalized
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FIGURE 11. CVS in six categories of the four methods.
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FIGURE 12. Total distance between the initial and final centroids of
the four methods.

by the sum of each method total PAS and the total CVS.
A method’s strength depends on both the total PAS and the
total CVS to have the highest scores. We also found that the
relationship between CVS and PAS does not show much of
anything happening since its correlation r = 0.0459 is very
close to 0 in this dataset. Our analysis shows that the proposed
algorithm has the least total distance between the initial
and final category centers. This indicates that the proposed
algorithm has the best initialization technique compared to the
selected existing methods.

Our analysis shows that the proposed algorithm is closer
(82% of cards have been placed in the same category by both
techniques) to MaxMin initialization method than the others.
The proposed algorithm also solved the limitation of Paea
and Baird (2018) work and presented how to find the number
of categories k in the open card sort dataset, which are both
additional contributions of this work.

There is a need for more in-depth future research of
components using qualitative data to provide deep and rich

insights into open card-sorting findings. An extension of this
research may be to enhance understanding of the topic from
the MDS using the 3D and the 2D data points. One limitation
of this work is that it currently relies on internal metrics of the
category quality. A potential future research direction would be
to conduct user testing of the structures produced by the four
techniques. We could measure the three dimensions of usability
according to ISO 9241: interaction effectiveness (e.g. task
success), interaction efficiency (e.g. time on task) and users’
perceived satisfaction (e.g. SUS score). If we find statistically
significant differences in favor of our method, we can further
support our claim that it is the best one for analyzing open card
sort data.
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APPENDIX 1. Techniques to determine the number of categories k

Method Formulas

Gap Statistic Gapn(k) = E∗
n

[
log Wk

] − log Wk,

where nr =| Cr |, Wk = r
k∑

r=1

1
2nr

Dr =
k∑

r=1

1
2nr

∑
i,i’∈Cr

dii’ is the total intra-category distance

d, across all r categories Crand E∗
n{.} denote the expectation under a sample of size n from

the reference distribution. To estimate the gap statistic and find the number of categories
via k̂G = smallest k such that Gap(k) ≥ Gap(k + 1) − Sk+1,
where Sk is the standard error from the estimation of Gap(k).

Silhouette S(i) = b(i)−a(i)
max{a(i),b(i)} ,

where a(i) is the average dissimilarity of ith data point with all other data within the
same category. The b(i) is the minimum average dissimilarity of ith data point to any
other category which i is not a member.

Category View
(3DCV)—Average method

A = 1
n

n∑
i=1

ai,

where n is the total number of participants in the study and aiis the number of categories
created by a participant.

APPENDIX 2. The card names and their numbers

Card number Card name Card number Card name

1 Schedule of activities 26 Labs
2 Guides/navigation instructions 27 Course worksheet
3 Read me first 28 Chat room
4 Course tour 29 Class News and Announcements
5 Modes of communication 30 Plagiarism
6 Netiquette 31 Youtube
7 Discussion forums 32 Frequently asked questions
8 Assignments 33 Contact us
9 Policies 34 Counseling
10 Software 35 Campus life
11 Lecture video 36 Lecture capture
12 Tutorials 37 Mobile applications
13 Course calendar 38 Course syllabus
14 Course outline 39 Lecture notes
15 Quiz 40 Teaching Staff Information
16 Questionnaire 41 If you need to complain
17 Surveys 42 Coursebooks (Textbooks)
18 Group projects 43 Past test papers
19 Presentations 44 Past assignments
20 Bibliography 45 Lab and Tutorial signups
21 Reflections 46 Tutorial and Lab attendance
22 Open Educational Resources (OER) 47 Required Readings
23 Practice quizzes 48 Mark sheet
24 Read an article 49 Satellite Tutorial video recordings
25 Case studies 50 Web conferencing/webinar

Appendix 3 The BMM algorithm.

The main steps of the algorithm employed by BMM.

Experiment scenario 1: 5 participants (V , W, X, Y , Z) and 5
cards (a, b, c, d, e)
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1) Let μ1, μ2, ..., μk be the cards to be sorted. Begin with μk categories, each with a single card.
2) Produce combinations of two cards in a category (called the based pairs) for all cards. For instance, [μ1, μ2], [μ1, μ3], . . . , [μ1, μk+1],
[μ2, μ3], . . . , [μ2, μk+1], . . . , [μk−1, μk]. The order of the cards is not important, so [μ1, μ3] = [μ3, μ1].
3) The based pair with the highest score (frequency of cards placed together by participants) is locked in as a new category.
4) All subsets of this new category are eliminated.
5) The process in step 3) repeats, and when a pair is locked in intersects with an existing locked category, the former is agglomerated with the
latter. Repeat step 4).
6) The algorithm stops when all the cards are merged into a single category [μ1, μ2, ..., μk].

Experiment scenario 1 groupings from 5 participants in open 
card sorting

Participant Group Description

V [a], [b], [d], [c, e] • 3 groups with a card each
• 1 group with 2 cards

W [a, b, c], [d, e] • 1 group with 3 cards
• 1 group with 2 cards

X [a, b], [c, d, e] • 1 group with 2 cards
• 1 group with 3 cards

Y [a, b], [c, d], [e] • 2 groups with 2 cards each
• 1 group with 1 card

Z [a, b], [c], [d, e] • 2 groups with 2 cards each
• 1 group with 1 card

Result of BMM = 4×[a, b], 1×[a, c], 1×[b, c], 2×[c, d], 2× 
[c, e], 3 × [d, e].

Experiment scenario 2: 5 participants (V , W, X, Y , Z) and 5 
cards (a, b, c, d, e)

Experiment scenario 2 groupings from 5 participants in open 
card sorting

Participant Group Description

V [a, b, ], [c, d, e] • 1 group with 2 cards
• 1 group with 3 cards

W [a, b], [c], [d], [e] • 1 group with 2 cards
• 3 groups with a card each

X [a, b, ], [c, d, e] • 1 group with 2 cards
• 1 group with 3 cards

Y [a, b, c], [d], [e] • 1 group with 3 cards
• 2 groups with a card each

Z [a], [b], [c], [d, e] • 3 groups with a card each
• 1 group with 2 cards

Result of BMM =4×[a, b], 1×[a, c], 1×[b, c], 2×[c, d], 2×
[c, e], 3 × [d, e].

The following figure presents the result of BMM (experi-
ment scenarios 1 and 2) in a dendrogram plot. The dendrogram
presents the grouping or classification process as the formation
of nested categories at successive grouping stages (Liu and
Wickens, 1992).

100% 50% 0%
a

b

c

d

e

The pair reduction process in experiment scenario 1 and
experiment scenario 2 has produced identical results for two
different experiment scenarios. The BMM works by merging
the strongest pairs, so it does not reconstruct the original data.

Appendix 4 Example of how to calculate PAS

Refer to Group 2 of Table 5 and the yellow portion of Fig. 8 that
shows the Group 2 (G2) card names. Note that the card names
and their numbers are presented in Appendix 2.

Therefore, the participant’s agreement score of group 2
is 0.4. This score (0.4) indicates how strong the similarities
combination of the cards in group 2. The closer the score to
1, the stronger the similarity between the combination of the
cards in a category.

Appendix 5 Example of how to calculate CVS

Refer to Group 2 of Table 5 and the yellow portion of Fig. 8 that
shows the Group 2 (G2) card names. To calculate the category
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1) Let μ1, μ2, ..., μk be the cards to be sorted. Begin with μk categories, each with a single card.
2) Produce combinations of two cards in a category (called the based pairs) for all cards. For instance, [μ1, μ2], [μ1, μ3], . . . , [μ1, μk+1],
[μ2, μ3], . . . , [μ2, μk+1], . . . , [μk−1, μk]. The order of the cards is not important, so [μ1, μ3] = [μ3, μ1].
3) The based pair with the highest score (frequency of cards placed together by participants) is locked in as a new category.
4) All subsets of this new category are eliminated.
5) The process in step 3) repeats, and when a pair is locked in intersects with an existing locked category, the former is agglomerated with the
latter. Repeat step 4).
6) The algorithm stops when all the cards are merged into a single category [μ1, μ2, ..., μk].

validity of card “Chat room” please refer to Appendix 3. Let
k=26 = “Chat room” (red row and column in Fig. 8), then

I⊂A∑
i�=31

C26,j = C26,27 + C26,28 + C26,29 + C26,30 + C26,31

= 45 + 22 + 26 + 18 + 12 = 123, and
I⊂M∑
i�=31

C26,j = C26,1 + C26,2 + C26,3 + C26,4 + .......

+C26,50 = 719.

Thus,

CVS (26 ⊂ G2)=

I⊂A∑
i�=26

C26,i

6
I⊂M∑
i�=26

C26,i

= 123

6(719)
=0.0285, where n=6.

Therefore, the category validity score of “Chat room” is
0.0285. In category validity score, the higher the score, the
stronger the similarity between a card and the combination of
the cards in a category. This technique is also used to measure
the findability of an element. There is a correlation between the
typicality of an element and its category validity.
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APPENDIX 6. Categories created by BMK-means and MaxMin for our open card
sort dataset 82% of Cards were placed by two methods in the same categories.
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