
Iteration split with Firefly Algorithm and Genetic
Algorithm to Solve Multidimensional Knapsack

Problems
Ravneil Nand
SCIMS, FSTE

The University of the South Pacific
Suva, Fiji

ravneil.nand@usp.ac.fj

Priynka Sharma
SCIMS, FSTE

The University of the South Pacific
Suva, Fiji

priynka.sharma@usp.ac.fj

Abstract—When we talk about optimization, we mean to get
the best or the optimal solutions from some set of available
substitutes for the problems. If constraints are introduced in
the problem, the feasible range would change. As we venture
further in optimization, different types of problems need dif-
ferent approaches. One very common problem is combinatorial
optimization problems. Combinatorial optimization is a topic
that consists of finding an optimal object from a finite set of
objects. In simple terms, finding optimal solutions from some
set of available datasets of a problem. Multi Knapsack Problem
(MKP) is NP-hard combinational optimization problem better
known as the multi-constraint knapsack problem. It is one of
the extensively studied problems in the field as it has a variety
of real world problems associated with it. In this paper, the
Firefly algorithm is used with the Genetic algorithm to solve
the Multidimensional Knapsack Problem (MKP). By using the
properties of flashing behavior of fireflies together with genetic
evolution, some benchmark problems are solved. The results are
compared with some work from the literature.

Index Terms—Knapsack Problem , Firefly Algorithm, Genetic
Algorithm

I. INTRODUCTION

A task is said to be perfect if its optimal region or range
has been discovered. One technique involving optimal region
search is optimization. Optimization is not only function
depended but also there are cases where data is involved.
Optimization with and without data is quite interesting as
researchers are focused to get optimal solutions based on some
state-of-the-art techniques. Optimization is finding global min-
imum or maximum based on the objectives and constraints
if any. In the real world problems, there may not only exist
one objective to optimize but can be multiple [7][19]. With
multiple objectives there comes added difficulties as all or
most of the objectives needs to be optimized and optimal
region would shift.

In the multi-objective problem, one of the best algorithms
to date is NSGA-II [7]. NSGA-II uses non-dominated sets in
order to solve the problem at hand. Other algorithms that are
equally good are Particle Swarm Optimization (PSO) [16],
Genetic Algorithm (GA) [6], Firefly Algorithm (FA) [30],
and Ant Colony Optimization (ACO) [9]. Though there has

been modification and hybridization of all these algorithms as
there is a chance of better algorithm with an added advantage.
This has given the motivation to look at Firefly algorithm in
much detail and modify in terms of the structure whereby
another algorithm architecture would be beneficial. The reason
to choose Firefly algorithm is due to its simplicity and less
application when compared to its counterparts.

Be it single objective or multi-objective, an optimization
area that covers all is combinatorial optimization problems
[22] [25]. Combinatorial optimization involves finding a finite
solution from a set of objects such as a knapsack [29][20].
It operates on the domain of those optimization problems,
whereby the set of feasible solutions is discrete or can be
reduced to discrete, in which the goal is to find the best
solution.

There has been a lot of problems involving combinato-
rial problems, two extensively discussed over a decade are
Traveling Salesman Problem [18] and Knapsack Problem [15]
[19] [2]. The one discussed in this paper is the Knapsack
Problem. It has been noticed, that to solve knapsack problem
especially multi-dimensional [19] new approaches are needed
where modification [2] is a must to get better results. Even
in [27], the author has even modified PSO method to solve
benchmark multidimensional knapsack problem instances.

The main aim involves the implementation of the FA method
with other meta-heuristic algorithms such as GA to solve
some combinatorial optimization problems as FA been widely
used to solve the continuous problem same as PSO. The
implementation needs to combine FA with GA where the other
method is only applied after executing the FA method. Besides,
this particular strategy, other strategies for combining both
methods may be considered, for example, the combination
in which the FA algorithm is executed after applying the
other algorithm. However, this alternative would make hybrid
of the other method, i.e., the method to generate the initial
set of solutions becomes the applied algorithm. Nevertheless,
we have proposed the following combination strategy FA-GA
Cycles. The two methods are implemented in separate cycles,
such that the resulting algorithm has two cycles: in the first, the

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

FA method is implemented and in the second the PSO. This
strategy halves the time complicity of both the algorithm.

In this paper, hybrid of FA and GA is discussed with
application to Multi-Dimensional Knapsack problem (MDKP).
The algorithm is tested against benchmark test problems and
later compared with Binary PSO to see if any improvement in
terms of average fitness value.

Rest of the paper is arranged as follows. Section II discusses
the knapsack problem while Section III is on Firefly Algorithm
and proposed method. Section IV is on experimental setup and
results while discussion is given in Section V. The Section VI
highlights concluding remarks with the future application.

II. KNAPSACK PROBLEM

Knapsack problems are classical NP-hard problems from
the domain of combinatorial problems which have been ex-
tensively studied in the literature [29] since first appearance
in the work by Dantzig [5]. There is numerous application
of this class of problems in the industry such as economics,
engineering, financial, etc. As a consequence, various indi-
viduals appreciate problem illuminating and a vast gathering
of puzzlement that can be found in various literature. How-
ever, employing intelligent optimization algorithms to take
care of the optimization issues is an interesting subject and
has numerous feasible applications. The problem requires to
maximize the corresponding profit of selecting some given
items with value and weight where the capacity of the selected
items is bounded by a knapsack capacity or weight [14].
There are different types of knapsack problems depend on
the distribution of items in a knapsack. Two common ones
are 0-1 Knapsack problem and Multiple or Multidimensional
knapsack problems.

The knapsack problem (KP) to a great extent considered
as a discrete programming problem that has turned out to
be a standout amongst the most contemplated problem. The
(KP) is a traditional combinatorial issue used to demonstrate
various present day conditions. Since Balas and Zemel [1]
twelve years prior presented the hypothetical core problem as
a proficient method for taking care of the Knapsack Problem,
all the most effective algorithms have been instituted on
this thought with a place in group of NP-hard problems,
implying that it is in all respects improbable that we ever
can devise polynomial algorithms for these problems [21].
Since the Knapsack Problem just has one imperative, and the
coefficients are numbers, it is viewed as one of the less difficult
NP-Problems. It is effectively comprehended by numerous
individuals who have not contemplated different problems in
hypothetical software engineering.

There are a few variations and extensions to the knapsack
problem. For instance, the “subset sum problem” is a Knap-
sack Problem in which an object’s benefit is directly relative
to its weight. Another variation is the “multidimensional
knapsack problem”. This problem considers a limitation in
addition to the weight on the problem set. For instance,
when you pack your knapsack, you should think about the
heaviness of your items, yet in addition to their volume. A

third, case of a Knapsack Problem variation is the “quadratic
knapsack problem”. The Knapsack Problem and huge numbers
of its variations have been exhibited as an approach to model
connected problems. For instance, in [10] the authors record a
few uses for a variation of the 0-1 Knapsack, called the mul-
tidimensional knapsack problem. The following sub-sections
are going to discuss the two common types of knapsack.

A. 01 Knapsack Problem

Knapsack problem is one of the renowned snags in combi-
natorial optimization [26]. The 0-1 of Knapsack problem has
been considered widely amid from the previous four decades
due to the circumstances in showing up with frequent genuine
spaces through useful significance. In spite of the fact that it
is NP-completeness, numerous algorithms have been recom-
mended that exhibit great behavior in the mediocre cases [17].
As a consequence, various individuals appreciate problem
illuminating and a vast gathering of puzzlement that can be
found in various literature. However, employing intelligent op-
timization algorithms to take care of the optimization issues is
an interesting subject and has numerous feasible applications.
The optimization issues can be isolated into [13] taking care
of function optimization matters where the function esteem is
in the miniature estimation of a function. In some ongoing
considerations, Particle Swarm Optimization - Genetic (PSO-
GA) algorithm [13], counterfeit Honey Bee State algorithm
(HBS) [12] and Gravitational Search Algorithm GA-GSA [17]
are used independently to take care of compelled optimization
issues. Consequently, the knapsack problem becomes the route
of the mortar towards combinatorial optimization problem.

For 0-1 knapsack, the item can be chosen just once where
knapsack is capacity bounded. The problem can be mathemat-
ically formulated as follows:

Maximize z =

n∑
i=1

PiXi

Subject to
n∑

i=1

WiXi ≤ C,

Xiε(0, 1), i = 1, 2, ..., n,

(1)

where n is the number of items, Pi is profit associated with
each item while Wi is the weight associated with each item.
Z is the total profit, C is the capacity of the knapsack and Xi

is the binary decision variable.

B. Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP) is a spe-
cialization of the 01 knapsack problem and an extraordinary
instance of 0-1 integer programming [4]. The objective of a
Multidimensional Knapsack Problem (MKP) is to boost the
entirety of estimations of the items to be chosen from a
predefined set by methods for contemplating over various asset
limitations. This problem has been generally contemplated
over numerous decades because of both hypothetical interests

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

as well as its wide applications. Additionally, MKP has been
extensively conversed because of its theoretical importance
and the wide range of applications [8]. The multidimensional
knapsack problem has been acquainted with model problems
including cutting stock, stacking problems, venture arrange-
ment for the travel industry segment of a creating nation,
assignment of databases and processors in a conveyed infor-
mation preparing [sic], conveyance of vehicles with multiple
compartments. From a computational perspective, numerous
methodologies have been proposed to unravel the MKPs and
the different proposed algorithms can be extensively assembled
into two classes; (i) exact algorithms, and (ii) heuristic or meta-
heuristic algorithms.

For multiple knapsacks, it is filling of multiple knapsacks
simultaneously with n items. The objective is to maximize the
total reward of the selected items. Then, the problem can be
formulated as follows:

Maximize z =

n∑
j=1

cjxj

Subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...,m,

xjε(0, 1), j = 1, 2, ..., n

(2)

where n is the set of items, xj is the decision variable
associated with item j and cj is profit associated with each
item j. While aij is the resource requirement of each item.
b is the capacity of the resource while m is the number of
resource constraints.

III. FIREFLY ALGORITHM

Firefly algorithm is a bio-inspired metaheuristic algorithm
for optimization problems. It was introduced in 2009 by Yang
[30]. The algorithm is inspired by the flashing behavior of
fireflies at night. One of the three rules used to construct the al-
gorithm is that all fireflies are unisex, which means any firefly
can be attracted to any other brighter one. The second rule is
that the brightness of a firefly is determined from the encoded
objective function. The last rule is that attractiveness is directly
proportional to brightness but decreases with distance, and a
firefly will move towards the brighter one, and if there is no
brighter one, it will move randomly [30]. The algorithm is
stated below in Algorithm 1.

A. Proposed Algorithm: Firefly Algorithm with Genetic Algo-
rithm

The proposed algorithm uses Firefly algorithm (FA) with
the Genetic algorithm (GA). The implementation uses FA
algorithm for the first half of the iteration and then GA
is used in second half. FA-GA Cycles - The two methods
are implemented in separate cycles, such that the resulting
algorithm has two cycles: in the first, the FA method is
implemented and in the second the GA. This strategy halves
the time complicity of both the algorithms. During first half

Algorithm 1: Firefly Algorithm
Step 1: Objective function: f(x)
Step 2: Generate an initial population of fireflies. xi(i = 1, 2,, n)
Step 3: Formulate light intensity I so that it is associated with f(x)
Step 4: Define absorption coefficient Υ
while t < MaxGeneration do

foreach i = 1 : n (all n fireflies) do
foreach j = 1 : i (n fireflies) do

if Ij > Ii then
Vary attractiveness with distance r via exp(-Υr);
move firefly i towards j;
Evaluate new solutions and update light intensity;

else
nothing

end
end

end
Rank fireflies and find the current best;

end
Post-processing the results and visualization;

of the iterations, FA searches for best or optimal solutions and
in the later stage the best solutions are inserted into the GA
algorithm to search further. This way it allows the algorithm
to avoid getting stuck at local minimum as another technique
is used post half max iteration.

In Algorithm 2, the implementation of the proposed method
is shown.

Algorithm 2: Proposed Algorithm
Step 1: Objective function: f(x)
Step 2: Generate an initial population of fireflies/Population.
xi(i = 1, 2,, n)

Step 3: Formulate light intensity I so that it is associated with f(x)
Step 4: Define absorption coefficient Υ and Mutation rate
while t < MaxGeneration/2 do

foreach i = 1 : n (all n fireflies) do
foreach j = 1 : i (n fireflies) do

if Ij > Ii then
Vary attractiveness with distance r via exp(-Υr);
move firefly i towards j;
Evaluate new solutions and update light intensity;

else
nothing

end
end

end
Rank fireflies and find the current best;

end
while y < MaxGeneration/2 do

foreach Sub-population do
foreach Depth of n Generations do

Select and create new offspring using genetic operators
Cooperative Evaluation the new offspring
Add new offspring’s to the sub-population

end
end
Rank population

end
Post-processing the results and visualization;

The proposed method is shown in Algorithm 2, it uses
FA to find the best solution initially and later aided by GA.
The important part here is to save the existing best solutions
for the next instance. In Step 1 of the given algorithm, the
objective function is defined which is later used to initialize
the population in terms of the method used in step 2. As for

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

step 3 and 4, the calculation of important variables are done
such as light intensity and mutation coefficient for each of the
methods used. At the later stage, the population is evaluated in
terms of iterations based on FA and GA methods. Mutation is
used to get better solution across the field to benefit the entire
population. Lastly, the results are processed and captured.

IV. EXPERIMENTAL SETUP AND RESULTS

This section reports first on the experimental setup and
then on results obtained from the experimental runs and gives
further insight on the results through figure.

A. Experimental Setup

The basic setup of the algorithm is discussed here. The
experiment was executed 50 times (runs) with 1000 iterations.
Half iteration each for the two cycles (FA and GA). That
means, first 500 iterations were used by FA and rest by GA.

The number of fireflies was kept at 100, gamma was 0.1
while Attraction Coefficient Base Value and Alpha was kept
at 1. The Damping Ratio was set at 0.99. All the parameter
settings of the firefly are based from the literature.

For GA parameter setting, the Crossover Percentage and
Mutation Percentage was kept at 0.4 and 0.8 respectively. Se-
lection pressure was kept at 5 and the number of offspring was
kept at 2. Again all the settings are based from the literature.
This allows for a controlled environment for comparison.

The benchmark datasets of MKP are selected from OR-
Library [3]. The first set contains eight benchmark problems
and corresponds to HP and PB [11]. These instances have also
been solved by BPSO in [27]. The second set corresponds to
weish [24], which contains 38 instances having 30 to 90 items.
The third problem set contains 10 instances which correspond
to series sento [23] and weing [28] having 28, 60 and 105
number of items.

B. Results

This subsection reports on the performance of the proposed
model based on the setup given previously. The Tables I-III
shows the details of trial problems as well as the corresponding
results and Table IV, compares some of the results with
optimal values obtained in [27].

More specifically, the columns display the Example number,
Problem Instance, Number of Knapsacks and number of items
in each instance. Apart from this, the final four columns show
the numerical results such as minimum value attained, median
value, the maximum value (Optimal) and mean value of the
total runs for each instance. The results are for the proposed
algorithm.

In Table I, the results of HP and PB testing problem are
shown. In all the 8 instances given, the proposed FAGA
method manage to produce optimal fitness for each of the
problems. The mean is also closer to optimal value indicating
on good performance with each run.

In Table II, the results of WEISH testing problem are shown.
In all the 30 instances of WEISH, the proposed FAGA method
was able to produce optimal fitness, which can be seen under

Max column. The results are similar as previous table. Mean of
some of the problems are very close to optimal fitness while
some are not especially for hard cases such as WEISH11,
WEISH19, WEISH27, WEISH28 and WEISH29.

In Table III, the results of Sento and Weing testing problem
are shown. In all the 10 instances shown, the proposed FAGA
method was able to produce optimal fitness, which can be
seen under Max column. In all the cases, the average optimal
value labeled as ”Max” is very close to optimal value, which
indicates more success rates in the number of runs.

Table IV, shows comparison of proposed methods perfor-
mance with existing methods discussed in [27]. It can be seen
that FAGA has outperformed as PBPSO has when compared
to other variants of PSO namely KBPSO and MBPSO. FAGA
gave best average fitness in PB4, Sent1, Sent2 and Weish20.
Similarly, PBPSO has outperformed in PB5, PB6, Sent1 and
Weish12, which is four datasets.

Figure 1 shows the typical fitness value of the proposed
method on PB4 for 100 iterations while Figure 2 and Figure
2 shows on 1000 iterations for PB4 and SENTO dataset
respectively. It clearly shows that with the proposed method,
convergence is possible in less than 100 iterations.

Fig. 1. The average fitness value of FAGA on PB4 dataset for 100 iterations.

V. DISCUSSIONS

The performance for the proposed method with multi knap-
sack problem will be discussed in this section.

It has been seen in all the datasets that the proposed method
FAGA was able to obtain the best known solution for all
benchmark test problems. For all the datasets, the performance
of the algorithm converged better as the number of iterations
increased. The two methods in two cycles helped to direct
the solution to the best optimal values. This allowed for the
better spread of individuals as GA and FA worked together to
improve the solution.

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS OF PROBLEM SET I HP AND PB TESTING PROBLEMS OF MULTIDIMENSIONAL KNAPSACK PROBLEM.

Example Instance Best Known No. Knapsacks No. Items Min Median Max Mean
1 PB1 3090 4 28 3006 3060 3090 3061.32
2 PB2 3186 4 35 3084 3167 3186 3154.80
3 PB4 95168 4 27 90615 94461 95168 93595.24
4 PB5 2139 4 34 2085 2102 2139 2106.88
5 PB6 776 2 29 694 723.00 776 738.00
6 PB7 1035 10 20 1006 1024 1035 1024.00
7 HP1 3418 30 40 3354 3404 3418 3395.92
8 HP2 3186 30 37 3092 3164 3186 3156.40

TABLE II
RESULTS OF PROBLEM SET II WEISH TESTING PROBLEMS OF MULTIDIMENSIONAL KNAPSACK PROBLEM.

Example Instance Best Known No. Knapsacks No. Items Min Median Max Mean
1 WEISH01 4554 5 30 4480 4554 4554 4545.96
2 WEISH02 4536 5 30 4504 4536 4536 4534.12
3 WEISH03 4115 5 30 3987 4115 4115 4106.00
4 WEISH04 4561 5 30 4505 4561 4561 4558.76
5 WEISH05 4514 5 30 4451 4514 4514 4506.44
6 WEISH06 5557 5 40 5529 5557 5557 5549.28
7 WEISH07 5567 5 40 5365 5550 5567 5545.64
8 WEISH08 5605 5 40 5517 5603 5605 5594.20
9 WEISH09 5246 5 40 5046 5246 5246 5215.76

10 WEISH10 6339 5 50 6092 6338 6339 6310.24
11 WEISH11 5643 5 50 5396 5605 5643 5571.00
12 WEISH12 6339 5 50 6121 6338 6339 6301.00
13 WEISH13 6159 5 50 6012 6159 6159 6121.84
14 WEISH14 6954 5 60 6730 6923 6954 6904.36
15 WEISH15 7486 5 60 7376 7442 7486 7442.54
16 WEISH16 7289 5 60 7128 7272 7289 7253.68
17 WEISH17 8633 5 60 8602 8624 8633 8626.24
18 WEISH18 9580 5 70 9477 9565 9580 9556.20
19 WEISH19 7698 5 70 7333 7598 7698 7580.24
20 WEISH20 9450 5 70 9264 9410 9450 9400.12
21 WEISH21 9074 5 70 8947 9025 9074 9034.08
22 WEISH22 8947 5 80 8632 8857 8947 8856.72
23 WEISH23 8344 5 80 7989 8212 8344 8203.71
24 WEISH24 10220 5 80 10146 10215 10220 10204.92
25 WEISH25 9939 5 80 9730 9908 9939 9889.32
26 WEISH26 9584 5 90 9414 9506 9584 9502.18
27 WEISH27 9819 5 90 9473 9702 9819 9683.10
28 WEISH28 9492 5 90 6944 9360 9492 9163.18
29 WEISH29 9410 5 90 8939 9335 9410 9262.60
30 WEISH30 11191 5 90 11127 11172 11191 11169.72

TABLE III
RESULTS OF PROBLEM SET III SENTO AND WEING TESTING PROBLEMS OF MULTIDIMENSIONAL KNAPSACK PROBLEM.

Example Instance Best Known m n Min Median Max Mean
1 SENTO1 7772 30 60 7235 7680 7772 7695.90
2 SENTO2 8722 30 60 8660 8699 8722 8698.60
3 WEING1 141278 2 28 140543 141278 141278 141115.60
4 WEING2 130883 2 28 129183 130883 130883 130759.40
5 WEING3 95677 2 28 93188 94908 95677 94578.16
6 WEING4 119337 2 28 119088 119337 119337 119297.16
7 WEING5 98796 2 28 94628 98796 98796 97229.00
8 WEING6 130623 2 28 129283 130233 130623 130362.20
9 WEING7 1095445 2 105 1090738 1094945 1095445 1094250.16

10 WEING8 624319 2 105 623118 624319 624319 624117.16

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
RESULTS FOR COMPARING PROPOSED METHOD TO ALGORITHMS REPORTED IN [27] ON SOME TESTING KNAPSACK PROBLEMS

Instance Best Known Algorithm Best Fitness Average Fitness
PB4 95168 KBPSO 95168 91879.15

MBPSO 95168 92419
PBPSO 95168 93114.1
FAGA 95168 93595.24

PB5 2139 KBPSO 2139 2131.1
MBPSO 2139 2110.9
PBPSO 2139 2134.45
FAGA 2139 2106.88

PB6 776 KBPSO 776 746.95
MBPSO 776 708.60
PBPSO 776 752.85
FAGA 776 738.00

Sent1 7772 KBPSO 7676 77562.4
MBPSO 7762 7683.55
PBPSO 7772 7695.90
FAGA 7772 7695.90

Sent2 8722 KBPSO 8655 8603.5
MBPSO 8711 8651
PBPSO 8722 8671.1
FAGA 8722 8698.60

Weish12 6339 KBPSO 6339 6295.1
MBPSO 6339 6317.05
PBPSO 6339 6331.75
FAGA 6339 6301.00

Weish20 9450 KBPSO 9146 9092.05
MBPSO 9445 9352.95
PBPSO 9450 9362.05
FAGA 9450 9400.12

Fig. 2. The average fitness value of FAGA on PB4 dataset for 1000 iterations.

In Problem Set I, II and III, it was seen that the FAGA
method was able to obtain the best known optimal solutions for
the HP and PB, Weish and Sento and Weing testing problems.
Even the minimum fitness value, median and mean are closer
to the maximum fitness value. The GA method has helped the
FA to perform better in terms of solution convergence and to

Fig. 3. The average fitness value of FAGA on Sento dataset for 1000
iterations.

avoid local optimum.
Some of the results of the benchmark testing problems

were compared with the existing method proposed in [27].
Proposed method outperformed in the three of the cases while
PBPSO method outperformed in three as well and had the
same results in Sent1. The performance indicates FAGA or

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

PBPSO method is a good solution for this time of problems. To
further investigate the algorithm, the algorithm outperformed
in all the datasets in terms of the other two methods mentioned
namely KBPSO and MBPSO. This shows that splitting two
algorithms into two different cycles had been very beneficial.

By observing Figure 1, further analysis can be done on
the performance of the proposed methods. The figure clearly
shows how fast the algorithm converged to the best known
fitness for PB4 dataset. It was just less than 10 runs that the
optimal value was found, noting that the number of iteration
was kept at 100.

If we tend to look at the results again, the proposed hybrid
of FA and GA has done well in terms of the maximum
fitness function and average fitness function. These results
are proof of concept and at the preliminary level as more in-
depth analysis needs to be done such as success rate, mean
percentage error, etc. to allow the algorithm to solve such
problems in the nip of time.

VI. CONCLUSION

This research was intended to combine FA with GA algo-
rithm to solve Multi Knapsack problems where two cycles
are used to solve the given problem. After a successful run
on some benchmark testing problems, it can be said that the
proposed FAGA model works well in terms of obtaining the
optimal values of a given dataset. Even the problems with
datasets are difficult to solve when it comes to multi-objective,
by proposing an algorithm based on hybridization and state-
of-the-art technique we would be able to give insights in
evolutionary algorithms for new researchers. For future work,
the algorithm will be changed in terms of the two variants. The
first variant would combine FA-GA algorithm. Both methods
are implemented in a common cycle, more precisely, the GA
method is incorporated in the cycle corresponding to the FA
method. The idea is to use both methods for a reciprocal
improvement of the results produced individually. In other
words, after the construction of solutions by every firefly (in
each cycle), the GA method is used to improve and/or to find
new solutions, which will provide new clues to the fireflies in
the following cycles. Secondly, the GA and FA combination
would be used where it corresponds to an extension of the FA-
GA combination, where the GA is used for the construction
of the solution and FA would be used to improve the solution.
Lastly, the method would be applied to some real world
problems associated with Knapsack problems.

REFERENCES

[1] Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal
covers. SIAM Journal on Applied Mathematics 34(1), 119–148 (1978).
https://doi.org/10.1137/0134010, https://doi.org/10.1137/0134010

[2] Bansal, J.C., Deep, K.: A modified binary particle swarm optimization
for knapsack problems. Applied Mathematics and Computation 218(22),
11042–11061 (2012)

[3] Beasley, J.E.: Orlib operations research library (2005), http://people.
brunel.ac.uk/∼mastjjb/jeb/orlib/mknapinfo.html

[4] Beaujon, G.J., Marin, S.P., McDonald, G.C.: Balancing and optimizing
a portfolio of r&d projects. Naval Research Logistics (NRL) 48(1),
18–40. https://doi.org/10.1002/1520-6750(200102)48:1¡18::AID-
NAV2¿3.0.CO;2-7, https://onlinelibrary.wiley.com/doi/abs/10.1002/
1520-6750%28200102%2948%3A1%3C18%3A%3AAID-NAV2%3E3.
0.CO%3B2-7

[5] Dantzig, G.B.: Discrete-variable extremum problems. Operations re-
search 5(2), 266–288 (1957)

[6] Davis, L.: Handbook of genetic algorithms (1991)
[7] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., Fast, A.: Nsga-ii. IEEE

transactions on evolutionary computation 6(2), 182–197 (2002)
[8] Djannaty, F., Doostdar, S.: A hybrid genetic algorithm for the multi-

dimensional knapsack problem. International Journal of Contemporary
Mathematical Sciences 3(9), 443–456 (2008)

[9] Dorigo, M., Birattari, M.: Ant colony optimization. Springer (2010)
[10] Fréville, A.: The multidimensional 0-1 knapsack problem: An overview.

European Journal of Operational Research 155, 1–21 (2004)
[11] Frville, A., Plateau, G.: Hard 0-1 multiknapsack test problems for size

reduction methods. Investigation Operativa 1(3), 251–270 (1990), www.
scopus.com, cited By :40

[12] Garg, H.: Optimization problems using an artificial bee colony algorithm
(2013)

[13] Garg, H.: A hybrid pso-ga algorithm for constrained
optimization problems. Appl. Math. Comput. 274(C), 292–
305 (Feb 2016). https://doi.org/10.1016/j.amc.2015.11.001,
http://dx.doi.org/10.1016/j.amc.2015.11.001

[14] Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial
Optimization, pp. 3261–3362. Springer (2013)

[15] Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack
problems. In: Knapsack problems, pp. 235–283. Springer (2004)

[16] Kennedy, J.: Particle swarm optimization. Encyclopedia of machine
learning pp. 760–766 (2010)

[17] Lagoudakis, M.G.: The 0-1 knapsack problem – an introductory survey.
Tech. rep. (1996)

[18] Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B., et al.: The
traveling salesman problem: a guided tour of combinatorial optimization,
vol. 3. Wiley New York (1985)

[19] Lust, T., Teghem, J.: The multiobjective multidimensional knapsack
problem: a survey and a new approach. International Transactions in
Operational Research 19(4), 495–520 (2012)

[20] Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algo-
rithms and complexity. Courier Corporation (1998)

[21] Pisinger, D.: Core problems in knapsack algorithms. Operations Re-
search 47, 570–575 (1994)

[22] Reeves, C.R.: Modern heuristic techniques for combinatorial problems.
advanced topics in computer science. Modern Heuristic Techniques for
Combinatorial Problems: Advanced Topics in Computer Science (1995)

[23] Senju, S., Toyoda, Y.: An approach to linear programming with 0-1
variables. Management Science pp. B196–B207 (1968)

[24] Shih, W.: A branch and bound method for the multiconstraint zero-
one knapsack problem. Journal of the Operational Research Society
30(4), 369–378 (Apr 1979). https://doi.org/10.1057/jors.1979.78, https:
//doi.org/10.1057/jors.1979.78

[25] Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combina-
torial optimization problems. Computers & Operations Research 39(5),
875–889 (2012)

[26] Song, Y., Zhang, C., Fang, Y.: Multiple multidimensional knapsack
problem and its applications in cognitive radio networks. In: MILCOM
2008 - 2008 IEEE Military Communications Conference. pp. 1–7 (Nov
2008). https://doi.org/10.1109/MILCOM.2008.4753629

[27] Wang, L., Wang, X., Fu, J., Zhen, L.: A novel probability binary particle
swarm optimization algorithm and its application. Journal of software
3(9), 28–35 (2008)

[28] Weingartner, H.M., Ness, D.N.: Methods for the solution of the multi-
dimensional 0/1 knapsack problem. Operations Research 15(1), 83–103
(1967)

[29] Wolsey, L.A., Nemhauser, G.L.: Integer and combinatorial optimization.
John Wiley & Sons (2014)

[30] Yang, X.S.: Firefly algorithm, stochastic test functions and design
optimisation. arXiv preprint arXiv:1003.1409 (2010)

Authorized licensed use limited to: University of the South Pacific. Downloaded on March 22,2021 at 06:06:24 UTC from IEEE Xplore. Restrictions apply.

