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ABSTRACT 
 

Seasonal Assessments of Bioregeneration in Slow Sand Filters  

Amended with Granular Activated Carbon 
 

by 

Katherine Rose Morsefield 

University of New Hampshire, September 2022 

 

 

The application of slow sand filtration (SSF) has conventionally proven to be a reliable and 

relatively inexpensive means of producing potable drinking water for decades. As technologies 

in drinking water treatment continue to advance, innovations to the design and operation of slow 

sand filtration have the ability to transform its contribution in municipal and industrial settings.  

SSF amended with granular activated carbon (GAC) has been on the rise in recent decades due to 

its ability to improve the removal of organic material, while allowing SSF to maintain its innate 

treatment simplicity.  

 

A slow sand filter amended with granular activated carbon in Winthrop, Maine has  

demonstrated the potential to preserve the life span of the GAC sublayer for over one and a half 

decades. From the time when GAC was initially installed in 2005, it has not required the addition 

of human regenerative interferences to maintain elevated removals of organic precursor 

measured by dissolved organic carbon (DOC). This study aimed to investigate the biologically 

active components and seasonal microbial patterns within filter sublayers that may contribute to 

the GAC bioregenerative process. Specific goals of this study were to explore mechanisms 

contributing to the maintenance of GAC adsorption sites, explore impacts of seasonal 

temperature variations on biodegradable and non-biodegradable organic carbon removals by 



 xii 

slow sand filters amended with GAC, and to explore impacts of seasonal temperature variations 

on microbial communities.  

 

Removals associated with biodegradable organic carbon (BDOC) and non-biodegradable organic 

carbon (BDOC) showed significant removals after several years of filter run-time, as well as 

differences in removals based on various GAC “ages.” Biomass and microbial community 

composition showed sensitivity to filter media type, location within the filter, and influence of 

temperature variations. Metals accumulations and content on various media showed significant 

accumulations of Iron on sand media and Calcium on GAC media. Results suggest calcium 

cation accumulation on the GAC sublayer may be correlated to higher removals of organic 

carbon on GAC. 
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1. INTRODUCTION 
 

1.1 Overview of Slow Sand Filtration with a GAC Sublayer  

The implementation and use of granular amendments in conventional slow sand filtration has 

demonstrated the ability to improve treatment performance and enhance removal of natural 

organic matter. Granular activated carbon (GAC) has the ability to enhance adsorption of natural 

organic matter while preserving the simplicity of conventional slow sand filtration processes. 

Previous studies have highlighted the ability of GAC to maintain elevated removals of dissolved 

organic carbon after several years of use without the need for replacement or regeneration. The 

present study investigates mechanisms contributing to the renewal of GAC adsorption sites, 

along with microbial variation within GAC sublayers and adjacent media layers.  

 

The GAC “Sandwich” modification was first studied at the University of New Hampshire in 

1987 (Collins et al., 1987) and later studied in greater depth by Tom Page (Page,1997). This 

modification to conventional slow sand filters involves an 8-15 centimeter layer of granular 

activated carbon that is placed in the middle of a previously established slow sand filter bed. 

Conventional slow sand filters require slow filtration rates and this application to the GAC 

sublayer allows for greater contact time, ultimately augmenting adsorption. The GAC 

“sandwich” design allows for the upper layer of sand, also known as the schmutzdecke, to act as 

a biological mechanism in removing dissolved organic matter and particulates, while the GAC 

sublayer acts as a non-backwashed adsorber (Page, 1997).  

 

Advantages to GAC sandwich modifications to conventional SSF includes installation within  

pre-existing SSF structures without the addition of piping systems and framework.  Due to GAC  
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acting as a non-backwashed adsorber, system backwashes are not required for this type of system 

design creating less maintenance for system operators. GAC sandwich modifications 

implemented in conventional slow sand filter designs can provide various benefits in drinking 

water treatment and remain a viable option for small communities.   

 

1.2 Research Statement  

The genesis of this study was associated with a granular activated carbon layer that was installed 

in a slow sand filter in Winthrop, Maine in the year 2005. This study aimed to investigate why 

slow sand filters amended with granular activated carbon have continued to achieve elevated 

removals of dissolved organic carbon without the replacement or regeneration of the GAC 

sublayer.  

 

1.3 Research Objectives and Approach  

The main objective of this research was to evaluate biologically active components, chemically 

active components, and seasonal microbial patterns within filter sublayers that may contribute to 

the GAC bioregenerative process. Extensive biological and chemical analyses were performed to 

assess potential factors contributing to the bioregenerative process of the GAC sublayer. 

 

Specific goals of this study were to:  

• Explore the impact of seasonal temperature variation on biodegradable and non-

biodegradable organic carbon removals by slow sand filters amended with GAC 

• Explore mechanisms contributing to the maintenance of GAC adsorption sites over an 

extended period of time 
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• Explore the impact of seasonal temperature variation on biomass production and 

microbial communities  

 

Sampling events occurred at the Slow Sand Water Filtration Plant in Winthrop, Maine at various 

dates based on seasonal patterns. Media samples were collected from Filter #1 to perform ATP 

biomass analyses, DNA extraction and sequencing analyses, and metals extractions. Aqueous 

samples were collected to assess general water quality parameters, total organic carbon, 

dissolved organic carbon, and biodegradable organic carbon. 
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2. LITERATURE REVIEW 

2.1 Overview of Slow Sand Filtration  

Slow sand filtration has been implemented worldwide for centuries. The treatment process 

provides excellent municipal water treatment for areas in which source water is low in color, 

turbidity, and algae. The design of this system provides a simple, yet economically reliable 

operation for small communities. 

 

2.1.1 History of Conventional Slow Sand Filters 

Conventional slow sand filtration has been implemented all over the world due to its ability to 

provide exceptional treated water quality in combination with the simplicity of its design. The 

modern use and design of slow sand filters as a municipal drinking water treatment system 

originated in design by James Simpson in 1829 for the Chelsea Water Company in London 

(Baker,1949; Unger, 2006; Arora, 2017). With acceptance in Europe in the latter half of the 19th 

century, the United States followed in accepting SSF as a method of municipal drinking water 

treatment. The first slow sand filter implemented for municipal use in the United States was 

designed by James Kirkwood in Poughkeepsie, New York and was installed in 1872 (Unger, 

2006). The traditional design schematic used today is demonstrated in Figure 2-1 and has been 

incorporated in drinking water treatment for over 100 years. 

 

Initially, slow sand filters were appreciated for their ability to provide a mechanical means of 

straining out suspended solids and turbidity. The effectiveness of SSF to decrease the risk of 

waterborne diseases was determined prior to greater knowledge of relationships between 

pathogens causing the disease and elements of the disease itself (Manz, 2004). 
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Figure 2-1. Overview of a conventional slow sand filter (adapted from Collins et al., 1991; Page, 

1997). 

Per Huisman & Wood (1974), slow sand filtration became a legal requirement for all potable 

water extracted from the Thames River in 1852 when Jon Snow linked the outbreak of cholera 

and typhoid to waterborne contamination. This connection was further investigated when a 

cholera epidemic occurred in Altona and Hamburg, Germany. In this event, Hamburg delivered 

water untreated to its community, while Altona delivered a filtered water supply to the 

community, avoiding the spread of waterborne disease. (Arora, 2017).  

 

2.1.2 Design and Operation 

The design and operation of a traditional slow sand filter is simple and cost effective. The 

purification of water is accomplished through a combination of physiochemical and biological 

processes when untreated water slowly percolates through a bed of porous sand (Partinoudi et al., 

2006) The main elements of a slow sand filter include a supernatant water layer, filter medium, 

an underdrain system assimilated with support gravel, and a flow control system as shown in 

Figure 2-2. 
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Figure 2-2. Slow sand filter configuration breakdown (values adapted from M.R. Collins, 2022).  

 

• Supernatant Water Layer: The supernatant water serves two major purposes; providing a 

constant head above the filter and allowing the filter to overcome the opposition of the 

filter bed to produce downward flow of water through the sand bed. 

 

• Filter Medium: Sand is one of the most common filter mediums used in this system due 

to its low cost, resilience, and accessibility. There are four major design elements of the 

sand bed mentioned by Unger (2006) which include:  

 

1. Plan area (A), determined by design flow rate (Q) and hydraulic loading rate (HLR) 

2. Depth  

3. Effective size (ES) of sand media (d10) 

4. Uniformity coefficient (UC) of sand media (d60/d10)  
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• Underdrain System: The underdrain system typically consists of a gravel support layer 

that serves as a passageway for water from the filter bed. This system also serves as a 

layer of support for the filter bed. 

   

• Flow Control System: The purpose of a flow control system is to regulate the speed at 

which water passes through the sand bed, ultimately determining the filtration rate for the 

system to operate effectively and efficiently.  

 

There are several features which distinguish slow sand filtration from a variety of drinking water 

treatment methods. The application of slow filtration rates paired with moderately long filter run 

times makes SSF a unique treatment method that is cost effective and simple. Page (1997) also 

mentions the small effective size of the sand medium and univariant sand media at all depths are 

distinguishable characteristics. Lastly, the lack of pre-treatment needed for influent water sources 

prior to reaching the filter bed in combination without needing to perform backwashing of the 

filter bed  makes the effort level relatively low in terms of operation. General design parameters 

for SSF and its operation are provided in Table 2-1 adapted from the Slow Sand Filtration Tech 

Brief (2000). 

 

The design parameters for SSF are highly dependent upon the influent water quality. Raw water 

quality tends to limit the use of slow sand filters due to their innate ability to capture and remove 

suspended and particulate matter within the upper layer of the filter but lack the ability to remove 

organic contaminants and synthetic organic chemicals (Logsdon, 1990).  Algae content is 

another parameter which must be considered in the design process. Per Huisman & Wood 



 

 

8 

(1974), the amount and nature of algae depends on source water temperature, turbidity, nutrient 

concentration, and amount of sunlight present. When surface waters contain turbidity levels less 

than 10 NTU and color less than 5 CU, slow sand filtration is considered an effective water 

treatment technology (Campos et al., 2002). 

Table 2-1. Typical Design Parameters and Operation of SSF(adapted from Slow Sand Filtration Tech Brief, 2000). 

 

 

 

 

 

 

 

 

To overcome raw water quality constraints for operational purposes, pre-treatment applications 

can be considered. Pre-treatment techniques commonly used in slow sand filtration include 

micro-straining, roughing filters, and pre-ozonation. Gravel roughing filters can be used to assist 

in removal of turbidity and algae (Collins et al., 1993). Further modifications made in the design 

of SSF to overcome these limitations include the use of geotextile filter mats to limit 

schmutzdecke scraping and pre-ozonation to encourage biological growth (Collins et al., 1993; 

Unger 2006).  

 

2.1.3 SSF Maintenance  

During filter operation, the long hydraulic detention time of the supernatant water layer above 

the sand bed leads to the development of the schmutzdecke. The schmutzdecke layer is a thin, 
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slimy matting of organic material that is high in biological activity and will be discussed in 

greater depth in Section 2.2. As this layer begins to form in a slow sand filter, this is known as 

the ripening period. Microorganisms entrap and digest organic matter contained in the raw water 

influent. The operation and success of slow sand filters rely on the schmutzdecke formation, as 

research has shown this layer undertakes a governing role in filtration. In SSF, the mechanism 

involved in the purification of water is mainly a biological process, therefore, its efficiency 

depends on a balanced community in the schmutzdecke and often requires operation at a constant 

rate (SSF Tech Brief, 2000). 

 

Due to the application of low filtration rates in SSF, the extent of operation can vary. The 

amount of time a slow sand filter can operate is dependent upon environmental and source water 

conditions. The length of operation can last from 60 days to more than 15 years (Arora, 2017). 

As material begins to accumulate in the schmutzdecke, the filter surface can become clogged. 

When a filter becomes clogged, this results in an increase in hydraulic resistance to flow and an 

increase in headloss (Huisman & Wood, 1974). In order to determine the proper maintenance 

needed to keep slow sand filters in service, headloss is measured on a regular basis to determine 

when a filter needs to be cleaned.  

 

Periodic maintenance requires slow sand filters to be removed from service and undergo a 

cleaning process. Filters are cleaned by lowering the water level in order to scrape and remove 

the schmutzdecke layer along with the top few centimeters of the sand bed. The scraped sand can 

be reused and this process requires a wash paired with a hydro-cyclone or shaker process in order 

to reduce most of the suspended solids (Arora, 2017). The washed sand can then be placed in the 
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sunlight to dry until it is ready for reuse. The length of time between filter cleanings can range 

from several weeks to a year and is dependent upon the raw water quality and the hydraulic 

loading rate (Page 1997; SSF Tech Brief, 2000). Once a filter has been cleaned, a ripening period 

is necessary in order for microbial communities to reestablish the schmutzdecke layer. The 

length of downtime during cleaning can affect the ripening period and this amount of time could 

be hours to several weeks depending on the age of the filter media and raw water quality (Cullen 

and Letterman, 1985). 

 

Harrowing is a method commonly used to clean slow sand filters and is much more efficient than 

the traditional scraping technique. In West Hartford, Connecticut, operators developed the 

harrowing method via a comb-tooth harrow connected to a tractor (Collins et al., 1991). The 

harrow is placed on the top of the filter once the water level is drained to a significant level in 

order to rake the sand medium. Similar to filter scraping, the schmutzdecke layer and top few 

centimeters of the sand bed are discharged at the filter surface, as opposed to exiting through the 

filter bed. This method requires less time and labor to complete and it also allows for filters to 

maintain the schmutzdecke bacterial layer population while minimizing filter downtime (Collins 

et al., 1991). According to Visscher (1990), re-sanding a slow sand filter bed becomes necessary 

every few years when successive scrapings have reduced the sand bed to 0.5-0.6 m. The 

frequency at which re-sanding and the depth of the sand bed that needs to be refilled depends on 

the scraping frequency, which can vary from eight to ten years (Collins et al., 1991). 
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2.1.4 Removal Mechanisms in Slow Sand Filtration  

There are a variety of complex forces which contribute to the removal mechanisms demonstrated 

in SSF. Slow sand filters are capable of removing an array of contaminants at various capacities. 

There are two main mechanisms involved within the slow sand filtration process and these 

include both physio-chemical mechanisms and biological mechanisms. This combination allows 

for conventional SSF processes to remove pathogenic microorganisms such as bacteria, cysts, 

viruses, and parasites (Poynter & Slade, 1977).  

 

There are two main physical processes involved in slow sand filtration and these include 

mechanisms of straining and transport. Straining involves the removal of particles larger than 

grain pore size independent of the applied filtration rate, and can take place at the sand surface 

(Huisman & Wood, 1974).  As water begins to pass through the schmutzdecke layer, followed by 

the top sand layer, biological matter has the aptitude to break down organic matter causing 

particles to be physically strained through filter layers. Transport mechanisms can include 

particle removal from sedimentation, diffusion, interception, inertial forces, and centrifugal 

forces (Arora, 2017). According to Ives (1970),  the significance of various transport 

mechanisms displayed in SSF can be dependent upon flow rates, particle size, grain size, and 

temperature. Sedimentation in particular can be considered a characteristic of slow sand 

filtration. Due to the innate simplicity in design used in combination with a supernatant water 

layer, this system can promote undisturbed settling amongst filter layers. Sedimentation can 

occur within pore spaces of slow sand filters and can remove particles smaller than the pore 

space through settling on the sand grains (Haig et al., 2011).  
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The formation of the schmutzdecke plays an important biological role in SSF. The schmutzdecke 

can be divided into two regions, a filter cake or slime layer above the sand followed by a 

biologically active region in the sand bed (Unger, 2006). Two filtration mechanisms can occur 

with the presence of a cake layer and this includes cake filtration and depth filtration. In cake 

filtration, the solid versus fluid suspension to be treated passes through a medium with applied 

pressure, allowing the flow of suspending fluid (Tien & Bai, 2003). This allows for retention of 

suspended particles to form a cake on the upstream side of the medium (Tien & Bai, 2003). As 

filtration processes continue, the cake layer thickens shifting to the mechanism that involves 

filtration with depth. Depth filtration involves the separation of suspended particles from its 

carrying fluid within the depth  of the filter medium (Sutherland, 2008). Depth filtration is a 

mechanism which can be combined with cake filtration mechanisms. 

 

Adsorption is another removal mechanisms in SSF and occurs due to a surface process leading  

to a transfer of molecules and particulates from fluid bulk to a solid surface (Artioli, 2008). Due 

to this being a physio-chemical process, it favors the removal of dissolved substances and 

colloidal suspensions (Arora, 2017). Per Huisman and Wood (1974), the success of adsorption 

mechanisms through SSF is determined by Van der Waals forces, which are typically attractive 

in nature, and their electrostatic interactions. These interactions are particularly important 

between the substances to be removed and the sand grains. During the ripening period, adhesion 

can also play a large role in the success of adsorption. Particles of organic origin will be 

deposited on the filter surface as ripening occurs and these deposits quickly become the breeding 

ground for bacteria and other microorganisms (Huisman & Wood, 1974). This allows for the 

formation of the schmutzdecke layer. Further removals can be achieved as adsorption 
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mechanisms occur simultaneously with biodegradation. Langmuir and Freundlich isotherm 

equations are typically used to measure adsorption which is described as the equilibrium of 

substances attached on the surface with concentrations in the fluid (Artioli, 2008). These 

particular equations place emphasis and dependence on temperature and temperature is an 

important factor affecting adsorption removal mechanisms. From a biological and ecological 

standpoint, adsorption also plays a fundamental role. According to Artioli (2008),  adsorption 

accounts for the transport of substances within ecosystems and can trigger essential processes 

such as ionic exchange and enzymatic processes.  

 

Biologically active components in slow sand filter layers can also contribute to the removal 

process. The main components contributing to biological activity in slow sand filters occur as a 

result of the formation of the schmuztdecke, a thin biofilm layer, on the top sand layer. This 

creates microbial competition and a diverse microbial community with a variety of organisms 

performing different functions (Duncan, 1988). It has been proposed by Bellamy et al., 1985b 

that extracellular organisms can produce sticky biofilms on the filter surface by the attachment of 

microorganisms and can enhance removals in SSF. The formation of the schmutzdecke layer will 

be discussed in greater detail in Section 2.3.  

 

Studies have also verified the removal of natural organic matter (NOM) in slow sand filtration. 

As mentioned previously, adsorption mechanisms and biodegradation are processes which occur 

simultaneously. Collins et al., 1989 discovered that removals of NOM occur predominantly in 

the schmutzdecke layer and top sand layer where both of these mechanisms are occurring 

simultaneously. Collins & Vaughan (1996) attempted to distinguish adsorption from  
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biodegradation and found that both mechanisms are imperative to NOM removal in biologically 

active filters. Studies have also indicated biomass and biological activity within slow sand filter 

sublayers play significant roles in dissolved organic carbon (DOC) removals and trihalomethane 

formation potential (THMFP) removals (Page, 1997). Biological removal mechanisms of NOM 

within SSF were studied more in depth by Collins and coworkers (1989) where methods of 

laminar and massive transfers from bulk fluid to media surfaces were applied. Metabolism of 

NOM was found to occur due to anabolic and catabolic reactions from extracellular enzymes. 

From this study, it was concluded that the utilization of NOM in slow sand filtration could assist 

in the renewal of adsorption sites to continue enhancing the removal of organics.  

 

2.1.5 Advantages and Limitations to Conventional Slow Sand Filtration  

The implementation and operation of SSF is advantageous in a variety of ways. A major 

advantage of SSF compared to other conventional treatment methods is the simplicity in design 

and construction. The absence of chemical and mechanical application allows for operator design 

and involvement to be limited, while also decreasing maintenance costs. Without a need for 

pumps, backwashing, and chemical treatments, this makes SSF reliable with no requirements for 

close supervision during operation.  

 

SSF replaces the four main steps used in conventional drinking water treatment 

(coagulation/flocculation, sedimentation filtration, and disinfection) yet still produces and 

provides excellent treated water quality. Slow sand filtration reduces bacteria, cloudiness, and 

organic chemicals ultimately eliminating the need for disinfection (SSF Tech Brief, 2000). 

According to the Slow Sand Filtration Tech Brief (2000), slow sand filters have continually 
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demonstrated effectiveness in removing suspended particles with effluent turbidities below 1.0 

nephelometric turbidity units (NTU), achieving 90 to 99+ percent removals in bacteria and 

viruses, as well as providing nearly complete removal of Giardia lamblia cysts and 

Cryptosporidium oocysts. Table 2-2 displays water quality parameters and removals associated 

with slow sand filtration. 

 

Table 2-2. Water quality parameter and removal capacities of slow sand filtration (adapted from 

Collins,1998;  Slow Sand Filtration Tech Brief, 2000). 

 

 

 

 

 

 

 

 

 

 

 

Some disadvantages to conventional slow sand filtration include a relatively large land area 

requirement paired with a slow hydraulic loading rate in order to maintain bacterial removal 

characteristics. In most communities, the availability of large land acreage is limited and can be 

quite expensive. Another disadvantage to SSF is that it is most successful when used for source 

waters that contain low algal content and low turbidity. Source waters that contain a turbidity 

level greater than 10 NTU may require the use of roughing filters as a pretreatment method to 
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reduce turbidity (Unger 2006; SSF Tech Brief, 2000) Pre-treatment methods are able to expand 

the scope of where SSF can be implemented, however, this creates an increase in time and costs 

for maintenance related to the removal of the schmutzdecke layer.  

 

Lastly, SSF has limited ability to remove extremely colloid-size particles and dissolved organic 

compounds associated with color, taste, excessive trihalomethane (THM) precursor 

concentrations, and heavy metals, especially during colder temperatures (Manz, 2004; SSF Tech 

Brief, 2000). A GAC sandwich filter is a slow sand filter amended with a layer of GAC, which 

assists in removing organic material. This modification is discussed in greater detail in Section 

2.2 and serves as the main focus of the present study. This modified slow sand filter can 

effectively remove pesticides, total organic carbon and THM precursors (SSF Tech Brief, 2000). 

Slow sand filtration continues to remain the most appropriate filtration option for reduced 

systems and smaller communities despite its limitations. 

 

2.2 GAC Sandwich Modification to Slow Sand Filtration  

The implementation and use of granular amendments in conventional slow sand filtration has 

demonstrated the ability to improve treatment performance and enhance removal of natural 

organic matter. Granular activated carbon (GAC) has the ability to advance adsorption of natural 

organic matter while preserving the simplicity of conventional slow sand filtration processes. 

The main objective of this research is to explore the bioregenerative capacities of the GAC layer 

and how its properties may increase bed life of the GAC sublayer.  
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2.2.1 GAC Sandwich Description 

The configuration of a slow sand filter amended with a GAC layer involves a base layer of sand, 

an intermediate GAC layer, a top sand layer. The term “sandwich” evolved from the fact that this 

configuration is simply the incorporation of a GAC layer in the middle of a conventional slow 

sand filter. The typical configuration of a slow sand filter amended with GAC is highlighted in 

Figure 2-3.  

 

 

 

 

 

 

 

 

 

 

Figure 2-3. Configuration of a slow sand filter amended with granular activated carbon (values adapted 

from M.R. Collins, 2022). 

 

This type of filter uses a top sand layer approximately 18 inches in depth, followed by a GAC 

layer ranging from 4-6 inches in depth, and a base sand layer approximately 12 inches in depth. 

(SSF Tech Brief, 2000). The sandwiched configuration of GAC between the layers of a 

conventional slow sand filter provides the advantages of slow sand filtration in combination with 

granular activated carbon adsorption mechanisms in a solitary unit.  

(18-24”) 

(12”) 

(4-6”) 
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SSFs modified with a GAC sublayer was first studied at the University of New Hampshire in 

1987 (Collins et al., 1987) and in greater depth at the university by Tom Page (Page, 1997). In 

comparison to single medium filters, the GAC sandwich SSF system is multi-functional and has 

the ability to enhance biodegradation (Page, 1997; Campos et al., 2002; Li et al., 2018). The 

upper layer of sand acts a biological mechanism reducing the incoming particulate and dissolved 

organic carbon (DOC) loading onto the GAC, while the GAC can act as a non-backwashed 

adsorber (Page, 1997). The slow filtration rate requirement for the operation of conventional 

slow sand filters allows for a long contact time with the GAC, thus efficiently enhancing 

adsorption within the GAC layer. The lower sand layer serves as a support to the GAC layer and 

inhibits finer GAC particles from passing into the effluent, as well as microorganisms (Bauer et 

al., 1995). GAC sandwich modification to SSF can effectively remove pesticides, total organic 

carbon (TOC), THM precursors, and has the capability to support enhanced biodegradation. 

(Page, 1997; SSF Tech Brief, 2000). 

 

2.2.2 Properties of Granular Activated Carbon  

The application of granular activated carbon in drinking water treatment systems has increased 

the removal of both synthetic organic chemicals (SOCs) and dissolved naturally occurring 

organic materials (NOMs) due to its adsorptive properties. Synthetic organic chemicals are of 

particular concern within the drinking water treatment operation due to their adverse effects on 

human health, while natural organic materials are a major antecedent to the formation of 

disinfection byproducts (DBPs) (Karanfil & Kilduff, 1999). According to the United States 

Environmental Protection Agency (USEPA), GAC adsorption has been declared one of the best 

available technologies for removing both SOCs and NOMs (EPA, 2022). 
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Activated carbon can be produced from a variety of carbonaceous materials including wood, 

coal, lignin, coconut shells, and sugar (Karanfil & Kilduff, 1999; Lu et al., 2020). This results in 

the creation of a microporous adsorbent that contains a high surface area along with a broad 

range of surface functional groups. (Karanfil & Kilduff, 1999). The adsorptive effectiveness and 

capacity is determined by the volume of well-developed pores and the pore-size distribution 

relative to the molecular weight (MW) of organic matter (Karanfil & Kilduff, 1999; Nowotny et. 

al, 2007).  

 

The chemical structure of activated carbon also plays a dominant role in how surface functional 

groups can influence the adsorptive properties of granular activated carbon, as well as its ability 

to be reactivated and reused once it reaches exhaustion. The structure is primarily comprised of 

carbon atoms that are ordered in parallel stacks of hexagonal layers, which are crosslinked and 

tetrahedrally bonded (Kilduff & Karanfil, 1999). Within this carbon matrix, elements such as 

oxygen, hydrogen, and nitrogen can be found. Typically, there are three main forms of activated 

carbon used in a variety of liquid phase treatments and these are shown in Figure 2-4. These 

include a) granular activated carbon (GAC), b) powder activated carbon (PAC), and c) extruded 

activated carbon (EAC) (Wholesale Activated Carbon, 2022). Once activated carbon has reached 

exhausted bed volume capacity, several techniques can be used to reactivate the carbon for reuse 

as described in greater detail later.  
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a) GAC                                                 b) PAC                                               c) EAC 

Figure 2-4. Three main forms of activated carbon used in gas and liquid phase adsorption. 

(adapted from Wholesale Activated Carbon, 2022) 

 

The GAC used in this present study is Calgon’s Filtrasorb® 400 (F400). The type of 

contaminants to be removed by F400 GAC include taste and odor compounds, organic color, 

total organic carbon (TOC), industrial organic compounds such as TCE and PCE, PFAS, and 

selected heavy metals (Patil et al., 2013; Filtrasorb® 400 Granular Activated Carbon Data Sheet, 

2019). Some benefits to using Calgon F400 as the GAC of choice listed within the Filtrasorb® 

400 Granular Activated Carbon Data Sheet (2019) include: 

• High density carbon resulting in greater adsorption capacity per unit volume. 

• Carbon granules are uniformly activated through the entire granule resulting in excellent 

adsorption properties and constant adsorption kinetics. 

• Carbon bed segregation is retained after repeated abrasions, ensuring the adsorption 

profile remains undisturbed to maximize bed life. 
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This particular type of carbon is produced using select grades of bituminous coal through a 

process known as reagglomeration. The process of reagglomeration produces a highly active and 

durable granular product that is able to endure abrasion impacts. F400 abrasion impacts can 

include repeated backwashing, hydraulic transport, and reactivation for reuse (Filtrasorb® 400 

Granular Activated Carbon Data Sheet, 2019).  The activation of carbon is carefully controlled in 

order to produce significant volumes of both low and high energy pores for effective adsorption.  

Typical properties of Calgon F400 Carbon is displayed below in Table 2-3 and is typically 

applied in down-flow packed bed operations using gravity or pressure systems. Specifications 

and design considerations for GAC Sandwich SSF systems depend upon the operating 

conditions, desired treatment objectives, and the compounds being adsorbed. Calgon F400 is 

formulated to comply with all the applicable provisions of the AWWA Standard for Granular 

Activated Carbon (B604) and is produced in the United States.  

While backwashing of GAC cannot occur once placed in a conventional slow sand filter, 

conditioning and backwashing prior to placing media online is crucial to the performance of 

granular activated carbon. Before placing fresh media online, there are three important factors as 

to why this is necessary: (1) separates the media by size, therefore, subsequent backwashing will 

return the media to the same relative position in the bed; (2) assists in removing any remaining 

air from the bed; (3) contributes to the removal of fine media which can lead to excessive 

pressure drop and flow restriction (Filtrasorb® 400 Granular Activated Carbon Data Sheet, 

2019). Proper implementation of backwashing prior to granular activated carbon use in SSF is a 

crucial step in order to collect the most representative and meaningful contaminants within the 

filter bed.  
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Table 2-3. Filtrasorb® 400 GAC specifications and properties (adapted from Filtrasorb® 400 

Granular Activated Carbon Data Sheet, 2019). 

 

 

 

 

 

 

 

 

 

 

2.2.3 GAC Removal Mechanisms   

One main property of granular activated carbon that makes it advantageous when applied to SSF 

is its adsorption capacity. Clean carbon surfaces are oleophilic, which creates a strong attraction 

for organic compounds and non-polar contaminants via van der Waals forces (Patil et al., 2013). 

Granular activated carbon has been hypothesized to provide a more favorable surface for the 

attachment and accumulation of microorganisms than typical filter media. It is expected that the 

GAC sublayer should reach a point of exhaustion and be ready for replacement at the time of re-

sanding (Page, 1997). However, slow adsorption mechanisms, removals attributed to 

biodegradation, and the bioregeneration process may account for removals on the GAC sublayer 

over extended periods of time.  
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A pseudo steady-state of operation and removal is eventually reached in GAC amended filters 

that are operated for long durations of time without the application of regenerative processes. 

Studies have shown that steady-state removals of natural organic matter (NOM) measured by 

total organic carbon (TOC) and trihalomethane formation potential (THFMP) can range from 

10% to 40% (Roberts & Summers 1982; Glaze & Wallace, 1984; Carlson et al; 1994; Wang et 

al; 1995; Page, 1997). Pseudo steady-state removals have also been reported in the literature for 

dissolved organic carbon (DOC) removals ranging from 1-4 mg DOC/L GAC/h (Eberhardt 1976; 

AWWA, 1981; Maloney et al.,1984; Glaze & Wallace, 1984; Page, 1997). As removal 

mechanisms in GAC are related to both adsorption and biodegradation mechanisms, Figure 2-5    

obtained from Sontheimer et al., 1988 and Carlson et al., 1994 displays a theoretical 

representation of DOC removals by adsorption and biodegradation processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Theoretical representation of DOC removals by adsorption and biodegradation 

(adapted from Sontheimer et al. 1988 and Carlson et al., 1994). 
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Adsorption mechanisms dominate within the initial period while bacteria populations are in the 

acclimation phase (Page, 1997). According to Sontheimer et al., (1988), biological degradation 

begins to occur within the first five to twenty days of filter operation and becomes more 

significant as adsorption sites within the GAC are saturated over time. Once steady-state 

conditions plateau, it is suspected that majority of the adsorption capacity is exhausted. Once this 

occurs, biodegradation is then considered the predominant removal mechanism (Roberts & 

Summers, 1982). Removal over extended periods of time may also be accounted for with slow 

mass transfer into the micropore regions of granular activated carbon (Peel & Benedek, 1983). 

 

Slow adsorption within micropore regions of GAC could be another probable mechanism 

contributing to the pseudo steady-state removal phase. A dual rate kinetic model was developed 

by Peel and Benedek (1980) to assist in predicting this mode of TOC adsorption. This particular 

model assumes carbon particles consist of both macropores and micropores. The slow adsorption 

approach to equilibrium is assumed to occur within the micropore region (Page, 1997). This 

kinetic model was later verified in a study by Peel & Benedek (1983). Long-term pilot studies 

involving relatively bio refractory feed streams to GAC columns verified that the close 

agreement between experimental break through curves and predictions from the model suggest 

that long-term removal of organics is principally caused by adsorption mechanisms (Peel, 1979; 

Peel & Benedek, 1983).  

 

GAC sandwich models have also been applied in more recent filtration studies in attempts to 

remove pharmaceutical and personal care products (PPCPs) and antibiotics from source waters. 

Li et al., (2018) evaluated lab-scale GAC sandwich slow sand filters with various GAC layer 
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depths. The main compounds used in this study were DEET, paracetamol, caffeine, and triclosan 

at concentrations of 25 ug/L. In this study, the target PPCPs were significantly removed by using 

GAC sandwich SSF than sand alone (Li et al., 2018). Filter 2, which consisted of 10 cm of sand, 

10 cm of GAC, and 30 cm of sand at a flow rate of 5 cm/h, had an average removal of 99.5% for 

targeted PPCPs. (Li et al., 2018). It was also determined that there were no significant 

differences of PPCP removals when flow rates were altered between 10 cm/h and 20 cm/h for the 

three GAC sandwiched filters used in this study. Xu et al., 2021 compared antibiotic removals in 

sand, GAC, GAC sandwich, and anthracite-sand dual biofilters at bench-scale to mimic filtration 

processes typically seen in drinking water treatment. This study was conducted for a duration of 

three months to emphasize biofilter performance and the removal of five antibiotics: amoxicillin, 

clarithromycin, oxytetracycline, sulfamethoxazole, and trimethoprim. Target antibiotics were 

significantly removed by GAC-associated biofilters corresponding to an average of greater than 

90% removals, while sand and anthracite-sand biofilters showed removals corresponding to less 

than 20% (Xu et al., 2021).  

 

Along with slow adsorption mechanisms, there has been evidence of enhanced biodegradation in 

slow sand filters amended with granular activated carbon. As discussed in Section 2.2.2, there are 

several biological and chemical properties associated with granular activated carbon that 

contribute to the advantages of using GAC as a biological support medium in SSF. The process 

in which GAC is created results in a microporous adsorbent which contains a high surface area 

and broad range of surface functional groups (Karanfil & Kilduff, 1999). The functional groups 

created through the production of GAC, particularly -OH and -COOH on the activated carbon 

surface have demonstrated the ability to enhance microbial attachment (Stewart et al., 1990; 
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Kutics & Suzuki, 1992; Page, 1997). The natural roughness and porosity of GAC has also been 

shown to provide a greater surface area for attachment of microorganisms within the GAC 

sublayer. Activated carbon can also be partially regenerated by microorganisms while the carbon 

bed remains in operation (Page, 1997). Evidence supporting bioregeneration within a GAC 

sublayer will be discussed in greater detail in Section 2.2.4. 

 

2.2.4 Bioregeneration of GAC Adsorption Sites   

The removal and adsorption mechanisms that occur with the application of granular activated 

carbon are important to understand, as they can be essential in predicting the long-term 

performances associated with slow sand filters sandwiched with GAC. After several months of 

operation, filters amended with GAC eventually transition into biologically active carbon (BAC) 

filters. BAC filters have the ability to remove organic pollutants as well as inorganic nutrients via 

methods of adsorption, enhanced biodegradation, and bioregeneration.  

 

During any type of treatment which involves the incorporation of granular activated carbon, the 

sites on GAC that are available for adsorption decrease over time as pollutants and other natural 

organic matter are adsorbed.  This results in the adsorptive capacities of carbon surfaces greatly 

decreasing causing GAC to eventually be replaced or regenerated. A naturally occurring 

phenomenon, known as bioregeneration, has been shown to increase the service life of activated 

carbons and transpires as a result of combined biological aspects and GAC adsorption 

treatments. Bioregeneration of activated carbon is typically defined as the renewal of GAC 

adsorption sites by microorganisms for continued adsorption (Aktaş & Çeçen, 2007) 
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According to (Aktaş & Çeçen, 2007) bioregeneration is dependent upon several factors including 

biodegradability, adsorbability and desorbability of sorbate, activated carbon characteristics, and 

the nature of the microbial community. In theory, there are two plausible mechanisms in which 

bioregeneration can potential occur within a GAC sublayer. The first mechanism includes the 

idea of bioregeneration transpiring due to a concentration gradient within the filter. This includes 

the biodegradation of organic compounds being released from activated carbon followed by a 

desorption process due to a concentration gradient between the activated carbon surfaces and 

bulk liquids (Aktaş & Çeçen, 2007). The second mechanism involves the process of 

bioregeneration transpiring due to the presence of exo-enzymes. Several investigators have 

hypothesized that the bioregeneration process involves the use of extracellular enzymes (Perotti 

& Rodman, 1979; Kim et al., 1997; Sirotkin et al., 2001). Based on this theory, bioregeneration 

occurs as a result of exoenzymes, which are excreted by microorganisms. These microorganisms 

then diffuse into activated carbon pores causing a reaction with the adsorbed substrates.   

 

Coinciding with the idea of biologically active GAC, these methods take advantage of the pre-

established microbial communities within SSF sublayers. Another proposed theory provided by 

Sublette et al. (1982), includes the theory that activated carbon provides a surface for 

microorganisms to attach to which can protect them from shock loadings of toxic and inhibitory 

materials, all while these microorganisms are simultaneously regenerating the activated carbon. 

Biologically active GAC has been hypothesized to greatly extend the service life of a GAC bed 

for removal far beyond the point at which adsorptive capacities would normally be exhausted. 

(Page 1997). It has been shown that pre-ozonation significantly enhances biological activity on 

GAC by improving the biodegradability of organics in the water (Singer, 1988; Langlais et al., 
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1991). Combination of ozonation and GAC filtration is commonly referred to as the BAC 

process.  

 

As mentioned previously, there are several factors influencing and affecting the success of 

bioregenerative processes. Some additional factors include the reversibility of adsorption, the 

presence of microorganisms present along with their ability to metabolize the adsorbate, and 

whether microbial growth conditions are optimal (Aktaş & Çeçen, 2007). It is also important to 

note that the porous structure of activated carbon and empty bed contact times can also influence 

bioregeneration. (Klimenko et al., 2002) discovered that mesoporous activated carbon was more 

efficiently bioregenerated than microporous activated carbon. The contact time of activated 

carbon with substrate can also influence and affect bioregeneration and is supported by several 

investigators. (Aktaş & Çeçen, 2007) highlighted that a higher empty bed contact time (EBCT) 

insinuates a lower concentration within the filter liquid phase. This allows for a larger driving 

force correlating to desorption and biodegradation of sorbed compounds. 

 

2.2.5 Advantages and Limitations to GAC Sandwich Modification  

There are numerous advantages to incorporating a GAC sublayer within existing slow sand filter 

structures. The first being that the GAC sublayer can easily be incorporated into the existing 

structure without the use of additional pipework and construction. Due to the GAC acting as a 

non-backwashed adsorber, there is no need for backwashing to be incorporated into the operation 

of the system. This implementation eliminates the potential for media stratification and mixing of 

saturated GAC with unsaturated GAC, enhancing the breakthrough profile (Page, 1997). The 

GAC layer can also contribute to an increase in biomass production, which can also enhance 
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biodegradation of pollutants due to the carbon layer remaining undisturbed within the 

“sandwich” modification. Incorporation of a GAC sublayer in Slow Sand Filtration Facilities in 

Manchester, New Hampshire and particularly at the Slow Sand Filtration Plant in Winthrop, 

Maine, have also shown elevated removals of dissolved organic carbon (DOC) after fifteen plus 

years of service without the need for regeneration or replacement.  

 

Disadvantages associated with the use of GAC include the replacement and regeneration of the 

carbon after bed volumes have been exhausted. With any type of treatment, the sites available for 

adsorption onto activated carbon decreases, resulting in the loss of the adsorptive capacity of 

GAC. GAC regeneration requires large capital investments and operating costs (Aktaş & Çeçen, 

2007). The regeneration process is also a plausible method to treat GAC that has been exhausted, 

however, this has been known to alter GAC properties and cause adsorption capacities to be 

reduced after each regeneration cycle.   

 

2.3 The Sand-Water Interface  

The schmutzdecke has been described as a  complex, biological layer formed at the subsurface of 

a slow sand filter. This particular layer plays a crucial role in the production and purification of 

potable drinking water treatment. The microbial community formed within the schmutzdecke 

layer is responsible for creating an initial zone of biological activity and can provide degradation 

of soluble organics within the raw water source.  

 

2.3.1 Development of Schmutzdecke Layer  

The optimal performance of slow sand filters can only be achieved when the filter is fully  
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matured and acclimated with a steady biomass population. (Arora, 2017). The development of 

the schmutzdecke layer depends on available microbes in raw water sources, food and oxygen 

supply, residence time, and wetting of the sand bed (Ranjan & Prem, 2018). It is formed in the 

first few weeks of operation, otherwise known as the ripening period. Ripening periods depend 

on the nature of the raw water quality, temperature, and filtration velocity (Duncan, 1988). 

Typically, the ripening period will range from about one week to several months. Warm 

temperatures and high nutrients will decrease ripening periods (Hendricks, 1991).  A steady state 

biomass population is achieved when there is an equilibrium between the microorganism 

populations and the substrate availability under appropriate water quality conditions.  

 

Huisman and Wood (1974) describe the schmutzdecke layer as a thin, slimy matting of material 

organic in origin, consisting of filamentous algae and other forms of life including but not 

limited to, diatoms, protozoa, rotifers, and bacteria. This layer is intensively active due to various 

microorganisms entrapping, digesting, and breaking down organic matter contained in the water 

passing through (Huisman & Wood, 1974). The bacterial activity is most prominent in this upper 

layer of the filter bed and gradually decreases with depth as food sources become scarcer. Figure 

2-6 obtained from Partinoudi et al., (2006), displays the schmutzdecke biomass development 

within the upper layer of a filter. When the schmutzdecke layer begins to merge with deeper 

biological layers present within the slow sand filter, biological mechanisms continue to occur  

(Ranjan & Prem, 2018).  
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Figure 2-6. Schmutzdecke biomass development (adapted from Partinoudi et al., 2006). 

 

According to Huisman and Wood (1974), there are four dominant processes which contribute to 

the purification of raw water and filtration processes within the schmutzdecke and biological 

zones: 

• Hostile environment:  Typical environmental conditions found within slow sand filters 

consist of temperatures below 30ºC. For intestinal bacteria to successfully multiply, this 

would include environmental temperatures similar to the human body, around 37ºC. 

(Ranjan & Prem, 2018). Therefore, intestinal bacterial populations are unable to thrive in 

typical environmental conditions associated with slow sand filters.  

 

• Competition for food: Food is a requirement for metabolic processes in microorganisms. 

Oxidation processes which occur during metabolism consume organic matter within the 

raw water, including dead organisms (Ranjan & Prem, 2018). Within upper layers of 

slow sand filters, particularly the schmutzdecke, there is greater competition for food as 
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there is more biomass accumulation. At lower depths, food becomes scarcer and many 

microorganisms starve. 

 

• Predation: Several studies have shown that predatory organisms exist within filter 

sublayers and will feed off other microorganisms present within the upper layer of filter 

beds. (Unger & Collins, 2008). 

 

• Excretion of poison or toxins: Microorganisms in SSF can produce various substances 

that act as chemical and biological poisons that affect intestinal bacteria (Ranjan & Prem, 

2018).  

 

The combined effects of these four dominating processes as the schmutzdecke ripens and 

matures with a steady biomass population can allow for biological activity to continue within the 

schmutzdecke layer and various filter sublayers. Bellamy et al., (1985a) reported that as filtration 

progresses, biological growth continues to occur in the sand bed and gravel layer. However, the 

filter is not as effective in removing bacteria during this period. Throughout this study it was 

determined that a new sand bed has the ability to remove 85% of coliform bacteria present in raw 

water sources, whereas a fully acclimated and mature sand bed has the ability to remove more 

than 99% of the coliform bacteria (Bellamy et al., 1985a). An additional study conducted by 

Hirschi and Sims (1991) conveyed that the development of the schmutzdecke layer is an 

essential process in the removal of pollutants from raw water sources. 
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2.3.2 Effect of Temperature on SSF Performance 

The biomass population can change dynamically by responding promptly to changes in 

temperature, influent organic concentration and dissolved oxygen (Duncan, 1988). Several 

studies have shown that the efficiency of slow sand filtration may be increased when 

temperatures increase. Temperature has been found to influence the speed at which chemical 

reactions take place as well as the metabolic rates of bacteria and microorganisms present within 

the filter (Ranjan & Prem, 2018).  

As mentioned previously, the schmutzdecke layer can take several weeks to a few months to 

ripen. Palmateer et al., (1998) studied the development of biofilms within the schmutzdecke and 

discovered that it took approximately 16 days to develop biofilm at 85-90% coverage at 21ºC. It 

was also noted that raw water that is more biologically active will result in quicker biofilm 

development and thus filter operation will be more efficient (Palmateer et al., 1998). In a study 

conducted by Partinoudi et al., (2006) assessing temperature influences on slow sand filtration 

performance, it was determined that the preferential microbial removal occurred when the study 

was conducted at warmer temperatures. A robust correlation between increasing bacillus spore 

log removal trends and increasing phospholipid biomass can be seen in Figure 2-7, adapted from 

Partinoudi et al., (2006). In conclusion, microbial removals were shown to be more efficient at 

warmer temperatures.  

 

As water temperatures begin to decrease, satisfactory biochemical oxidation of organic matter is 

not able to take place as efficiently by microbes within the biological layer (Ranjan & Prem, 

2018).  At low temperatures, bacterial activity within the schmutzdecke layer starts to slow 

down. Per Ranjan & Prem (2018), the activity of bacteria that consume protozoa and nematodes 
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abruptly decreases, allowing for slower metabolic rates of intestinal bacteria which can enhance 

their ability to be present within the filter bed. At lower temperatures, the numbers of E.coli and 

other microbes are also greatly reduced. The factor by which the numbers of these microbes are 

present can typically range from 100-1000, but have the potential to fall as low as 2 at 

temperatures of 2ºC or less (Ranjan & Prem, 2018).  

 

 

 

 

 

 

 

Figure 2-7. Correlation between bacillus spore log removal and phospholipid biomass 

concentration (adapted from Partinoudi et al., 2006).  

 

2.3.3. Quantification of Biomass in the Schmutzdecke Layer  

The fundamental physio-chemical and biological mechanisms controlling water purification and  

headloss development in slow sand filtration remains poorly defined, despite its current and 

historical importance (Campos et al., 2002).  As the filtration process progresses, biomass has 

been shown to accumulate in the schmutzdecke layer and contributes to headloss development.  

The quantification of biomass growth within schmutzdecke layers and adjacent sand layers and 
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the factors affecting the formation of this layer could improve the understanding of the complex 

biological interactions operating in SSF (Campos et al., 2002).  

 

Microbial biomass in the schmutzdecke and sand filter bed has been quantified using a variety of 

microbial methods. Multiple reports include single measurements of the net biomass production 

at the end of a filter run prior to filter cleaning. This sample collection accentuates significant 

amounts of variability within schmutzdecke and variability of sand biomass accumulation in 

operational slow sand filters. (Campos et al., 2002).The various methods used to quantify 

biomass concentrations in the schmutzdecke layer confound inter-study comparisons of biomass 

development and behavior in SSF due to the inconsistent units and sampling intervals (Campos 

et al., 2002). The collection of representative samples from the schmutzdecke layer and adjacent 

sand media during filter operation is difficult in practice due to limited access to filter layers 

within slow sand filters. The lack of simple routine measurements for biomass quantification 

have resulted in a limited amount of field-scale investigations focusing on the biological 

mechanisms involved in the SSF process.  

 

Collins et al., (1993) quantified bacterial populations in the schmutzdecke layer by measuring 

biomass and bacterial counts within media covered slow sand filters. It was determined that 

bacterial populations decreased with depth, while filter biomass was significantly correlated to 

bacteria counts. Another study conducted by Seger & Rothman (1996) placed emphasis on 

biological activity in uncovered slow sand filters that were both ozonated and non-ozonated. 

Biomass activity was measured using adenosine triphosphate (ATP) luciferin-luciferase methods 

in combination with total cell count by epifluorescence microscopy. Balen (2018) used ATP 



 

 

36 

extraction techniques paired with deoxyribonucleic acid (DNA) extraction techniques as a 

method to enumerate biofilter biomass in a lab-scale study to evaluate strategies used to increase 

biofilter performance in the presence of low-carbon source waters. This study concluded that 

biofilter active biomass was increased within biofilters that were amended with organic 

substrates. High levels of ATP concentrations were achieved in biofilters amended with organic 

substrates, suggesting that organic carbon is a growth-limiting nutrient (Balen, 2018).   

 

Campos et al., (2002) studied temporal and spatial dynamics of biomass development in full-

scale SSF beds at the Walton Water Treatment Works, operated by Thames Utilities Ltd. in the 

United Kingdom. During the experimental period which occurred between the months of May 

and August, water temperatures increased from 12-13ºC ranging to 18-19ºC. To measure 

biomass, a chloroform-fumigation extraction technique was adapted from standard laboratory 

procedures (Campos et al., 2002). Sand biomass increased significantly with temporal and 

seasonal variations between May and August for an uncovered SSF bed and can be shown in 

Figure 2-8 obtained from Campos et al., (2002). 

 

 

 

 

 

 

 

Figure 2-8. Correlation between sand biomass production and seasonal variations (adapted from 

Campos et al., 2002). 
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As this current study is attempting to look at temporal and seasonal variations of biomass 

production in the schmutzdecke and adjacent filter layers, it is important to note that Campos et 

al., (2002) discovered that biomass accumulation in the schmutzdecke layer was highly variable, 

but did not show any significant or consistent patterns in spatial or temporal development. The 

biomass development in the schmutzdecke can be detailed by Campos et al., (2002) in Figure 2-

9. 

 

 

 

 

 

 

 

 

 

Figure 2-9. Schmutzdecke biomass variability (adapted from Campus et al., 2002). 

 

A series of studies conducted by Unger & Collins (2008) verified that Escherichia coli (E.coli) 

removals in slow rate biological filters primarily occurred within the schmutzdecke layer and 

were shown to be statistically correlated to operational and design parameters for SSF. In this 

study, four analyses were used to quantify filter media biomass accumulation: phospholipid 

measurement for biomass, total carbohydrate and total protein measurements, and a carbon 

dioxide monitor was applied to monitor biological activity (Unger & Collins, 2008). Page (1997) 
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measured biomass via phospholipid extraction techniques using pilot-scale filters in Milo, Maine 

This study concluded that established biomass levels did not appear to vary significantly with 

seasonal changes and that the greatest levels of biomass occurred in the schmutzdecke and top 

sand layers.  

 

While a variety of biomass quantification techniques exist and have been used in an array of 

experimental studies conducted within schmutzdecke and sand layers, lack of consistent 

sampling techniques and application of dependable laboratory methods creates gaps in this area 

of study. Consistent techniques can assist in gaining a greater understanding of the complex 

mechanisms, both physio-chemical and biological, involved in SSF. 

 

2.3.4 Limitations of the Schmutzdecke Layer  

While the development of the schmutzdecke provides many advantages to slow sand filtration 

removals, there are also limitations associated with biomass accumulation on the top of the sand 

bed. As the schmutzdecke layer begins to thicken, flow rates through the filter are reduced 

(Ranjan & Prem, 2018). This process eventually leads to clogging of the filter subsurface and in 

turn, filter subsurface must be cleaned. The clogging of porous media results from a decrease in 

the capacity of a treatment system to filter water. Clogging can occur as a result of three main 

processes: physical, chemical, and biological (Baveye et al., 1998). In SSF, the particular 

clogging mechanism observed is due to microbial activity on the subsurface layer. According to 

Baveye et al., (1998), microbial clogging could occur from cell accumulations in the pore space, 

the production of extracellular polymer substances (EPS), release in the pore space by gaseous 

byproducts, and the accumulation of insoluble precipitates that can be microbially mediated.  
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Harrowing is one method used to scrape the schmutzdecke surface and top few centimeters of 

the sand bed to prevent clogging in SSF, as mentioned in Section 2.1.3. After a filter is cleaned, 

water is recirculated in the filter to begin the process of new biofilm accumulation. Per Ranjan & 

Prem (2018), it has also been noted that the schmutzdecke can contribute to the total head loss 

within filter beds due to the schmutzdecke acting as a porous filter medium in open filters. 

Adenerian & Akanmu (2013) reported that the schmutzdecke layer is removed when the head 

loss becomes excessive and outflow rates decrease. Harrowing provides a limitation to SSF as 

scraping the schmutzdecke causes the ripening period to begin again, which can be variable 

depending upon temperature and biomass production rates.  

 

2.4 Temperature Influences on Slow Sand Filtration & GAC 

As mentioned previously, the development of the schmutzdecke layer plays a functional role in 

the removal of organics in slow sand filtration. Microbes that accumulate on the surface interface 

utilize the organics as a food source and this enhances the service life of fixed bed slow sand 

filters amended with GAC through the conversion to BAC filters. As temperatures in raw water 

sources decrease, slow sand filters become less effective at removing microorganisms from cold 

water due to a decline in biological activity within the filter bed (SSF Tech Brief, 2000). 

Biologically active filters aid in reducing biodegradable organic matter, including micro-

pollutants, through a complex coexistence of adsorption and biodegradation processes. Due to 

these processes being dependent upon temperature, treatment plants located in temperate and 

polar regions are subject to seasonal temperature variations (Moona et al., 2019).  
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2.4.1 Microbial Growth Potential, Removal, and Biomass Production  

According to Logsdon et al., (2002), colder temperatures appear to be a significant limiting 

factor for the implementation of SSF in North America. Colder temperatures can cause 

microbiological removal efficacy to decrease due to a reduction in biofilm production. Few 

studies have been conducted on the basis of SSF performance during colder temperatures. 

Typically, any comparisons for SSF performance in winter and summer conditions are 

confounded by raw water quality variations between summer and winter seasons (Partinoudi et 

al., 2006). LeCraw (2003) highlighted personal communications between the Environmental 

Protection Agency and Canadian officials, which concluded the idea that slow sand filtration is 

not as effective in capturing source water microorganisms during colder temperatures. 

 

Partinoudi et al. (2006) hypothesized that the presence of extracellular polymeric substances 

(EPS) produced by SSF biofilm assists in increasing particle attachment at the filter subsurface, 

ultimately increasing removal efficiency. It was also speculated that biomass production may 

significantly decrease at cold temperatures, consequently reducing the EPS within the filter. In 

this study, samples were analyzed for biomass, EPS, carbohydrates, proteins, biological activity, 

chlorophyll, seston and metal ions (Partinoudi et al., 2006). As this study focused on noticeable 

variations in biomass production with seasonal changes, higher removals were observed in the 

presence of increasing phospholipid biomass concentrations. Most of the biomass was located in 

the upper region of the pilot slow sand filters and the highest microbial removals were obtained 

at the highest phospholipid biomass concentrations during warmer temperatures (Partinoudi et 

al., 2006). The lowest microbial removals were obtained during colder temperatures at lower 

phospholipid biomass concentrations, signifying that temperature influences biomass production. 
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A strong correlation was also seen between microbial removals and biological respiration. 

Microbial removal rates for biological respiration were generally 2.5x ,more efficient in warm 

temperatures (21ºC) than in cold temperatures (5.5ºC) (Partinoudi et al., 2006). During warm 

temperatures, microbial removals were also shown to increase more rapidly indicating that a 

more efficient type of biomass or biological activity was present at those temperatures 

(Partinoudi et al., 2006). 

 

Several studies have indicated the influence of temperature on the effectiveness of slow sand 

filtration processes involved the inactivation of certain viruses such as  bacteriophage MS2, 

poliovirus, hepatitis A, Escherichia coli  (E.coli), and fecal indicator organisms. Nasser and 

Oman (1999) conducted a study in which various groundwater samples were enumerated with 

strains of hepatitis A, poliovirus 1, and E.coli to observe the effects of temperature on 

inactivation rates. It was found that the inactivation of hepatitis A and poliovirus-1 was greater at 

high temperatures (20-30ºC) as compared to low temperatures (4-10ºC). (Nasser & Oman, 1999). 

The results of this study indicated that the inactivation of viral agents found in natural source 

waters is dependent upon the water quality, temperature, microorganism type, and greater 

microbial activity occurring at higher temperatures (Nasser & Oman, 1999). Schuster et al., 

(2005) analyzed information pertaining to waterborne outbreaks occurring in Canada between 

the years of 1974 and 2001 to try to define apparent trends. It was discovered that severe 

weather, close proximity to animal populations, and treatment system malfunctions were linked 

to reported disease outbreaks (Schuster et al., 2005).  
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Poynter and Slade (1977) focused on poliovirus removals by SSF and indicated that increased 

removals occurred with increasing water temperatures. This study was conducted over a four 

year period and accredited increased removals of poliovirus with higher temperatures due to 

increases in biological activity occurring within the SSF process. The increased activity of 

microorganisms living in slow sand filters, usually microorganisms that prey on or inactivate 

viruses, was the probable cause of higher virus removals at higher temperatures (Poynter & 

Slade, 1977). An additional study focused on temperature influences for MS2 and E.coli 

removals showed an approximate 2 log increase in removals in warmer SSF experiments that 

included temperatures ranging from 13ºC to 16ºC as compared to experiments conducted at 10ºC 

(Dullemont et al., 2006). In conclusion, enhanced microorganism removals in this study were 

also attributed to the increased biological activity that occurs in SSF at warmer temperatures 

(Dullemont et al., 2006). 

 

Relationships between temperature, fecal indicator organism removal, and filtration rates have 

also been studied in slow sand filtration processes. Bellamy et al., (1985a) discovered that 

temperatures decreasing from 17ºC to 5ºC and below caused a descent in coliform removals from 

99% to roughly 90% in the presence of colder waters. Total coliform removals were also 

discovered to be adversely influenced by increases to filtration rates when rates were altered 

from 0.04 m/hr to 0.4 m/hr (Bellamy et al., 1985a). At the Thames Water Utility in London, 

Toms & Bayley (1988) conducted studies focused on the impact of filtration rates and 

temperatures. It was observed that low temperatures create a limitation on the capacity of filters 

to remove fecal indicator organisms (Toms & Bayley, 1988). At temperatures below 4ºC and a 

filtration rate of 0.3m/hr, average concentrations achieved included less than 50 E.coli/ 100 mL 
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in comparison to a filtration rate of 0.2 m/hr only achieving a concentration of 10 E.coli / 100 

mL.  

 

A more recent study conducted on household slow sand filtration (HSSF) by Lubarsky et al., 

2022 focused on intermittent and continuous household systems to investigate extracellular 

polymeric substance (EPS) composition, biomass, dissolved oxygen, and microbial community 

development. The study was conducted for 48 days using a continuous HSSF (C-HSSF) and an 

intermittent HSSF(I-HSSF) to place emphasis on bacterial removals from river water, 

particularly E.coli and fecal coliform detection, changes in turbidity, and apparent color 

removals. Results demonstrated an increase of carbohydrates from 21.4 to 101.2 mg·g
-1  

for C-HSSF and 22.5 to 93.9 mg·g
-1 

for I-HSSF and an increase in proteins from 34.9 to 217  

mg·g
-1 for C-HSSF and 34.9 to 307.8 mg·g

-1 for I-HSSF (Lubarsky et al., 2022). Improvements 

related to the efficiency of HSSF systems was observed throughout the duration of this study as 

there was a 3.23 log removal of E.coli, a 2.98 log removal for total coliforms, increase in 

turbidity removals from 60% to 95%, and an increase in apparent color removals from 50% to 

90%  (Lubarsky et al., 2022).  

 

Temperature variations also were monitored throughout the duration of this study. During week 

four, there was substantial amount of rainfall causing external temperatures to drop by 2ºC. 

Temperatures dropped to 18.6ºC in the C-HSSF and 15.5ºC in the I-HSSF and this drop was 

correlated to a decrease in EPS carbohydrates and proteins within samples collected during week 

four (Lubarsky et al., 2022). It was later confirmed that the temperature variations did not affect 

the overall performance of household slow sand filters. As slow sand filtration systems are 
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applied in an array of settings for the removal of organics and bacteria from raw water sources, 

the implementation of this system continues to provide several benefits in drinking water 

treatment processes.  

 

2.4.2 DOC and BDOC Removals by SSF Amended with GAC  

The influence of raw water temperatures on the removal of dissolved organic carbon (DOC) and 

biodegradable organic carbon (BDOC) have been studied at various water treatment plants where 

several biological processes are involved. It has been indicated that the behavior of slow sand 

filtration differs from that of GAC filtration. As mentioned previously, GAC amendments to SSF 

can significantly enhance the removal of organic precursors quantified by DOC and BDOC.  

 

 Welté & Montiel (1996) studied the removal of DOC and BDOC performances on the treatment 

chain at the Ivry Treatment Plant, which supplies approximately 30% of drinking water to the 

city of Paris. In this study, it was determined that SSF performance is optimal and more efficient 

at temperatures above 15ºC. A total DOC removal of 28% was observed at 6ºC as compared to a 

total removal of 43% at 15C (Welté & Montiel,1996). A comparison was made between raw 

water, SSF water, and GAC waters. As displayed by Welté & Montiel (1996) in Table 2-4  

below, the efficiency of SSF for BDOC removal is very high, displaying rates at 76% for 15ºC.  

 

Granular activated carbon has displayed a lower removing efficiency compared to SSF at 15ºC, 

however, the efficiency optimum for GAC filters in BDOC removals occurred at temperature 

ranges between 5ºC and 10ºC (Welté & Montiel,1996). The results of this study suggest that the 
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behaviors involved in slow sand filtration versus slow sand filtration amended with a GAC 

sublayer could differ when it comes to removals of biodegradable and dissolved organic carbon. 

 

Table 2-4. BDOC and DOC removals for SSF and GAC Filtration displayed as percentages 

(adapted from Welté & Montiel, 1996). 

 

Research on slow sand filters amended with granular activated carbon began at the University of 

New Hampshire in 1987 and a more in depth understanding of the DOC removal process by 

enhanced SSF began in the mid-1990s by Tom Page. (Graham & Collins, 2014). A comparative 

pilot study was conducted with a control slow sand filter, a 7.5 inch GAC amended slow sand 

filter, and a 15 inch GAC amended slow sand filter. DOC removals reached pseudo steady-state 

removals of 12%, 28%, and 46% respectively, and filter run time occurred for over 300 days. 

(Page 1997; Graham & Collins, 2014). The removals associated with the biodegradable organic 

carbon (BDOC) fraction were comparatively similar for the control and GAC amended pilot 

filters, indicating that elevated removals of DOC by granular activated carbon amended filters 

were due to adsorption mechanisms. This is displayed in Figure 2-10 obtained from Tom Page 

(1997).  

 

Respectively, the pseudo steady-state removals by adsorption for the 7.5 inch GAC amended 

filter was 16% and for the 15 inch GAC amended filter removals were 36% (Page, 1997). As 

mentioned previously, adsorption is a primary removal mechanism in slow sand filters amended 

Temperature  6ºC 9ºC 15ºC 

Removals BDOC       DOC BDOC        DOC BDOC       DOC 

Slow Sand Filtration 21%         4.7% 19%         6.1% 76%         42% 

GAC after Ozonation 34%         7.0% 56%         25% 51%         26% 
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with GAC and a property of granular activated carbon. Adsorption is the dominant mechanism in 

DOC removal within the first 10,000-15,000 GAC bed volumes (BVs) and has been shown to be 

dependent upon temperature (Graham & Collins, 2014). As steady-state removals by adsorption 

are achieved, biodegradation begins to achieve proportional removals of dissolved organic 

carbon as temperatures begin to increase above 10ºC (Graham & Collins, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10. Removals associated with DOC and BDOC in GAC amended pilot filters studied in 

Milo, Maine (adapted from Page, 1997). 

 

A summary depiction of DOC removals observed by both adsorption and degradation within the 

GAC amended pilot filters as a function of bed volumes is demonstrated by Page (1997) in 

Figure 2-11. Due to DOC removals occurring by adsorption after 400+ days of filter run time, 

roughly equivalent to 12,000 - 23,000 bed volumes, there is evidence present to support slow 

adsorption mechanisms and bioregeneration in the GAC sublayer (Page, 1997; Graham & 

Collins, 2014).  
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Slow adsorption mechanisms are suggested by the steady-state adsorption rates being 

proportional to the empty bed contact time (EBCT) of the GAC (Graham & Collins, 2014). 

Evidence suggests the bioregeneration mechanism occurring due to increasing adsorption rates  

with the increase in temperature. DOC removals have been associated with temperature fluxes 

and are summarized in Figure 2-12 adapted from Page (1997). While both bioregeneration and 

adsorption mechanisms are fundamental processes in DOC removal mechanisms observed in 

SSF, relative importance is a function of temperature and further investigations are needed to 

determine the effect of temperature on these mechanisms.  

 

 

 

 

 

 

 

 

 
 
 

 

 
 

 

 

 

 

Figure 2-11. Summary depiction of DOC removals observed by adsorption and biodegradation 

in pilot filters amended with GAC (adapted from Page, 1997). 
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Figure 2-12. DOC removals associated with temperature variations (adapted from Page, 1997). 

 

2.5 Adsorption of Heavy Metals Accumulation on Filter Media & GAC  

Granular activated carbon (GAC) is applied to conventional slow sand filters to adsorb organic 

compounds that may be harmful to humans and to improve the quality of potable water. While 

operating in this capacity, both sand media and GAC can accrue metals concentrations in 

substantial quantities. Metals such as iron, manganese, aluminum, and calcium have been found 

to accumulate on sand and GAC surfaces due to their natural ubiquity in source waters. 

 

2.5.1 Metals Accumulation and Adsorption on Granular Media  

Heavy metals are well-known sources of environmental pollution due to their natural toxicity, 

persistence within environmental settings, and their ability to bioaccumulate. Sources of metals 

accumulation are commonly associated with industrial discharges, but other important sources to 
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consider include, but are not limited to road run-off, landfill leachate, and municipal sludge 

(Marquis et al., 1976; Ellis, 1988, Pradhan & Levine, 1992). Heavy metals can remain persistent 

in the environment due to the nature of their speciation. The removal of heavy metals in slow 

sand filtration can be applied through a variety of processes which can include chemical 

precipitation, adsorption, biological uptake, ion exchange, and reverse osmosis. 

 

Muhammad et al., (1998) focused on a controlled lab setting in conjunction with pilot filter 

studies to determine the performance and mechanisms of the removal of heavy metals by SSF. 

Lab scale SSFs were created using a sand grade of 0.20 – 0.70 millimeters, filter depth of 1.2 

meters, and flow rates od 0.1m/hr. The removal of four representative dissolved heavy metals 

(Cu, Cr, Pb, and Cd) were studied and results showed that SSF is an effective method in 

removing heavy metals from water. Removals associated with this study included 99.6% for 

Copper, 97.2% for Chromium, 100% for Lead, and 96.6% for Cadmium with the application of a 

TOC dose applied at 12 mg/L. Potential mechanisms for removal in this study were identified as 

settlement, adsorption to both organic matter and sand, and microbial uptake (Muhammad, 

1998). 

 

Another study conducted by Collins & Vaughan (1996) focused on sand media coatings and the 

characterization of NOM removal by biofiltration. Metals analyses using hot nitric acid and 

hydrochloric extraction techniques characterized concentrations on sand coatings per gram dry 

weight for Iron (Fe), Aluminum (Al), Calcium (Ca), and Manganese (Mn) for various local slow 

sand filters and rapid sand filters in West Hartford, Connecticut and Portsmouth, New 

Hampshire.  It was discovered that the highest concentrations of Iron and Manganese were found 
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on sand coatings used at the West Hartford SSF. In the rapid sand filters in Portsmouth, there 

were low concentrations of iron, manganese, and calcium within sand coatings, but high 

concentrations of Aluminum. Overall, the equivalent metals concentrations ranked from highest 

to lowest were Portsmouth RSF, West Hartford SSF, followed by Portsmouth SSF. These values 

obtained from Collins & Vaughan (1996) can be observed in Table 2-5. This study verified that a 

correlation could be found by relating metal content of sand coatings to various removal trends. 

 

Table 2-5. Metals concentrations from various sand coatings displayed in mg-kg/dry weight 

(adapted from Collins & Vaughan, 1996). 

 

 WH-SSF Port-SSF Port-RSF 

Fe 3732  257 2986  452 641  67 

Mn 200  13 45  1 10  1 

Ca 270  19 283  39 5  1 

Al 1695  117 1148  91 7149  60 

Avg metal milliequivalents/kg dry wt  343 250 818 

 

 

Metals accumulation and adsorption can also occur on and within the GAC sublayer. Granular 

activated carbon is implemented into SSF designs due to its adsorptive capacities and abilities to 

enhance the removal of NOM. Due to the simplicity of SSF designs in combination with slow 

filtration rate applications, build up and accumulation of organics and trace metals on the GAC 

sublayer can occur gradually over time. Mechanisms for the build-up of organics on granular 

activated carbon include precipitation on the surface of GAC, adsorption of metallo-organic 

complexes in the presence of natural organic matter, chelation with NOM, particle deposits, and 
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ion exchange onto the GAC surface (Dagois et al., 1992; Cannon et al., 1993). While the 

adsorptive function of GAC provides many benefits to SSF, it will reach a point of exhaustion 

after months to years of service. Methods can be applied to regenerate the adsorptive capacities 

of GAC for reuse in SSF and will be discussed in Section 2.5.2.  

 

2.5.2 Thermal Regeneration of GAC 

The thermal regeneration of granular activated carbon is being increasingly considered as a cost-

effective, alternative method to disposal as the discarding of field-spent GAC has become more 

difficult and expensive. As GAC becomes exhausted of its adsorptive capacities, it can no longer 

assist in producing required drinking water treatment standards. Spent carbons can be landfilled, 

incinerated, or thermally regenerated for reuse purposes.  

 

The process of thermal regeneration encompasses four main processes, including a pyrolytic 

stage and an oxidative stage. DeWolfe et al., (1992) describes the thermal regeneration process 

beginning with drying GAC at temperatures below 200ºC, followed by the vaporization of 

volatile adsorbates and the decomposition of unstable adsorbates at temperatures between 200-

500ºC to form volatile fragments. The next step being the pyrolytic stage involves spent carbon 

being exposed to temperatures up to 800ºC under inert conditions (Miguel et al., 2001). This 

allows char to form on the activated carbon surface. The oxidation of the pyrolyzed residue is 

performed by applying steam and controlled gasification at temperatures above 700ºC. This stage 

results in the elimination of the charred residue subsequently exposing the original carbon pore 

structure (Waer et al., 1992)  
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The success of thermal generation largely depends upon the characteristics of the field-spent 

carbon and the conditions used to maximize recovery of original carbon characteristics without 

generating large carbon losses. This includes the recovery of the virgin pore structure and 

original adsorptive capacity to be restored (Frederick, 1999). However, studies have shown that 

the accumulation of heavy metals and the presence of particular metals on the GAC sublayer can 

negatively affect thermal regeneration processes.  

 

2.5.3 Effect of Calcium Loading on Field-Spent GAC  

As mentioned previously, metals accumulation on the GAC surface can occur when the GAC 

serves as a filter adsorber in conventional slow sand filter designs.  Metals can become loaded 

onto GAC via chemical precipitation, chelation with natural organic matter, adsorption of 

metallo-organic complexes in the presence of NOM, particle deposits, or ion exchange onto the 

GAC surface (Dagois et al., 1992; Cannon et al., 1993). Metals such as iron, manganese, 

aluminum, and calcium have been discovered to accumulate onto GAC due to their natural 

presence in source waters as well as their presence in chemical treatments used at drinking water 

treatment facilities. In drinking water treatment, metals accumulation has become increasingly 

important due to the impact that accumulated metals can have on the thermal reactivation of 

GAC (Cannon et al., 1993). 

 

Research conducted by Cannon et al., (1993) showed that GAC can accumulate metals in 

significant quantities, and particularly large accumulations of calcium. Thermal regenerations 

were conducted on field-spent carbons with a service life of nearly 4 years from the American 

Water Works Service Company (AWWSC) and the Compagnie Générale des Eaux (CGE) Water 
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Treatment Plants. It was discovered that the field-spent GAC contained 0.4-7.0 percent calcium, 

0.3-3.7 percent aluminum, 0.1-0.5 percent iron, and 0.02-0.6 percent manganese. As Cannon et 

al., (1993) demonstrates in Figure 2-13, various GAC sources were regenerated and extracted for 

metals content. 

 

 

 

 

 

 

 

 

 

Figure 2-13.  Metals content and regeneration mass loss of spent GACs from AWWSC and CGE 

water treatment plants (adapted from Cannon et al., 1993). 

 

The goal of Cannon’s study was to determine how accumulated metals affect the processes 

involved in thermal regeneration and whether thermal regeneration had the ability to restore 

GAC to its virgin properties despite the metals concentrations. Several regeneration variables 

were tested including pyrolysis temperature, oxidation temperature, oxidant gas, oxidant flow 

rate, and oxidant extent.  Cannon et al., (1993) discovered that proper regeneration of field 

loaded calcium intact could restore the spent GAC, including similar pore structure and surface 

areas exhibited by virgin GACs.  Consequently, when calcium appeared inside field-spent GAC, 

it caused micropores to be converted to smaller mesopores during thermal oxidation. A guiding 
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question that came as a result of this research was whether treatment facilities should invest in  

regeneration costs of GAC, replace existing GAC sublayers with virgin GAC, or dispose of it in 

a landfill.    

 

It was later discovered that the accumulation of metals affects the process of thermal 

regeneration, as some of them have been reported to catalyze the reaction between solid carbon 

and the oxidizing agents (Kaptejin et al., 1986; Knappe et al., 1992; Cannon et al., 1993). Of 

particular focus, calcium catalysis during regeneration has been found to have more significant 

effects than any other metal that significantly loads onto water treatment GACs (Cannon et al., 

1993). The presence of catalytic metals have the ability to affect the regeneration process in one 

of two ways. Miguel et al. (2001) explains the first factor being that catalytic metals can increase 

the reactivity of the carbons, meaning both lower temperatures and reduced reaction times are 

necessary in order to achieve a certain degree of gasification. Secondly, catalytic metals can 

affect the development of carbon porosity during the regeneration process, ultimately forming 

larger pores.   

 

It has also been discovered that calcium commonly accumulates on GAC when it is chelated by 

natural organic matter, as it is drawn into the pores of GAC (Knappe et al., 1992).  Accumulation 

via precipitation can also occur due to GAC particles serving as a nuclei for this process. When 

calcium accumulates on GAC, calcium significantly catalyzes the regeneration reaction leading 

to accelerated internal mass loss (Knappe et al., 1992).  Within this study, optimal conditions 

used for the regeneration of GAC were applied to carbon presenting internally loaded calcium. 

Regeneration processes applied to GAC with internally loaded calcium led to severe over-
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regeneration (Knappe et al., 1992).  Thus, signifying that the pore structure and adsorptive 

capacity of  GAC are adversely affected by the application of regeneration. Research conducted 

in this study  verified that calcium loaded GACs did not have the capability to be regenerated to 

yield GAC properties equivalent to virgin GAC properties.  
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3. Experimental Approach and Methodology 

3.1 Experimental Approach   

Specific goals of this study were to assess mechanisms contributing to the maintenance of GAC 

adsorption sites and the impact of seasonal variation on microbial communities within SSF 

sublayers. In order to assess the impacts of seasonal variation on filter sublayers, media samples 

and aqueous samples were obtained for biomass analyses and several aqueous analyses. Aqueous 

and media samples were obtained from the Slow Sand Filtration Plant in Winthrop, Maine at 

various dates incorporating seasonal temperature changes for laboratory analyses summarized in 

Table 3-1.  

Table 3-1. Aqueous and Media Sample Collection from Winthrop (ME). 

 

Date  Aqueous Samples Aqueous Analyses Media Samples Media Analyses 

August  

2021 

Raw Water 

Effluent Filter #1 

Water Quality 

TOC/DOC 

BDOC 

Non-BDOC 

Schmutzdecke 

Sand Above GAC 

GAC 

ATP Biomass 

DNA Extractions 

Metals Concentrations 

September 

2021 

Raw Water 

Effluent Filter #1 

Effluent Filter #2 

Effluent Filter #3 

Water Quality 

TOC/DOC 

BDOC 

Non-BDOC 

Schmutzdecke 

Mid-Sand 

Sand Above GAC 

GAC 

ATP Biomass 

DNA Extractions 

 

February 

2022 

Raw Water 

Effluent Filter #1 

Sand Above GAC (Filter #1) 

Effluent Filter #2 

Effluent Filter #3 

Water Quality 

TOC/DOC 

BDOC 

Non-BDOC 

Schmutzdecke 

ATP Biomass 

DNA Extractions 

 

 

May 

2022 

Raw Water 

Effluent Filter #1 

Effluent Filter #2 

Sand Above GAC (Filter #3) 

Effluent Filter #3 

Water Quality 

TOC/DOC 

BDOC 

Non-BDOC 

Schmutzdecke 

Mid-Sand 

Sand Above GAC 

GAC 

ATP Biomass 

Metals Concentrations 
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3.2 Aqueous Sampling and Analyses 

3.2.1 Sampling Techniques  

Aqueous samples were collected from the influent water source to the filters, also known as the 

raw water source, and three filter effluents at the Slow Sand Water Filtration Plant in Winthrop, 

Maine. Aqueous samples from all three filters were obtained for general water quality 

parameters, total organic carbon (TOC), dissolved organic carbon (DOC), and biodegradable 

organic carbon (BDOC) analyses.  

 

Both the influent water source and the three effluent water sources had various ports in the 

basement of the filtration plant. For TOC and DOC analyses, aqueous samples from each valve 

were taken using autoclaved 40 mL glass TOC vials. Source water was used to rinse the vials 

three times to ensure excess contaminants were cleaned for the raw water source and three filter 

effluent sources. Vials were filled up with source water after rinsing was complete. Aqueous 

samples were stored in a cooler during transportation and placed in the 4ºC refrigerator upon 

arrival in the laboratory at the University of New Hampshire. Aqueous samples obtained for 

BDOC laboratory procedures involved the use of several 1liter and 5 liter Nalgene carboys. The 

same rinsing technique was applied to the carboys to ensure any excess soap was removed from 

the carboys prior to sampling.   

 

Aqueous sample extraction above the GAC sublayer was completed using a metal corer attached 

to a peristaltic pump via black tubing. The metal corer was inserted into the top layer of filter 

media until it came to a halt, which signified that the bottom of the sand layer had been reached. 
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The peristaltic pump was turned on and ran consistently for a few minutes prior to sample 

collection in order to flush out any media particles and/or contaminants within the tubing.   

 

3.2.2 Total Organic Carbon / Dissolved Organic Carbon  

Total organic carbon (TOC) and dissolved organic carbon (DOC) were typically measured from 

the raw water source, the aqueous samples above the GAC sublayer, and the three effluent water 

sources in Slow Sand Water Filtration Plant in Winthrop, Maine. TOC and DOC were measured 

through a GE Sievers 5310C Laboratory TOC Analyzer. For DOC analysis, samples were 

filtered through a Whatman® GF/F 0.7 μm filter.  

 

3.2.3 Biodegradable Organic Carbon 

An aqueous sample is applied to bioacclimated sand for five to seven days in a batch reaction 

using the Summers/Shaker Batch Bioreactor Method. The readily biodegradable portion of 

dissolved organic matter is expected to be consumed by microbial activity. The sample must be 

agitated in order to promote mixing and biodegradation. By incorporating the use of fixed flora, 

this promotes a rapid response. The difference between the initial and final DOC is operationally 

defined as Biodegradable Organic Carbon (BDOC). 

 

Prior to the start of the BDOC procedure, two 4 inch diameter PVC columns were set-up which 

included stainless steel screens, Masterflex pumps, tubing, and a carboy for reservoir. For this 

procedure, the local water source used within the reservoir was from the Oyster River and 

supplied by the Durham Drinking Water Treatment Plant. The sand within these columns were 

then bioacclimated with the untreated, natural water from the Durham Water Treatment Plant for 
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at least 3-4 weeks prior to initial experimental set-up. The reservoir was rinsed and replaced at 

least once every two weeks and the target water was recirculated 1-3 days prior to testing.  

 

Sand preparation for the BDOC analysis occurred immediately before use. Sand was removed 

from the recirculating columns and placed in a plastic tub for transportation back to the 

laboratory. The sand was rinsed with dechlorinated tap water until the UV absorbance of the 

final rinse water was less than 0.05 abs. Aqueous samples being used for testing were stored in 

the 4 ºC fridge prior to test application and were removed from the fridge in order to warm to 20 

± 1 ºC. Aqueous samples were not required to be filtered prior to application.  

 

For this procedure, 1 L amber glass bottles with TFE lined caps were used in duplicates to hold 

sand media along with the aqueous samples. The bottles were washed with detergent, rinsed, 

washed with chromic acid, and dried in a muffle furnace prior to the start of the experiment.  

A glucose/glutamic acid (G/GA) solution was used as the control in the BDOC procedure. To 

prepare the stock solution, 104 mg of glucose (C6H12O6H2O) and 104 mg of glutamic acid 

(C5H9NO4) was weighed and added to 200 mL of deionized water. The stock solution was then 

diluted using 20 mL of the G/GA solution and placed in 2000 mL of deionized water. The stock 

solution was prepared immediately before use in this procedure and aqueous samples for this 

method included the raw water source, the aqueous sample above the GAC sublayer, and the 

three effluent water sources from the Slow Sand Water Filtration Plant in Winthrop, Maine. 

 

Approximately 150 g of wet sand was added to each reactor bottle. Sand was washed with 300 

mL of sample to displace any remaining water and decanted off and then 500 mL of sample was 
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added to the reactor. Roughly 400 mL of headspace should be present to ensure an oxygen 

source is being provided for the organisms. Once sample application was complete for all reactor 

bottles, each bottle was swirled and sampled for initial DOC. These samples were collected in 40 

mL autoclaved glass TOC vials which were previously labeled according to each sample. The 

bottles were then placed on a shaker table ~ 150 RPM, in the environmental room to incubate at 

20ºC. To prevent algal growth, the lights were kept off. Samples were obtained from each reactor 

on day 1, day 2, day 5, and day 7 to be analyzed for UV254  and TOC/DOC. When the test is 

complete, the used sand is returned to the bioacclimating columns.    

 

3.2.4 UV254 

Ultraviolet absorbance was measured throughout the duration of the BDOC laboratory 

procedure. Using a Hach DR5000 spectrophotometer set to a single wavelength of 254 nm, 

samples were typically evaluated at day 0, day 1, day 2, day 5, and day 7 throughout the BDOC 

procedure. A 1 cm cuvette was rinsed with RO water prior to each sample analysis and was dried 

using a kimtech wipe prior to being placed in the spectrophotometer. UV254 readings were 

recorded in absorbance (abs) units.  

 

3.2.5 pH and Temperature  

Potential hydrogen (pH) and water temperatures were measured daily at the Slow Sand Filtration 

Plant in Winthrop, Maine using the Thermo Scientific Orion™ Dual Star™ pH and ISE 

Benchtop Meter. The pH electrode and meter are calibrated with pH buffer standards of 4.01, 

7.00, and 10.01 prior to sample readings. To prepare the sample, roughly 30 mL of sample is 

added to a 50 mL beaker. The pH electrode, ATC probe, and stirrer probe are rinsed with 
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deionized water, blotted dry and placed into the sample. The stirrer probe is turned on and the 

meter will flash stabilizing followed by ready. The pH and temperature of the sample are then 

able to be recorded. Daily plant sheets were provided from the facility on a monthly basis and 

data was collected to be used throughout the duration of this study.  

 

3.2.6 Turbidity  

Turbidity of the raw water and treated waters from Filter #1, #2, and #3 were measured daily at 

the Slow Sand Water Filtration Plant in Winthrop, Maine using the Hach 2100N Bench Top 

Turbidimeter. Samples are prepared by collecting a representative sample in a container to fill a 

sample cell to the fill line ~ approximately 30 mL. The sample cell must be capped in order to 

prevent spillage of sample into the instrument and a thin bead of silicone oil must be applied to 

coat the cell. An oiling cloth is then used to spread the oil in a uniform manor prior to placing the 

sample cell into the instrument. The sample compartment must always be closed during 

measurement. The appropriate range, ratio, and unit settings are selected in order to provide 

accurate measurements. Samples are read and recorded in nephelometric turbidity units (NTUs). 

Daily plant sheets were provided from the facility on a monthly basis and data was collected to 

be used throughout the duration of this study. 

 

3.3 Filter Media Sampling and Analyses  

 3.3.1 Sampling Techniques   

Filter #1 in Slow Sand Water Filtration Plant in Winthrop, Maine was drained to a level in which 

the filter surface was accessible. Media samples from the schmutzdecke layer were obtained 

using a plastic scoop in combination with a scraping method to ensure appropriate amounts of 
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active biomass were being sampled. Once media was scraped, samples were placed in two ounce 

Nasko Whirl-Pak® sampling bags with write-on blocks used for labeling. Schmutzdecke samples 

were typically acquired from three different locations along the filter surface and collected in 

duplicates or triplicates per location.  

 

To obtain samples within various media layers in Filter #1, a location within the middle of Filter 

#1 was chosen. A conventional posthole digger was used to reach various media depths beyond 

the schmutzdecke layer. During sampling events in which various sand media was collected, this 

involved grab samples from the middle sand layer, roughly 8 inches below the filter surface, and 

grab samples from the sand just above the GAC sublayer, roughly 13 inches below the filter 

surface. During sampling events in which granular activated carbon media was acquired, the 

posthole digger was used to reach a filter depth of roughly 15 inches below the filter surface.  

 

All filter media sampled by layer were collected in duplicates or triplicates and stored in two 

ounce Nasko Whirl-Pak® sampling bags. Samples were then stored in a cooler during 

transportation and stored in a 4ºC refrigerator prior to the start of media analyses in the 

laboratory. Media samples from Filter #1 at the Slow Sand Water Filtration Plant in Winthrop, 

Maine were analyzed within twenty-four to forty-eight hours after collection for ATP biomass 

characterization and DNA biomass analysis.  

 

3.3.2 Deposit and Surface Analysis Characterization by ATP 

Total biomass activity, measured by adenosine triphosphate (ATP) concentrations, was 

quantified using the Deposit & Surface Analysis (Option B Measured Deposit Method) from the 
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Luminultra® Microbial Monitoring kit. The deposit and surface analysis standard operating 

procedure included the use of a rehydrating Luminase enzyme and an Ultracheck calibration 

(RLUATP1). If RLUATP1 was less than 5,000 a new bottle of Luminase was to be rehydrated.  

To prepare samples for biomass quantification, approximately 1.0 gram of wet sample media 

was weighed and immediately placed into a 5 mL UltraLyse 7 tube for ATP extraction. The tube 

was shaken vigorously by hand to promote homogenized mixing and then sat for a minimum of 5 

minutes to ensure complete extraction. Using a fixed volume micropipette, 1 mL of the 

UltraLyse 7 extraction solution was diluted into a 9 mL UltraLute dilution tube. The cap was 

placed on the tube and inverted three times to dilute any interferences within the sample.  

Total ATP was then measured using a luminometer in conjunction with the firefly luciferase 

assay. A pipette was used to extract 100 uL of the Luciferase enzyme and placed into an assay 

tube containing 100 uL of the solution from the UltraLute tube.  

 

A PhotonMaster luminometer was used to read light output from the samples. Results were 

displayed in relative light units (RLU), which were converted by the LumiCalc software to 

picogram of total ATP per gram of media (pg ATP/g). For consistency purposes in reporting 

ATP data, the results were converted to ng ATP/gdw and ng tATP/cm2 (See Appendix A). For 

that, a known mass of wet media was dried in a muffle furnace at 99º C for 24 hours and re-

weighed to determine the dry to wet ratio. For example, the results for sand media displayed a 

gram dry weight ratio of 87% and GAC media displayed a gram dry weight ratio of 52%. 

Typical sand media and GAC densities were used to convert gram dry weight values to surface 

area. Calculations included a density of 2.65 g/cm3 with an effective particle size of 0.57 mm for 

sand media and a density of 0.54 g/cm3 with an effective particle size of 0.65 mm for GAC.  
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3.3.3 Biomass Characterization by DNA Sequencing Analysis  

Total nucleic acid was extracted for metabarcoding from the media samples obtained from Slow 

Sand Filter #1 at the Slow Sand Water Filtration Plant in Winthrop, Maine. Deoxyribonucleic 

acid (DNA) extractions were performed used the Qiagen DNEasy® PowerSoil® Pro DNA 

Extraction kit. PowerBead Pro tubes were spun briefly to ensure that the beads settled to the 

bottom and approximately 250 mg of media was added along with 800 uL of Solution CD1. The 

solution was vortexed briefly to ensure mixing. PowerBead Pro tubes were placed horizontally 

on a Vortex Adapter at maximum speed for 10 minutes, then centrifuged at 15,000 g rpm x g for 

1 minute. The supernatant is transferred to clean 2 mL Microcentrifuge Tubes, which were 

provided in the kit.  

 

The remaining steps listed in the Quick-Start Protocol were performed on the Qiagen QIAcube 

Connect. QIAcube Connect is able to isolate highly pure nucleic acids using a spin-column based 

lyse, bind, wash, and elute procedure. The large touch screen on this device and the barcode 

scanner are used to select the protocol needed. In this case, the DNEasy® PowerSoil® Pro Kit 

was scanned using the barcode provided on the kit and instructions were followed by on-screen 

prompts. Once the extraction process was complete, samples were stored in the -80ºC freezer 

until ready for polymerase chain reaction (PCR) amplification processes and agarose gel set-up.  

 

Gene amplification, purification, and sequencing for metabarcoding analyses were conducted 

using standard methods to target and amplify the V4–V5 region prokaryote 16s rRNA gene. 

Cocktail reagents used included dH2O, Platinum PCR 2x MasterMix, Forward (F) primer 515F 

(Parada et al., 2016) and Reverse (R) primers 926R (Quince et al., 2011; Parada et al., 2016). 
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These forward and reverse primers with the Nextera Illumina adapter sequence attached were 

provided by the Hubbard Center of Genomics Laboratory at the University of New Hampshire. 

Standard PCR protocol included an Aliquot cocktail consisting of 17 uL of dH2O, 25 uL of 

Platinum PCR mix, and 3 uL of each F and R primers, and 2 uL of the extracted DNA samples 

for a volume total of 50 uL. Concentration readings were not taken throughout the duration of 

this study and samples were directly applied to the amplification process. After sample 

preparation, the SimpliAmp™ Thermal Cycler was programmed for a general PCR cycle. 

Denaturation began at 94ºC for 3 minutes. The remaining steps included denaturation at 94ºC for 

45 seconds, annealing at 50ºC for 60 seconds, and extension at 72ºC for 60 seconds. These steps 

were repeated 25 times. A final extension period occurred at 72ºC for 10 minutes and then 

samples were held at 4ºC until collected from the thermal cycler. Once the PCR cycle was 

complete, samples were stored in the -80ºC freezer later analysis by agarose gel. 

 

A 2% agarose-Tris/Borate/EDTA (TBE) buffer gel was used to ensure amplification was 

successful. Agarose gels are observed under transilluminator to confirm fragments are properly 

sized with the control ladder and are typically around 500 bp. Amplified samples were given to 

the Hubbard Center for Genomics Studies Laboratory to attach indexes and the Illumina adapter 

sequence. Samples with indexes were loaded onto the Illumina NovaSeq 6000 using SP 

chemistry version 1.5 for paired end 250 base pair sequencing for metabarcoding data analyses.  

 

Metabarcoding data was analyzed using the QIIME2™ microbiome bioinformatics platform. The 

DADA2 pipeline was used for sequence denoising and sequence variant reconstruction tables. 

The application of this code allowed for forward and reverse reads of raw sequence data to be 
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truncated to 240 base-pairs (bp) by trimming the forward primer by 19 bp and the reverse primer 

by 20 bp. Samples were then re-merged in order to produce visual outputs and statistical analyses 

based on taxonomy, alpha, and beta diversities. Sequence variants were able to be viewed as 

relative abundance, otherwise known as percent relative frequencies per sample. Microbiome 

data analysis of media samples obtained from Slow Sand Filter #1 in Winthrop, Maine included 

taxonomy plots, interactive trees of life (iTOL), alpha diversity, beta diversity, principal 

coordinate analyses, and statistical analyses. 

 

3.3.4 Metals Quantification by ICP-AES 

Media samples from the schmutzdecke layer, sand above the GAC, and GAC were sent to ACE 

Products & Consulting LLC in Ravenna, Ohio for metals quantification using inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) techniques.  

 

The digestion of various media samples for metals extraction was performed using EPA Method 

3050B. This method is applicable to soils, sludges, and solid waste samples. Media samples were 

vigorously digested in nitric acid and hydrogen peroxide, followed by a dilution using either 

nitric or hydrochloric acid.  

 

EPA Method 6010B was used to measure characteristic emission spectra by optical 

spectrometry. After digestion, samples are nebulized and the resulting aerosol is transported to 

the plasma torch. Method detection limits must be established for all wavelengths utilized for 

each type of matrix commonly analyzed. The matrix used for the MDL calculation must contain 

analytes of known concentrations within 3-5 times the anticipated detection limit. Each sample 
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was evaluated for the presence and concentration of the following metals: aluminum, antimony, 

arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, lithium, 

magnesium, manganese, nickel, potassium, selenium, silver, sodium, strontium, thallium, tin, 

vanadium, and zinc. The metals concentrations of particular focus for this study included: Iron 

(Fe), Manganese (Mn), Calcium (Ca), and Aluminum (Al). 

 

3.4 Quality Assurance / Quality Control  

Quality assurance and quality control procedures were applied throughout the duration of this 

study to ensure results were properly quantified. Quality assurance and quality control methods 

were performed as outlined in US EPA approved methods, Standard Operating Procedures and 

Methods, or instruction manuals provided by instrument manufacturers. The Standard Operating 

Procedures used in this study are provided in Appendix A. Sample preservation and requirements 

were followed strictly throughout the course of this experiment, as well as limits of detection and 

quantification. 
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4. RESULTS AND DISCUSSION 

4.1 Assessment of Seasonal Variations on BDOC and Non-BDOC Removals 

The origin of this study began when a Slow Sand Filter in Winthrop, Maine began demonstrating 

the ability to preserve the adsorption life span of a GAC sublayer for over one and a half 

decades. Initial studies at this treatment facility began when the first GAC sublayer was installed 

in 2005 and did not require the addition of GAC regenerative interferences to maintain elevated 

removals measured by dissolved organic carbon (DOC) after years of continuous filter run time.  

 

4.1.1 DOC and Non-BDOC Removals 

Throughout the duration of this study in conjunction with previous studies, aqueous samples 

have been obtained from all three filter effluents, as well as the raw water source at the treatment 

facility in Winthrop, Maine. In November of 2019, Christian Rodriquez obtained aqueous 

samples from the raw water source as well as Filter #1 and #3 effluents, while in August of 2021, 

aqueous samples were only collected from the raw water source and the Filter #1 effluent. For 

the remainder of the study, aqueous samples were collected from the raw water source and all 

three filter effluents to measure DOC and Non-BDOC removals based on various GAC ages. A 

summary of various raw water quality parameters and characteristics from this current study are 

summarized in Table 4-1. 

Table 4-1. Raw Water Quality Characteristics and Parameters from Winthrop, ME. 

Sampling Period Average Water Temperature Average pH 
Average Turbidity 

(Raw Water) 

Average Turbidity 

(Finished Water) 

August 2021 21.7 ºC 7.16 0.57 NTU 0.079 NTU 

September 2021 21.3 ºC 7.31 0.45 NTU 0.085 NTU 

February 2022 4.8 ºC 7.05 0.49 NTU 0.070 NTU 

May 2022 11.6 ºC 7.12 0.53 NTU 0.062 NTU 
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A summary of the aqueous samples obtained from Winthrop, Maine for DOC/BDOC analysis at 

various dates for the raw water source and three filter effluents are summarized in Table 4-2. The 

various GAC ages and their year of installation are as follows: Filter #1-2006, Filter #2-2020, 

and Filter #3-2011. The various removals associated with the biodegradable fraction removed are 

displayed, while the removals associated with the non-biodegradable organic fraction are also 

displayed.  

Table 4-2. Winthrop, ME SSFs DOC/BDOC Results—Nov. 2019; Aug. 2021; Sept. 2021; Feb. 2022; May.2022 

 

From a perusal of the trends noted that the removals associated with GAC are still significant 

after several years of filter run-time and in many instances are exceeding the biodegradable 

fraction. Filter #2, with the “freshest” GAC layer, is removing the measurable biodegradable 

Source Date 
Average 

Temp ºC 

DOC 

(mg/L) 

DOC 

Removed 

(mg/L) 

BDOC 

(mg/L) 

BDOC 

Removed 

(mg/L) 

Non-BDOC 

Removed 

(mg/L) 

Raw 

 

 

11/6/19 

8/4/21 

9/27/21 

2/23/22 

5/19/22 

 

10.8 (est.) 

21.7 

21.3 

4.8 

11.6 

 

5.55  

5.45  

5.05  

4.69 

5.23 

 

 

 

 

1.23 

0.85 

1.14 

0.83 

1.27 

  

Filter #1 

(GAC-2006) 

 

11/6/19 

8/4/21 

9/27/21 

2/23/22 

5/19/22 

 

10.8 (est.) 

21.7 

21.3 

4.8 

11.6 

 

2.57  

4.36  

2.84  

3.32 

3.36 

 

2.98 

1.09 

2.21 

1.37 

1.87 

 

0.25 

0.65 

0.23 

0.39 

0.24 

 

0.98 

0.20 

0.91 

0.44 

1.03 

 

2.00 

0.89 

1.30 

0.93 

0.84 

Filter #2 

(GAC-2020) 

 

9/27/21 

2/23/22 

5/19/22 

 

21.7 

21.3 

11.6 

 

0.50 

0.47 

0.33 

 

4.55 

4.22 

4.90 

 

0 

0 

0 

 

1.14 

0.83 

1.27 

 

3.41 

3.39 

3.65 

Filter #3 

(GAC-2011) 

 

11/6/19 

9/27/21 

2/23/22 

5/19/22 

 

10.8 (est.) 

21.3 

4.8 

11.6 

 

2.77  

2.91  

3.05 

3.39 

 

2.78 

2.14 

1.64 

1.84 

 

0.20 

0.40 

0.21 

0.32 

 

 

1.03 

0.74 

0.62 

0.95 

 

 

1.75 

1.40 

1.02 

0.89 
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organic carbon fraction, yet very large non-BDOC removals were observed. This is most likely 

due to the GAC in Filter #2 being only within the first two years of “aging”. 

 

As discovered by Page (1997), the primary DOC removal mechanism by the pilot control slow 

sand filter was by biodegradation, which was also a function of temperature or season. The GAC 

amended slow sand filter was able to significantly enhance NOM removals as compared to the 

control slow sand filter. It was noted that the rate of biodegradation improved with temperatures 

greater than 7-12ºC (Page, 1997). Cumulative mass loadings and batch isotherm tests also 

suggested that biodegradation mechanisms improved the adsorbability of DOC in influent water 

(Page, 1997). It was also confirmed that the majority of DOC removals occurred within the first 

few minutes of empty bed contact time (EBCT), therefore SSF provides sufficient contact time 

for the removal of the BDOC fraction (Page, 1997). Unger and Collins (1997) redefined the 

schmutzdecke where most of the SSF removals take place, within the first 5-7 minutes of EBCT.   

 

Results from the current study suggest that the GAC sandwich configuration remains a viable 

treatment option after several years of filter run-time and can continue to enhance NOM 

removals after several years of installation. Bed volume calculations, which can be found in 

Appendix B, were conducted in order to assess the amount of particular loading onto the GAC 

sublayer. Filter #1, in which the GAC was installed in 2006, has an adsorption capacity of 

approximately 73,000 bed volumes. According to Page (1997), the useful operating time of a 

GAC sandwich filter is roughly 5 years but can be dependent upon organic loading and treatment 

objectives.  
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4.1.2 Control Sand and GAC Removals  

In order to gain a greater understanding of removals occurring by the sand and GAC sublayers, a 

peristaltic pump and slotted probe were used to extract aqueous samples above the GAC layer. In 

February of 2022,  aqueous samples were extracted above the GAC layer in Filter #1 and the 

same extraction process was used to obtain samples from Filter #3 in May of 2022.  

 

The TOC removals for sand only, sand and GAC, and GAC only for Filter #1 and #3 are 

summarized in Table 4-3 and Table 4-4. The sand layer was directly measured as a result of 

extracting samples above the GAC, while GAC removals were measured by differences between 

the sand only and the overall performance of Filters #1 and #3, which includes sand and GAC 

layers. 

Table 4-3. Winthrop, ME SSFs DOC/BDOC Results – Sand & GAC Removals Filter #1 (Feb. 23, 2022) 

 

In Table 4-3, removals associated with GAC include 0.63 mg/L of DOC removed, 0.10 mg/L of 

BDOC removed, and 0.53 mg/L of Non-BDOC removed. In Filter #3, the removals associated 

with GAC include 0.56 mg/L of DOC removed, 0.10 mg/L of BDOC removed, and 0.46 mg/L of 

Source Date 
Average 

Temp ºC 

DOC 

(mg/L) 

DOC 

Removed 

(mg/L) 

BDOC 

(mg/L) 

BDOC 

Removed 

(mg/L) 

Non-BDOC 

Removed 

(mg/L) 

 

Raw 

 

 

2/23/22 

 

 

4.8 

 

 

4.69 

 

 

 

 

0.83 

  

 

Sand ONLY 

 

2/23/22 4.8 

 

3.95 

 

0.74 

 

0.49 

 

0.34 

 

0.40 

Filter #1 

(Sand + GAC-2006) 

 

2/23/22 

 

 

4.8 

 

 

3.32 

 

1.37 

 

0.39 

 

0.44 

 

0.93 

 

∆ GAC 

 

2/23/22 4.8 

 

 

 

0.63 

 

0.34 

 

 

0.10 

 

0.53 
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Non-BDOC removed. The significant non-BDOC fraction removal occurs primarily within the 

GAC, essentially highlighting the adsorption capacity of GAC even after roughly fifteen and 

eleven year of continuous operation. 

Table 4-4. Winthrop, ME SSFs DOC/BDOC Results – Sand & GAC Removals Filter #3 (May. 19, 2022) 

 

4.2  Assessing Biomass Characteristics as Functions of Seasonal and Media Influences 

Various media samples were obtained from slow sand filters in Winthrop, Maine in order to 

assess temperature influences and inorganic compositions. Samples were analyzed for biomass 

production, microbial community composition, and metals concentrations corresponding to 

schmutzdecke media, sand above the GAC, and granular activated carbon media.  

 

4.2.1 ATP Biomass Analysis as a Function of Temperature  

Seasonal variations were explored using a deposit and surface area analysis laboratory method to 

measure ATP biomass within various filter layers. Several studies have indicated that ATP 

biomass production increases during warmer temperatures and decreases during colder 

temperatures. Various media samples were obtained from Filter #1 and #3 throughout the 

Source Date 
Average 

Temp ºC 

DOC 

(mg/L) 

DOC 

Removed 

(mg/L) 

BDOC 

(mg/L) 

BDOC 

Removed 

(mg/L) 

Non-BDOC 

Removed 

(mg/L) 

 

Raw 

 

 

5/19/22 

 

 

11.6 

 

 

5.23 

 

 

 

 

1.27 

  

 

Sand ONLY 

 

5/19/22 11.6 

 

3.95 

 

1.28 

 

0.42 

 

0.85 

 

0.43 

Filter #3 

(Sand + GAC-2011) 

 

 

5/19/22 

 

 

11.6 

 

 

3.39 

 

 

1.84 

 

 

0.32 

 

 

0.95 

 

 

0.89 

 

∆ GAC 

 

5/19/22 11.6 

 

 

 

0.56 

 

0.85 

 

0.10 

 

0.46 
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duration of this study and included sampling events from August 2021, September 2021, 

February 2022, and May 2022. Samples were obtained by Christian Rodriguez from Filter #2 in 

November 2019 and data has been used for seasonal comparisons.  

 

Table 4-5 summarizes the ATP biomass values obtained from several sampling events that 

occurred in Winthrop, Maine. Biomass was initially measured and calculated in nanograms of 

ATP per gram dry weight, however, due to vast differences in densities between sand media and 

GAC media, comparative conversions were applied from surface area calculations based on 

gram dry weight and media densities. ATP per surface area can be seen in Table 4-6 and will be 

the focus of this discussion.  

 

Table 4-5. ATP Biomass Concentrations for Various Sampling Dates and Filters as ng ATP/gdw. 

*indicates Filter #1 was harrowed five days prior to sampling event. 

 
Table 4-6. ATP Biomass Concentrations for Various Sampling Dates and Filters Normalized to Surface 

Area as ng ATP/cm2. 

Date Filter 
Average Water 

Temperature 
Schmutzdecke Mid-Sand Sand Above GAC GAC 

11/6/19 2 10.8 (est.) 12.1  0.7 - - 1.8  0.1 

8/4/21 1 21.7 55.0  8.6 - 5.4  1.4  14.6  3.7 

9/27/21 1 21.3 20.0  4.2 1.3  0.3 0.4  0.5 0.6  0.1 

2/23/22 1 4.8 5.32  1.6 - - - 

5/19/22 3 11.6   1.9  1.0 0.5  0.1 0.5  0.0  1.8  0.2 

 

Date Filter 
Average Water 

Temperature 
Schmutzdecke Mid-Sand 

Sand Above 

GAC 
GAC 

11/6/19 2 10.8 (est.) 394.7  22.1 - - 245.6  13.2 

8/4/21 1 21.7 1859.3  291.5 - 183.5  47.0 1300.7  328.8 

9/27/21 1 21.3 676.8  119.9 42.5  8.7   14.2  15.9 57.2  9.7 

2/23/22* 1 4.8 171.1  47.8 - - - 

5/19/22 3 11.6 64.9  33.1 15.7  2.5 17.3  1.4 180.0  19.1 
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In order to visualize the impact of biomass production within slow sand filters from a seasonal 

approach, Figure 4-1 displays the biomass results graphically, in both gram dry weight (a) and 

squared centimeter surface area (b). Optimal performances in slow sand filtration can be 

achieved when the filter is fully matured and acclimated with a steady biomass population 

(Arora, 2017).  Media samples were obtained from various depths within the filter bed at various 

times through the study and include: the schmutzdecke at 0.2 cm (top of the filter bed), the mid-

sand layer 20 cm below the filter surface, the sand above the GAC 33 cm below the filter 

surface, and the GAC which was obtained 38 cm below the filter surface.  

 

Results are displaying variation of biomass production with respect to temperature and with filter 

media location. In particular, biomass accumulation per surface area has demonstrated that the 

GAC sublayer has the potential to accumulate higher biomass concentrations than adjacent sand 

layers. The warmest sampling event occurred in August and presents ATP biomass for sand 

media above the GAC as 5.4 ng ATP/cm2 as compared to 14.6 ng ATP/cm2 for GAC media. In 

another sampling event which occurred in September, similar trends can be seen where ATP 

biomass for sand media above the GAC was 0.4 ng ATP/cm2 as compared to 0.6 ng ATP/cm2 for 

GAC media. Sublette et al., (1982) reported that activated carbon can provide a surface for 

microorganisms to attach which provides a source of protection while microorganisms are 

simultaneously regenerating the activated carbon.  According to the literature, biomass 

accumulation on the GAC sublayer is not well understood and will need further exploration to 

determine the potential for  higher biomass accumulations on GAC as opposed to adjacent sand 

media.  
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Figure 4-1. Temperature variations in ATP biomass for various media coatings from Filter #1 in 

Winthrop, (ME) normalized to (a) ng ATP/gdw and (b) ng ATP/cm2 surface area. 
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Biomass production typically occurs within the schmutzdecke layer and top few centimeters of 

the sand bed. Duncan (1988) states that the biomass population can change dynamically in 

response to changes in temperature. Seasonal variations and biomass response to temperature 

changes within schmutzdecke and adjacent sand layers have been previously noted by Campos et 

al., (2002) and Partinoudi et al., (2006). Within this present study, biomass production, 

particularly within the schmutzdecke layer, responded abruptly to seasonal variations and 

demonstrated greater amounts ATP biomass in summer conditions as opposed to winter 

conditions.  

 

4.2.2 Seasonal Variations in the Schmutzdecke ATP Content  

Per Unger & Collins (2008), the schmutzdecke has been quantified in the upper 7.5 cm of the 

filter bed. Removal mechanisms associated with slow sand filtration can be dependent upon the 

microbial community present within the filter bed and the ripening period, which determines the 

biomass population and acclimation within the schmutzdecke layer. The development of the 

schmutzdecke layer depends upon the available microbes within raw water sources, food and 

oxygen supply, residence time, and wetting of the sand bed (Ranjan & Prem, 2018). Table 4-7 

summarizes the average water temperatures during various sampling dates, as well as ATP 

biomass in nanograms per gram dry weight from the schmutzdecke layer only.  

Table 4-7. Schmutzdecke ATP Biomass Concentrations as ng ATP/gdw. 

 

Date Filter 
Average Water 

Temperature 
Schmutzdecke 

11/6/19 2 10.8 (est.) 394.7  22.1 

8/4/21 1 21.7 1859.9  291.5 

9/27/21 1 21.3   676.8  119.9 

2/23/22 1 4.8 171.1  47.8 

5/19/22 3 11.6   65.9  33.1 
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Throughout the duration of this study, sampling of the schmutzdecke layer was most consistent. 

Figure 4-2 displays the variability of temperature within schmutzdecke sample averages obtained 

from Winthrop, Maine. In warmer months, particularly August and September where the average 

raw water temperature was 21.7 ºC and 21.3 ºC, biomass production was highest at 1859.9 ng 

ATP/gdw  and 676.8 ng ATP/gdw respectively. In comparison, colder months included sampling 

events from November, February, and May where average water temperatures were 10.8ºC, 4.8 

ºC, and 11.6ºC. Schmutzdecke biomass production within colder months included 394.7 ng 

ATP/gdw, 171.1 ng ATP/gdw, and 65.9 ng ATP/gdw.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Temperature variations relating to ATP biomass production within the 

schmutzdecke.  
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Sampling restrictions pertaining to schmutzdecke media collection occurred in February. During 

this sampling event, six schmutzdecke samples were collected from Filter #1 and access was 

limited to adjacent filter sublayers. Schmutzdecke samples were collected from three different 

locations in Filter #1 just five days after Filter #1 was harrowed on February 18th, 2022. 

Harrowing, as previously mentioned in section 2.1.3, involves significantly draining the 

supernatant water layer in order to rake the sand medium which includes the schmutzdecke layer 

and top few centimeters of the sand bed. Figure 4-3 demonstrates the variability between filter 

location and biomass production in nanograms per gram dry weight after harrowing of the sand 

bed. Figure 4-4 displays the ATP biomass variability at various sampling dates and the days 

sampled after harrowing occurred for the duration of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3. ATP biomass variability within schmutzdecke samples obtained five days after 

harrowing. 
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Figure 4-4. ATP biomass production in relation to harrowing events throughout the duration of 

this study. 

 

As mentioned previously, ATP biomass production within the schmutzdecke layer responded 

promptly to seasonal changes during this present study. Partinoudi et al., (2006) also discovered 

that preferential microbial removal occurred when the study was conducted in summer 

conditions  as opposed to winter conditions. In comparison, Campos et al., (2002) did not 

discover much variation in biomass production with the schmutzdecke layer over a time period 

between the months of May and August. Results from the present study verified that production 

of biomass within the schmutzdecke layer is dependent upon seasonal fluctuation and not from 

schmutzdecke location within the slow sand filter. 
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4.2.3 Microbial Community Composition by Media Type   

Various media samples from Slow Sand Filter #1 at the Slow Sand Water Filtration Plant in 

Winthrop, Maine were analyzed for microbial composition in the months of August 2021, 

September 2021, and February 2022. DNA extractions and analyses were performed on samples 

obtained from the schmutzdecke layer, sand media above the granular activated carbon layer, 

and granular activated carbon. Slow sand filtration is successful based on the type of bacteria 

present within the schmutzdecke layer and adjacent filter layers. The microbial community 

formed within the schmutzdecke and adjacent filter layers is responsible for creating a zone of 

biological activity that can provide degradation of soluble organics from the raw water source. 

While the biomass population has been discovered to be most active in warmer temperatures and 

less active in colder temperatures, this section will place emphasis on the results from samples 

collected in August.  

 

In order to gain insight on the species diversity present within the slow sand filter sampled in 

Winthrop, Maine, QIIME2 was used to generate an interactive tree of life based on extracted 

DNA from various media types. Figure 4-5 demonstrates the genetic diversity present within 

Filter #1 and is comprised of 36,610 sequence counts. To explore microbial community 

composition by layer and media type, data was obtained as amplicon sequence variants (ASVs) 

through QIIME2 coding. This measurement gives insight to the sequence variants present within 

each layer, as well as species abundance. For the purpose of this research, Level 2 frequencies 

were obtained from the QIIME2 database and displays species by the domain and phylum of 

which they belong to. Table 4-8 summarizes the three governing species by relative frequency 

found within the schmutzdecke media, sand media above the GAC, and granular activated 
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carbon media samples obtained in August of 2021. The three main bacterial species prevailing 

within all three media types were Proteobacteria, Acidobacteriota, and Planctomycetota. 

 

 

 

 

 

 

Figure 4-5. Interactive tree of life displaying genetic diversity within fifteen media samples from 

Winthrop, (ME) – Filter #1 August 2021. 

 

 

 

A visual representation of the diversity differences found within each filter media type is 

depicted in Figure 4-6. Proteobacteria, Acidobacteriota, and Planctomycetota account for over 

50% of the relative abundance of species found by media type. Within the schmutzdecke, sand 

above the GAC, and GAC averages, these three species account for 67%, 57%, and 58% of 

relative frequency totals, respectively. Beyond the dominating species present in each layer, 

there are minor differences within species present in each sublayer and these can be seen in the 

top quadrants of the bar graphs in Figure 4-6 .  

Domain & Phylum Schmutzdecke Sand Above GAC GAC 

Bacteria – Proteobacteria 24 % 17% 32 % 

Bacteria – Acidobacteriota 8 % 13% 8 % 

Bacteria – Planctomycetota 34 % 27 % 19 % 

% Relative Frequency Total 66 % 57 % 59 % 

 
Table 4-8. Percent Relative Frequency of Dominating Species - Filter #1 in Winthrop (ME), August 4th 2021. 
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Figure 4-6. Average amplicon sequence variant frequency of species abundance by layer in Filter #1. 
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Statistical analyses were performed for sequence variants present within each layer. Alpha 

diversity analyses focus on taxa detected within each sample while beta diversity analyses focus 

on the difference in microbial composition between samples. Alpha diversity analyses were 

performed on QIIME2 using Faith’s Phylogenetic Diversity to qualitatively measure community 

richness on the basis of phylogenetic relationships between features. A Kruskal-Wallis Pairwise 

analysis was also conducted by layer, which corresponds to media type. Figure 4-7 displays 

Faith’s Phylogenetic Diversity by layer within Slow Sand Filter #1 in Winthrop, Maine from 

August of 2021. The schmutzdecke media and sand above the GAC are displaying higher values 

corresponding to phylogenetic diversity, signifying there is more species richness present within 

these two layers.  

 

 

 

 

 

 

 

 

Figure 4-7. Faith’s Phylogenetic diversity displayed by layer - Filter #1, August 2021. 

 

The statistical results corresponding to alpha diversity using a Kruskal-Wallis pairwise test is 

summarized in Table 4-9. This test incorporates a significance level of p= 0.05 and a null 

hypothesis that there are no differences between phylogenetic diversity within each sample. 
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Results for comparisons between the sand and schmutzdecke layer produced a p-value of 0.049 

and 0.012, respectively. Because these comparative values are less than 0.05  or 95 % confidence 

level, the medians between GAC and both the sand and schmutzdecke layers are statistically 

significant. The sand layer compared with the schmutzdecke layer produces a p-value of 0.309, 

which is greater than 0.05, signifying that the medians for these layers are not statistically 

significant. In light of the results pertaining to alpha diversity, species richness is greater within 

the sand and schmutzdecke layers, as compared to GAC. Bellamy et al, (1985a) reported that as 

filtration progresses, biological growth continues to occur within adjacent media layers. It is 

important to note that little differences were observed between the schmutzdecke and sand layers 

most likely due to harrowing processes. The schmutzdecke layer is raked during harrowing and 

this allows for mixing to occur between schmutzdecke and sand medias. While GAC did not 

show as much species richness compared to sand and schmutzdecke layers, results from this 

study suggest biological activity is continuing to occur within the GAC sublayer on the basis of 

ATP biomass production and potentially contributing to the bioregeneration process. 

Table 4-9. Kruskal-Wallis Pairwise Statistical Analysis by Layer using Alpha Diversity, 

Filter #1 August 2021.  

Group  H p-value q-value 

gac (n=3) versus sand (n=3) 3.86 0.05 0.07 

gac (n=3) versus schm (n=9) 6.23 0.01 0.04 

sand (n=3) versus schm (n=9) 1.03 0.31 0.31 

 

Beta diversity analyses conducted through QIIME2 and MATLAB software focused on a 

Principal Coordinate Analysis (PCoA) paired with a Permanova pairwise statistical analysis by 

layer group significance. Figure 4-8 displays the results of the PCoA plots which measure beta 

diversity based on phylogenetic differences. Results of the principal coordinate analysis plots 
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display the first two principal coordinates: axis 1 which accounts for a larger percentage of the 

observed variation by layer, and axis 2 which accounts for a smaller percentage of the observed 

variation by species  These results suggests that microbial community composition is affected by 

layer location within the filter and are showing similar trends between two software applications 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8. PCoA results from media samples obtained from Filter #1 in Winthrop, (ME) in 

August 2021 using (a) QIIME2 software and (b) MATLAB software. 
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The results of the statistical analysis related to beta diversity can been seen in Table 4-10 and 

coincide with results produced from the alpha diversity analyses. This test also incorporates a 

significance level of p= 0.05 and a null hypothesis that there are no differences between 

phylogenetic diversity within each layer.  

Table 4-10. Permanova Pairwise Statistical Analysis by Layer Group Significance using Beta Diversity, 

Filter #1 August 2021. 

Group Sample Size pseudo-F p-value 

gac versus sand 6 21.01 0.10 

gac versus schm 12 88.92 0.008 

sand versus schm 12 86.81 0.007 

 

Pseudo-F values are a measure of  effect size and typically the larger the F-value, the greater the 

difference in comparison. In this case, the distances between GAC and sand produced a pseudo-F 

value of 21.0, indicating a smaller difference in comparison. Comparisons between GAC and 

schmutzdecke distance produced a pseudo-F value of 88.9 while sand and schmutzdecke 

distances produced a pseudo-F value of 86.81, demonstrating a greater difference in comparison 

between these layer distances. In retrospect, the p-values produced in this Permanova 

demonstrate that the distance between GAC and sand is not statistically significant (p = 0.05 < 

0.1), while the distances between GAC and schmutzdecke (p=0.05 > 0.008) and sand and 

schmutzdecke (p=0.05 > 0.007) are statistically significant. Due to sampling depths between the 

sand above the GAC and GAC media were within 2-inches of one another, this results further 

prove that species composition does not greatly differ between sand and GAC media types.  
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4.2.4 Assessment of Seasonal Variation on Microbial Community Composition 

Various media coatings from Slow Sand Filter #1 at the Water Filtration Plant in Winthrop, 

Maine were analyzed for microbial community composition. Section 4.2 focused on the results 

from extracted samples in August, which included the schmutzdecke, sand above the GAC, and 

granular activated carbon media. Samples obtained in September included those three layers, 

plus an additional sample obtained from the middle sand layer within the filter. Due to 

restrictions in February, mentioned in Section 4.2.2, only schmutzdecke samples will be used for 

comparison within this section.  

 

Microbial community composition was not expected to change drastically throughout the 

duration of this study due to the gradual accumulation of a biomass population and adhesion to 

the filter subsurface. Level 2 relative frequencies were obtained through QIIME2 for fifteen 

media samples collected in August, twelve media samples collected in September, and six 

schmutzdecke samples collected in February. Results are displayed in Figure 4-13 based on 

various sampling months and relative frequencies of taxonomy present within filter layers which 

include the schmutzdecke, sand above the GAC, and GAC. 

 

Results in Figure 4-9 display minimal variation within taxonomy present in both the 

schmutzdecke and sand layers between August, September, and February sampling events 

concurring with the hypothesis that composition was not expected to alter greatly. The percent 

relative frequencies of the dominating species mentioned in Section 4.2.2 decreased slightly and 

can been seen in Appendix B. Between these sampling events, four species were present in very 

small amounts, below 1.0% relative frequency, within September and February samples. These 
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species include Caldisericota, LCP-89, Fusobacteriota, and Halanaerobiaeota. Due to such low 

relative frequencies, it can be concluded that these species are not driving factors within seasonal 

variability between filter layers.  GAC comparisons are vastly different but could be attributed to 

errors within the lab during the PCR sequencing process, as DNA did not show up in the gel 

ladder for this sample. Further analyses will need to be conducted to determine these differences 

if they are present, or if this is attributable to error. Results verified that species composition 

within filter sublayers did not change drastically between winter and summer conditions, 

however, it demonstrates that microbial community composition is sensitive to location within 

the filter.  
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Figure 4-9. Seasonal comparisons of microbial community composition in Filter #1 in Winthrop, 

(ME), August 2021. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e 
Fr

eq
u

en
cy

 (
%

)

Microbial Community Seasonal Variation 
Winthrop, Maine Filter #1

Bacteria - Halanaerobiaeota

Bacteria - Fusobacteriota

Bacteria - LCP-89

Bacteria - Caldisericota

Bacteria - WS1

Bacteria - TA06

Bacteria - WS4

Bacteria - Caldatribacteriota

Bacteria - Calditrichota

Bacteria - Deinococcota

Bacteria - GAL15

Bacteria - DTB120

Bacteria - WS2

Bacteria - Cloacimonadota

Bacteria - FCPU426

Bacteria - Margulisbacteria

Bacteria - Fibrobacterota

Bacteria - Abditibacteriota

Bacteria - Sva0485

Bacteria - Hydrogenedentes

Bacteria - Campilobacterota

Bacteria - Dadabacteria

Bacteria - Nitrospinota

Bacteria - RCP2-54

Bacteria - Zixibacteria

Archaea - Euryarchaeota

Bacteria - Marinimicrobia_(SAR406_clade)

Bacteria - AncK6

Bacteria - WPS-2

Bacteria - Acetothermia

Bacteria - PAUC34f

Bacteria - NB1-j

Bacteria - Entotheonellaeota

Bacteria - Desulfobacterota

Bacteria - Unassigned

Bacteria - Cyanobacteria

Bacteria - MBNT15

Bacteria - Deferrisomatota

Bacteria - SAR324_clade(Marine_group_B)

Bacteria - Dependentiae

Bacteria - Spirochaetota

Bacteria - Nitrospirota

Bacteria - Methylomirabilota

Bacteria - Gemmatimonadota

Bacteria - Myxococcota

Bacteria - Sumerlaeota

Bacteria - Bacteroidota

Bacteria - Verrucomicrobiota

Bacteria - Patescibacteria

Bacteria - Latescibacterota

Bacteria - Bdellovibrionota

Bacteria - Actinobacteriota

Bacteria - Chloroflexi

Bacteria - Planctomycetota

Bacteria - Elusimicrobiota

Bacteria - Acidobacteriota

Bacteria - Armatimonadota

Bacteria - Firmicutes

Bacteria - Proteobacteria



 

 

90 

4.3 Assessing Metal Coating Accumulations as a Function of Media Type 

Various media coatings from Slow Sand Filter #1 and Slow Sand Filter #3 from the Slow Sand 

Water Filtration Plant in Winthrop, Maine were analyzed for metals concentrations. Media 

coatings included samples from the schmutzdecke layer, sand media above the granular activated 

carbon layer, and granular activated carbon.  

 

4.3.1 Metals Content for Various Media Coatings  

Metals concentrations for Iron (Fe), Manganese (Mn), Calcium (Ca), and Aluminum (Al) are 

summarized in Table 4-11 as milligram per kilogram dry weight and normalized to surface area 

as milligram per centimeter squared in Table 4-10. Within the GAC sublayer, calcium content far 

exceeded any other metals concentrations present within various media coatings in Filter #1. Due 

to the vast differences between the densities of sand and GAC media, sand at 2.65 g/cm3 and 

GAC at 0.52 g/cm3, surface area calculations were performed to transform the data set (See 

Appendix B).  

 

 

 

 

Metal (mg/kgdw) Schmutzdecke Sand Above GAC GAC 

Iron  2190 3700 1960 

Manganese 149 41 328 

Calcium 333 381 15400 

Aluminum 1120 1080 1840 

Metal (mg/cm2) Schmutzdecke Sand Above GAC GAC 

Iron  64.8 109.5 22.1 

Manganese 4.4 1.2 3.7 

Calcium 9.9 11.3 173.5 

Aluminum 33.1 32.0 20.7 

Table 4-11. Metals Concentrations for Various Media Coatings from Filter #1 as mg/kgdw. 

Table 4-12. Metals Concentrations for Various Media Coatings from Filter #1 as mg/cm2. 
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Figure 4-10 (a) is a visual representation of the various media coatings and their respective 

metals concentrations as milligram per kilogram dry weight from Filter #1, while Figure 4-10 (b) 

is a representation of the metals concentrations after the surface area calculations were applied. 

Calcium still remained in greater concentrations within the GAC sublayer regardless of dry 

weight or surface area amounts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10. Metals concentrations for various media coatings from Filter #1 in Winthrop, (ME) 

normalized to (a) mg/kgdw and (b) mg/cm2 surface area. 
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While metal coating accumulations are not expected to change drastically during the duration of 

this study due to gradual accumulations on filter media over time, comparing the total metal 

coating concentrations found in this study with other SSF studies may be of interest. Extractable 

metals content from various SSF surface sand media coatings obtained from Collins and 

Vaughan (1996), as well as metals content from this current study, are summarized in Table 4-13 

and shown in Figure 4-11. Although the sand media samples are from vastly different locations, 

the source waters, length of service, and the overall metal content of the sand coatings were 

similar with iron being the most dominant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. Visual comparison of metals concentrations found within various sand coatings 

from local slow sand filters. 

Metal (mg/kgdw) Winthrop (ME) – SSF West Hartford (CT) – SSF Portsmouth (NH) – SSF 

Iron  3700 3732 2986 

Manganese 41 200 45 

Calcium 381 270 283 

Aluminum 1080 1695 1148 

Avg Metal Milliequivalents 

 (meq/kgdw) 

272 343 250 

Table 4-13. SSF Comparisons of Metals Surface Coating Concentrations (Collins & Vaughan, 1996). 
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4.3.2 Calcium Loading on GAC  

Converting gram dry weight of filter media to metal content per surface area indicated large 

amounts of calcium accumulated on the GAC sublayer compared to the sand media in Filter #1 

in Winthrop (ME). Results highlighted a theory that substantial amounts of calcium 

accumulation on the GAC sublayer could be contributing to higher removals associated with 

GAC through electrostatic attraction or binding. To further explore this theory, virgin GAC was 

analyzed for metals concentrations. Table 4-14 summarizes the metals concentrations found 

between virgin GAC and aged GAC, both obtained from the filtration plant in Winthrop (ME)  

 

 

Visual and statistical comparisons of the metals concentrations between virgin GAC and aged 

GAC for Iron (Fe), Manganese (Mn), Calcium (Ca), and Aluminum (Al) is displayed in Figure 

4-12. The metals concentrations for Iron, Manganese, and Aluminum do not indicate variation 

between the two GAC types. However, calcium content for the virgin GAC was 957 mg/kgdw as 

compared to the aged GAC at 15,400 mg/kgdw. Comparisons between the metals content found 

on GAC that has not been used and aged GAC from Filter #1, which was installed in 2006, 

further verified the theory of significant calcium loading on the GAC sublayer.  

 

Cannon et al., (1993) verified that metals accumulation on GAC can negatively affect the 

regeneration process. Within his study, it was discovered that GAC can accumulate heavy metals 

in significant quantities, particularly large amounts of calcium. Metals concentrations from the 

Metal (mg/kgdw) Virgin GAC Aged GAC – Filter #1 Aged GAC – Filter #3 

Iron  2520 1960 2240 

Manganese 26 328 13.6 

Calcium 957 15400 15000 

Aluminum 1560 1840 1660 

Table 4-14. Metals Concentrations for Virgin GAC and Aged GAC in mg/kgdw. 
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current study verified calcium loading onto the GAC sublayer and that significant accumulation 

of calcium is occurring on aged GAC as opposed to virgin GAC. While calcium is a positively 

charged ion, portions of the bacterial population and NOM (possibly other negatively charged  

anions, e.g. HCO3
-), could be attracted to the calcium coated GAC surfaces. Substantial amounts 

of calcium accumulations on the GAC sublayer could be contributing to the “renewal” of GAC 

adsorption sites through electrostatic attraction or binding, resulting in higher removal of 

TOC/DOC. 

 

 

 

 

 

 

 

 

 

 

Figure 4-12. Metals concentrations for various GAC coatings from Winthrop, (ME). 

 

4.4 Calcium Loading and Microbial Composition Relationship 

Calcium loading on the GAC sublayer was discovered and verified throughout the duration of 
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from the metal and DNA extractions. Principal component analyses were conducted in JMP in 

order to cluster data based on bacterial species, metals concentration, and media type. Table 4-15 

provides the results of the cluster analysis with the four metals of focus and the relative 

frequencies corresponding to the bacterial population discovered in August of 2021. While there 

are 54 species of bacteria present amongst the three layers sampled in Filter #1, the cluster 

analysis verified species correlated to the metals concentrations for Iron, Manganese, Calcium, 

and Aluminum. Out of ten clusters, metals concentrations within the schmutzdecke, sand above 

the GAC, and GAC media types corresponded to three clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster Members 

1 Iron 

1 Bacteria – PAUC34f 

1 Bacteria – Caldatribacteriota 

1 Bacteria – WS4 

1 Bacteria – Firmicutes 

1 Bacteria – Hydrogenedentes 

1 Bacteria – Deferrisomatota 

1 Bacteria – Acidobacteriota 

1 Bacteria – Myxococcota 

1 Bacteria – Proteobacteria 

1 Bacteria – Armatimonadota 

1 Bacteria – AncK6 

2 Bacteria – Verrucomicrobiota 

2 Calcium 

2 Aluminum 

2 Bacteria – Gemmatimonadota 

2 Bacteria – Bdellovibrionota 

2 Bacteria – Patescibacteria 

3 Bacteria – RCP2-54 

3 Bacteria – SAR324_clade(Marine_group_B) 

3 Bacteria – Deinococcota 

3 Manganese 

Table 4-15. Cluster Analysis Results Corresponding to Media Type, Bacteria Present, and Metal Content. 
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Results of analysis conducted through MATLAB software for metals concentrations from 

various media types and their relation to bacterial species present within these three clusters are 

noted in Figure 4-13. Cluster two contains both calcium and aluminum metals concentrations 

along with the bacterial species: Verrucomicrobiota, Gemmatimonadota, Bdellovibrionota, and 

Patescibacteria. The four bacterial species present are gram negative, indicating the opportunity 

to greater adhere to the positively charged ion, calcium, that has been accumulated on the GAC 

sublayer. While this hypothesis has been produced based on metals accumulations discovered 

within the GAC sublayer, further analyses should be conducted to determine the effect, if any, of 

these four species on calcium accumulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13. Principle component microbial composition analyses results corresponding to 

various metals concentrations. 
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4.5 Modeling DOC Removal Mechanisms in a SSF Sublayer of GAC   

To further assess calcium loading on the GAC sublayer and its effect on SSF overall 

performance, relationships between calcium deposition and non-BDOC removals were 

investigated.  

 

Calcium deposition efficiency was calculated in order to get an estimate of the deposition rates 

and calcium loading onto the GAC sublayer. The total calcium deposited on the GAC sublayer in 

Winthrop’s SSF #1 was calculated as shown in equations [1] and [2].  

 

Total Ca Deposited on GAC Sublayer, kg =  

(SSF surface area x GAC depth) x (1- porosity) x  (GAC density) x (Ca extractable from GAC)        [1] 

Total Ca Deposited on GAC Sublayer, kg =  

(3000 ft2 x 0.5 ft) x (1-0.4) x (0.0153 kg 
𝐺𝐴𝐶

𝑓𝑡3  ) x (15.4 
𝑘𝑔 𝐶𝑎

𝑘𝑔 𝐺𝐴𝐶
 ) = 212 kg               [2] 

 

The total Ca loading to the SSF was calculated as shown in equation [3] and [4]. 

 

Total Ca2+ Loaded to SSF Over 16 Year Service =  

(Typical Ca2+ Concentration in Source Water) x (Filtration Rate) x (Total Time in SSF Service)           [3]  

Total Ca2+ Applied to SSF, kg = 

(20 
𝑚𝑔

𝐿
 as Ca2+ x 

𝑘𝑔

 106 𝑚𝑔
 ) x (50 

𝑔𝑎𝑙

𝑚𝑖𝑛
 x 3.785 

𝐿

𝑔𝑎𝑙
 ) x (1440 

𝑚𝑖𝑛

𝑑𝑎𝑦 
 x 365 

𝑑𝑎𝑦

𝑦𝑒𝑎𝑟
 x 16 years) = 35 x 103 kg       [4] 

Thus, an estimated Ca deposition efficiency on the GAC sublayer was determined from 

equations [5] and [6]. 
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Ca Deposition Efficiency on GAC = ( 
𝐶𝑎2+ 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑

𝐶𝑎2+ 𝐴𝑝𝑝𝑙𝑖𝑒𝑑
 x100 )                                [5] 

           Ca Deposition Efficiency on GAC = ( 
212 𝑘𝑔

35,000 𝑘𝑔
 x 100 ) = 0.61 %                        [6] 

                                                                  

The subsequent Ca dosage to the SSF GAC sublayer is estimated in Equation [7]. 

 

(Ca Dosage, 
𝑚𝑒𝑞

𝐿
 ) = (22 

𝑚𝑔

𝐿
 as Ca2+ ) x (0.61%) x (

1 𝑚𝑒𝑞

20 𝑚𝑔 𝐶𝑎2+ ) = 0.0061 
𝒎𝒆𝒒

𝑳
                   [7] 

 

An assumption is made that the effective Ca dosing of the GAC will neutralize to an equivalent 

amount of negatively charged DOC due to minimal levels of SO4
2- and HCO-/CO3

2- (< 5 
𝑚𝑔

𝐿
 ). 

The literature has depicted an equivalent (-) charge for NOM as 5-15 
𝑢𝑒𝑞

𝑚𝑔
 DOC. A typical source 

water DOC in Winthrop (ME) is around 5 
𝑚𝑔

𝐿
 with a SUVA close to 2.5 

𝐿

𝑚𝑔•𝑚
. The negative 

charge associated with Winthrop’s source water DOC, especially after schmutzdecke 

biodegradation process is estimated as 10 
𝑢𝑒𝑞

𝑚𝑔
 DOC (assuming 10% removed by over burden 

sand):  

= (10 
𝑢𝑒𝑞

𝑚𝑔
 ) x (4.0 

𝑚𝑔

𝐿
 DOC ) x (

1 𝑚𝑒𝑞

1000 𝑢𝑒𝑞
 ) = 0.040 

𝑚𝑒𝑞

𝐿
                            [8] 

 

Thusly, the amount of negatively-charged DOC that can be neutralized by the positively-charged 

calcium can be calculated as shown in Equation [9].  

 

Amount of DOC Neutralized by Ca = (
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (+) 𝐶𝑎 𝐶ℎ𝑎𝑟𝑔𝑒

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (−) 𝐷𝑂𝐶 𝐶ℎ𝑎𝑟𝑔𝑒 
 ) x 100 
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Amount of DOC Neutralized by Ca = (
0.0061 

𝑚𝑒𝑞

𝐿 
 (+)

0.040 
𝑚𝑒𝑞

𝐿
 (−)

 ) x 100 = 15 % x 4.0 
𝑚𝑔

𝐿 
 = 0.61 

𝒎𝒈

𝑳
            [9] 

 

This 0.61 
𝑚𝑔

𝐿
 estimated non-biodegradable removal of DOC by the GAC compares favorably 

with the measured DOC removal by the GAC sublayer of 0.53 
𝑚𝑔

𝐿
 measured on 2-23-2022. 

 

Biodegradation removals of DOC by biological filters has been modeled by Summers (1984) as 

shown in Equation [10]. 

 

            ln 
𝐶𝑒

𝐶𝑜
 = -kXθ                                                                         [10] 

where Co = Influent DOC, 
𝑚𝑔

𝐿
 

           Ce = Filter Effluent DOC, 
𝑚𝑔

𝐿
 

            k = Biodegradation rate constant, 
𝑔𝑑𝑤

𝑛𝑔 𝐴𝑇𝑃•𝑚𝑖𝑛
 

           X = Biomass, 
𝑛𝑔 𝐴𝑇𝑃

𝑔𝑑𝑤
 

            Θ = EBCT, min 

 

Biomass values were obtained from the 9-27-2021 sampling event due to sand media collected at 

various depths, along with a GAC media collection. For both the upper and lower layers of sand, 

ATP biomass resulted in a total weighted average of 244.5 ng ATP/gdw. Using the biofilter 

model, raw water DOC value of 4.69 mg/L (Co) and the effluent sand DOC value of 3.95 mg/L 

(Ce), biomass concentration (x) of 244.5 ng ATP/gdw, and an EBCT (θ) of 600 minutes, resulted 

in the rate constant of 1.17 x 10-6 
𝑔𝑑𝑤

𝑛𝑔•𝑚𝑖𝑛
. 
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The resulting rate constant (k) was applied to the GAC sublayer biofiltration model to determine 

a predicted effluent DOC concentration (Ce) using a (Co) of 3.95 
𝑚𝑔

𝐿
, a biomass concentration (x) 

of 57.2 
𝑛𝑔 𝐴𝑇𝑃

𝑔𝑑𝑤
, and an EBCT (θ) of 224 minutes. The biofilter model predicts a (Ce) of 3.89 

𝑚𝑔

𝐿
 

signifying that biodegradation will account for removing < 2% or 0.06 
𝑚𝑔

𝐿
 of the sand filtered 

DOC content. This 0.06 
𝑚𝑔

𝐿
 predicted DOC removal by biodegradation closely matches the 0.10 

𝑚𝑔

𝐿
 BDOC removal achieved by the GAC as reflected in Table 4-3. 

 

DOC removals in the GAC sublayer of an amended SSF could be achieved by enhanced 

biodegradation in the GAC and DOC charge neutralization by Ca deposition and subsequent 

accumulation on the GAC. It was determined that charge neutralization mechanism was 

significantly (5x) more influential than enhanced biodegradation as depicted in Table 4-16 

The reduction of the DOC functional-group charges by this charge neutralization mechanism 

appears to (i) enhance the hydrophobic adsorption tendencies of the NOM, and (ii) enhance 

electrostatic bridging of the divalent ion and competing negatively charged surfaces (Collins, 

1985).  

Table 4-16. Measured versus Predicted GAC Induced DOC Removals (
𝑚𝑔

𝐿
). 

 

In most cases, GAC induced DOC removals are showing a correlation between measured and 

predicted values. It is possible there other chemical components present that may account for the 

slight differences being shown. Within slow sand filters, alkalinity, sulfate, chlorides, and other 

 

∆ GAC Removal 

 
Enhanced Biodegradation Charge Neutralization 

Measured Predicted Measured Predicted Measured Predicted 

0.63 0.67 0.10 0.06 0.53 0.61 
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competing anions could be contributing to the complexation of selected metal ions, reducing 

metals ability to attract natural organic matter, and of particular focus, calcium. Further analyses 

are required to expand comparisons between biodegradation removals associated with calcium 

and other metal deposition influences on DOC attachments. 
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5. CONCLUSIONS 

The purpose of this research was to evaluate biologically and chemically active components  

within filter sublayers that may contribute to the GAC bioregenerative treatment process within a 

SSF amended with a GAC sublayer. Extensive biological and chemical analyses were performed 

to assess and analyze seasonal variation on BDOC and non-BDOC removals, biomass 

production between winter and summer conditions, and microbial community composition 

within the SSF sublayers. A major objective of this study was to gain a greater understanding of 

DOC removal mechanisms contributing to the maintenance of long-term GAC adsorption sites. 

Significant conclusions from each area of focus are summarized below.  

 

5.1 Assessment of Seasonal Variations on BDOC and Non-BDOC Removals 

• Removals associated with the biodegradable organic carbon fraction and the non-

biodegradable organic carbon fraction remain significant for over 15 years of filter run-

time and tens of thousands of GAC bed volumes. 

• Performance of individual layers within the slow sand filtration process have various 

effects on BDOC and non-BDOC removals. 

• The non-BDOC fraction removal is significant within the GAC sublayer and assists in 

highlighting the extended adsorption capacity of GAC. 

 

5.2 Biomass Influence by Media Type  

• ATP biomass production within slow sand filter layers responded promptly to changes in 

temperature. 
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• The schmutzdecke layer showed consistent patterns with seasonal variations, producing 

greater amounts of ATP biomass in warmer temperatures and smaller amounts of ATP 

biomass in colder temperatures.  

• Biomass analyses and microbial community composition are sensitive to media location 

and seasonal changes. 

• Metals concentrations for sand coatings remained consistent between Winthrop slow sand 

filters and local comparisons. 

• Calcium accumulation on GAC has been verified.  

• Cation calcium accumulation in GAC may also be correlated with higher removals of 

organic carbon.  

• Calcium accumulation becomes problematic for regeneration processes associated with 

granular activated carbon. 

 

5.3 Inorganic Deposition Influence by Media Type  

• Microbial community composition did not vary significantly between summer and winter 

conditions.  

• Cluster analyses indicated the influence of calcium and aluminum metals concentrations 

with the bacterial species Verrucomicrobiota, Gemmatimonadota, Bdellovibrionota, and 

Patescibacteria. Further studies should be conducted focused on these species.  

• Species present with calcium accumulation are gram negative, indicating the opportunity 

to greater adhere to the positively charged ion, calcium, that has been accumulated on the 

GAC sublayer. 
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5.4 Assessing DOC Removal Mechanisms in the GAC Sublayer of a Slow Sand Filter 

• DOC removals in the GAC sublayer of an amended SSF could be achieved by enhanced 

biodegradation in the GAC and DOC charge neutralization by Ca deposition and 

subsequent accumulation on the GAC. 

• Charge neutralization mechanisms were significantly (5x) more influential than enhanced 

biodegradation. 

• It is hypothesized that calcium induced charge neutralization could enhance DOC 

removals by (i) increasing the hydrophobic adsorption tendencies of the NOM carbon 

skeleton, and (ii) enhance electrostatic bridging of the divalent ion and competing 

negatively charged surfaces 

• Further analyses are required to expand comparisons between biodegradation removals 

and calcium and other metal deposition influences on DOC attachments. 
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6. FUTURE RESEARCH RECOMMENDATIONS 

The results of extensive biological and chemical analyses were used to analyze seasonal 

variation on BDOC and non-BDOC removals, biomass production between winter and summer 

conditions, and microbial community composition within filter sublayers. Additional research is 

required to further understand enhanced removals on the GAC sublayer, the mechanisms 

contributing to the bioregenerative treatment process, and the mechanisms contributing to the 

renewal of adsorption sites on the GAC sublayer. Based on the results of this study, the 

following are recommendations for continued research:   

 

6.1 Increase Sampling Events  

• Add additional sampling events which occur at greater frequency and consistency  

• Sample every 2-3 months to fully capture seasonal patterns  

• Remain consistent with sample collection by layer, filter effluents, and aqueous sample 

extraction above the GAC.   

 

6.2 Explore Schmutzdecke Sampling Methods  

• Schmutzdecke samples were obtained via a scraping method during this study, whereas 

previous studies have incorporated a coring method to analyze schmutzdecke media. 

Further exploration of sampling methods for the schmutzdecke and adjacent filter layers 

could assist in determining a more consistent method for filter sampling and the analysis 

of factors effecting slow sand filter performance  
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6.3 Explore Various GAC Ages  

• Continue to collect aqueous and media samples from slow sand filters that contain GAC 

media of various ages.  

• Performing extensive aqueous and media analyses on GAC media of various ages could 

assist in explaining the renewal of adsorption sites on GAC.  

 

6.4 DOC Removal Mechanisms 

• Continue to explore and model DOC removal mechanisms within slow sand filters 

amended with GAC. 

• Determine the influence of alkalinity and sulfates to the competition of charge 

neutralization with the presence of calcium in various GAC ages.  
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Appendix A. Standard Operating Procedures  
 

 

Total Organic Carbon/ Dissolved Organic Carbon 

 

Biodegradable Organic Carbon 

 

Ultraviolet (UV254) Absorbance 

 

Adenosine Triphosphate (ATP) Biomass Extraction  

 

Deoxyribonucleic Acid (DNA) Extraction  

 

Polymerase Chain Reaction (PCR) Amplfiication  

 

Agarose Gel Set-Up 

 

Metals Quantification by ICP-AES 
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a. Start TOC analyzer, autosampler, computer, and printer. 

b. Open TOC analyzer software program. 

c. Fill TOC vials with standards: 1 for each point on the calibration curve and 1 standard of random 
concentration for every 8 samples. 

d. Cover each vial with a small piece of aluminum foil in place of the cap. Be careful not to leave 

fingerprints on the foil over the vial opening. Fingerprints will be detected by the analyzer as the 
probe punctures the foil. 

e. Arrange samples and standards. A typical run has the following sequence: 

 
Table 2. Run order for TOC samples and standards. 

 

Position Sample or Standard 

1-2 RO blank 

3-7 Standards: one of each, randomized 

8-15 Samples and/or sample duplicates, randomized 

16 Randomly selected standard readback 

{repeat 8 samples and 1 standard until all samples and duplicate have been analyzed} 

{last 3 spots} RO blanks 

 

f. Mount the samples and standards in the autosampler and enter their labels into the computer 

software. 

g. Enter the oxidation and acid rates for each sample and standard: 
 

 

Table 3. Acid and oxidation rate settings for standard or sample concentrations. 
 

Concentration Acid Rate Oxidation Rate 

RO blank 0.5 0.5 

0.5 mg/L standard 0.5 1.0 

All others 1.0 2.0 

 

h. Run the collection program. The analyzer will take three readings from each sample or standard 

and calculate an average and standard deviation. 

 

Calculations 

a. Calibration Curve: Plot the measured concentrations against the expected standard concentrations 

and fit a calibration curve using linear regression as shown below. 

b. Calculate the sample concentration by substituting the instrument reading (average of 3 readings 
for each sample) into the calibration curve equation. 
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Figure 0.1. Sample TOC calibration curve (June 22, 2005). 

 

 
Quality Control 

Readbacks: random standard after every 8 samples. Duplicates: 

analyzed at least 2 duplicate every run. 
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Standard Operating Procedures  

BIODEGRADABLE DISSOLVED ORGANIC CARBON (BDOC)  

Summers/Shaker Batch Bioreactor Method  

 

Principle 

A water sample is applied to bioacclimated sand for 5 days in a batch reaction. The readily 

biodegradable portion of dissolved organic matter is expected to be consumed by microbial 

activity. The sample is agitated to promote mixing and aeration. Using fixed flora permits a rapid 

response. The difference between initial and final DOC is operationally defined as BDOC.  

 

Apparatus  

1. Reactors: 1L amber glass bottles with TFE lined caps. Wash with detergent, rinse, wash 
with chromic acid. Rinse 3x with DI water and 3x with Milli-Q water. Caps should not be 
chromic acid washed.  

2. Sample vials, amber glass with TFE lined caps. Bake at 550°C for 2 hours.  
3. Constant temperature room, 20 ± 1°C.  
4. Glass filtration rig, or filter syringes with luer lock and 25 mm dia. Filter holders.  
5. Filters, Whatman GF/F.  
6. Shaker table; with modified platform to hold 1L bottles.  

 

Reagents and materials  

1. Bioacclimated sand: prepare per below.  
2. Acclimation columns: 4” dia. PVC columns with stainless-steel screens, Masterflex 

pumps. Tubing, and carboys for reservoirs.  
3. Glucose/Glutamic acid solution, 4, mg/l-C: Add 104 mg of glucose (𝐶6𝐻12𝑂6𝐻2𝑂 ) and 

104 mg glutamic acid (𝐶5𝐻9𝑁𝑂4) to 200 ml Milli-Q water to make stock. Dilute 10 ml 
stock in 1000 ml Milli-Q or spike 10 ml into 1000 ml sample. Prepare G/GA stock 
immediately before use.  

4. Phosphoric acid, concentrated.  
5. Dechlorinated tap water: pass through GAC column or household type GAC water filter 

to remove chlorine and DOC. Store in carboy with spigot and keep it warm to room 
temperature. Verify no chlorine residual using HACH kit.  

 

Method  

Sand Acclimation  

a. Prior to first use, wet-wash sand by swirling ~4 ld., vigorously in a bucket of water. After 
~1 sec, of settling, decant off supernatant water. Repeat until decanted water is clear.  

b. Bioacclimate sand with untreated natural water for at least 3-4 weeks in PVC columns 
using local water.  

c. Recirculate raw water in up-flow mode at high rate to ensure penetration in sand bed.  
d. Replace with fresh water at least 1x/week.  
e. Preferably recirculate target water 1-3 days prior to testing.  

 

 

Preparation of sand (immediately before use)  
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a. Remove sand from recirculating columns and place in plastic pan. Approximately 100 ml 
is required for each test.  

b. Transfer ~200 g sand with plastic scoop into a large plastic dish or measuring cup. Wash 
sand with dechlorinated tap water 20x by gently swirling and decanting.  

c. Optional: rinse sand 3x with Milli-Q water.  
d. Sand is considered ready for use when UV absorbance of the final rinse water <0.02.  
e. Homogenize acclimated sand to eliminate biomass selectively in separate reactors.  

 

Sample application  

a. Allow samples to warm to 20 ± 1°C. Samples need not be filtered prior to application.  
b. Add ~150 g of wet sand to reactor.  
c. Wash sand with 300 ml of sample to displace remaining water and then decant off.  
d. Check the pH of the sample. If pH is outside the 6.0-9.0 range, adjust with 1N or 0.1N 

acid or base.  
e. Add 500 ml of sample to each reactor. Approximately 400 ml of headspace will provide 

an oxygen source for the organisms.  
f. Swirl bottle and sample for DOC.  
g. Incubate at 20 degrees Celsius on a shaker table at ~150 RPM for 7 days. Keep in dark to 

prevent algal growth.  
h. When the test is completed, return used sand to bioacclimating columns.  

 

Sampling procedures 

a. Prepare glass filtration rig or syringe filters per SOP.  
b. Filter only ~25 ml if sampling at intermediate times.  
c. Measure NPDOC and UV absorbance per SOPs.  
d. Sample at 0 and 5 days to determine total BDOC. For kinetics studies and initial 

investigations of water sources, take additional samples at selected times during the run 
for up to 7-10 days.  

e. If samples are not analyzed immediately, preserve by acidifying to pH<2, with 2 drops 
conc. 𝐻3𝑃𝑂4and store at 4°C for up to 28 days.  

 

Calculations  

BDOC, mg C/L = DOCINITIAL – DOCFINAL 

%BDOC = [(DOCINITIAL – DOCFINAL) / DOCINITIAL] * 100  

 

Quality Control  

Method check  

Sample final rinse water from sand for DOC to check for leaching. Sample for DOC both before 

and after placing the sample in the flask to check for contamination or dilution. Develop 

correlation of DOC with UV absorbance and use the more convenient UV abs measurement as a 

regular method check. Sample effluent from filter flashes to check filters for leaching (500 ml 

Milli-Q for 47 mm filters or 150 ml for 25 mm filters shown to be sufficient).  

 

Glucose/glutamic acid control 
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Test Glucose/glutamic acid mixture with samples. Almost complete DOC removal should be 

seen if the sample in the reactor is biologically active and only carbon is limiting. Samples 

spiked with glucose should have the same DOCfinal as unspiked sample aliquots.  

 

Precision  

a. Run duplicate BDOC tests. Calculate s=pooled standard deviation.  
b. Collect random duplicate samples.  
c. Determine minimum detectable difference in BDOC based on pooled s.  

 

Acclimation of source water  

Verify that no significant difference in results when sand is acclimated with local water vs. target 

water.  

 

Notes from initial testing 

Initial DOC samples immediately after adding the water to the sand may be inconclusive for 

checking for dilution or contamination. Tests show, depending on the state of the bugs, that DOC 

values can be higher or lower but nevertheless results appear consistent after 5 days of 

incubation.  

Acclimating with target water may slightly improve kinetics but there was NSD in BDOC after 5 

days.  

Samples low in BDOC may reach a minimum level prior to 5 days then rise slightly.  

Filter samples when collecting from bottles for analysis. Results were less consistent when 

sample water was prefiltered initially prior to application to the sand but not subsequently. NSD 

observed between samples initially prefiltered and not filtered as long as aliquots collected for 

analysis were filtered. Batch method is probably unsuitable for conducting conducive kinetics 

test because of the relatively low amount and variable state of the biomass.  

 

References  
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Removal of Natural Organic Matter” Masters thesis, University of New Hampshire, 
Durham, NH.  

b. Greenberg A.E., Clesceri L. S. and Eaton A. D (Editors). 1992. “Standard Methods for the 
Examination of Water and Wastewater” 18th edition. American Public Health 
Association, American Water Works Association and Water Environment Federation 
(publishers)  
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Standard Operating Procedures 

        ULTRAVIOLET ABSORBANCE (UV254) 

 

Principle 

Beers Law states that absorbance is proportional to the concentration of the analyte for 

a given absorption pathlength at any given wavelength. UV absorbance at 254 nm is a useful 

surrogate parameter for estimating the raw water concentrations of organic carbon and THM 

precursors (Standard Methods 2006). 

 
Apparatus 

Hach DR5000 spectrophotometer 

a. Cuvettes, 1cm path length, 3 ml volume, matched quartz cells (Suprasil ®, Fisher Sci.) 

 

Reagents and materials 

DI Water 

 

 
Collection of Samples 

Collect samples in 40 mL amber TOC vials that have been washed with chromic acid and 

baked 90 min. in a muffle furnace at 550°C to mineralize all organic matter. 

Store at 4°C. 

Holding time: < 48 hours. 

 

 
Method 

a. Remove samples from refrigerator and allow to warm to room temp. 
b. Set spectrophotometer to measure wavelength 254 nm. 
c. Zero machine on RO lab water blank. 
d. Rinse cuvette with RO water twice; then fill with at least 1.5 ml of sample. 
e. Wipe cuvette with kimwipe to be sure it is dry and free of smudges. 
f. Measure and record absorbance. 
g. Analyze sample aliquots in duplicate (triplicate if discrepancy). 

 

Quality Control 

a. Blanks every 8 samples to check for drift. 
b. Run duplicate samples from a random source each round of sampling. 
c. For this method (not same instrument) the standard deviation of duplicate samples was 

 0.011 cm-1. The standard deviation of duplicate measurements was  0.002 cm-1. 
(Collins et al. 1989) 
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Hitachi UV2000 Specifications 

Range Reproducibility Accuracy 

0-0.5 abs. ± 0.001 ± 0.002 

0.5-1.0 abs. ± 0.002 0.004 ± 

 

 

Care for cuvettes 

a. Periodically clean cells by rinsing with methanol then RO water, or use phosphate free soap. 

b. Take care not to drop, scratch or in any way damage the cells. 

 

Instrument Setup 

a. Select Photometry in Main Menu using arrow keys; press ENTER. 

b. Select Test Setup: set/check set to 254 nm wavelength. 
c. Press FORWARD; machine will align to 254 nm. Wait for 30 minutes for the lamp to warm up. 

d. Press AUTOZERO to zero on blanks. 

e. Press start to measure absorbance of samples. 

 

References 

APHA, AWWA, WEF (2006). Standard Methods for the Examination of Water and Wastewater. 21st Ed. 

Page T. G. 1997. “GAC Sandwich Modification to Slow Sand Filtration for Enhanced Removal of 

Natural Organic Matter” Master’s thesis, University of New Hampshire, Durham, NH. 
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Standard Operating Procedures 

ATP EXTRACTION 

 

 

 

 Test Kit Instructions 
  Deposit & Surface Analysis (DSA) 
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REHYDRATING LUMINASE 

• Gently mix the buffer and Luminase enzyme. 

• Wait 5 minutes for solution to dissolve. 

 

1. ULTRACHECK CALIBRATION (RLUATP1) 

• Hold the UltraCheck1 bottle vertical, add 2 drops 

(100µL) of UltraCheck1 to a 12x55mm test tube. 

• Pipet 100µL of Luminase into the test tube. 

• Swirl tube and take reading within 10 seconds. 

 

* If RLUATP1 ≤ 5,000 rehydrate a new bottle of Luminase. 

 

2. SAMPLE PREPARATION 
 

A. Surface Swab – A measured area of the 

surface is swabbed to collect biofilm. ATP is 

then extracted from the swab. 

B. Measured Deposit – A deposit is collected 

and measured. ATP is extracted from the 

deposit. 

C. Biofilm Collector – ATP is extracted directly 

off a biofilm collection device (e.g. corrosion 

coupon). 

 
2.A SURFACE SWAB 

• Obtain a new Sterile Swab and wet with 

LumiSolve. Swab a surface area of approximately 

5x5cm (2x2in). 

• Insert swab in a 5mL UltraLyse 7 (Extraction) 

Tube.  Cap and mix the contents of the tube. 

 

TIP: To increase analysis sensitivity, increase the swabbed 

surface area. 

 

2.B MEASURED DEPOSIT 

• Obtain a portion of the deposit and weigh 1g of 

sample.  

• Add this to a 5mL UltraLyse 7 (Extraction) Tube.   

• Cap and mix the contents of the tube vigorously to 

disperse the deposit throughout the fluid.  

 

TIP: A measured volume of deposit (e.g. 1mL) can also be 

used instead of a weighed amount. 

 

2.C BIOFILM COLLECTOR 

• Obtain a biofilm collection device from the process 

and shake gently to remove excess fluid.  

• Note the area of all biofilm-containing surfaces on 

the device and place it into a  5mL UltraLyse 7 

(Extraction) Tube.   

• Cap and mix the contents of the tube vigorously to 

disperse the deposit throughout the fluid.  

 

TIP: Attempt to test the biofilm collection device as quickly as 

possible following removal from process fluid. 
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 Test Kit Instructions – Deposit and Surface Analysis  
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3. TOTAL ATP (tATP) ANALYSIS 
 

3.1 EXTRACTION 

• Allow at least 5 minutes for ATP extraction in the 

UltraLyse 7 (Extraction) Tube. 

 

TIP: When using the biofilm collector method, ensure the 

device is submerged in the UltraLyse 7 during incubation. 

 

3.2 DILUTION 

• Transfer 1mL from the UltraLyse 7 (Extraction) 

Tube to a 9mL UltraLute (Dilution) Tube. 

• Cap and invert three times to mix. 

 

 

3.3 ASSAY 

• Pipet 100µL of the UltraLute (Dilution) solution to 

a 12x55mm test tube. 

• Using a new pipet tip, add 100µL of Luminase to 

the test tube. 

• Swirl the tube and take reading within 10 seconds. 

 

 

 

 

 

 

CALCULATIONS 

The Total ATP (tATP) analysis measures all ATP 

within the deposit, including ATP from living cells as 

well as ATP released from dead cells.  

A – Surface Swab (Default ASample = 25cm2): 
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B – Measured Deposit (Default mSample = 1g): 
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( )

( )gm

ATPpg

RLU

RLU
gATPpgtATP

SampleATP

tATP 000,50
/

1

×=  

C – Biofilm Collector: 
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tATP ×=  

TIP: You may also divide the result by the number of days 

the biofilm has had to evolve to obtain a growth rate.   

Interpretation Guidelines 

ATP-based measurements are extremely sensitive to 

changes in total microbial quantity. In general, 

processes will have the best microbial control when 

tATP is minimized.  

It is recommend to compare surface/deposit results to 

bulk fluid results.  Good control of biofilm is generally 

achieved when the biofilm/fluid ratio is <10x, and 

corrective action is required at levels of 100x or above: 
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Potable & Sanitary 
Water 

<10 
10 to 
1,000 

>1,000 

Raw, Cooling & 
Process Water 
(Oxidizing Biocide) 

<100 
100 to 
10,000 

>10,000 

Cooling, Process, 
Bottom & Oilfield 
Water (Non-
Oxidizing Biocide) 

<1,000 
1,000 to 
100,000 

>100,000 

Bulk Fluid-to-
Biofilm Ratio 

<10x 
10x to 
100x 

>100x 

Biological Filter 
Media 

Process Dependant 
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Standard Operating Procedures 

        DNA EXTRACTION 
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Standard Operating Procedures 

                         PCR AMPLIFICATION 
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Standard Operating Procedures 

                        AGAROSE GEL SETUP 

 

 

Agarose Gel Setup  

 

NOTE: Always wear dedicated gloves when using gel loading equipment and NEVER touch 

anything else around the lab with gloves. Make sure to wash hands after working with gels. 

 

for 1.5%, 100 ml gel 

1 Combine 1.5g agarose in 100 ml of 1x TBE buffer. 

2 Microwave at 15 s intervals until agarose is dissolved. 

3 Add 10 μl Gel Red (10,000x) directly to TBE-agarose solution. 

4 Let cool to touch, then pour liquid in tray with comb, making sure tray is level 

and sides are sealed. 

5 Inject 2 μl of 100 bp or 1 kb DNA ladder in respective well.  

6 Dot gel loading dye (Blue 6X) on parafilm for each sample you plan to visualize. 

(Add 1 ul dye for every 2 ul sample you plan to load.)  

7 Pipet 2 ul DNA samples onto dye dots, mixing contents with pipette tips. Inject 

carefully into submerged wells  

8 Fill container with TBE buffer until the fill line, or just over the thickness of the 

gel. 

9 Run gel to red for approximately 45 minutes at ~80V, or until fragments are 

properly sized with ladder.  

10 Observe gel under transilluminator. Wear protective glasses when visualizing 

samples under UV light.  

 

for 1.5%, 150 ml gel 

1 Combine 2.25g agarose in 150 ml of 1x TBE buffer. 

2 Microwave at 15 s intervals until agarose is dissolved. 

3 Add 15 μl Gel Red (10,000x) directly to TBE-agarose solution. 

4 Follow steps 4-10 above 

 

for 1%, 100 ml gel 

1 Combine 1g agarose in 100 ml of 1x TBE buffer. 

2 Follow steps 2-10 above 

3 Add 10 μl Gel Red (10,000x) directly to TBE-agarose solution. 
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                                         Standard Operating Procedure 

METHOD 6010B 
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 METHOD 6010B

INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRY

1.0  SCOPE AND APPLICATION
 

1.1 Inductively coupled plasma-atomic emission spectrometry (ICP-AES) determines
trace elements, including metals, in solution.  The method is applicable to all of the elements listed
in Table 1.  All matrices, excluding filtered groundwater samples but including ground water,
aqueous samples, TCLP and EP extracts, industrial and organic wastes, soils, sludges, sediments,
and other solid wastes, require digestion prior to analysis.  Groundwater samples that have been
prefiltered and acidified will not need acid digestion.  Samples which are not digested must either
use an internal standard or be matrix matched with the standards.  Refer to Chapter Three for the
appropriate digestion procedures.
 

1.2 Table 1 lists the elements for which this method is applicable.  Detection limits,
sensitivity, and the optimum and linear concentration ranges of the elements can vary with the
wavelength, spectrometer, matrix and operating conditions.  Table 1 lists the recommended
analytical wavelengths and estimated instrumental detection limits for the elements in clean aqueous
matrices.  The instrument detection limit data may be used to estimate instrument and method
performance for other sample matrices.  Elements and matrices other than those listed in Table 1
may be analyzed by this method if performance at the concentration levels of interest (see Section
8.0) is demonstrated.

1.3   Users of the method should state the data quality objectives prior to analysis and must
document and have on file the required initial demonstration performance data described in the
following sections prior to using the method for analysis.

1.4 Use of this method is restricted to spectroscopists who are knowledgeable in the
correction of spectral, chemical, and physical interferences described in this method.  

2.0 SUMMARY OF METHOD
 

2.1  Prior to analysis, samples must be solubilized or digested using appropriate Sample
Preparation Methods (e.g. Chapter Three).  When analyzing groundwater samples for dissolved
constituents, acid digestion is not necessary if the samples are filtered and acid preserved prior to
analysis.

2.2  This method describes multielemental determinations by ICP-AES using sequential or
simultaneous optical systems and axial or radial viewing of the plasma.  The instrument measures
characteristic emission spectra by optical spectrometry.  Samples are nebulized and the resulting
aerosol is transported to the plasma torch.  Element-specific emission spectra are produced by a
radio-frequency inductively coupled plasma.  The spectra are dispersed by a grating spectrometer,
and the intensities of the emission lines are monitored by photosensitive devices.   Background
correction is required for trace element determination.  Background must be measured adjacent to
analyte lines on samples during analysis.  The position selected for the background-intensity
measurement, on either or both sides of the analytical line, will be determined by the complexity of
the spectrum adjacent to the analyte line. In one mode of analysis the position used should be as
free as possible from spectral interference and should reflect the same  change in background
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intensity as occurs at the analyte wavelength measured. Background correction is not required in
cases of line broadening where a background correction measurement would actually degrade the
analytical result.  The possibility of additional interferences named in Section 3.0 should also be
recognized and appropriate corrections made; tests for their presence are described in Section 8.5.
Alternatively, users may choose multivariate calibration methods.  In this case, point selections for
background correction are superfluous since whole spectral regions are processed.

3.0  INTERFERENCES

3.1  Spectral interferences are caused by background emission from continuous or
recombination phenomena, stray light from the line emission of high concentration elements, overlap
of a spectral line from another element, or unresolved overlap of molecular band spectra.  

3.1.1  Background emission and stray light can usually be compensated for by
subtracting the background emission determined by measurements adjacent to the analyte
wavelength peak.  Spectral scans of samples or single element solutions in the analyte
regions may indicate when alternate wavelengths are desirable because of severe spectral
interference.  These scans will also show whether the most appropriate estimate of the
background emission is provided by an interpolation from measurements on both sides of
the wavelength peak or by measured emission on only one side.  The locations selected for
the measurement of background intensity will be determined by the complexity of the
spectrum adjacent to the wavelength peak.  The locations used for routine measurement
must be free of off-line spectral interference (interelement or molecular) or adequately
corrected to reflect the same change in background intensity as occurs at the wavelength
peak. For multivariate methods using whole spectral regions, background scans should be
included in the correction algorithm.  Off-line spectral interferences are handled by including
spectra on interfering species in the algorithm. 

3.1.2 To determine the appropriate location for off-line background correction, the
user must scan the area on either side adjacent to the wavelength and record the apparent
emission intensity from all other method analytes.  This spectral information must be
documented and kept on file.  The location selected for background correction must be either
free of off-line interelement spectral interference or a computer routine must be used for
automatic correction on all determinations.  If a wavelength other than the recommended
wavelength is used, the analyst must determine and document both the overlapping and
nearby spectral interference effects from all method analytes and common elements and
provide for their automatic correction on all analyses.  Tests to determine spectral
interference must be done using analyte concentrations that will adequately describe the
interference.  Normally, 100 mg/L single element solutions are sufficient; however, for
analytes such as iron that may be found at high concentration, a more appropriate test would
be to use a concentration near the upper analytical range limit.  

3.1.3  Spectral overlaps may be avoided by using an alternate wavelength or can be
compensated by equations that correct for interelement contributions.  Instruments that use

equations for interelement correction require the interfering elements be analyzed at the
same time as the element of interest.  When operative and uncorrected, interferences will
produce false positive determinations and be reported as analyte concentrations.  More
extensive information on interferant effects at various wavelengths and resolutions is
available in reference wavelength tables and books.  Users may apply interelement



 

 

132 

 

CD-ROM 6010B - 3 Revision 2
December 1996

correction equations determined on their instruments with tested concentration ranges to
compensate (off line or on line) for the effects of interfering elements.  Some potential
spectral interferences observed for the recommended wavelengths are given in Table 2. For
multivariate methods using whole spectral regions, spectral interferences are handled by
including spectra of the interfering elements in the algorithm. The interferences listed are
only those that occur between method analytes.  Only interferences of a direct overlap nature
are listed.  These overlaps were observed with a single instrument having a working
resolution of 0.035 nm.

3.1.4 When using interelement correction equations, the interference may be
expressed as analyte concentration equivalents (i.e. false analyte concentrations) arising
from 100 mg/L of the interference element.  For example, assume that As is to be
determined (at 193.696 nm) in a sample containing approximately 10 mg/L of Al.  According
to Table 2, 100 mg/L of Al would yield a false signal for As equivalent to approximately 1.3
mg/L. Therefore, the presence of 10 mg/L of Al would result in a false signal for As
equivalent to approximately 0.13 mg/L.  The user is cautioned that other instruments may
exhibit somewhat different levels of interference than those shown in Table 2.  The
interference effects must be evaluated for each individual instrument since the intensities will
vary.

3.1.5  Interelement corrections will vary for the same emission line among
instruments because of differences in resolution, as determined by the grating, the entrance
and exit slit widths, and by the order of dispersion.  Interelement corrections will also vary
depending upon the choice of background correction points.  Selecting a background
correction point where an interfering emission line may appear should be avoided when
practical.  Interelement corrections that constitute a major portion of an emission signal may
not yield accurate data.  Users should not forget that some samples may contain uncommon
elements that could contribute spectral interferences. 

3.1.6  The interference effects must be evaluated for each individual instrument
whether configured as a sequential or simultaneous instrument.  For each instrument,
intensities will vary not only with optical resolution but also with operating conditions (such
as power, viewing height and argon flow rate).  When using the recommended wavelengths,
the analyst is required to determine and document for each wavelength the effect from
referenced interferences (Table 2) as well as any other suspected interferences that may be
specific to the instrument or matrix.  The analyst is encouraged to utilize a computer routine
for  automatic correction on all analyses.  

3.1.7 Users of sequential instruments must verify the absence of spectral
interference by scanning over a range of 0.5 nm centered on the wavelength of interest for
several samples.  The range for lead, for example, would be from 220.6 to 220.1 nm.  This
procedure must be repeated whenever a new matrix is to be analyzed and when a new
calibration curve using different instrumental conditions is to be prepared.  Samples that
show an elevated background emission across the range may be background corrected by
applying a correction factor equal to the emission adjacent to the line or at two points on
either side of the line and interpolating between them.  An alternate wavelength that does
not exhibit a background shift or spectral overlap may also be used.  
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3.1.8  If the correction routine is operating properly, the determined apparent
analyte(s) concentration from analysis of each interference solution should fall within a
specific concentration range around the calibration blank.  The concentration range is
calculated by multiplying the concentration of the interfering element by the value of the
correction factor being tested and divided by 10.  If after the subtraction of the calibration
blank the apparent analyte concentration falls outside of this range in either a positive or
negative direction, a change in the correction factor of more than 10% should be suspected.
The cause of the change should be determined and corrected and the correction factor
updated.  The interference check solutions should be analyzed more than once to confirm
a change has occurred.  Adequate rinse time between solutions and before analysis of the
calibration blank will assist in the confirmation.   

3.1.9  When interelement corrections are applied, their accuracy should be verified,
daily, by analyzing spectral interference check solutions.  If the correction factors or
multivariate correction matrices tested on a daily basis are found to be within the 20% criteria
for 5 consecutive days, the required verification frequency of those factors in compliance may
be extended to a weekly basis.  Also, if the nature of the samples analyzed is such they do
not contain concentrations of the interfering elements at ± one reporting limit from zero, daily
verification is not required.  All interelement spectral correction factors or multivariate
correction matrices must be verified and updated every six months or when an
instrumentation change, such as in the torch, nebulizer, injector, or plasma conditions
occurs.  Standard solution should be inspected to ensure that there is no contamination that
may be perceived as a spectral interference.   

3.1.10  When interelement corrections are not used, verification of absence of
interferences is required.  

3.1.10.1  One method is to use a computer software routine for comparing
the determinative data to limits files for notifying the analyst when an interfering
element is detected in the sample at a concentration that will produce either an
apparent false positive concentration, (i.e., greater than) the analyte instrument
detection limit, or false negative analyte concentration, (i.e., less than the lower
control limit of the calibration blank defined for a 99% confidence interval).

3.1.10.2  Another method is to analyze an Interference Check Solution(s)
which contains similar concentrations of the major components of the samples (>10
mg/L) on a continuing basis to verify the absence of effects at the wavelengths
selected.  These data must be kept on file with the sample analysis data.  If the
check solution confirms an operative interference that is > 20% of the analyte
concentration, the analyte must be determined using (1) analytical and background
correction wavelengths (or spectral regions) free of the interference, (2) by an
alternative wavelength, or (3) by another documented test procedure.  

3.2 Physical interferences are effects associated with the sample nebulization and
transport processes.  Changes in viscosity and surface tension can cause significant inaccuracies,
especially in samples containing high dissolved solids or high acid concentrations.  If physical
interferences are present, they must be reduced by diluting the sample or by using a peristaltic
pump, by using an internal standard or by using a high solids nebulizer.  Another problem that can
occur with high dissolved solids is salt buildup at the tip of the nebulizer, affecting aerosol flow rate
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and causing instrumental drift.  The problem can be controlled by wetting the argon prior to
nebulization, using a tip washer, using a high solids nebulizer or diluting the sample.  Also, it has
been reported that better control of the argon flow rate, especially to the nebulizer, improves
instrument performance: this may be  accomplished with the use of mass flow controllers.  The test
described in Section 8.5.1 will help determine if a physical interference is present.

3.3 Chemical interferences include molecular compound formation, ionization effects, and
solute vaporization effects.  Normally, these effects are not significant with the ICP technique, but
if observed, can be minimized by careful selection of operating conditions (incident power,
observation position, and so forth), by buffering of the sample, by matrix matching, and by standard
addition procedures.  Chemical interferences are highly dependent on matrix type and the specific
analyte element.
  

3.4  Memory interferences result when analytes in a previous sample contribute to the
signals measured in a new sample.  Memory effects can result from sample deposition on the uptake
tubing to the nebulizer and from the build up of sample material in the plasma torch and spray
chamber.  The site where these effects occur is dependent on the element and can be minimized
by flushing the system with a rinse blank between samples.  The possibility of memory interferences
should be recognized within an analytical run and suitable rinse times should be used to reduce
them.  The rinse times necessary for a particular element must be estimated prior to analysis.  This
may be achieved by aspirating a standard containing elements at a concentration ten times the usual
amount or at the top of the linear dynamic range.  The aspiration time for this sample should be the
same as a normal sample analysis period, followed by analysis of the rinse blank at designated
intervals.  The length of time required to reduce analyte signals to within a factor of two of the
method detection limit should be noted.  Until the required rinse time is established, this method
suggests a rinse period of at least 60 seconds between samples and standards.  If a memory
interference is suspected, the sample must be reanalyzed after a rinse period of sufficient length.
Alternate rinse times may be established by the analyst based upon their DQOs.

3.5 Users are advised that high salt concentrations can cause analyte signal
suppressions and confuse interference tests.  If the instrument does not display negative values,
fortify the interference check solution with the elements of interest at 0.5 to 1 mg/L and measure the
added standard concentration accordingly. Concentrations should be within 20% of the true spiked
concentration or dilution of the samples will be necessary.  In the absence of measurable analyte,
overcorrection could go undetected if a negative value is reported as zero. 

3.6 The dashes in Table 2 indicate that no measurable interferences were observed even
at higher interferant concentrations.  Generally, interferences were discernible if they produced
peaks, or background shifts, corresponding to 2 to 5% of the peaks generated by the analyte
concentrations.

4.0  APPARATUS AND MATERIALS

4.1  Inductively coupled argon plasma emission spectrometer:
 

4.1.1  Computer-controlled emission spectrometer with background correction.

4.1.2 Radio-frequency generator compliant with FCC regulations.



 

 

135 

 



 

 

136 

 



 

 

137 

 



 

 

138 

 



 

 

139 

 

CD-ROM 6010B - 10 Revision 2
December 1996

5.3.28  Tin solution, stock, 1 mL = 1000 µg Sn: Dissolve 1.000 g Sn shot, weighed
accurately to at least 4 significant figures, in 200 mL (1:1) HCl with heating to effect
dissolution.  Let solution cool and dilute with (1:1) HCl in a 1-L volumetric flask.

5.3.29  Vanadium solution, stock, 1 mL = 1000 µg V: Dissolve 2.2957 g NH VO4 3

(element fraction V = 0.4356), weighed accurately to at least four significant figures, in a
minimum amount of concentrated HNO .  Heat to increase rate of dissolution.  Add 10.0 mL3

concentrated HNO  and dilute to volume in a 1,000 mL volumetric flask with water.3

5.3.30  Zinc solution, stock, 1 mL = 1000 µg Zn: Dissolve 1.2447 g ZnO (element
fraction Zn = 0.8034), weighed accurately to at least four significant figures, in a minimum
amount of dilute HNO .  Add 10.0 mL concentrated HNO  and dilute to volume in a 1,000 mL3       3

volumetric flask with water.

5.4   Mixed calibration standard solutions - Prepare mixed calibration standard solutions by
combining appropriate volumes of the stock solutions in volumetric flasks (see Table 3).  Add the
appropriate types and volumes of acids so that the standards are matrix matched with the sample
digestates.  Prior to preparing the mixed standards, each stock solution should be analyzed
separately to determine possible spectral interference or the presence of impurities.  Care should
be taken when preparing the mixed standards to ensure that the elements are compatible and stable
together.  Transfer the mixed standard solutions to FEP fluorocarbon or previously unused
polyethylene or polypropylene bottles for storage.  Fresh mixed standards should be prepared, as
needed, with the realization that concentration can change on aging.  Some typical calibration
standard combinations are listed in Table 3.

NOTE:  If the addition of silver to the recommended acid combination results in an initial
precipitation, add 15 mL of water and warm the flask until the solution clears.  Cool and dilute
to 100 mL with water. For this acid combination, the silver concentration should be limited
to 2 mg/L.  Silver under these conditions is stable in a tap-water matrix for 30 days.  Higher
concentrations of silver require additional HCl.

5.5  Two types of blanks are required for the analysis for samples prepared by any method
other than 3040.  The calibration blank is used in establishing the analytical curve, and the method
blank is used to identify possible contamination resulting from varying amounts of the acids used in
the sample processing. 
 

5.5.1  The calibration blank is prepared by acidifying reagent water to the same
concentrations of the acids found in the standards and samples.  Prepare a sufficient
quantity to flush the system between standards and samples.  The calibration blank will also
be used for all initial and continuing calibration blank determinations (see Sections 7.3 and
7.4).

5.5.2  The method blank must contain all of the reagents in the same volumes as
used in the processing of the samples.  The method blank must be carried through the
complete procedure and contain the same acid concentration in the final solution as the
sample solution used for analysis. 
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5.6  The Initial Calibration Verification (ICV) is prepared by the analyst by combining
compatible elements from a standard source different than that of the calibration standard and at
concentrations within the linear working range of the instrument (see Section 8.6.1 for use).

5.7 The Continuing Calibration Verification (CCV)) should be prepared in the same acid
matrix using the same standards used for calibration at a concentration near the mid-point of the
calibration curve (see Section 8.6.1 for use).

5.8  The interference check solution is prepared to contain known concentrations of
interfering elements that will provide an adequate test of the correction factors.  Spike the sample
with the elements of interest, particularly those with known interferences at 0.5 to 1 mg/L.  In the
absence of measurable analyte, overcorrection could go undetected because a negative value could
be reported as zero.  If the particular instrument will display overcorrection as a negative number,
this spiking procedure will not be necessary.

6.0  SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1  See the introductory material in Chapter Three, Inorganic Analytes, Sections  3.1 through
3.3.

7.0  PROCEDURE
 

7.1  Preliminary treatment of most matrices is necessary because of the complexity and
variability of sample matrices.  Groundwater samples which have been prefiltered and acidified will
not need acid digestion.  Samples which are not digested must either use an internal standard or

be matrix matched with the standards.  Solubilization and digestion procedures are presented in
Sample Preparation Methods (Chapter Three, Inorganic Analytes).

7.2  Set up the instrument with proper operating parameters established as detailed below.
The instrument must be allowed to become thermally stable before beginning (usually requiring at
least 30 minutes of operation prior to calibration).   Operating conditions - The analyst should follow
the instructions provided by the instrument manufacturer. 

7.2.1  Before using this procedure to analyze samples, there must be data available
documenting initial demonstration of performance.  The required data document the selection
criteria of background correction points; analytical dynamic ranges, the applicable equations,
and the upper limits of those ranges; the method and instrument detection limits; and the
determination and verification of interelement correction equations or other routines for
correcting spectral interferences.  This data must be generated using the same instrument,
operating conditions and calibration routine to be used for sample analysis.  These
documented data must be kept on file and be available for review by the data user or auditor.

7.2.2  Specific wavelengths are listed in Table 1.  Other wavelengths may be
substituted if they can provide the needed sensitivity and are corrected for spectral
interference.  Because of differences among various makes and models of spectrometers,
specific instrument operating conditions cannot be provided.  The instrument and operating
conditions utilized for determination must be capable of providing data of acceptable quality
to the program and data user.  The analyst should follow the instructions provided by the
instrument manufacturer unless other conditions provide similar or better performance for
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a task.  Operating conditions for aqueous solutions usually vary from 1100 to 1200 watts
forward power, 14 to 18 mm viewing height, 15 to 19 liters/min argon coolant flow, 0.6 to 1.5
L/min argon nebulizer flow, 1 to 1.8 mL/min sample pumping rate with a 1 minute preflush
time and measurement time near 1 second per wavelength peak for sequential instruments
and 10 seconds per sample for simultaneous instruments. For an axial plasma, the
conditions will usually vary from 1100-1500 watts forward power, 15-19 liters/min argon
coolant flow, 0.6-1.5 L/min argon nebulizer flow, 1-1.8 mL/min sample pumping rate with a
1 minute preflush time and measurement time near 1 second per wavelength peak for
sequential instruments and 10 seconds per sample for simultaneous instruments.
Reproduction of the Cu/Mn intensity ratio at 324.754 nm and 257.610 nm respectively, by
adjusting the argon aerosol flow has been recommended as a way to achieve repeatable
interference correction factors. 

7.2.3  The plasma operating conditions need to be optimized prior to use of the
instrument. This routine is not required on a daily basis, but only when first setting up a new
instrument or following a change in operating conditions.  The following procedure is
recommended or follow manufacturer’s recommendations. The purpose of plasma
optimization is to provide a maximum signal to background ratio for some of the least
sensitive elements in the analytical array.  The use of a mass flow controller to regulate the
nebulizer gas flow or source optimization software greatly facilitates the procedure. 

7.2.3.1  Ignite the radial plasma and select an appropriate incident RF power.
Allow the instrument to become thermally stable before beginning, about 30 to 60
minutes of operation.  While aspirating a 1000 ug/L solution of yttrium, follow the
instrument manufacturer's instructions and adjust the aerosol carrier gas flow rate
through the nebulizer so a definitive blue emission region of the plasma extends
approximately from 5 to 20 mm above the top of the load coil.  Record the nebulizer
gas flow rate or pressure setting for future reference.  The yttrium solution can also
be used for coarse optical alignment of the torch by observing the overlay of the blue
light over the entrance slit to the optical system.

7.2.3.2  After establishing the nebulizer gas flow rate, determine the solution
uptake rate of the nebulizer in mL/min by aspirating a known volume of calibration
blank for a period of at least three minutes.  Divide the volume aspirated by the time
in minutes and record the uptake rate; set the peristaltic pump to deliver the rate in
a steady even flow. 

7.2.3.3  Profile the instrument to align it optically as it will be used during
analysis.  The following procedure can be used for both horizontal and vertical
optimization in the radial mode, but is written for vertical.  Aspirate a solution
containing 10 ug/L of several selected elements.  These elements can be As, Se, Tl
or Pb as the least sensitive of the elements and most needing to be optimize or
others representing analytical judgement (V, Cr, Cu, Li and Mn are also used with
success).  Collect intensity data at the wavelength peak for each analyte at 1 mm
intervals from 14 to 18 mm above the load coil. (This region of the plasma is referred
to as the analytical zone.)  Repeat the process using the calibration blank.
Determine the net signal to blank intensity ratio for each analyte for each viewing
height setting.  Choose the height for viewing the plasma that provides the best net
intensity ratios for the elements analyzed or the highest intensity ratio for the least
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sensitive element.  For optimization in the axial mode, follow the instrument
manufacturer’s instructions.

7.2.3.4  The instrument operating condition finally selected as being optimum
should provide the lowest reliable instrument detection limits and method detection
limits.   

7.2.3.5  If either the instrument operating conditions, such as incident power
or nebulizer gas flow rate are changed, or a new torch injector tube with a different
orifice internal diameter is installed, the plasma and viewing height should be re-
optimized.

7.2.3.6  After completing the initial optimization of operating conditions, but
before analyzing samples, the laboratory must establish and initially verify an
interelement spectral interference correction routine to be used during sample
analysis.  A general description concerning spectral interference and the analytical
requirements for background correction in particular are discussed in the section on
interferences.  Criteria for determining an interelement spectral interference is an
apparent positive or negative concentration for the analyte that falls within ± one
reporting limit from zero.  The upper control limit is the analyte instrument detection
limit.  Once established the entire routine must be periodically verified every six
months.  Only a portion of the correction routine must be verified more frequently or
on a daily basis.  Initial and periodic verification of the routine should be kept on file.
Special cases where continual verification is required are described elsewhere.   

7.2.3.7 Before daily calibration and after the instrument warmup period, the
nebulizer gas flow rate must be reset to the determined optimized flow.  If a mass
flow controller is being used, it should be set to the recorded optimized flow rate,  In
order to maintain valid spectral interelement correction routines the nebulizer gas
flow rate should be the same (< 2% change) from day to day.  

7.2.4  For operation with organic solvents, use of the auxiliary argon inlet is
recommended, as are solvent-resistant tubing, increased plasma (coolant) argon flow,
decreased nebulizer flow, and increased RF power to obtain stable operation and precise
measurements. 

7.2.5  Sensitivity, instrumental detection limit, precision, linear dynamic range, and
interference effects must be established for each individual analyte line on each particular
instrument.  All measurements must be within the instrument linear range where the
correction equations are valid.   

7.2.5.1  Method detection limits must be established for all wavelengths
utilized for each type of matrix commonly analyzed.  The matrix used  for the MDL
calculation must contain analytes of known concentrations within 3-5 times the
anticipated detection limit. Refer to Chapter One for additional guidance on the
performance of MDL studies.

7.2.5.2  Determination of limits using reagent water represent a best case
situation and do not represent possible matrix effects of real world samples.  



 

 

143 

 

CD-ROM 6010B - 14 Revision 2
December 1996

7.2.5.3  If additional confirmation is desired, reanalyze the seven replicate
aliquots on two more non consecutive days and again calculate the method detection
limit values for each day.  An average of the three values for each analyte may
provide for a more appropriate estimate.  Successful analysis of samples with added
analytes or using method of standard additions can give confidence in the method
detection limit values determined in reagent water. 

 
7.2.5.4  The upper limit of the linear dynamic range must be established for

each wavelength utilized by determining the signal responses from a minimum for
three, preferably five, different concentration standards across the range.  One of
these should be near the upper limit of the range.  The ranges which may be used
for the analysis of samples should be judged by the analyst from the resulting data.
The data, calculations and rationale for the choice of range made should be
documented and kept on file.  The upper range limit should be an observed signal
no more than 10% below the level extrapolated from lower standards.  Determined
analyte concentrations that are above the upper range limit must be diluted and
reanalyzed.  The analyst should also be aware that if an interelement correction from
an analyte above the linear range exists, a second analyte where the interelement
correction has been applied may be inaccurately reported.  New dynamic ranges
should be determined whenever there is a significant change in instrument response.
For those analytes that periodically approach the upper limit, the range should be
checked every six months.  For those analytes that are known interferences, and are
present at above the linear range, the analyst should ensure that the interelement
correction has not been inaccurately applied.

NOTE: Many of the alkali and alkaline earth metals have non-linear response curves
due to ionization and self absorption effects.  These curves may be used if the
instrument allows; however the effective range must be checked and the second
order curve fit should have a correlation coefficient of 0.995 or better.  Third order fits
are not acceptable.  These non-linear response curves should be revalidated and
recalculated every six months.  These curves are much more sensitive to changes
in operating conditions than the linear lines and should be checked whenever there
have been  moderate equipment changes. 

 
7.2.6  The analyst must (1) verify that the instrument configuration and operating

conditions satisfy the analytical requirements and (2) maintain quality control data confirming
instrument performance and analytical results. 

  
 7.3  Profile and calibrate the instrument according to the instrument manufacturer's
recommended procedures, using the typical mixed calibration standard solutions described in
Section 5.4.  Flush the system with the calibration blank (Section 5.5.1) between each standard or
as the manufacturer recommends.  (Use the average intensity of multiple exposures for both
standardization and sample analysis to reduce random error.)  The calibration curve must consist
of a minimum of a blank and a standard.

7.4  For all analytes and determinations, the laboratory must analyze an ICV (Section 5.6),
a calibration blank (Section 5.5.1), and a continuing calibration verification (CCV) (Section 5.7)
immediately following daily calibration.  A calibration blank and either a calibration verification (CCV)
or an ICV must be analyzed after every tenth sample and at the end of the sample run.  Analysis of
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the check standard  and calibration verification must verify that the instrument is within ± 10% of
calibration with relative standard deviation < 5% from replicate (minimum of two) integrations.    If
the calibration cannot be verified within the specified limits, the sample analysis must be
discontinued, the cause determined and the instrument recalibrated.   All samples following the last
acceptable ICV, CCV or check standard must be reanalyzed.  The analysis data of the calibration
blank, check standard, and ICV or CCV must be kept on file with the sample analysis data.  

 7.5   Rinse the system with the calibration blank solution (Section 5.5.1) before the analysis
of each sample.  The rinse time will be one minute.  Each laboratory may establish a reduction in
this rinse time through a suitable demonstration. 

7.6  Calculations:  If dilutions were performed, the appropriate factors must be applied to
sample values.  All results should be reported with up to three significant figures.

7.7  The MSA should be used if an interference is suspected or a new matrix is encountered.
When the method of standard additions is used, standards are added at one or more levels to
portions of a prepared sample.  This technique compensates for enhancement or depression of an
analyte signal by a matrix.  It will not correct for additive interferences, such as contamination,
interelement interferences, or baseline shifts.  This technique is valid in the linear range when the
interference effect is constant over the range, the added analyte responds the same as the
endogenous analyte, and the signal is corrected for additive interferences.  The simplest version of
this technique is the single addition method.  This procedure calls for two identical aliquots of the
sample solution to be taken.  To the first aliquot, a small volume of standard is added; while to the
second aliquot, a volume of acid blank is added equal to the standard addition.  The sample
concentration is calculated by: multiplying the intensity value for the unfortified aliquot by the volume
(Liters) and concentration (mg/L or mg/kg) of the standard addition to make the numerator; the
difference in intensities for the fortified sample and unfortified sample is multiplied by the volume
(Liters) of the sample aliquot for the denominator.  The quotient is the sample concentration.  

For more than one fortified portion of the prepared sample, linear regression analysis can be
applied using a computer or calculator program to obtain the concentration of the sample solution.

NOTE:  Refer to Method 7000 for a more detailed discussion of the MSA.

7.8  An alternative to using the method of standard additions is the internal standard
technique.  Add one or more elements not in the samples and verified not to cause an interelement
spectral interference to the samples, standards and blanks; yttrium or scandium are often used.  The
concentration should be sufficient for optimum precision but not so high as to alter the salt
concentration of the matrix.  The element intensity is used by the instrument as an internal standard
to ratio the analyte intensity signals for both calibration and quantitation.  This technique is very
useful in overcoming matrix interferences especially in high solids matrices. 

8.0  QUALITY CONTROL
 
   8.1  All quality control data should be maintained and available for easy reference or
inspection.  All quality control measures described in Chapter One should be followed.

8.2  Dilute and reanalyze samples that exceed the linear calibration  range or use an
alternate, less sensitive line for which quality control data is already established.
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8.6  Check the instrument standardization by analyzing appropriate QC samples as follows.

8.6.1  Verify calibration with the Continuing Calibration Verification (CCV) Standard
immediately following daily calibration, after every ten samples, and at the end of an
analytical run.  Check calibration with an ICV following the initial calibration (Section 5.6).
At the laboratory’s discretion, an ICV may be used in lieu of the continuing calibration
verifications.  If used in this manner, the ICV should be at a concentration near the mid-point
of the calibration curve.  Use a calibration blank (Section 5.5.1) immediately following daily
calibration, after every 10 samples and at the end of the analytical run.

8.6.1.1  The results of the ICV and CCVs are to agree within 10% of the
expected value; if not, terminate the analysis, correct the problem, and recalibrate the
instrument.  

8.6.1.2  The results of the check standard are to agree within 10% of the
expected value; if not, terminate the analysis, correct the problem, and recalibrate the
instrument.  

8.6.1.3  The results of the calibration blank are to agree within three times the
IDL. If not, repeat the analysis two more times and average the results.  If the
average is not within three standard deviations of the background mean, terminate
the analysis, correct the problem, recalibrate, and reanalyze the previous 10
samples.  If the blank is less than 1/10 the concentration of the action level of
interest, and no sample is within ten percent of the action limit, analyses need not be
rerun and recalibration need not be performed before continuation of the run.

8.6.2   Verify the interelement and background correction factors at the beginning
of each analytical run.  Do this by analyzing the interference check sample (Section 5.8).
Results should be within ± 20% of the true value. 

9.0  METHOD PERFORMANCE

9.1 In an EPA round-robin Phase 1 study, seven laboratories applied the ICP technique
to acid-distilled water matrices that had been spiked with various metal concentrates.  Table 4 lists
the true values, the mean reported values, and the mean percent relative standard deviations.

9.2 Performance data for aqueous solutions and solid samples from a multilaboratory
study (9) are provided in Tables 5 and 6.
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TABLE 1
RECOMMENDED WAVELENGTHS AND ESTIMATED INSTRUMENTAL DETECTION LIMITS

Detection      Estimated IDLb

Element     Wavelength (nm)  (µg/L)
a       

Aluminum 308.215 30  
Antimony 206.833 21  
Arsenic 193.696 35  
Barium 455.403  0.87  
Beryllium 313.042  0.18
Boron 249.678x2  3.8

 Cadmium 226.502  2.3  
Calcium 317.933  6.7
Chromium 267.716  4.7
Cobalt 228.616  4.7  
Copper 324.754  3.6  
Iron 259.940  4.1
Lead 220.353 28  
Lithium 670.784  2.8  
Magnesium 279.079 20  
Manganese 257.610  0.93
Mercury 194.227x2 17
Molybdenum 202.030   5.3  
Nickel 231.604x2 10  
Phosphorus 213.618 51
Potassium 766.491 See note c
Selenium 196.026 50  
Silica (SiO ) 251.611 17   2

Silver 328.068  4.7  
Sodium 588.995 19  
Strontium 407.771  0.28 
Thallium 190.864 27
Tin 189.980x2 17 
Titanium  334.941  5.0
Vanadium 292.402  5.0  
Zinc 213.856x2  1.2  

The wavelengths listed (where x2 indicates second order) are recommended because of
a

their sensitivity and overall acceptance. Other wavelengths may be substituted (e.g., in the case of
an interference) if they can provide the needed sensitivity and are treated with the same corrective
techniques for spectral interference (see Section 3.1). In time, other elements may be added as
more information becomes available and as required.

The estimated instrumental detection limits shown are provided as a guide for an
b

instrumental limit. The actual method detection limits are sample dependent and may vary as the
sample matrix varies.

Highly dependent on operating conditions and plasma position.
c
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TABLE 2
POTENTIAL INTERFERENCES

ANALYTE CONCENTRATION EQUIVALENTS ARISING FROM
INTERFERENCE AT THE 100-mg/L LEVEL

c

  Interferant
a,b

Wavelength ----------------------------------------------------------------------------------------------
 Analyte    (nm) Al Ca Cr Cu Fe Mg Mn Ni Ti V

 Aluminum 308.215 -- -- -- -- -- -- 0.21 -- -- 1.4
 Antimony 206.833 0.47 -- 2.9 -- 0.08 -- -- -- 0.25 0.45
 Arsenic 193.696 1.3 -- 0.44 -- -- -- -- -- -- 1.1

 Barium 455.403 -- -- -- -- -- -- -- -- -- --
 Beryllium 313.042 -- -- -- -- -- -- -- -- 0.04 0.05

 Cadmium 226.502 -- -- -- -- 0.03 -- -- 0.02 -- --
 Calcium 317.933 -- -- 0.08 -- 0.01 0.01 0.04 -- 0.03 0.03
 Chromium 267.716 -- -- -- -- 0.003 -- 0.04 -- -- 0.04
 Cobalt 228.616 -- -- 0.03 -- 0.005 -- -- 0.03 0.15 --
 Copper 324.754 -- -- -- -- 0.003 -- -- -- 0.05 0.02

 Iron 259.940 -- -- -- -- -- -- 0.12 -- -- --
 Lead 220.353 0.17 -- -- -- -- -- -- -- -- --
 Magnesium 279.079 -- 0.02 0.11 -- 0.13 -- 0.25 -- 0.07 0.12
 Manganese 257.610 0.005 -- 0.01 -- 0.002 0.002 -- -- -- --

 Molybdenum 202.030 0.05 -- -- -- 0.03 -- -- -- -- --
 Nickel 231.604 -- -- -- -- -- -- -- -- -- --
 Selenium 196.026 0.23 -- -- -- 0.09 -- -- -- -- --
 Sodium 588.995 -- -- -- -- -- -- -- -- 0.08 --
 Thallium 190.864 0.30 -- -- -- -- -- -- -- -- --
 Vanadium 292.402 -- -- 0.05 -- 0.005 -- -- -- 0.02 --
 Zinc 213.856 -- -- -- 0.14 -- -- -- 0.29 -- --

Dashes indicate that no interference was observed even when interferents were introduced at the
a

following levels:  
    Al - 1000 mg/L                  Mg - 1000 mg/L 
    Ca - 1000 mg/L                  Mn -  200 mg/L
    Cr -  200 mg/L                  Tl -  200 mg/L
    Cu -  200 mg/L                   V -  200 mg/L
    Fe - 1000 mg/L

The figures recorded as analyte concentrations are not the actual observed concentrations; to obtain
b

those figures, add the listed concentration to the interferant figure.
Interferences will be affected by background choice and other interferences may be present.

c
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TABLE 3
MIXED STANDARD SOLUTIONS

Solution Elements

   I Be, Cd, Mn, Pb, Se and Zn
   II Ba, Co, Cu, Fe, and V
   III As, Mo
   IV Al, Ca, Cr, K, Na, Ni,Li, and Sr
   V Ag (see “NOTE” to Section 5.4), Mg, Sb, and Tl
   VI P
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TABLE 4.  ICP PRECISION AND ACCURACY DATA
a

Element Sample No. 1 Sample No. 2 Sample No. 3

True Mean RSD Accuracy True Mean RSD Accuracy True Mean RSD Accuracy
Conc. Conc. (%) (%) Conc. Conc. (%) Conc. Conc. (%) (%)
(ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L)

b d b d b d

Be 750 733 6.2  98 20 20 9.8 100 180 176 5.2  98

Mn 350 345 2.7  99 15 15 6.7 100 100 99 3.3  99

V 750 749 1.8 100 70 69 2.9  99 170 169 1.1  99

As 200 208 7.5 104 22 19 23  86 60 63 17 105

Cr 150 149 3.8  99 10 10 18 100 50 50 3.3 100

Cu 250 235 5.1  94 11 11 40 100 70 67 7.9  96

Fe 600 594 3.0  99 20 19 15  95 180 178 6.0  99

Al 700 696 5.6  99 60 62 33 103 160 161 13 101

Cd 50 48 12  96 2.5 2.9 16 116 14 13 16  93

Co 700 512 10  73 20 20 4.1 100 120 108 21  90

Ni 250 245 5.8  98 30 28 11  93 60 55 14  92

Pb 250 236 16  94 24 30 32 125 80 80 14 100

Zn 200 201 5.6 100 16 19 45 119 80 82 9.4 102

Se 40 32 21.9  80 6 8.5 42 142 10 8.5 8.3  85c

Not all elements were analyzed by all laboratories.
a

RSD = relative standard deviation.
b

Results for Se are from two laboratories.
c

Accuracy is expressed as the mean concentration divided by the true concentration times 100.
d
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 TABLE 5

ICP-AES PRECISION AND ACCURACY FOR AQUEOUS SOLUTIONSa

Mean
 Conc. RSD    Accuracyb    c

Element (mg/L) N (%)        (%)b

Al 14.8 8 6.3    100
Sb 15.1 8 7.7    102
As 14.7 7 6.4      99
Ba   3.66 7 3.1      99
Be   3.78 8 5.8    102
Cd   3.61 8 7.0      97
Ca 15.0 8 7.4    101
Cr   3.75 8 8.2    101
Co   3.52 8 5.9      95
Cu   3.58 8 5.6      97
Fe 14.8 8 5.9    100
Pb 14.4 7 5.9      97
Mg 14.1 8 6.5      96
Mn   3.70 8 4.3    100
Mo   3.70 8 6.9    100
Ni   3.70 7 5.7    100
K 14.1 8 6.6      95
Se 15.3 8 7.5    104
Ag   3.69 6 9.1    100
Na 14.0 8 4.2      95
Tl 15.1 7 8.5    102 
V   3.51 8 6.6      95
Zn   3.57 8 8.3      96

these performance values are independent of sample preparation because the labs analyzeda

portions of the same solutions

N = Number of measurements for mean and relative standard deviation (RSD).b

Accuracy is expressed as a percentage of the nominal value for each analyte in acidified, multi-c

element solutions.
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TABLE 6

ICP-AES PRECISION AND BIAS FOR SOLID WASTE DIGESTSa

Spiked Coal Fly Ash Spiked Electroplating Sludge
(NIST-SRM 1633a)
Mean   Mean
Conc. RSD Bias   Conc. RSD Biasb c   b c

Element (mg/L)   N (%) (%AAS)   (mg/L) N (%) (%AAS)b   b

Al 330 8 16 104 127 8 13 110
Sb 3.4 6 73 96 5.3 7 24 120
As 21 8 83 270 5.2 7 8.6 87
Ba 133 8 8.7 101 1.6 8 20 58
Be 4.0 8 57 460 0.9 7 9.9 110
Cd 0.97 6 5.7 101 2.9 7 9.9 90
Ca 87 6 5.6 208 954 7 7.0 97
Cr 2.1 7 36 106 154 7 7.8 93
Co 1.2 6 21 94 1.0 7 11 85
Cu 1.9 6 9.7 118 156 8 7.8 97
Fe 602 8 8.8 102 603 7 5.6 98
Pb 4.6 7 22 94 25 7 5.6 98
Mg 15 8 15 110 35 8 20 84
Mn 1.8 7 14 104 5.9 7 9.6 95
Mo 891 8 19 105 1.4 7 36 110
Ni 1.6 6 8.1 91 9.5 7 9.6 90
K 46 8 4.2 98 51 8 5.8 82
Se 6.4 5 16 73 8.7 7 13 101
Ag 1.4 3 17 140 0.75 7 19 270
Na 20 8 49 130 1380 8 9.8 95
Tl 6.7 4 22 260 5.0 7 20 180
V 1010 5 7.5 100 1.2 6 11 80
Zn 2.2 6 7.6 93 266 7 2.5 101

These performance values are independent of sample preparation because the labs analyzeda

portions of the same digests.

N = Number of measurements for mean and relative standard deviation (RSD).b

Bias for the ICP-AES data is expressed as a percentage of atomic absorption spectroscopy (AA)c

data for the same digests.
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 METHOD 6010B

INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRY



 

 

155 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Raw Data & Statistics   
 

 

Total Organic Carbon/ Dissolved Organic Carbon Data  

 

Adenosine Triphosphate (ATP) Data  

 

Gram Dry Weight and Surface Area Conversions  

 

Metals Data  

 

Bed Volume Calculations  
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Winthrop, ME September 2021

D0 D1 D2 D5 D7 D1 D2 D5 D7 

TOC TOC TOC TOC TOC BDOC BDOC BDOC BDOC

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Average Average Average Average Average

St Dev St Dev St Dev St Dev St Dev

Influent A 5.06 4.69 4.45 4.01 3.76 0.37 0.61 1.05 1.30

Influent B 5.04 4.71 4.47 4.04 3.84 0.33 0.57 1.00 1.20

Filter 1 Effluent A 2.79 2.71 2.59 2.57 2.56 0.08 0.2 0.22 0.23

Filter 1 Effluent B 2.89 2.63 2.59 2.66 2.64 0.26 0.3 0.23 0.25

Filter 2 Effluent A 0.49 0.41 0.45 0.57 0.69 0.08 0.04 -0.08 -0.20

Filter 2 Effluent B 0.51 0.42 0.53 0.56 0.68 0.09 -0.02 -0.05 -0.17

Filter 3 Effluent A 2.66 2.41 2.41 2.45 2.53 0.25 0.25 0.21 0.13

Filter 3 Effluent B 3.16 2.43 2.44 2.53 2.53 0.73 0.72 0.63 0.63

Control A 4.95 2.85 0.83 0.02 0.70 2.10 4.12 4.93 4.25

Control B 3.94 2.79 0.76 0.02 0.68 1.15 3.18 3.92 3.26
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ATP Raw Data – August 4th, 2021 

 

 

 

 

 

ATP Raw Data – September 29th, 2021 
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ATP Raw Data – February 23rd, 2022 

 

 

 

 

 

 

 

ATP Raw Data – May 19th, 2022 

 

 

 

 

 

 

 

 

Gram Dry Weight and Surface Area Conversions  
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ATP results were converted from 
𝑝𝑔 𝐴𝑇𝑃

𝑔 (𝑤𝑒𝑡 𝑚𝑒𝑑𝑖𝑎)
 to 

𝑛𝑔 𝐴𝑇𝑃

𝑔𝑑𝑤
 using the following equation: 

 

                       𝑆𝑎𝑛𝑑 𝑀𝑒𝑑𝑖𝑎:  
𝑝𝑔 𝑡𝐴𝑇𝑃

1.0 𝑔 (𝑤𝑒𝑡 𝑚𝑒𝑑𝑖𝑎)
  *  

1.0 𝑔 (𝑤𝑒𝑡 𝑚𝑒𝑑𝑖𝑎)

0.87 𝑔 (𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡)
 * 

1000 𝑛𝑔

1 𝑝𝑔
 =  

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑔𝑑𝑤
 

 

                       𝐺𝐴𝐶 𝑀𝑒𝑑𝑖𝑎:  
𝑝𝑔 𝑡𝐴𝑇𝑃

1.0 𝑔 (𝑤𝑒𝑡 𝑚𝑒𝑑𝑖𝑎)
  *  

1.0 𝑔 (𝑤𝑒𝑡 𝑚𝑒𝑑𝑖𝑎)

0.52 𝑔 (𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡)
 * 

1000 𝑛𝑔

1 𝑝𝑔
 =  

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑔𝑑𝑤
 

 

 

ATP results were converted from 
𝑛𝑔 𝑡𝐴𝑇𝑃

𝑔𝑑𝑤
 to 

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑐𝑚2  for both sand and GAC media using the 

following equations: 

 

Sand Media:     

     
0.85 𝑔𝑑𝑤

2.65
𝑔

𝑐𝑚3

= 0.321 𝑐𝑚3  

 

𝑉 =
1

6
𝜋 (0.057 𝑐𝑚)3  = 9.7 𝑥 10−5  𝑐𝑚3  𝑝𝑒𝑟 𝑠𝑎𝑛𝑑 𝑔𝑟𝑎𝑖𝑛     

 

# 𝑜𝑓 𝐺𝐴𝐶 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 =  
0.321 𝑐𝑚3

9.7 𝑥 10−5𝑐𝑚3
= 3,309 𝑠𝑎𝑛𝑑 𝑔𝑟𝑎𝑖𝑛𝑠   

 

                          𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 3,309 𝑠𝑎𝑛𝑑 𝑔𝑟𝑎𝑖𝑛𝑠  (0.057 𝑐𝑚)2 =  33.8 𝑐𝑚2 / gdw 

 

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑔𝑑𝑤
 ∗

𝑔𝑑𝑤

33.8 𝑐𝑚2
=

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑐𝑚2
 

                                   

 

 

 

 

GAC Media: 



 

 

164 

     
0.52 𝑔𝑑𝑤

0.54
𝑔

𝑐𝑚3

= 0.963 𝑐𝑚3  

 

𝑉 =
1

6
𝜋 (0.065 𝑐𝑚)3  = 1.44 𝑥 10−4  𝑐𝑚3  𝑝𝑒𝑟 𝐺𝐴𝐶 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒     

 

# 𝑜𝑓 𝐺𝐴𝐶 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 =  
0.963 𝑐𝑚3

1.44 𝑥 10−4𝑐𝑚3
= 6,697 𝐺𝐴𝐶 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠   

 

                          𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 6,697 𝐺𝐴𝐶 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠  (0.065 𝑐𝑚)2 = 88.8 𝑐𝑚2 / gdw 

 

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑔𝑑𝑤
 ∗

𝑔𝑑𝑤

88.8 𝑐𝑚2
=

𝑛𝑔 𝑡𝐴𝑇𝑃

𝑐𝑚2
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Bed Volume Calculations  

 

Bed Volumes were calculated for each filter using surface area and flow rates applied in 

Winthrop (ME): 

 

 

70 𝑓𝑡 𝑥 47.67 𝑓𝑡 = 3,336.9 𝑓𝑡2 

 

3,336.9 𝑓𝑡2 − 288 𝑓𝑡2(ramp) = 3,050 ft2 

 

3,050 𝑓𝑡2 𝑥 0.5 𝑓𝑡 = 1,525 𝑓𝑡3 

 

1,525 ft3 x 
7.48 𝑔𝑎𝑙

𝑓𝑡3  = 11,407 
𝑔𝑎𝑙

𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 
 

 

 

*Filters in Winthrop (ME) operated within 50-60 gpm 

 

Yearly Q = 50 
𝑔𝑎𝑙

𝑚𝑖𝑛
 x 60 

𝑚𝑖𝑛

ℎ𝑟
 x 24 

ℎ𝑟

𝑑𝑎𝑦 
 x 355 

𝑑𝑎𝑦

𝑦𝑒𝑎𝑟
 = 25.56 x 106 

𝑔𝑎𝑙

𝑦𝑒𝑎𝑟
 

 

 

Thus,  

 
# 𝑜𝑓 𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑠

𝑦𝑒𝑎𝑟
 = 25.56 x 106 

𝑔𝑎𝑙

𝑦𝑒𝑎𝑟
 x 

1 𝐵𝑉

11,407 𝑔𝑎𝑙
 = 2,241 

𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑠

𝑦𝑒𝑎𝑟
 

 

 

Filter #1 – GAC installed in 2006: 

 

 

2,241 
𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑠

𝑦𝑒𝑎𝑟
 x 16 years = 35, 856 bed volumes  

 

 

Filter #2 – GAC installed in 2020: 

 

2,241 
𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑠

𝑦𝑒𝑎𝑟
 x 2 years = 4,482 bed volumes  

 

 

Filter #3 – GAC installed in 2011: 

 

2,241 
𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑠

𝑦𝑒𝑎𝑟
 x 11 years = 24,651 bed volumes  
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