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ABSTRACT

ANSWERING TOPICAL INFORMATION NEEDS USING NEURAL ENTITY-ORIENTED
INFORMATION RETRIEVAL AND EXTRACTION

Shubham Chatterjee

University of New Hampshire, September, 2022

In the modern world, search engines are an integral part of human lives. The field
of Information Retrieval (IR) is concerned with finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need (query) from within
large collections (usually stored on computers). The search engine then displays a ranked
list of results relevant to our query. Traditional document retrieval algorithms match a query
to a document using the overlap of words in both. However, the last decade has seen the
focus shifting to leveraging the rich semantic information available in the form of entities.

Entities are uniquely identifiable objects or things such as places, events, diseases, etc.
that exist in the real or fictional world. Entity-oriented search systems leverage the semantic
information associated with entities (e.g., names, types, etc.) to better match documents
to queries. Web search engines would provide better search results if they understand the
meaning of a query.

This dissertation advances the state-of-the-art in IR by developing novel algorithms
that understand text (query, document, question, sentence, etc.) at the semantic level. To
this end, this dissertation aims to understand the fine-grained meaning of entities from the
context in which the entities have been mentioned, for example, “oysters” in the context of
food versus ecosystems. Further, we aim to automatically learn (vector) representations of
entities that incorporate this fine-grained knowledge and knowledge about the query. This
work refines the automatic understanding of text passages using deep learning, a modern
artificial intelligence paradigm.

This dissertation utilized the semantic information extracted from entities to retrieve

materials (text and entities) relevant to a query. The interplay between text and entities in

Xi



the text is studied by addressing three related prediction problems: (1) Identify entities that
are relevant for the query, (2) Understand an entity’s meaning in the context of the query,
and (3) Identify text passages that elaborate the connection between the query and an
entity.

The research presented in this dissertation may be integrated into a larger system de-
signed for answering complex topical queries such as dark chocolate health benefits which
require the search engine to automatically understand the connections between the query

and the relevant material, thus transforming the search engine into an answering engine.
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CHAPTER 1

FOUNDATION: ENTITY-ORIENTED SEARCH

This dissertation advances the state-of-the-art in entity-oriented search. Before describing
our goals and contributions in Chapter 2, we describe the terminology and foundation of

entity-oriented search below.

Information retrieval. Inthe modern world, search engines are an integral part of human
lives. We use Google, Bing, Baidu, etc. every moment as the main gateway to find infor-
mation on the Web. The field of Information Retrieval (IR) is concerned with developing
technology for matching information needs with information objects. According to Manning

et al. [79],

Definition 1. Information Retrieval (IR) is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within large collec-

tions (usually stored on computers)

Our information need (henceforth query), may range from a few simple keywords (e.g.,
dark chocolate health benefits) to a proper natural language question (e.g., Who are the
members of Eagle?). The search engine then displays a ranked list of results, i.e., infor-
mation objects relevant to our query. Traditionally, these items were documents. In fact, IR

has been seen as synonymous with document retrieval by many.

Document retrieval models. Traditional document retrieval models such as BM25 [60],
Language Models [107], and Term Frequency Inverse Document Frequency (TF-IDF) [23,
99,118,122,128] are term based models that do not have any notion of semantics in them.
For example, TF-IDF is a statistical measure used to evaluate the importance of a word to

a document in a collection of documents (henceforth corpus). The importance increases



proportionally to the number of times a word appears in the document but is offset by the
frequency of the word in the corpus, which helps to adjust for the fact that some words
appear more frequently in general. Similarly, BM25 is a bag-of-words retrieval function
that represents text as the multi-set of its words, disregarding grammar, and even word
order, but keeping multiplicity. BM25 ranks a set of documents based on the query terms
appearing in each document, regardless of their proximity within the document. Language
Models are probability distributions over sequences of words where a separate language
model is associated with each document in a corpus and documents are ranked based
on the probability of the query @ in the document’s language model M, i.e., P(Q|Mj,).
None of these models consider the semantic relationship between various places, events,

organizations, etc. in the query or the document.

A paradigm shift. However, there has been a dramatic shift in paradigm in the last
decade with the focus shifting to leveraging the rich semantic information available in the
form of entities [26,54, 113, 144,151]. Analysis of web search query logs and neural
embedding models has shown that a large portion of the queries now contain some en-
tity [53,72,110], reflecting an increase in the demands of users on retrieving relevant infor-
mation about entities such as persons, organizations, products, etc. Advances in informa-
tion extraction allow us to efficiently extract entities from free text [41,83]. Since an entity
is expected to capture the semantic content of documents and queries more accurately
than a term, there has been much research in using entities to aid document retrieval and

ranking.

1.1 What is an Entity?

An entity is a “thing” or “object” that one can refer to such as people, locations, diseases,
events, etc. Identifying entities is an important and difficult task addressed by people in both
the Natural Language Processing (NLP) as well as IR community (although traditionally,
the task has been looked upon as more of a NLP problem than an IR problem). Balog

[4] defines an entity as follows, taking inspiration from the Entity-Relationship (ER) Model



proposed by Chen [20] in 1976:

Definition 2. An entity is a uniquely identifiable object or thing, characterized by its name(s),

type(s), attributes, and relationships to other entities.

We restrict our universe to some particular registry of entities, which we will refer to as
the entity catalog. Thus, we consider that an entity “exists” if an only if it is an entry in the

given entity catalog. Thus:

Definition 3. An entity catalog is collection of entries, where each entry is identified by a

unique ID and contains the name(s) of the corresponding entity.

1.2 Named Entities Versus Concepts

Often, entities are considered to be real-world objects. We may differentiate between two

classes of entities:

1. Named Entities. These are the entities that exist in the real world such as people,

locations, events, diseases, sports, etc.

2. Concepts. These are abstract objects such as mathematical concepts (e.g., theo-
rem, distance, etc.), physical concepts (e.g., force, speed, etc.), psychological con-

cepts (e.g., emotion, thought, etc.), or social concepts (e.g., peace, religion, etc.).

1.3 Properties of Entities

We refer to all the information associated with an entity as the entity property. The following

are the most common entity properties:

+ Entity Identifier. Each entity is associated with a unique identifier which helps to
identify an entity. Examples of entity identifiers from past IR benchmarking cam-
paigns include email addresses for people (within an organization), Wikipedia page
IDs (within Wikipedia), and unique resource identifiers (URIs, within Linked Data

repositories).



* Name(s). Each entity is associated with a name. However, this name may not be
unique. For example, the entity name Apple can refer to either the organization or the
fruit. However, the ID associated with Apple, the organization is different from that of

the fruit, which helps to disambiguate the entity references.

» Type(s). Entities with similar properties are grouped together into a semantic type
called an entity type. The set of possible entity types are often organized in a hier-
archical structure, i.e., a type taxonomy. For example, the entity Ed Sheeran is an

instance of the type “singer" which is a subtype of “person”.

 Attributes. These are the characteristics or features of an entity. Each entity has
different attributes. For example, a person entity might have attributes such as date

of birth. place of birth, name, etc.

» Relationships. Relationships describe how two entities are associated to each other.
For example, the entities Barrack Obama and Michelle Obama are related by the

relation is married to.

1.4 Knowledge Graphs: Representing Properties of Entities

Consider the Wikipedia page of Barrack Obama. It contains information about him ranging
from his early life, education, early career in law to his rise to US Presidency. Hence, to us

humans, Wikipedia is a Knowledge Repository. According to Balog [4]:

Definition 4. A Knowledge Repository is a catalog of entities that contains entity type
information, and (optionally) descriptions or properties of entities, in a semi-structured or

structured format.

Wikipedia is a classic example of a knowledge repository. Each article in Wikipedia is
an entry that describes a particular entity. Articles are also assigned to categories (which
can be seen as entity types) and contain hyperlinks to other articles (thereby indicating

the presence of a relationship between two entities, albeit not the type of the relationship).
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Figure 1.1: A Knowledge Graph. The nodes of this graph are entities
and the edges are the relationships between these entities. For exam-
ple, the entity “James” is related to the entity “Louvre” by the relationship
has visited.  Figure source: https://yashuseth.wordpress.com/2019/10/08/
introduction-question-answering-knowledge-graphs-kgqga/

Wikipedia articles also contain information about attributes and relationships of entities, but
not in a structured form.

With the development of knowledge repositories such as Wikipedia, a lot more infor-
mation about entities have become available but for machines, this knowledge needs to be
represented explicitly. A Knowledge Base (KB) is comprised of a large set of assertions
about the world. To reflect how humans organize information, these assertions describe
(specific) entities and their relationships. An Al system can then solve complex tasks, such
as participating in a natural language conversation, by exploiting the KB. According to Ba-

log [4]:

Definition 5. A Knowledge Base is a structured knowledge repository that contains a set

of facts (assertions) about entities.

Conceptually, entities in a knowledge base may be seen as nodes of a graph, with the
relationships between them as (labeled) edges. Thus, especially when this graph nature
is emphasized, a knowledge base may also be referred to as a Knowledge Graph (KG)

(Figure 1.1).


https://yashuseth.wordpress.com/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/
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Document
Index

Information Need .
Search Engine

Knowledge
Base

Figure 1.2: An entity-oriented search system. The search engine interacts with both,
a document collection via a document index, and a knowledge base of entities.

1.5 Entity Linking

As described above, entities are associated with semantic information that is helpful for
obtaining a deeper understanding of documents. Hence, for machines to understand doc-
uments, it is important that they are able to not only identify the entities in the document
but also disambiguate them. For example, given a sentence such as “The apple fell on the
ground”, machines must be able to identify that the word “apple” is actually an entity that
refers to the fruit and not the company. We refer to this task as entity linking. According to

Balog [4]:

Definition 6. Entity linking is the task of recognizing entity mentions in text and linking

them to the corresponding entries in a knowledge repository.

Humans can accomplish this task easily due to their prior knowledge of the world but
this task is extremely challenging for a machine. The availability of large knowledge repos-
itories containing entities with unique ids has enabled the developement of entity linking

systems that can identify and link an entity mention to an entity id.

1.6 Entity-Oriented Search

An entity-oriented search system (Figure 1.2) is similar to a conventional search system
in that it interacts with a document collection via a document index. The difference lies in
that an entity-oriented search system uses a Knowledge Base of entities to understand the

document at a semantic level. The Knowledge Base contains the names of entities, the

8



description of entities (often, the introductory paragraph from the Wikipedia article of the
entity), and the type information of the entities (person, organization, etc.). This information
is utilized by an entity-oriented search system to match a document to a user’s information

need.



CHAPTER 2

INTRODUCTION TO THIS DISSERTATION

Wikipedia is useful for users seeking information on topics such as “Genetically Modified
Organism”; however, it is mostly focused on recent and popular topics only. The larger goal
of this dissertation is to assist in the construction of systems that can (one day) answer
broad topical information needs of users with a comprehensive Wikipedia-like article.

Users usually think of topics in terms of concepts or entities associated with the topic,
the background stories and roles of these entities with respect to the topic, and how these
entities are connected to each other and to the information needed. Entity-oriented search
has become very popular in the last decade with some studies estimating that 40-70% of
Web search queries target entities [53,72,110]. Motivated by this, we adopt an entity-
oriented approach to identify relevant material (text and entities) for answering such topical
queries. By identifying relevant material that may be included in a discussion on such a
topic, we envision a downstream system to utilize these relevant materials to automatically
construct a Wikipedia-like article for such topical queries.

With terminology of entity-oriented search introduced in Chapter 1, in this chapter, we
introduce the research on entity-oriented information retrieval and extraction completed as
part of this dissertation. First, we describe the motivation behind the research presented in
this dissertation, then we briefly summarize the major contributions of this dissertation to

the field of IR in general and entity-oriented search in particular.

Part of this chapter published as: Shubham Chatterjee. 2022. An Entity-Oriented Approach for An-
swering Topical Information Needs. In Proceedings of the 44th European Conference on Information Retrieval
(ECIR '22). Doctoral Consortium. Advances in Information Retrieval. Springer.
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2.1 Motivation

Automatic algorithms for text understanding are essential for many artificial intelligence
tasks. For example, in web search, search engines need to understand the text from
the web pages. Such web pages are retrieved based on the overlap of words between
the user’s information need and the web page [60,118,122]. However, during the past
decade, it has become popular to also use the rich semantic information available in the
form of entities in text. These entities are stored in a semi-structured form in knowledge
bases, along with some meta-information about each entity such as its name, type (person,
location, etc.), and relationship to other entities in the knowledge base. The availability of
large-scale knowledge bases has led to much research in using entities to aid document
retrieval and ranking [26,40,76,113,144-147,149,152].

Below, we discuss the two major research directions of this dissertation that address
two overarching issues in entity-oriented Web search to advance the state-of-the-art in the

field.

2.1.1 Obtaining Fine-Grained Knowledge about Entities

A central question when leveraging entities for Web search is: How do we find entities de-
scribed in queries and documents? This question has been extensively studied in the past,
and tools (called entity linking tools) [41,83,109] which identify and disambiguate mentions
of entities in text have been developed. Given some text such as Oysters influence nutrient
cycling and water filtration, such tools can identify that the mention “Oyster" refers to the
animal and not to the place' in Virginia, United States. However, it may be more benefi-
cial for a user who is researching the role of oysters in ecosystems to know that the entity
“oyster" has been mentioned in the context of its role as an ecosystem engineer and not
its cultivation. Hence, there is a need for better tools which are able to understand text at a
deeper level. Such fine-grained knowledge can aid downstream entity-oriented search and

question answering systems which aim to understand the subtleties in human language.

"https://en.wikipedia.org/wiki/Oyster, Virginia

11
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Hence, a major focus of this dissertation is obtaining fine-grained understanding of an
entity from the context in which the entity has been mentioned, and more specifically, in
the context of a query. We aim to identify relevant text passages that elaborate on the
connection between the query and entity. To this end, we use two sources for obtaining a

query-specific description of an entity:

» Wikipedia. Wikipedia is a great source of knowledge about entities. Prior work in
entity-oriented search has often used the introductory paragraph from the Wikipedia
article of an entity as the entity’s description. However, not all information on the
Wikipedia page of an entity would be relevant to the entity in the context of the query.
Hence, we identify the portion from the Wikipedia page that is helpful for understand-
ing the meaning of the entity in the context of the query. To this end, we identify the
relevant top-level sections from the Wikipedia page that best describes the entity in
the given context. Following previous work [43,91,111,114], we refer to the top-level
sections from Wikipedia as aspects, and use a catalog of aspects provided by Rams-
dell et al. [111].2 This aspect catalog contains the top-level sections from the entire
English Wikipedia together with section heading, text of the section, and the entities

mentioned in the section.

+ Entity-Support Passages. The downside of using Wikipedia is that often, Wikipedia
articles may be outdated or have some (negative) information removed. As a re-
sult, they do not contain all the query-relevant information. To alleviate the above
problem, we explore an alternative source of query-specific entity descriptions. We
use ideas from Pseudo-Relevance Feedback [70] to obtain an entity’s query-specific
description. Specifically, we identify pseudo-relevant passages that are relevant to
the query and mention the entity in a salient i.e., central way and not as a passing
reference. We refer to these passages as entity-support passages. We expect that
entity-support passages obtained from a corpus can provide (query-specific) infor-
mation which is complimentary to the (missing) information on the Wikipedia page of

an entity.

’https://www.cs.unh.edu/~dietz/eal-dataset-2020/
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Recently, the entity-support passage retrieval task (in various flavors) has also received
much attention from the research community. For example, the entity retrieval task of the
Complex Answer Retrieval track [33] at the Text Retrieval Conference (TREC) is to retrieve
Wikipedia entities in response to a query, along with passages from Wikipedia which ex-
plain how the entity is related to the query. Similarly, the goal of the Wikification task at
the TREC News [127]® track is to link the entities in news articles to an external resource
such as Wikipedia which provides more information on the linked entity. The Retrieval From
Conversational Dialogues (RCD)* track at the Forum for Information Retrieval (FIRE) 2020
had a passage retrieval task where given an excerpt of a dialogue, the task is to return
a ranked list of passages from Wikipedia which contain information on the entities in the

dialogue.

2.1.2 Query-Specific Entity Representations

Another central question that one often encounters in entity-oriented research is: How do
we represent the entities so that they are understandable by a machine? As machines
only understand numbers, the common approach is to use the vector representation of
the introductory paragraph from the Wikipedia page of an entity [77,80,151]. This vector
representation may be obtained, for example, using TF-IDF, where each entry in the vector
is the TF-IDF of the word corresponding to that entry. The issue with this approach is that
the introductory paragraph is often a generic description of the entity without any knowledge
of the query.

IR systems deal with explicit queries that are not known beforehand. Often, queries
and documents are matched [77,80,91, 151] through the (cosine) similarity between the
(vector) representation of the entities mentioned in the query and the document. Entity
representations without any knowledge of the query may not be able to identify when two
entities are similar/related in the context of the query. For example, the Wikipedia page of
the entity “Food and Drug Administration” does not mention the entity “Robert Swanson”,

yet these two entities are similar/related in the context of the query “Genetically Modified

Shttp://trec-news.org/
“https://rcd2020firetask.github.io/RCD2020FIRETASK/
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Organism” because Robert Swanson was the founder of the company that produced the
first genetically engineered insulin approved for use by the Food and Drug Administration.
As a result, the representation of entities obtained via the introductory paragraph from
Wikipedia or even large-scale Knowledge Graphs [14,73,121,139] may not be suitable for
IR systems. Hence, another major focus of this dissertation is automatically learning entity

representations, and more specifically, query-specific entity representations.

2.2 Use Cases

We study the utility of entity-support passages/entity aspects/query-specific entity repre-
sentations for two downstream tasks, one where the query is short (as is typical in IR), and
the other where the query is longer. This provides us a way to generalize the efficacy of
our approaches and also study the various error modes that our approach makes under

different conditions. The two tasks/use cases are described below.

 Entity retrieval. Given a query, find relevant entities for the query. In this task, the
query is short (e.g., question, keywords). We learn query-specific entity represen-
tations using entity-support passages and entity aspects, and leverage these query-
specific entity representations for entity retrieval. Further, we also study whether
entity-support passages and entity aspects can help an entity retrieval system when

used directly (not for learning representations).

+ Entity aspect linking. Given a set of pre-defined entity aspects (top-level Wikipedia
sections), find the aspect that best matches the provided entity context (e.g., para-
graph). Here, the “query” is long (e.g., a text passage): The context may be con-
sidered as the “query” and the aspect as the “document” to be matched. Here, we
study the utility of learning context-dependent (query-specific) entity representations
for matching two long-form texts within a neural network framework, when large-
scale training data is available. Furthermore, we study whether entity aspect linking
can benefit by ranking the entities contained in the aspect using the context as a

query. As a side contribution, we also study whether current entity salience detection
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systems are enough to reap the benefits of entity salience for entity aspect linking:
Intuitively, an aspect should be similar to the context that mentions an entity found to

be salient in the aspect.

2.3 Contributions

This dissertation summarizes novel insights into entity-oriented information retrieval and
extraction. While we demonstrate significant performance improvements for information
retrieval tasks, we anticipate a positive impact on many related fields, such as Natural
language Processing and Semantic Web. Below, we summarize the major findings/contri-
butions of this dissertation which are further detailed in Chapters 5 through 8. Note, the
contributions below are the “big” findings that affect the field of IR in general. More concrete

contributions are included with the respective chapters.

1. Query-specific entity representations. While language models such as BERT (for
details see Chapter 4.5) have been shown to be useful for the document ranking
task [80,93-95], we find that BERT does not understand entities very well. Ideally,
given the name of an entity, a neural language model should be able to generate
a representation of that entity that not only encodes the general knowledge about
the entity available in a Knowledge Graph but also query-specific knowledge about
the entity. However, we find that this is not the case. As a result, the application of
BERT in entity-oriented search is limited. We show that it is possible to inject query-
specific knowledge into BERT to learn query-specific entity representations that are
ultimately useful for a downstream IR task. This is achieved using entity-support pas-
sages and entity aspects. Through this dissertation, we make a significant contribu-
tion to the emerging and growing field of learning BERT-based entity representations
[103,106, 138,159]: Our BERT entity representations are query-specific whereas all
prior BERT entity representations do not incorporate the query. We study the util-
ity of entity representations in the context of the entity ranking task, and show that
query-independent entity representations are not ideal for IR tasks; significant per-

formance improvements can be obtained when using our query-specific BERT entity
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representations.

. Entity descriptions. We show that it is important to consider the query while se-
lecting a description of an entity. Prior work on entity-oriented search often uses the
introductory paragraph from the Wikipedia page of an entity as the entity’s descrip-
tion. While this approach is easy-to-implement, we show that it is not sufficient to
do well on IR tasks, and that better results can be obtained when using our query-
specific entity descriptions. In this regard, we repeatedly find that Pseudo-Relevance
Feedback (PRF) is helpful for obtaining a query-specific entity description. As such,

PRF forms the basis of a lot of work presented in this dissertation.

. Entity retrieval. Entity retrieval is a very important task in IR: Often, the information
need of Web searches can be answered using a single entity (such as in conver-
sational retrieval or factoid question answering), or a list of entities (such as for the
query Who are the members of the Beetle?). The research presented in this dis-
sertation significantly advances the state-of-the-art in entity retrieval by leveraging

entity-support passages and entity aspects for entity retrieval.

. Entity frequency is a strong indicator. We find the a “simple” entity statistic such
as frequency is a very strong indicator of relevance and can significantly improve re-
trieval performance. In particular, we find that frequency of co-occurrence of entities
correlates strongly with the relatedness between the entities. This is shown in our
work on entity aspect linking (Chapter 8). In our work on entity-support passage re-
trieval (Chapter 5), we find that identifying passages that contain entities frequently
co-occurring with the target entity (the entity for which we want to find the support
passage) is a good support passage for the target entity. Later, in Chapters 6 and 7,
we find that entity-support passages identified using frequently co-occurring entities
are better entity descriptions and helpful for learning query-specific entity represen-
tations. These entity representations are shown to improve performance on the entity
retrieval task as compared to several baselines on two large-scale entity ranking test

collections.
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5. Entity salience. Entity salience has been well-studied in the NLP community; how-
ever, its utility for IR tasks is not very well-studied. Intuitively, a text passage that men-
tions a relevant entity in a salient way must also be relevant for the query. Through
this dissertation, we study whether indicators of entity salience are useful for finding
when a text passage is relevant to a query. We study the utility of entity salience for
IR in the context of entity aspect linking and entity-support passage retrieval. Our

findings with respect to entity salience for IR is detailed in Chapters 5 and 8.

2.4 Publications

Below, we list all the research papers that were produced from research completed as part

of this dissertation and published at top peer-reviewed conferences in the field of IR.

1. Shubham Chatterjee and Laura Dietz. 2019. Why Does This Entity Matter? Sup-
port Passage Retrieval for Entity Retrieval. In Proceedings of the 2019 ACM SIGIR
International Conference on Theory of Information Retrieval (ICTIR '19). Association
for Computing Machinery, New York, NY, USA, 221-224. In this work, we address
the entity-support passage retrieval task and explore the utility of entity salience for

the task. This work is detailed in Chapter 5.

2. Shubham Chatterjee and Laura Dietz. 2021. Entity Retrieval Using Fine-Grained
Entity Aspects. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR '21). Association for
Computing Machinery, New York, NY, USA. In this work, we leverage entity aspects
and entity-support passages for entity retrieval and achieve significant performance

improvements over several baselines. This work is detailed in Chapter 6.

3. Shubham Chatterjee and Laura Dietz. 2022. BERT-ER: Query-specific BERT En-
tity Representations for Entity Ranking. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval (SI-

GIR '22). Association for Computing Machinery, New York, NY, USA. In this work,
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we utilize entity aspects and entity-support passages to automatically learn query-
specific vector representations of entities using BERT. This work is detailed in Chap-

ter 7.

4. Shubham Chatterjee. 2022. An Entity-Oriented Approach for Answering Top-
ical Information Needs. In Proceedings of the 44th European Conference on In-
formation Retrieval (ECIR '22). Springer-Verlag, Berlin, Heidelberg. This work is an
abridged version of this dissertation presented at the Doctoral Consortium in ECIR

2022 in Norway.

5. Laura Dietz, Shubham Chatterjee, Connor Lennox, Sumanta Kashyapi, Pooja Oza,
and Ben Gamari. 2022. Wikimarks: Harvesting Relevance Benchmarks from
Wikipedia. \n Proceedings of the 45th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR "22). Association for Com-
puting Machinery, New York, NY, USA. As this dissertation uses Wikipedia to a great
extent, several entity ranking and passage ranking baselines were contributed by the

author of this dissertation for release with this dataset.

2.5 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter 3, we provide a brief
survey of the current state-of-the-art in various topics related to research presented in this
dissertation. In Chapter 4, we provide a high-level overview of necessary concepts from
deep learning for NLP that are required for understanding the research presented in this
dissertation. Chapters 5 through 7 describe our novel research in advancing the state-of-
the-art in entity retrieval. In particular, Chapter 5 discusses our research on entity-support
passage retrieval, Chapter 6 discusses our work on leveraging fine-grained knowledge
obtained using entity aspects to improve entity retrieval performance, and Chapter 7 dis-
cusses our work on learning query-specific entity representations and its utility for entity
retrieval. Chapter 8 explores the utility of entity salience and entity relatedness for the

entity aspect linking task. Finally, we conclude the dissertation with Chapter 9.
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CHAPTER 3

RELATED WORK

3.1 Entity-Support Passage Retrieval

Given a query and a target entity, the entity-support passage retrieval task is to find a
paragraph-size text from a corpus that elaobrates on the connection between the query
and entity by explaining why/how the entity is relevant to the query. In addition, the entity

must be salient, i.e., central to the discussion in the support passage.

3.1.1 Connecting Entities to Queries

Blanco et al. [13] present a model that ranks entity support sentences with learning-to-
rank. They present several retrieval-based, entity-based and position-based methods and
use features based on named entity recognition (NER) in combination with term-based
retrieval models. Their approach consists of first segmenting the document into sentences
and using a sentence-entity matrix to represent the presence of an entity in the sentence.
They frame the problem as a ranking problem for triples of (sentence, query, entity). Several
ranking features are employed, such as the BM25 retrieval score of the sentences, the
original retrieval score of the entity for the query, the distance between the last match of
query and entity, and the length of the sentence, etc. We include this work as a baseline in
our work.

Kadry et al. [61] study whether relation extraction is beneficial for support passage
retrieval, and the limitations of the current relation extraction approaches that need to be
overcome. As such, most of their features are based on relation-extraction and Natural

Language Processing. These features are then used in a learning-to-rank framework.
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3.1.2 Connecting Entities to Entities

A task related to entity-support passage retrieval is entity relation explanation. Given a pair
of entities in a knowledge graph, the entity relation explanation task is to find a passage
which explains the relationship of these two entities in the knowledge graph. One approach
in literature is to treat the problem from a graph perspective. For example, Pirro et al. [105]
consider the problem as a sub-graph finding problem, where the sub-graph consists of
nodes and edges in the set of paths between the two input entities, whereas Aggarwal et
al. [1] rank all the paths between any two entities in a knowledge graph. Voskarides et al.
[135, 136] use textual, entity and relationship features within a LTR framework, whereas

Bhatia et al. [10] address the problem from a probabilistic perspective.

3.2 Entity Retrieval

Given a query (question, keyword, etc.), the entity retrieval task is to retrieve entities from

a Knowledge Graph ordered by relevance of each entity to the query.

3.2.1 Term-Based Models for Entity Ranking

The first step in entity retrieval is often the construction of a term-based representation
of entities called entity description. Such entity descriptions can be created from semi-
structured documents such as Wikipedia by representing the entities using a fielded docu-
ment, where fields in the document correspond to specific parts of Wikipedia such as title,
introductory text, entity links, etc [26,80,81]. Alternatively, structured data about entities
in the form of subject-predicate-object (SPO) triples that are available in large-scale knowl-
edge bases such as DBpedia can be converted to term-based representation [19,52,63].
For entities which do not have a ready-made entity description available, such as entities
found in a web crawl, entity descriptions may be constructed by considering the mentions

of the given entity across the document collection [5,6].
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Ranking via unstructured retrieval models. Once an entity description has been con-
structed, traditional retrieval models such as BM25 [116] and Language Models may be
employed to rank these descriptions (and hence entities).

However, models such as those above do not consider term dependencies. Markov
Random Fields (MRF) [85] are used to model term dependence. For example, the Se-
quential Dependence Model (SDM) [85] is based on the MRF and assigns different weights
to matching query term concepts (e.g., unigram, bigrams, etc.) of different type. The
Weighted Sequential Dependence Model [9], a variant of the SDM estimates the impor-
tance of each matching query term concept individually. Raviv et al. [112] model the
different representations of an entity (description, type, and name) jointly with the query

terms using MRFs.

Ranking via fielded retrieval models. An entity description can be created from semi-
structured documents about entities on the Web, such as the Wikipedia page of the entity,
by representing the entity as a fielded document. Each field in the document corresponds
to specific parts of the Wikipedia page, such as title, introductory text, entity links, etc
[26,26,80,81]. Several extensions of the models described above consider multiple fields.

BM25F [117], the fielded variant of BM25, uses weighted term frequencies calculated
as a linear combination of term frequencies across the different fields, with field-specific
normalization applied.

The Mixture of Language Models (MLM) [96] estimates a separate language model
for each entity field, and then combines these field-level language models into an entity-
level model using a linear mixture. The linear mixture model learns a weight w; for each
entity field using training data and the Coordinate Ascent algorithm [84]. Alternatively, wy
may also be set using the Probabilistic Retrieval Model for Semi-structured Data (PRMS)
proposed by Kim et al. [67]. PRMS replaces the static field weight w; with the probability
of mapping a term ¢ from the entity description to the given entity field f, referred to as
the mapping probability, P(f | t). P(f | t) is estimated using Bayes’ Theorem, where the
probability of a term given a field, P(¢ | f), is estimated using the background language

model of that field, and P(f) is either left uniform or used to incorporate domain-specific
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knowledge.

Zhiltsov et al. [160] propose the Fielded Sequential Dependence Model (FSDM) that
combines the SDM and MLM. FSDM estimates the feature functions for unigams and bi-
grams across multiple fields using field-specific background models. However, the FSDM
has two limitations.

First, even with a few fields, the FSDM has to estimate a large number of free parame-
ters A and field weights w¢. To over come this issue, Hasibi et al. [54] propose to estimate
the field weights w; using field mapping probability estimates P(f | t) from PRMS.

Second, the field weights w are the same for all query term concepts of the same type
(unigrams, ordered and unordered bigrams), which can be a problem if any query concept
is incorrectly projected onto a different field. Nikolaev et al. [92] propose two variations
of the FSDM to overcome this issue: Paramterized Fielded Sequential Dependence Model
(PFSDM) and Parametrized Fielded Full Dependence Model (PFFDM). These models dy-
namically estimate the probability of a query concept being mapped onto a field using some

statistical and linguistic features.

Ranking via Learning-To-Rank. Learning-To-Rank (LTR) approaches effectively com-
bine a large number of entity relevance indicators from multiple sources. Each query-entity
pair is represented as a feature vector, and the optimal way to combine these vectors is
learnt through discriminative training. Hence, the performance is highly dependent on the
choice of features and the amount of training data available.

The most commonly used features are query-entity features which capture the degree
of similarity between the query and the entity. Schuhmacher et al. [123] propose several
query-entity features, for example, whether the candidate entity is contained in the query
entity, whether the entities in the query and those in the document have an edge in a
Knowledge Graph, etc.

Graus et al. [52] propose a LTR approach based on fielded document representation
of entities. However, in contrast to the previous approach of representing entities as fielded
documents with information from the same source, Graus et al. use content from different

sources (Knowledge Base, Twitter, etc.) in each field of the document. Then, an optimal
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entity representation for entity retrieval is learnt using three types of features: (1) Field sim-
ilarity features which model the query-field similarity, (2) Field importance features which
favor fields with more and novel content, and (3) Entity importance features which aim to
favor recently updated entities.

Dietz [32] proposed ENT Rank, a LTR model which utilizes the information about text
for entity retrieval. Neighbor relations between entities are defined using the context of the
entity such as the passage in which the entity appears.

Yamada et al. [155] proposed Wikipedia2Vec for learning embeddings of words and
entities from Wikipedia based on the skip-gram model [86,87]. Gerritse et al. [50] pro-
pose GEEER, an entity ranking system that re-ranks entities using Wikipedia2Vec. They
show that entity embeddings from Wikipedia2Vec are useful for entity ranking. First, they

calculate the embedding-based score for an entity £ as follows:

Scoreemp(F, Q) = 2 C(e) - cos(E, @) (3.1)
eeq@

where C'(e) is the confidence score of each entity e in the query @) as returned by the entity

linker TagMe [42]. The final score of an entity is:
Scorefina(F, Q) = A - Scoreemp(F, Q) + (1 — A) - Score(E, Q)
where Scoret(F, Q) is the score of entity £ obtained from a retrieval model, and A € [0, 1].

3.2.2 Semantically Enriched Models for Entity Ranking

Several models have been proposed in literature which leverage entity-specific properties
such as attributes, types and relationships available in large-scale Knowledge Bases to
improve entity retrieval. Such models enrich the query with the semantic representations
of the entities in the query for the purpose of matching queries and entities. Below, we give

a brief overview of such models.

23



Ranking via entity types. Models which utilize entity types for entity ranking use an en-
riched version of the query ¢’ consisting of the keyword query ¢, and the set of target types
T,. The target types T}, may be provided by the user [6] or identified from a Knowledge
Base [30,49]. The general formulation of a type-aware scoring function consists of a linear
mixture of two components: (1) Score(e, ¢), the term-based similarity between an entity e
and the keyword query ¢, and (2) Score(e, T}), the type-based similarity between the entity
e and the set of target types 7. There are several choices for estimating Score(e, 7).
One may use a fielded representation of the entity, with a separate field for the labels
of the corresponding entity types. The similarity between the labels of the target types
and this field can then be estimated using any term-based retrieval model described above
[29]. Alternatively, types may also be represented by concatenating the descriptions of
entities that belong to that type, and then scoring the query against this representation
[62]. Pehcevski et al. [100] propose a set-based similarity between set of target types 7,
and the set of types of an entity 7, by measuring the ratio of common types between 7, and
T.. Raviv et al. [112] measure the type-based similarity using the distance of the entity and
the query types in the taxonomy. Balog et al. [6] represent query and entity types using

probability distributions, and then measure the similarity between the two distributions.

Ranking via entity relationships. Entities in a Knowledge Graph are connected via
edges which represents how these entities are related to each other. Often, queries can
be answered by leveraging these entity relationships. For example, Tonnon et al. [131]
address the ad-hoc entity retrieval task by first identifying a set of seed entities using term-
based retrieval, and then traversing the edges of these entities in the Knowledge Graph to
identify other related entities (relevant) entities.

Ciglan et al. [22] propose the SemSets model to address the List Search task of the
Semantic Search Challenge [11]. SemSets consists of three steps: (1) Identify and score
possible candidate entities to answer the query, (2) Identify sets of semantically related
entities from the underlying Knowledge Graph and score entities based on the relevance
score of sets it belongs to, and (3) Identify the principal entity in the query and score an

entity based on its distance from this principal entity.
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Bron et al. [15] address the Related Entity Finding task of the TREC Entity track [7].
The input is an enriched query ¢’ consisting of the keyword query ¢ describing the relation,
the input entity e,, and the target type y,. The relevance of an entity e is modelled using a
generative probabilistic model in three steps: (1) Score the entity e based on the strength
of its association to the input entity e,, (2) Estimate the probability that e is of the target
type y,, and (3) Estimate the likelihood that the relation contained in the keyword query ¢

is found around the pair (e, e,).

3.3 Learning Entity Representations

The large-scale nature and sparsity of Knowledge Graphs (KGs) requires that we represent
the KGs using distributed representations. As a result, there has been much research in the
area of embedding both entities and relations from a KG into a continuous low-dimensional

space. Below, we briefly outline the major works in this area.

3.3.1 Graph Embeddings

Bordes et al. [14] propose TransE which learns embeddings for both entities and relations
based on the idea that the relationship r between two entities & and ¢ corresponds to a
translation between the embedding of these entities. However, TransE has problems deal-
ing with reflexive, one-to-many, many-to-one, or many-to-many relations between entities.
Wang et al. [139] propose TransH to overcome this issue by representing each relation r
with two vectors: the norm vector w,., and the translation vector d,..

Both TranskE and TransH assume that entities and relations are embedded in the same
space. Lin et al. [73] propose TransR to address this issue by modelling entities and
relations in distinct entity space and multiple relation spaces. TransR projects h and t to the
aspects that a relation r focuses on using relation-specific mapping matrix M,.. However,
this means that for relation r, all entities share the same M., irrespective of their types or
attributes. Ji et al. [59] propose TransD to address this issue by using a unique mapping
matrix for every entity-relation pair.

Xie et al. [142] propose a novel representation learning method for knowledge graphs

25



taking advantages of entity descriptions present in knowledge bases. Yamada et al. [157]
present TextEnt, a neural network model that learns distributed representations of entities
and documents directly from a knowledge base using the introductory paragraph of an

entity’s Wikipedia article as descriptions.

3.3.2 Knowledge-Enhanced BERT

Recently, much effort has been spent on injecting knowledge into BERT [31]. Zhang et al.
[159] propose ERNIE, a neural language model that uses additional knowledge encoder
layers to integrate the knowledge from entities into the textual information from the under-
laying layers. Peters et al. [103] propose KnowBert, a knowledge-enhanced BERT model
that explicitly models entity spans in the input text and uses an entity linker trained jointly
with the model to retrieve relevant entity embeddings. Using a word-to-entity attention,
KnowBert allows long range interactions between contextual word representations and all
entity spans in the context. Wang et al. [138] propose KEPLER, a RoBERTa-based model
that maps texts and entities onto the same semantic space using the same language model
and jointly optimizes the Knowledge Embedding and the Masked Language Modeling ob-
jectives. While ERNIE and KnowBert are based on adapting BERT to entity embeddings
and involve additional pre-training, E-BERT proposed by Poerner et al. [106] adapts entity
embeddings to BERT without any pre-training. E-BERT aligns Wikipedia2Vec entity vectors
with BERT’s word-piece vectors. E-BERT has been shown to outperform BERT, ERNIE,

and KnowBert on question-answering, relation classification, and entity linking.

3.4 Entity Aspect Linking

Given an entity mention in a context such as a sentence, tweet or paragraph, and a set of
predefined aspects along with the associated content (text and entities), the entity aspect
linking task is to find the aspect from the set that best captures the topic addressed in the

context.
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3.4.1 Sections as Entity-Aspects

Fetahu et al. [43] were the first to define Wikipedia sections as entity aspects. Although the
paper does not explicitly refer to sections as “aspects”, it considers each section as a sep-
arate sub-topic of the entity. They enrich Wikipedia sections with news-article references in
two steps: First, they suggest news articles to Wikipedia entities (article-entity placement
step) and Second, they find the exact section in the entity page where the article must be
placed (article-section placement step).

Similarly, Banerjee et al. [8] seek to improve Wikipedia stubs by generating content for
each section automatically. Their system is based on a text classifier which uses topic dis-
tribution vectors to assign content from the web to various sections on a Wikipedia article.
This is followed by an abstractive summarization step where section-specific summaries
for Wikipedia stubs are generated.

Following these works, Reinanda et al. [114] define an entity’s aspects as the top-level
sections from Wikipedia. They present a method for document filtering for long-tail entities,
which is based on using aspect-features to identify relevant documents.

Nanni et al. [91] define each section of the Wikipedia page of the entity as an aspect
following [8,43,114]. In their work, they present a learning-to-rank based method which
uses both lexical and semantic features derived from various contexts such as the sen-
tence, paragraph and section where the entity is mentioned in text. They use two types
of feature-vectors: (a) Word Vector Models, which consider the symbolic representation
of each word as a token using TF-IDF and BM25, and rank aspects using the header,
content and entity representations and, (b) Distributional Semantic Models, where each
word/entity is represented by its embedding for ranking aspects with header and content
representations. They show that using lexical and semantic features with different context
sizes improves performance over several established baselines. They also showed the
usefulness of their method on three downstream applications.

Recently, Ramsdell et al. [111] released a large-scale test collection for entity aspect
linking along with strong baselines and example feature sets by harvesting the top-level

sections from Wikipedia. Hayashi et al. [56] released “WikiAsp”, a large-scale dataset for
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multi-domain aspect- based summarization. WikiAsp is built using Wikipedia articles from
20 different domains, using the section titles and boundaries of each article as a proxy for

aspect annotation.

3.4.2 Fine-Grained Entity Typing

A task related to entity aspect linking is fine-grained entity typing (FET): Given some text,
and the span of an entity mention in this text, assign fine-grained type labels to the mention
[74]. Approaches to FET are often learning-based using features that are either hand-
crafted [51,74] or learnt using neural networks [125,143,153]. Alternatively, entity linking is
also leveraged for FET [24,58]. For example, [58] use entity linking for clustering and type
name selection whereas [24] use entity linking for fine-grained entity type classification.
Entity aspects are different from types: While aspects resolve the topics in which an entity
is referenced (e.g., “oysters”as food versus ecosystems), types resolve which of many roles

the entity can take on (e.g., food ingredient or dish).

3.4.3 Text Similarity

The entity aspect linking task may be addressed by learning the similarity between the texts
of the aspect and the context. Often, text similarity is learnt by using BERT [31] to learn
embeddings of the two texts such that the cosine distance of the embeddings is minimized.
The similarity may also be learnt using a fully-connected layer trained jointly with the model
[80]. Alternatively, pre-trained text embedding methods such as Word2Vec [87] or GloVe

[102] may be used to create embeddings of the two texts for use with cosine similarity.

3.4.4 Document Retrieval

One may consider the context as a query and the aspect as a document to be retrieved.
Hence, a related task is document retrieval. Some traditional, term-based document re-
trieval models are BM25 [60], Language Models [107], and TF-IDF [122,128]. Recently,
much work has been done in the area of Neural-IR [25,48,89,98,124,148]. As the list is

28



long, the interested reader is referred to the excellent treatise on Neural-IR by Mitra et al.

[88] and Lin et al. [71].

3.4.5 Entity Relatedness

Entity relatedness measures the degree to which two entities are similar. Many entity
relatedness measures have been developed [108, 120, 141, 158], based on proximity of
entities in the knowledge graph, the number of in-links and out-links, etc. Entity relatedness
may also be measured using the cosine similarity of the entity embeddings obtained using
a graph embedding method [14, 106,115, 155]. The entity aspect linking task can be
addressed as a semantic similarity task based on the relatedness of the entities in the

context and aspect.

3.4.6 Entity Linking

Entity linking systems [41,83,104,133] aim to identify and disambiguate entity mentions in
text by examining the context around the entity. In this work, we further enrich an entity link
with the correct aspect of the entity mentioned in the text. Several entity linking systems
exist such as TagMe [41], DBpedia Spotlight [83], WAT [104], and REL [133]. All these
systems examine the context around the entity to disambiguate the entity mention. In this
work, we aim to further enrich an entity link with the correct aspect of the entity mentioned

in the text.

3.5 Ad-Hoc Document Retrieval Using Entities

Since we utilize entity information for text retrieval, our problem is also related to the prob-
lem of ad-hoc document retrieval where semantic information in the form of entities is uti-
lized for text retrieval. In this section, we review some methods available in the literature
for leveraging entities for the document retrieval task. The approaches in literature can
be grouped into three broad families as follows: Expansion-based, Projection-based and

Entity-based [4]. This particular order corresponds to the temporal evolution of research
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in this area, where the tendency toward more and more explicit entity semantics is clearly
reflected. A component common to all approaches described in this section is finding se-
mantically related entities to a query. Three approaches are mainly used for this purpose:
(1) Entities mentioned in the query, (2) Entities retrieved from a knowledge base, and (3)

Entities from documents in an initial candidate set.

3.5.1 Expansion-Based Methods

These methods utilize entities as a source of expansion terms to enrich the representation
of the query. In query expansion, we retrieve an initial candidate set of documents for
the query and assume the top-k of this ranking to be relevant for the query. We then
expand the query using terms from these top-k documents and retrieve documents using
this expanded query. Akin to query expansion with terms, the idea of entity-centric query
expansion is to estimate the expanded query model 6, by using the set of query entities
E,. Meij et al. [82] propose a query expansion method based on double translation: first,
translating the query to a set of relevant entities, then considering the vocabulary of terms
associated with those entities as possible expansion terms to estimate the expanded query
model. Xiong et al. [145] use the entity description from a knowledge base (Freebase) for
the purpose of query expansion and rank documents using the expanded query.

Another approach is to use an entity language model which captures the language
usage associated with the entity and represents it as a multinomial probability distribution
over the vocabulary of terms. Xu et al. [154] take a linear combination of term scores
across multiple entity fields. Meij et al. [82] suggest to sample the terms from documents
mentioning the entity if descriptions are not available in the knowledge repository. Dalton et
al. [26] propose the Entity Context Model (ECM) where a small context around the entity
(such as a sentence mentioning the entity or a small window around the entity mention) is
considered and all such contexts aggregated and weighted by the document retrieval score
to derive a distribution over the words.

Usage of surface forms for the query entities as expansion terms is another common

expansion technique [26,75].
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3.5.2 Projection-Based Methods

The vocabulary mismatch problem between queries and documents often leads to many
relevant document not being retrieved by the IR system. Although query expansion can
minimize this to a certain extent by bringing the original query closer to the actual infor-
mation need, the problem still remains. One approach to solving the problem might be to
construct a high-dimensional latent entity space and project the query and document to
this entity space. The similarity between the query and document is then calculated in this
space. This approach allows to uncover hidden (latent) semantic relationships between
queries and documents. For example, Gabrilovitch et al. [46] propose Explicit Seman-
tic Analysis (ESA), where each term ¢ is represented semantically as a concept vector of
length | £ |. This vector consists of entities from a knowledge repository and the strength
of the association between the term ¢ and the given entity is given by the values in this
vector. Each such value is computed by taking the TF-IDF weight of ¢ in the description
of e (in ESA, the Wikipedia article of €). A given text (bag-of-words) is represented by the
centroid of the individual terms’ concept vector, after normalizing these vectors to account
for the differences in their lengths. Both the query and document are mapped to this ESA
concept space and the similarity is found by taking the cosine similarity of their respective
concept vectors. Although work on ESA has primarily focused on using Wikipedia as the
underlying knowledge repository [38,39,45,46], one could use any knowledge repository
where there is sufficient coverage of concepts and concepts are associated with textual
descriptions.

Liu et al. [76] propose Latent Entity Space (LES) which maps both queries and docu-
ments to a high-dimensional latent entity space, in which each dimension corresponds to
one entity, and the relevance between the query and document is estimated based on their
projections to each dimension in the latent space.

Xiong et al. [144] propose EsdRank which incorporates evidence from an external
source by using terms and entities found in knowledge graphs such as Freebase or Word-
Net. A new ranking model called Latent-ListMLE (based on the learning to rank model

called ListMLE) is used to rank documents with these objects and evidence.
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3.5.3 Entity-Based Methods

These methods consider the entities in the documents explicitly and not in a latent space,
together with traditional term-based representations, in the retrieval model. For example,
Raviv et al. [113] propose some Entity-based Language Models (ELM) which not only use
information about terms in the query and document, but also the entities. These language
models are estimated using the query and the documents in the corpus. These models
account simultaneously for (i) the uncertainty in entity linking — specifically, the confidence
levels of entity markups; and, (ii) the balance between using term-based and entity-based
information.

Similarly, Ensan et al. [40] present a Semantic Enabled Language Model (SELM).
SELM addresses the task of document retrieval based on the degree of document relat-
edness to the meaning of a query. It is based on using an entity linking system to extract
concepts (entities) from documents and queries. The document is represented as a graph
where the nodes are the concepts and the edges are the relatedness relationship be-
tween two concepts. The documents are ranked by finding the conditional probability of
generating the concepts observed in the query given all the document concepts and the
relatedness relationships between them.

In the ELM, the words and entities are mixed together. In contrast, in the Bag-of-Entities
representation, term-based and entity-based representations are kept apart and are used
in “duet". The Bag-of-Entities model was proposed independently and simultaneously by
Hasibi et al. [54] (for entity retrieval) and Xiong et al. [146] (for document retrieval). A line
of work by Xiong et al. [146,147,152] is based on this bag-of-entities model. The basic
idea is to construct a Bag-of-Entities vector for the query and documents using the entity
annotations, and then re-rank an initial candidate set of documents for the query [146].
Two ranking models are used for this purpose: the first model ranks a document by the
number of query entities it contains, and the second ranks a document by the frequency of
query entities in it.

Later, two advanced models were proposed: (1) Explicit Semantic Ranking (ESR)

Model [152], and (2) Word-Entity Duet (WED) Model [147]. In ESR, the relationship
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information from a knowledge graph is used to enable “soft matching" in the entity space.
In WED, the query and documents are represented using four types of vectors: two bag-
of-words vectors and two bag-of-entities vectors for the query and document respectively.
Each element in these vectors corresponds to the frequency of a given term/entity in the
query/document. This gives rise to four types of interactions between the query and docu-
ments: query terms to document terms, query terms to document entities, query entities to
document terms and query entities to document entities. These four-way matching scores

are combined using learning-to-rank.
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CHAPTER 4

BACKGROUND: ATTENTION AND TRANSFORMER MODELS

4.1 Introduction

Sequence-to-sequence [129] models are deep learning models that have achieved a lot
of success in tasks like machine translation, text summarization, and image captioning.
Google Translate started using such a model in production in late 2016. A sequence-to-
sequence model is a model that takes a sequence of items (words, letters, features of an
images. . . etc) and outputs another sequence of items. In neural machine translation, a
sequence is a series of words, processed one after another. The output is, likewise, a
series of words.

Consider a very simple problem of predicting whether a movie review is positive or neg-
ative. Here, our input is a sequence of words, and the output is a single number between 0
and 1. If we used traditional deep neural networks, then we would typically have to encode
our input text into a vector of fixed length using techniques like Bag-Of-Words, Word2Vec
[87], etc. But note that here, the sequence of words is not preserved, and hence when we
feed our input vector into the model, it has no idea about the order of words and thus it
is missing a very important piece of information about the input. Thus, to solve this issue,
Recurrent Neural Networks (RNN) came into the picture.

In essence, for any input X = (xg,z1,...,2;) with a variable number of features, at

each time-step, an RNN cell takes an item/token x; as input and produces an output A,

This chapter is mostly a compilation of information found in various excellent and popular
sources on the internet. The necessary references to the original articles have been included. The in-
terested readers are encouraged to refer to these original articles for further information. The author
of this dissertation does not claim the text or figures of this chapter as his own. All credit goes to the
authors of the original articles.
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Figure 4.1: An unrolled recurrent neural network. Source: Christopher Olah [97]
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Figure 4.2: Each rectangle is a vector and arrows represent functions (e.g. matrix
multiply). Input vectors are in red, output vectors are in blue and green vectors
hold the RNN’s state. From left to right: (1) Vanilla mode of processing without
RNN, from fixed-sized input to fixed-sized output (e.g. image classification). (2)
Sequence output (e.g. image captioning takes an image and outputs a sentence
of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is
classified as expressing positive or negative sentiment). (4) Sequence input and
sequence output (e.g. Machine Translation: an RNN reads a sentence in English
and then outputs a sentence in French). (5) Synced sequence input and output (e.g.
video classification where we wish to label each frame of the video). Notice that in
every case are no pre-specified constraints on the lengths sequences because the
recurrent transformation (green) is fixed and can be applied as many times as we
like. Source: Andrej Karpathy [64]

while passing some information onto the next time-step (see Figure 4.1). These outputs
can be used according to the problem at hand. The movie review prediction problem is
an example of a very basic sequence problem called many-to-one prediction. There are
different types of sequence problems for which modified versions of this RNN architecture
are used (see Figure 4.2). Sequence-to-Sequence (Seq2Seq) problems is a special class
of Sequence Modelling Problems in which both, the input and the output, is a sequence.
Encoder-Decoder models were originally built to solve such Seq2Seq problems.

In this chapter, we will be using a many-to-many type problem of Neural Machine Trans-

lation (NMT) as a running example: Given a sentence in one language (e.g., English),
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Figure 4.3: High-level view of an encoder-decoder model. The encoder takes in a
sentence in English, processes it one word at a time, compiles the English sentence
into a vector (called context), and passes the context vector over to the decoder. The
decoder then uses this context vector to generate the French sentence, one word at
a time. Source: Kriz Modes [90]

predict the the translation of the sentence to another language (e.g., Frence).

4.2 Encoder-Decoder Models

A seqg2seq model consists of two components: an encoder and a decoder. The encoder
processes each item in the input sequence and compiles the information it captures into
a fixed-length vector (called the context vector). This representation is expected to be a
good summary of the meaning of the whole source sequence. After processing the entire
input sequence, the encoder sends the context vector over to the decoder, which begins
producing the output sequence item by item. The encoder and decoder tend to both be
recurrent neural networks (RNNs). You can set the size of the context vector when you set
up your model. It is basically the number of hidden units in the encoder RNN.

An RNN cell is depicted in Figure 4.4. RNNSs, by design, take two inputs at each time
step: the current example they see, and a representation of the previous input (hidden
state). Thus, the output at time step ¢ depends on the current input as well as the input
at time ¢ — 1. This is the reason they perform better when posed with sequence related
tasks. The sequential information is preserved in a hidden state of the network and used
in the next instance. The encoder processes the input sequence one word at a time. The

word, however, needs to be represented by a vector. To transform a word into a vector, we
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Figure 4.4: An RNN cell. RNNs take two inputs: the current example they see, and a
representation of the previous input. Thus, the output at time step ¢ depends on the
current input as well as the input at time ¢ — 1. Source: Pranay Dugar [36]

turn to the class of methods called “word embedding” algorithms (e.g., Word2Vec). These
turn words into vector spaces that capture a lot of the meaning/semantic information of
the words (e.g. king - man + woman = queen). The last hidden state from the encoder is
actually the context we pass along to the decoder. The decoder uses this context vector to
predict a word in the sequence, and after every successive prediction, it uses the previous

hidden state to predict the next word of the sequence.

4.3 Attention

The context vector turned out to be a bottleneck for these types of models. It made it
challenging for the models to deal with long sentences: Often it has forgotten the first
part once it completes processing the whole input. A solution was proposed in Bahdanau
et al. [3] and Luong et al. [78]. These papers introduced and refined a technique called
“Attention”, which highly improved the quality of machine translation systems. Attention
allows the model to focus on the relevant parts of the input sequence as needed. Attention

is, to some extent, motivated by how we pay visual attention to different regions of an image
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Figure 4.5: A Shiba Inu in a men’s outfit. Credit: Instagram https://www.instagram.
com/mensweardog/7hl=en
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She is eating a green apple.

Figure 4.6: One word “attends” to other words in the same sentence differently.
Source: Lilian Weng [140].

or correlate words in one sentence.

Take the picture of a Shiba Inu in Figure 4.5 as an example. Human visual attention
allows us to focus on a certain region with “high resolution” (i.e. look at the pointy ear in the
yellow box) while perceiving the surrounding image in “low resolution” (i.e. now how about
the snowy background and the outfit?), and then adjust the focal point or do the inference
accordingly. Given a small patch of an image, pixels in the rest provide clues what should
be displayed there. We expect to see a pointy ear in the yellow box because we have seen
a dog’s nose, another pointy ear on the right, and Shiba’s mystery eyes (stuff in the red
boxes). However, the sweater and blanket at the bottom would not be as helpful as those
doggy features.

Similarly, we can explain the relationship between words in one sentence or close con-
text. When we see “eating” (Figure 4.6), we expect to encounter a food word very soon.
The color term describes the food, but probably not so much with “eating” directly.

In a nutshell, attention in deep learning can be broadly interpreted as a vector of im-

portance weights: in order to predict or infer one element, such as a pixel in an image or a
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Figure 4.7: The current word is in red and the size of the blue shade indicates the
activation level. Source: Cheng et al., 2016 [21].

word in a sentence, we estimate using the attention vector how strongly it is correlated with
(or “attends to” as you may have read in many papers) other elements and take the sum of
their values weighted by the attention vector as the approximation of the target.

The attention mechanism was born to help memorize long source sentences in neural
machine translation (NMT). Rather than building a single context vector out of the encoder’s
last hidden state, the secret sauce invented by attention is to create shortcuts between the
context vector and the entire source input. The weights of these shortcut connections
are customizable for each output element. While the context vector has access to the
entire input sequence, we don’t need to worry about forgetting. The alignment between the

source and target is learned and controlled by the context vector.

Self-Attention. Self-attention, also known as intra-attention, is an attention mechanism
relating different positions of a single sequence in order to compute a representation of the
same sequence. It has been shown to be very useful in machine reading, abstractive sum-
marization, or image description generation. The Long Short-Term Memory [21] network
uses self-attention to do machine reading. In Figure 4.7, the self-attention mechanism en-
ables us to learn the correlation between the current words and the previous part of the

sentence. We discuss this in more detail in Section 4.4.1.

39



Output
Probabilities

Linear

s
Add & Norm

Feed
Forward

| Add & Norm z

e | ~\
ARG Mutti-Head
Feed Attention
Forward 7 y Nx
—
Nix Add & Norm
(—>| Add & Norm | VR
Multi-Head Multi-Head
Attention Attention
At A_ J)

k_ J \ J)
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 4.8: The Transformer model. Source: Vasvani et al., 2017 [134]

4.4 Transformer Model

Attention is a concept that helped improve the performance of neural machine translation
applications. In this section, we will look at The Transformer —a model that uses attention to
boost the speed with which these models can be trained. The Transformer outperforms the
Google Neural Machine Translation model in specific tasks. The biggest benefit, however,
comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud’s
recommendation to use The Transformer as a reference model to use their Cloud TPU
offering.

The Transformer was proposed by Vasvani et al. [134]. Like LSTM, Transformer is an
architecture for transforming one sequence into another with the help of two parts (Encoder

and Decoder), but it differs from the previously described/existing sequence-to-sequence
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Figure 4.9: Left: Scaled Dot-Product Attention. Right: Multi-Head Attention consists
of several attention layers running in parallel. Source: Vasvani et al., 2017 [134]

models because it does not use any RNNs (GRU, LSTM, etc.). RNNs were one of the best
ways to capture the time dependencies in sequences. However, the paper proved that an
architecture with only attention-mechanisms without any RNN can improve on the results
in translation and other tasks! One improvement on natural language tasks is presented by
BERT [31].

Figure 4.8 shows the Transformer model. The encoder is on the left and the decoder is
on the right. Both the encoder and decoder are composed of modules that can be stacked
on top of each other multiple times, which is described by N x in the figure. We see that the
modules consist mainly of Multi-Head Attention and Feed Forward layers. The inputs and
outputs (target sentences) are first embedded into an n-dimensional vector space since we
cannot use strings directly.

One slight but important part of the model is the positional encoding of the different
words. Since we have no recurrent networks that can remember how sequences are fed
into a model, we need to somehow give every word/part in our sequence a relative position
since a sequence depends on the order of its elements. These positions are added to the
embedded representation (n-dimensional vector) of each word.

Below, we first discuss the encoder of the Transformer model in Section 4.4.1, then

discuss the decoder in Section 4.4.2.
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Figure 4.10: Multiplying =, by the 1W< weight matrix produces ¢, the "query" vector
associated with that word. We end up creating a "query"”, a "key", and a "value"
projection of each word in the input sentence. Source: Jay Alammar [2]

4.4.1 Transformer Encoder

Self-Attention

Figure 4.9 (Left) depicts the scaled-dot product self-attention used by Vasvani et al.

The first step in calculating self-attention is to create three vectors from each of the
encoder’s input vectors (in this case, the embedding of each word). So for each word, we
create a Query vector, a Key vector, and a Value vector. These vectors are created by
multiplying the embedding by three matrices that we trained during the training process.
Notice that these new vectors are smaller in dimension than the embedding vector. Their
dimensionality is 64, while the embedding and encoder input/output vectors have dimen-
sionality of 512. They don’thave to be smaller, this is an architecture choice to make the
computation of multi-headed attention (mostly) constant. This is depicted in Figure 4.10.
The “query”, “key”, and “value” vectors are abstractions that are useful for calculating and
thinking about attention.

The second step in calculating self-attention is to calculate a score. Say we're calculat-
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Figure 4.11: Self-attention score calculation. Source: Jay Alammar [2]

ing the self-attention for the first word in this example, “Thinking”. We need to score each
word of the input sentence against this word. The score determines how much focus to
place on other parts of the input sentence as we encode a word at a certain position. The
score is calculated by taking the dot product of the query vector with the key vector of the
respective word we are scoring. So if we are processing the self-attention for the word in
position-1, the first score would be the dot product of ¢; and k;. The second score would
be the dot product of ¢; and k5. This is depicted in Figure 4.11.

The third and fourth steps are to divide the scores by 8 (the square root of the dimen-
sion of the key vectors used in the paper — 64. This leads to having more stable gradients.
There could be other possible values here, but this is the default), then pass the result
through a softmax operation. Softmax normalizes the scores so they’re all positive and add
up to 1. This softmax score determines how much each word will be expressed at this po-
sition. Clearly the word at this position will have the highest softmax score, but sometimes
it's useful to attend to another word that is relevant to the current word. This is depicted in
Figure 4.12.

The fifth step is to multiply each value vector by the softmax score (in preparation to
sum them up). The intuition here is to keep intact the values of the word(s) we want to
focus on, and drown-out irrelevant words (by multiplying them by tiny numbers like 0.001,
for example).

The sixth step is to sum up the weighted value vectors. This produces the output of
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Figure 4.12: Softmax step for calculating self-attention. Source: Jay Alammar [2]

the self-attention layer at this position (for the first word). Steps 5 and 6 are depicted in

Figure 4.13.

Matrix calculation of self-attention. The first step is to calculate the Query @, Key K,
and Value V matrices. We do that by packing our embeddings into a matrix X, and multi-
plying it by the weight matrices we have trained (W%, WX, WYV). This is depicted in Figure
4.14. Finally, since we'’re dealing with matrices, we can condense steps two through six in

one formula to calculate the outputs of the self-attention layer:

Attention(Q, K, V) = softmax(Q : KT) 1%
s Vdy,

Multi-Head Self-Attention

The paper further refined the self-attention layer by adding a mechanism called “multi-

headed” attention. This improves the performance of the attention layer in two ways:

1. It expands the model’s ability to focus on different positions. Yes, in the example

above, z; contains a little bit of every other encoding, but it could be dominated by
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Figure 4.13: Final score for self-attention. Source: Jay Alammar [2]

the the actual word itself. It would be useful if we are translating a sentence like “The
animal did not cross the street because it was too tired”, we would want to know

which word “it” refers to.

2. It gives the attention layer multiple “representation subspaces”. As we will see next,
with multi-headed attention we have not only one, but multiple sets of Query/Key/-
Value weight matrices. The Transformer uses eight attention heads, so we end
up with eight sets for each encoder/decoder (Figure 4.15). Each of these sets is
randomly initialized. Then, after training, each set is used to project the input em-
beddings (or vectors from lower encoders/decoders) into a different representation

subspace.

If we do the same self-attention calculation we outlined above, just eight different times
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Figure 4.14: Calulating self-attention using matrices. Every row in the matrix X
corresponds to a word in the input sentence. Source: Jay Alammar [2]

with different weight matrices, we end up with eight different Z matrices (Figure 4.16). This
leaves us with a bit of a challenge: The feed-forward layer is not expecting eight matrices
— it's expecting a single matrix (a vector for each word). So we need a way to condense
these eight down into a single matrix. How do we do that? We concatinate the matrices,
then multiply them by an additional weights matrix W© (Figure 4.17). That's pretty much

all there is to multi-headed self-attention. The process is put together in Figure 4.18.

Positional Encoding

One thing that’s missing from the model as we have described it so far is a way to account
for the order of the words in the input sequence. To address this, the transformer adds
a vector to each input embedding (Figure 4.19). These vectors follow a specific pattern
that the model learns, which helps it determine the position of each word, or the distance

between different words in the sequence. The intuition here is that adding these values to
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Figure 4.15: With multi-headed attention, we maintain separate ()/K/V weight ma-
trices for each head resulting in different ()/K/V matrices. As we did before, we
multiply X by the W</WX/WV matrices to produce Q/K/V matrices. Source: Jay
Alammar [2]

the embeddings provides meaningful distances between the embedding vectors once they

are projected into ()/K/V vectors and during dot-product attention.

4.4.2 Transformer Decoder

Now that we have covered most of the concepts on the encoder side, we basically know
how the components of decoders work as well. But let’s take a look at how they work
together. The encoder starts by processing the input sequence. The output of the top
encoder is then transformed into a set of attention vectors K and V. These are to be used
by each decoder in its “encoder-decoder attention” layer which helps the decoder focus on
appropriate places in the input sequence.

The following steps repeat the process until a special symbol is reached indicating the
transformer decoder has completed its output. The output of each step is fed to the bottom
decoder in the next time step, and the decoders bubble up their decoding results just like
the encoders did. And just like we did with the encoder inputs, we embed and add positional
encoding to those decoder inputs to indicate the position of each word.

The self attention layers in the decoder operate in a slightly different way than the one
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Figure 4.16: Calculating the attention separately in eight different attention heads.
Source: Jay Alammar [2]

in the encoder: In the decoder, the self-attention layer is only allowed to attend to earlier
positions in the output sequence. This is done by masking future positions (setting them to
negative infinity) before the softmax step in the self-attention calculation.

The “Encoder-Decoder Attention” layer works just like multi-headed self-attention, ex-
cept it creates its Queries matrix from the layer below it, and takes the Keys and Values

matrix from the output of the encoder stack.

4.4.3 The Final Linear and Softmax Layer

The decoder stack outputs a vector of floats. How do we turn that into a word? That’s
the job of the final Linear layer which is followed by a Softmax Layer. The Linear layer
is a simple fully connected neural network that projects the vector produced by the stack
of decoders, into a much, much larger vector called a logits vector. Let's assume that
our model knows 10,000 unique English words (our model’s “output vocabulary”) that it’s
learned from its training dataset. This would make the logits vector 10,000 cells wide —
each cell corresponding to the score of a unique word. That is how we interpret the output
of the model followed by the Linear layer. The softmax layer then turns those scores into
probabilities (all positive, all add up to 1.0). The cell with the highest probability is chosen,

and the word associated with it is produced as the output for this time step.
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Figure 4.17: Calculating the final Z matrix. Source: Jay Alammar [2]

4.5 BERT: Bidirectional Encoder Representations from Transformers

4.5.1 Introduction

One of the biggest challenges in NLP is the lack of enough training data. Overall, there
is enormous amount of text data available, but if we want to create task-specific datasets,
we need to split that pile into the very many diverse fields. And when we do this, we end
up with only a few thousand or a few hundred thousand human-labeled training examples.
Unfortunately, in order to perform well, deep learning based NLP models require much
larger amounts of data — they see major improvements when trained on millions, or billions,
of annotated training examples.

In the field of computer vision, researchers have repeatedly shown the value of transfer
learning—pre-training a neural network model on a known task, for instance ImageNet,
and then performing fine-tuning using the trained neural network as the basis of a new
purpose-specific model. In recent years, researchers have been showing that a similar

technique can be useful in many natural language tasks. These general purpose pre-

Section based on articles by Samia Khalid [66] and Rani Horev [57].
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Figure 4.18: Multi-head self-attention end-to-end. Source: Jay Alammar [2]

trained models can then be fine-tuned on smaller task-specific datasets, e.g., when working
with problems like question answering and sentiment analysis. This approach results in
great accuracy improvements compared to training on the smaller task-specific datasets
from scratch. BERT [31] is a recent addition to these techniques for NLP pre-training. It has
caused a stir in the Machine Learning community by presenting state-of-the-art results on a
wide variety of NLP tasks, including Question Answering (SQUAD v1.1), Natural Language

Inference (MNLI), and others.

4.5.2 Core Idea Behind BERT

Given a sentence such as “The woman went to the store and bought a _ of shoes”,
a language model might complete this sentence by saying that the word “cart” would fill
the blank 20% of the time and the word “pair” 80% of the time. In the pre-BERT world, a
language model would have looked at this text sequence during training from either left-to-
right or combined left-to-right and right-to-left. This one-directional approach works well for
generating sentences — we can predict the next word, append that to the sequence, then
predict the next to next word until we have a complete sentence.

BERT’s key technical innovation is applying the bidirectional training of Transformer, a
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Figure 4.19: To give the model a sense of the order of the words, we add positional
encoding vectors — the values of which follow a specific pattern. Source: Jay Alam-
mar [2]

popular attention model, to language modelling. This means we can now have a deeper
sense of language context and flow compared to the single-direction language models.
Instead of predicting the next word in a sequence, BERT makes use of a novel technique
called Masked LM (MLM): it randomly masks words in the sentence and then it tries to
predict them. Masking means that the model looks in both directions and it uses the full
context of the sentence, both left and right surroundings, in order to predict the masked
word. Unlike the previous language models, it takes both the previous and next tokens into
account at the same time. The existing combined left-to-right and right-to-left LSTM based
models were missing this “same-time part”. (It might be more accurate to say that BERT is

non-directional though.)

Why is this non-directional approach so powerful? Pre-trained language representa-
tions can either be context-free or context-based. Context-based representations can be
unidirectional or bidirectional. Context-free models like word2vec [87] generate a single
word embedding representation (a vector of numbers) for each word in the vocabulary.
For example, the word “bank” would have the same context-free representation in “bank

account” and “bank of the river”. On the other hand, context-based models generate a rep-
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resentation of each word that is based on the other words in the sentence. For example, in
the sentence “l accessed the bank account”, a unidirectional contextual model would repre-
sent “bank” based on “l accessed the” but not “account”. However, BERT represents “bank”
using both its previous and next context — “l accessedthe _ account” — starting from
the very bottom of a deep neural network, making it deeply bidirectional.

Moreover, BERT is based on the Transformer model architecture, instead of LSTMs.
As we saw in Chapter 4, a Transformer applies an attention mechanism to understand re-
lationships between all words in a sentence, regardless of their respective position. For
example, given the sentence, “I arrived at the bank after crossing the river”, to determine
that the word “bank” refers to the shore of a river and not a financial institution, the Trans-
former can learn to immediately pay attention to the word “river” and make this decision in

just one step.

4.5.3 How Does BERT Work?

BERT relies on a Transformer (the attention mechanism that learns contextual relationships
between words in a text). As discussed in Chapter 4, a basic Transformer consists of an
encoder to read the text input and a decoder to produce a prediction for the task. Since
BERT’s goal is to generate a language representation model, it only needs the encoder
part. The input to the encoder for BERT is a sequence of tokens, which are first converted
into vectors and then processed in the neural network.

BERT needs the input to be decorated with some extra metadata:

1. Token embeddings: A [CLS] token is added to the input word tokens at the begin-

ning of the first sentence and a [SEP] token is inserted at the end of each sentence.

2. Segment embeddings: A marker indicating Sentence A or Sentence B is added to

each token. This allows the encoder to distinguish between sentences.

3. Positional embeddings: A positional embedding is added to each token to indicate

its position in the sentence.
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Essentially, the Transformer stacks a layer that maps sequences to sequences, so the
output is also a sequence of vectors with a 1:1 correspondence between input and output
tokens at the same index. And as we learnt earlier, BERT does not try to predict the next

word in the sentence. Training makes use of the following two strategies:

Masked Language Modelling (MLM). The idea here is: Randomly mask out 15% of the
words in the input — replacing them with a [MASK] token — run the entire sequence through
the BERT attention based encoder and then predict only the masked words, based on
the context provided by the other non-masked words in the sequence. However, there is a
problem with this naive masking approach: the model only tries to predict when the [MASK]
token is present in the input, while we want the model to try to predict the correct tokens
regardless of what token is present in the input. To deal with this issue, out of the 15% of
the tokens selected for masking, 80% of the tokens are actually replaced with the token
[MASK], 10% tokens are replaced with a random token, and the remaining 10% tokens are
left unchanged. While training, the BERT loss function considers only the prediction of the
masked tokens and ignores the prediction of the non-masked ones. This results in a model

that converges much more slowly than left-to-right or right-to-left models.

Next Sentence Prediction (NSP). In order to understand the relationship between two
sentences, BERT’s training process also uses next sentence prediction. A pre-trained
model with this kind of understanding is relevant for tasks like question answering. During
training, the model gets pairs of sentences as input, and it learns to predict if the second
sentence is the next sentence in the original text as well.

As we have seen earlier, BERT separates sentences with a special [SEP] token. During
training, the model is fed with two input sentences at a time such that 50% of the time the
second sentence comes after the first one, and 50% of the time, it is a a random sentence
from the full corpus. BERT is then required to predict whether the second sentence is
random or not, with the assumption that the random sentence will be disconnected from

the first sentence.
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CHAPTER B

ENTITY-SUPPORT PASSAGE RETRIEVAL FOR ENTITY

RETRIEVAL

5.1 Introduction

5.1.1 Motivation

Search engines have become ubiquitous in the present world. While large-scale commer-
cial services such as Amazon (which allows us to search for products) have integrated
entity ranking algorithms into their systems, they still lack the “snippet retrieval’ feature
which is ubiquitous in document retrieval systems: Document retrieval systems such as
Google display a snippet of text along with the “ten blue links” in response to a user’s infor-
mation need to help the user decide if they are interested in the content of the document
pointed to by the link. Such search snippets play an important role in guiding users to the
right documents [130]. While retrieval of entities from knowledge graphs (such as Free-
base and DBpedia) is well-studied, it is an open problem how to extract search snippets
for knowledge graph entities, especially when the short description of the entity (often the
introductory paragraph from the entity’s Wikipedia page) is not a meaningful explanation of
relevance [35].

Entity ranking as a task has been extensively studied in the past [7,12,28,126, 137].

Given a user’s information need (henceforth query) along with a Knowledge Graph, the

Part of this chapter is published as: Shubham Chatterjee and Laura Dietz. 2019. Why Does This Entity
Matter? Support Passage Retrieval for Entity Retrieval. In Proceedings of the 2019 ACM SIGIR International
Conference on Theory of Information Retrieval (ICTIR °19). Association for Computing Machinery, New York,
NY, USA, 221-224. https://doi.org/10.1145/3341981.3344243

56


https://doi.org/10.1145/3341981.3344243

£ TEXTMED oeeuses e o

THE MEDICAL SEARCH ENGINE

TextMap : TextMed : Textblg :

more

I <!
TextBiz : Make homepacs: : Linktous : Help?

~

-

»
CONTACT

Disease Hypertension, or high blood pressure, often
occurs alongside diabetes mellitus, including type
10 years (1999-12-23 to 2009-12-20) 365 days (2008-12-20 to 2009-12-20) 1, type 2, and gestational diabetes, and studies
- Rank Entity Name Count Score Coref./Ref. Rank EntityName Count Score Coref./Ref. show there may be links between them. A meta-
- D betersn 021 207053 RN peetesin 567 14517 [ analysis appearing in the Journal of the American
2 obesity 10434 31857.5 WE—— 2 gbesity 8009 22080.0 == 2 obesity 464 11475 [— Y PP -g )
3 bsin 5522 1666 mmmmmmm 5 sl 21 13740 w5 il ot s College of Cardiology (JACC) in 2015 looked at
LRI benslal resistance . AR
o dabaes ot 105307 4 Dubetes T — P L e m— data for more t.han 4 million adults. It concluded
— ’ . 5 fyperglycemia 1919 6512.0 NS s T o8 3550 M- that people with high blood pressure have a
5 beergicemia 2661 10372.6 NE—-— 6 heartdisease 2396 6247.3 MEE—— RESEARCH high isk of d lopi diab his link
6 neohrogathy 3166 98447 N R T T — igher risk of developing type 2 diabetes. This lin
7 Dibetes 203 03617 m— 7 1537 6195, mm— HELHODS may be due to processes in the body that affect
8 heartdisease 3483 9310.3 M-S HETHODS 7 hyperolycemia 106 3257 M ™ i A
RESEARCH 8 nephropathy 2036 58634 WENNNNE 5 poatgisease 126 3266 NEEEE both conditions, for example, inflammation.
9  DESIGN AND 2000 8963.0 NN 9 dyslipidemia 1562 5789.4 NN 9 dyslipidemia 89 322.5 EEEEEE
METHODS
10 bicodpressure 3370 5668.3 - 10 BML 129 3164

10 CONCLUSIONS 6953 81513 [

11 CONCLUSIONS 5936 45327 [

11 retinopathy 2249 80226 WE—=
p— 12 aherosclerosis 1980 44312 e REESEUe
12 blood pressure 4841 7822.2 12 ORJECTIV 284 2052
13 OBJECTIVE 4710 4424.c [E— L = 52 [
13 ORIFCTIVF 5a18 77501 . 12 cholecternl 148 9370 7 —

blood

1 177 3024 WEEm——

Figure 5.1: An example support passage for the entity “Hypertension” relevant to
the query Diabetes. This support passage explains how the entity is related to the
information need. Without this passage, the entity ranking does not make much
sense to a person who does not have knowledge about Hypertension and Diabetes.

entity ranking task is to retrieve and rank entities from this Knowledge Graph in order of
relevance of the entity to the query. Several applications display a ranking of entities for a
user information need. For example, TextMed' (Figure 5.1) is a search engine that displays
a ranking of entities for a medical information need such as Diabetes. As shown in Figure
5.1, the connection between the top-ranked entity “Hypertension” and the query Diabetes
is not clear from this ranking. Tombros et al. [130] have shown that in document retrieval
systems, presenting the users with a short textual description summarizing the document
helps them judge the importance and utility of the results. Analogously, we want to present
a short text passage such as the one shown on the right in Figure 5.1 that explains the

connection between entity “Hypertension” and the query Diabetes to a user.

Entity-Support Passage Retrieval Task. Given a user’s information need (; an external
system predicts a ranking of entities E. For every relevant entity e; € £/, we want to retrieve
and rank K passages s;; which explain why this entity e; is relevant for (). We call the

entity e; target entity, and the passage s, entity-support passage.

"http://www.textmed.com/
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5.1.2 Why Do We Need Entity-Support Passages?

Entity-oriented search systems often use the introductory paragraph from an entity’s Wikipedia
page as the entity’s description [77,80,151]. Hence, the curious reader might wonder: Is
the introductory paragraph not sufficient to serve as an entity’s support passage? This
question has been studied and answered in the past: Dietz et al. [35] found that in less
than 50% cases, the introductory paragraph from an entity’s Wikipedia page is useful for
explaining the connection between the query and entity. In another experiment conducted
by the organizers of the TREC Complex Answer Retrieval [34] track, the assessors for the
entity retrieval task were provided with the introductory paragraph from the Wikipedia arti-
cle of the corresponding entity and asked to judge whether the introductory paragraph was
sufficient to explain the connection between the query and the entity. It was found that the
introductory paragraph was generally not relevant to the entity in the context of the query,

and hence insufficient to explain why the entity is relevant to the query.

5.1.3 Importance to the Research Community

As such, the entity-support passage retrieval task (in various flavors) has received much
attention from the IR research community. In fact, the task as defined above was part of the
entity retrieval task of TREC Complex Answer Retrieval track [33] where the participants
were required to retrieve Wikipedia entities in response to a query, along with passages
from Wikipedia which explain how/why the entity is relevant/related to the query. Simi-
larly, the 2020 edition of the TREC News [127]? track explored a variation of the above
task for the news domain: link the entities present in the text from a news article to an
external resource such as Wikipedia which provides more information on the entity. The
Retrieval From Conversational Dialogues (RCD)? track at FIRE 2020 explored a variation
of the above task for the conversational IR domain: return a ranked list of passages from

Wikipedia containing information on the entities in a dialogue.

2http://trec-news.org/
3https ://rcd2020firetask.github.io/RCD2020FIRETASK/

58


http://trec-news.org/
https://rcd2020firetask.github.io/RCD2020FIRETASK/

Query: Cholera
Entity: Oyster

Most cholera cases in
developed countries are a result
of transmission by food. Food
transmission can occur when
people harvest seafood such as
oysters in waters infected with
sewage, as Vibrio cholerae
accumulates  in  planktonic
crustaceans and the oysters eat

Oyster is the common name for
a number of different families of
salt-water bivalve molluscs that
live in marine or brackish
habitats.  Oysters influence
nutrient cycling, water filtration,
habitat structure, biodiversity,
and food web dynamics.

Cholera is an infection of the
small intestine by some strains
of the bacterium Vibrio cholerae.
The classic symptom is large
amounts of watery diarrhea that
lasts a few days. Vomiting and
muscle cramps may also occur.
Cholera can be caused by
eating oysters.

the zooplankton.

Figure 5.2: Example query and entity with support passages. Left: The passage is
relevant to the query and entity, and the entity is salient in the passage. The passage
clarifies how oysters may cause cholera. Hence, this is a good support passage for
the query-entity pair. Middle: The passage is relevant to the entity but not to the
query. Right: The passage is relevant to the query but not to the entity as the entity
is not salient in the passage. The passages in the middle and right are not good
support passages.

5.1.4 Answering Topical Queries using Entity-Support Passages

In addition to providing more information about entities in a ranking, the entity-support pas-
sages may also be utilized in a larger end-to-end information retrieval system which aims to
answer information needs of users about (yet) unfamiliar topics for which no Wikipedia ar-
ticles exist (yet). To this end, one may structure the answer-space for such queries through
the entities relevant to the query by assuming that the entities are the coarse-grained sub-
topics that a human would talk about while discussing about the topic. For example, while
discussing about Diabetes*, one may talk about how diabetes is treated using insulin, how
it is related to heart diseases, etc. Then, the support passages for each of these enti-
ties (“insulin”, “heart disease”, etc.) may serve as text to be clustered and summarized
to generate the Wikipedia-like article on the topic to be presented to the user. Hence, in
this dissertation, we use information about relevant entities to retrieve relevant text for the

query.

4This is just an illustrative example. Of course, a Wikipedia article about diabetes exists and can be found
athttps://en.wikipedia.org/wiki/Diabetes.
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5.1.5 Research Gap

The current state-of-the-art for entity-support passage retrieval [13, 61] uses methods
based on entity statistics such as frequency (number of candidate support passages men-
tioning the target entity), the KL-Divergence between the query and collection distributions,
relation extraction, etc. However, for entity-support passage retrieval, it is essential to iden-
tify the relevant connections between the query and the entity. For example, in Figure
5.2, the target entity “Oyster” is relevant to the query Cholera because cholera may be
caused in humans by consuming oysters that feed on cholera-causing bacteria called “Vib-
rio Cholerae”: The relevant connection between the query Cholera and the target entity
“Oyster” is through the query-relevant entity “Vibrio Cholerae”. In this work, we identify
such relevant connections (entities) between the query and entity and hypothesize that a
text passage containing many such relevant connections (entities) would be a good support
passage for the target entity.

In addition to being relevant for the query, each support passage should mention the
target entity in a salient way. Salient means that the entity is central to the discussion in
the passage and not just mentioned as an aside. For example, the target entity “Oyster”
is salient in the left passage in Figure 5.2 but not in the right passage. The current state-
of-the-art for entity-support passage retrieval does not consider the salience of the target
entity in the support passage. Hence, such methods might retrieve the right passage in-
stead of the left passage in Figure 5.2. In this work, we incorporate the salience of the
target entity in a candidate support passage, and study the impact of using entity salience

for the entity-support passage retrieval task.

5.1.6 Contributions

We make the following contributions through this work:

1. We propose a new model for entity-support passage retrieval called Entity Promi-
nence. We show that our approach achieves new state-of-the-art results for entity-

support passage retrieval by improving retrieval effectiveness by 80% (in terms of
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Mean Average Precision) on average, on two publicly available datasets from TREC

Complex Answer Retrieval.

2. We show that entity salience is a useful indicator and can improve retrieval effec-
tiveness by 70% (in terms of Mean Average Precision) on average on two publicly

available datasets.

3. We show that the performance on the task is dependent upon the type of context
used for the entity: Performance improvements are obtained by replacing a query-
independent context such as the Wikipedia article of the target entity with a query-

dependent context.

5.1.7 Outline

The remainder of this chapter is organized as follows. In Sections 5.2 through 5.4, we
describe our proposed method in detail. In Sections 5.5 and 5.6, we discuss the evaluation

protocol and results from this work. Finally, we end the chapter with Section 5.7.

5.2 Overarching Ideas

Given a ranked list of entities for a query, we seek to embellish it with passages which
would explain to the user why the entity is relevant to the query. We call the entities in the
ranking as target entities. We only try to predict support passages for target entities which
are also relevant to the query (according to an entity ground truth).

The overarching idea underlying this work is that a good support passage is (1) one
where the target entity e; is salient i.e., central to the discussion in the text, and (2) which
contains many relevant connections between the query and the target entity (for example,
the left passage in Figure 5.2).

Incorporating entity salience into our model is trivial: We use an off-the-shelf state-of-
the-art salience detection system called SWAT [109] to incorporate entity salience into our
model. Entity salience has been well-studied in the past [37,109, 150], and several tools

exist that given a text passage, identify salient entities in the passage. Our goal is not to
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propose a new entity salience detection system. On the contrary, we want to study whether
entity salience is important for the entity-support passage retrieval task.

The important and non-trivial question is: How do we identify relevant connections
between the query and the target entity? To answer this question, we note that our queries
are mainly topics such as Diabetes or Cholera. As such, the connections between a topical
query and a target entity may be defined in terms of other sub-topics that one might mention
while discussing about the target entity in the context of the query. For example, while
discussing about the target entity “Oyster” in the context of the topical query Diabetes, one
may mention query-relevant sub-topics such as “Seafood” and “Vibrio Cholerae” related to
the entity “Oyster”. Our assumption is that a query-relevant text passage containing many
such sub-topics would be a good support passage for the entity “Oyster”.

In this work, we use the query-relevant entities e, which frequently co-occur with the
target entity e; in a query-relevant context C as surrogates for coarse-grained sub-topics
that are relevant for a discussion about the target entity e; in the context of a topical query.
We use a query-relevant candidate set of passages D to define an entity’s query-relevant
context C, and the query-relevant entities e, to define the relevant connections between
the query and the target entity ¢;. We hypothesize that a query-relevant text passage p €
D mentioning many such query-relevant entities (connections) e, would be good support
passage for the entity.

Our assumption about good entity-support passages implies that the support passage
must be relevant to both the query and the target entity. Hence, at the heart of our approach
is a model which given a query () and a target entity e;, combines information from two
types of indicators: (1) The sub-topics pertaining to the target entity e; which are relevant
in the context of the query (), obtained using a query-relevant context C of the target entity,
and (2) An entity salience indicator which indicates whether the target entity e; is salient in
the support passage. These indicators are then combined in a supervised manner to score
a support passage p with respect to its suitability of explaining the relevance of the target

entity e; to the query Q.
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On entity-profiles. As discussed in Section 5.1, in entity-oriented research, it is cus-
tomary to use the introductory paragraph from the Wikipedia page of an entity as the en-
tity’s profile (short descriptions of the entity). Entity-profiles are also often built query-
independently using information from Knowledge Bases such as anchor text, category
links, etc., [52,63]. However, in this work, we use a query-relevant candidate set of pas-
sages D to build an entity-profile and define an entity’s query-relevant context C. Hence,
one might wonder: Why can’t we use the introductory paragraph or the entire Wikipedia
page of the entity to build the entity-profile and define the entity context C above?

To answer this question: We hypothesize that using a query-independent entity-profile
such as the Wikipedia article, the relevant connections between the query and the target
entity might be lost due to the presence of other, more popular sub-topics about the entity in
the profile which are not relevant to the query. For example, some other, more popular sub-
topics related to the entity “Oyster” might be “Nutrition” and “Nutrient Cycling”; however,
these sub-topics are not relevant in the context of the query Cholera. The query-relevant
candidate set of passages D help us to define a query-specific profile of the entity, thus
allowing us to identify query-relevant sub-topics of the target entity.

To support our hypothesis about the benefits of using a query-specific entity profile, we
replace our query-specific entity profile with the Wikipedia article of the target entity and

include it in the empirical evaluation.

Constructing the query-specific entity-profile. We first retrieve a candidate set of pas-
sages D from an index of paragraphs with the query using BM25. We construct the query-
specific entity-profile D, of a target entity e; using query-relevant candidate set of passages

D as follows: We retain only passages p., € D that mention the target entity e;.
5.3 Approach: Learning-To-Rank using Query-Specific Entity Profile and
Entity Salience

Our approach uses a supervised combination of several features which are derived from

the query-specific profile of the target entity, and the salience of the target entity in the
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support passage. When considering the query-specific profile, we consider both, a bag-of-
entities and a bag-of-words representation of the profile. Below, we describe each individ-

ual feature, which are then treated as features and combined using Learning-To-Rank.

Notation. Henceforth, we use e, to denote the target entity, ) to denote the query, D,, to
denote the query-specific profile of the target entity e;, and p., € D, to denote a candidate

support passage p., of the target entity e;.

5.3.1 Features Based on Query-Specific Profile

Entity Prominence (E-PROM). As discussed in Section 5.2, a passage might contain
sub-topics about the target entity which are not relevant in the context of the query @. In
order to address this, we aim to model the query-relevant sub-topics of the target entity
found in a candidate support passage. To this end, we treat the query-specific target
entity profile D,, of the target entity e; as a bag-of-entities. We use the query-relevant
entities e, € D,, as a surrogate for the query-relevant sub-topics of the target entity e;.
The intuition is that since these query-relevant entities e, have been mentioned along with
the target entity e, in a query-specific target entity profile D.,, the entities e, would roughly
model the query-relevant sub-topics of the target entity e¢;.

We derive a relevance indicator for entity-support passages based on the frequency of

entities e, € D as follows:

P(e, | e,Q) o count(e, € De,) (5.1)

where count(e, € D,,) is a function which returns the number of times a query-relevant
entity e, occurs in the query-specific profile D,.,. The intuition is that more frequently an
entity e, is mentioned along with the target entity e;, the more probable that e, is a query-
relevant sub-topic of e;.

Our assumption is that a candidate support passage that contains many such query-
relevant sub-topics (entities) e, of the target entity ¢; is a good support passage for e;.

Hence, we model the relevance of a candidate support passage p., € D., to the target
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entity e, as follows:

Score, (pe,) = Z Ples | e, Q) (5.2)

€xEPey
This score is combined with the score of the support passage for the query to obtain

the final score of the support passage:
EPROM(p., | e;, @) = A - Score,,(p.,) + (1 — ) - Scoreg(pe,) A € [0,1] (5.3)

where ) is learnt using machine learning, and Scoreg (p., ) is obtained from the candidate

passage ranking D for the query.

Term Prominence (T-PROM). Alternatively, we treat the target entity profile D., as a bag-
of-words and use the words ¢t € D,, to rank candidate support passages p.,. Specifically,
we obtain a distribution over the terms ¢ € D,, (after stop words removal) using the term fre-
quency tf,, () of word ¢ in a passage p., € D.,, weighted by the retrieval score Scoreq(p.,)

of the passage p., for the query @) as follows:

P(t|e,Q)c >, Scoreq(pe,) -y, (t) (5.4)

Pey€De,
where Scoreg(p., ) is obtained from the candidate passage ranking D for ().
We then score a candidate support passage p € D by accumulating the word scores of

each word in the passage. Formally,

TPROM(pe, | €,Q) = >} P(t| e, Q) (5.5)

t€pe;

5.3.2 Features Based On Entity Salience

As discussed in Section 5.1, a support passage must mention the target entity in a salient
way, i.e., the target entity must be central to the discussion in the support passage and not

just mentioned as an aside. For example, in Figure 5.2, the entity “Oyster” is salient in the
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left passage but not in the right. In this work, we explore if entity salience can help in the
support passage retrieval task. We use the salience detection system from Ponza et al.
[109]° in our work.

Below, we describe our features which use entity salience to rank candidate support
passages for a target entity and query. We denote by Salience(e; | p, ), the salience score

of the target entity e, for a candidate support passage p., .

Sal-ReRank. We re-rank the support passage ranking obtained using our method E-

PROM in Section 5.3.1 using entity salience as follows:

Score(p., | e, Q) = X - Salience(e; | pe,) + (1 — A) - EPROM(p,, | €1, Q) A€ [0,1]

where \ is learnt using machine learning, and Salience(e, | p., ) is obtained using the entity
salience detection system SWAT [109]. SWAT takes a text passage as input and returns
the salient entities in the passage, along with the confidence scores for each entity that

shows how salient the entity is in the text.

Sal-Binary. Score(p,, | €, Q) = 1 if the target entity e, is salient in the support passage

De,,» and zero otherwise.

Sal-RankScoreOfPassage. Score(p., | e:;, Q) = Scoreg(p,) if the target entity e, is
salient in the support passage p.,, and zero otherwise. Scoreq(p.,) is the retrieval score

of the passage p., for the query () obtained from the candidate passage ranking D for the

query.

Sal-SalienceScoreOfEntity. Score(p., | ¢;, Q) = Salience(e; | p.,) if the target entity e,

is salient in the support passage p.,, and zero otherwise.

Shttps://sobigdata.d4science.org/web/tagme/swat-api.
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Sal-CombinedSaliencePassageScore. We combine the salience score of the target en-

tity in the support passage with the score of the support passage for the query.

Score(pe, | e, Q) = X - Salience(e; | pe,) + (1 — A) - Scoreg(pe,)) A€ [0,1]

One issue that we foresee in the use of salience for a retrieval task such as this is
that many entities would not have a passage with a salient mention in the candidate set of
passages D retrieved for the query. However, for entities which have at least one passage
with a salient mention in the candidate set, our hypothesis is that entity salience would help

improve retrieval performance. An initial analysis on entity salience is presented in Section

5.4 Alternative for Evaluation: Using Wikipedia Article instead of the

Query-Specific Entity-Profile

As noted in Section 5.2, previous works have used the Wikipedia article of an entity as
the entity’s profile. Hence, for the purpose of evaluation and comparison, we replace our
query-specific target entity profile with the Wikipedia article of the target entity. Below,
we describe methods which use the Wikipedia article instead of our query-specific entity

profile. These methods correspond to those in Section 5.3.2.

WikiTerms. Similar to our method T-PROM described in Section 5.3.1. Here, we use
the Wikipedia article VW of the target entity e, to find a distribution over the terms ¢t € W.
Specifically: P(t | e;, Q) Yy, Scoreq(p) - tf,(¢). To calculate Scoreq(p), we segment W
into its constituent paragraphs, then index these paragraphs, and finally retrieve from this
index using BM25. We use this new distribution P(¢ | e;, Q) to score the candidate support

passages in Equation 5.5.

WikiEntities. Similar to E-PROM in Section 5.3.1. As in Equation 5.1, we derive a distri-

bution P(e, | e;, Q) over entities e, € YW. We then score a passage p., € D, as in Equation
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5.3 using the distribution P(e, | e;, Q) obtained using the Wikipedia article.

5.5 Evaluation

5.5.1 Datasets

For this work, we need both, an entity ground truth and a passage ground truth. The
datasets from the TREC Complex Answer Retrieval (CAR) track [33]® contain such ground
truth data and hence suitable to study this task. We use two datasets from TREC CAR to

evaluate our methods. They are:

1. BenchmarkY1-Train. It is based on a Wikipedia dump from 2016. The Wikipedia
articles are split into the outline of sections and the paragraphs contained in each
section. The information about which paragraph originated from which section, and
the entity links in each paragraph are retained. Each section outline is treated as a

complex topic. There are 117 such sections (complex topics),

2. BenchmarkY2-Test. A part of this dataset is based on a Wikipedia dump from 2018
whereas the remainder is based on the Textbook Question Answering (TQA) [65]
dataset which consists of questions taken from middle school science curricula. This

dataset consists of 65 complex topics.

Corpus. We use the corpus of paragraphs from TREC CAR. The corpus consisting of
paragraphs from the entire English Wikipedia with the entity links preserved. This corpus
is constructed by collecting all paragraphs from Wikipedia, assigning unique IDs to each
paragraph through SHA256 hashes on the text content (excluding links), and de-duplication
through min hashing using word embedding vectors provided by GloVe.

In addition to entity links that are provided in the corpus, we create entity link annota-

tions using WAT [104]".

®http://trec-car.cs.unh.edu
"WAT has both, an entity linking system and an entity relatedness prediction system in it. These can be
queried using different APIs.
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Ground Truth. The TREC CAR datasets contain both passage and entity ground truth
data. For BenchmarkY1-Train, both passage and entity ground truth were generated auto-
matically: All paragraphs from a section in a Wikipedia page are deemed as relevant to that
section, and if a page/section contains an entity link, then the link target entity is defined
as relevant. The passage ground truth contains 4530 positive assessments, whereas the
entity ground truth contains 13,031 positive assessments.

As mentioned above, the BenchmarkY2-Test dataset was constructed using pages
from the Wikipedia dump of 2018. However, very few paragraphs from the Wiki-16 dump
existed in the Wiki-18 dump. Moreover, the paragraph sets from Wiki-16 and TQA are dis-
joint. Due to this difference in the dataset construction procedure for BenchmarkY2-Test,
the automatic ground truth extraction procedure used for constructing the passage ground
truth for BenchmarkY'1-Train could not be applied for deriving the passage ground truth for
this dataset. Hence, the passage ground truth was constructed after manual assessment,
and consists of 9633 positive assessments. The automatic entity ground truth construction
was not affected as it does not depend on paragraph overlap. Both automatic as well as
manual entity ground truth is available for BenchmarkY2-Test and consist of 1356 positive

assessments.

Support Passage Ground Truth. We use the automatically generated ground truth (both
passage and entity) for BenchmarkY1-Train and the manually generated ground truth (both
passage and entity) for BenchmarkY2-Test. We derive a ground truth for entity support
passage retrieval from the ground truth of relevant passages and entities provided with the
data sets (article-level) as follows: Any relevant passage that contains an entity link to a

relevant entity for the query is defined as relevant for the given query and entity.

5.5.2 Evaluation Paradigm

Initial Analysis on Entity Salience. We perform an initial analysis where we analyze
how many relevant entities have a passage with a salient mention in the candidate set of

passages retrieved for the query. We find that on average, 53% of the relevant entities for
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a query have no passage with a salient mention in the candidate set. For these entities,
the salience indicator is not applicable. Hence, for evaluation and to answer our research
questions, we restrict ourselves to entities which have at least one passage with a salience

mention in the candidate set.

Candidate Passage Retrieval for Query. We use Wikipedia page titles as our queries
for the initial candidate passage retrieval. To retrieve passages for a Wikipedia page title as
query, we use all the section headings on the Wikipedia page to construct a boolean query
of the terms in the section headings, and retrieve candidate passages with this boolean
query using BM25 (Lucene default). However, any passage ranking method could be used

here.

Input Entity Ranking. The input to our support passage retrieval system is a ranking
of entities. We obtain an entity ranking as follows: We use an idea based on Pseudo-
Relevance Feedback [70] and the Entity Context Model [26] that has been found to be a
strong entity relevance indicator by prior work [18,26,32,112] to obtain an entity ranking
from an index of paragraphs. We represent a pseudo-relevant feedback set of paragraphs
retrieved using the query as a bag-of-entities. To rank the entities in the bag, we weigh the
frequency distribution of the entities by the retrieval score of the paragraphs. However, any

system could be used to obtain an entity ranking here.

Wikipedia as Entity Profile. For evaluation, we use the Wikipedia article of the target
entity as entity profile. The TREC CAR dataset consists of a large, unprocessed collection
of Wikipedia pages. It contains all pages except those in the benchmarks. We index this
unprocessed collection of Wikipedia pages using Lucene. We treat each Wikipedia page
as an entity [63], and associate each entity with text that includes the Wikipedia article, as

well as anchor text, names and type labels.

Machine Learning. We apply our methods to produce an entity-support passage ranking

for every query-entity pair. We then treat each ranking as a feature and perform 5-fold cross
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validation. We use Coordinate Ascent optimized for Mean Average Precision (MAP) for this
purpose.

As discussed above, our initial analysis of entity salience shows that only a few relevant
entities have a passage with a salient mention in the candidate set of passages. Hence,
we train our system only on entities with at least one salient passage, and evaluate only
on such entities. For comparison, we also report results from training and evaluating our

system on all entities.

Evaluation Metrics. In this work, as in Blanco et al. [13], we are interested in precision
more than recall. This is because although there may be many passages explaining the
relevance of an entity to a query, a typical user is interested in one or two of them. Moreover,
the user interfaces of entity retrieval systems would typically allow for only one or two
such support passages to be displayed. Hence, we use the following precision-oriented
retrieval metrics to evaluate our work: Mean Average Precision (MAP), Mean Reciprocal

Rank (MRR), Precision at R (P@R), and Precision at 1 (P@1).

Difficulty Tests and Helps-Hurts Analysis. To analyze the extent to which a method

affects the performance of our system, we perform two types of analysis:

1. Difficulty Test: We divide the query-entity pairs into different levels of difficulty ac-
cording to the performance of a baseline method, with the 5% most difficult pairs
for this method to the left and the 5% easiest ones to the right. We then study the

performance of our methods on these different subsets of the query-entity pairs.

2. Helps-Hurts Analysis: As compared to a baseline, we calculate the number of query-
entity pairs on which one of our methods improved performance (helps) or lowered

performance (hurt).

5.5.3 Baselines

In this section, we describe the baselines against which we compare our methods.
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Blanco et al. [13]. We re-implement the work from Blanco et al. [13] and include
a learning-to-rank system of their features as a baseline. Their methods use a named
entity recognizer to find entities in the candidate support sentences. We use the Stanford
Named Entity Recognizer [44]2 for this purpose. Below, we give a short description of their
methods which we include as features in a learning-to-rank baseline in this paper.

Given a query ¢ and an entity ¢, Blanco et al. score a candidate entity support passage:

ey Elg,€’) ifeep
0 e¢p

Scoreg.(p) = (5.6)

where E(q, ') is an entity ranking method which scores an entity for the query.

Blanco et al. propose several alternatives for E(q, ¢’) in Equation 5.6. These are:

1. Entity Frequency. Number of candidate support passages mentioning an entity.

This is akin to Term Frequency (TF) for terms.

2. Entity Rarity. Entity inverted sentence frequency to penalize very frequent entities.

This is akin to Inverted Document Frequency (IDF) for terms.

3. Combination. Combination of Entity Frequency and Rarity as described above. This

is akin to TF-IDF weighing scheme for terms.

4. KLD. KL-Divergence between query and collection distributions. Formally,

Fuaola) - Pich) g

where P(e|d,) is the proportion of the candidate passages for the query ¢ which
also mention the entity e, and P(e|f) is the proportion of the passages in the entire

corpus which also mention the entity e.

As in Blanco et al., we too use the results from using both, an average and a summation

in Equation 5.6 with the various entity ranking methods described above.

8https://nlp.stanford.edu/software/CRF-NER.html
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Other Baselines. We include the following baselines which use only the query and target

entity without any other components of our approach.

1. Frequency of relevant entity links (FreqOfRelLinks). We rank passages for a
query-entity pair by the number of relevant entities in the passage. For example,
if a passage p contains entities {e;,es} and the entities {eq, e, e3,¢4} have been
retrieved for the query ¢, then the score of p for each of the query-entity pairs is
fae: (P) = foe,(p) = 2 because the passage has two entities in common with the list

retrieved for q.

2. Compound entity-query score (CompoundQuery). We retrieve passages using a
compound query, where the query is a combination (BooleanQuery) of terms from

the original query and the target entity.

5.5.4 Research Questions

In this work, we use the salience of the target entity in the support passage as an indi-
cator of good support passage. With this, the research question we aim to answer is the

following:
RQ1 To what extent is entity salience helpful in support passage retrieval?

As noted in Section 5.2, previous work on entity and document retrieval has often used
the Wikipedia article of an entity as the entity’s profile. However, in this work, our hypothesis
is that the Wikipedia article is not suitable for support passage retrieval because it contains
many sub-topics pertaining to the target entity which might be non-relevant in the context
of the given query. Hence, we propose to use a query-specific entity profile. Regarding

this, we study the following research question:

RQ2 What is the effect of replacing the query-specific entity-profile with the Wikipedia

article of the entity?

As discussed in Section 5.5.2, for evaluation purposes, we restrict ourselves to only the

subset of entities in the input entity ranking for which there is at least one passage with
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Table 5.1: Main results on subset of entities with at least one passage in the can-
didate set in which the entity is salient. We observe from this table that our L2R
system consisting of features based on our proposed query-specific entity profile,
and entity salience, outperforms all the baselines, including the current state-of-the-
art from Blanco et al. « denotes significantly higher, at p < 0.05 using the paired
t-test with respect to Blanco et al. [13].

BenchmarkY1-Train BenchmarkY2-Test
MAP P@QR MRR P@1 MAP P@R MRR P@1
Blanco et al. 0.14 0.12 0.20 0.14 0.20 0.20 0.42 0.29

FreqOfEntityLinks  0.14  0.11 0.22 0.13 0.22 0.20 0.43 0.27
CompoundQuery  0.05 0.05 0.07 0.05 0.06 0.07 0.18 0.12

Ours 0.31* 0.30* 045" 0.40°* 047" 043 0.73* 0.60"

AWM =

a salient mention in the candidate set. However, we also study the performance of our

method on all entities through the following research question:

RQ3 How does the retrieval performance change, when our learning-to-rank system is

trained and evaluated on all entities (salient and non-salient)?

5.6 Results and Discussions

In this section, we discuss each research question presented in Section 5.5.4. The results
from using our proposed system is shown in Table 5.1. The results from the individual
support passage ranking methods are shown in Table 5.2.

The results in Sections 5.6.1 and 5.6.2 are discussed with respect to the subset of
entities which have at least one passage in the candidate set in which the entity is salient.

In Section 5.6.3, we also discuss about what happens when we use all entities.

5.6.1 Entity Salience for Support Passage Retrieval

In this section, we discuss RQ1 by comparing our proposed system with two other systems:
(1) The baseline system from Blanco et al. and, (2) A learning-to-rank system without the

salience component.

74



Table 5.2: Performance of individual support passage ranking methods on subset of
entities with at least one passage in the candidate set in which the entity is salient. 4
denotes significantly higher, and v denotes significantly lower, at p < 0.05 using the
paired t-test with respect to Blanco et al. [13].

BenchmarkY1-Train BenchmarkY2-Test

MAP P@R MRR P@1 MAP P@R MRR P@1
1 Blanco et al. [13] 0.14 0.12 0.20 0.14 0.20 0.20 042 0.29
2  FreqOfEntityLinks 0.14 0.11 022 0.13 022 020 043 0.27
3  CompoundQuery 0.0 0.05 0.0r 0.05 0.06 007 018 0.12
4 E-PROM 0.24* 0.22* 0.33* 0.26* 0.34* 0.31* 0.54* 0.36*
5 T-PROM 0.23* 0.20* 0.32* 0.23* 0.38* 0.34* 0.64* 0.51*
6 L2R 0.28* 0.25* 0.42* 0.36* 0.38* 0.34* 0.64* 0.52*
7  WikiTerms 0.23* 0.20* 0.32* 0.23* 0.35* 0.31* 0.58* 0.41*
8  WikiEntities 0.12 0.117 0.19° 0.117 0.28* 0.28* 0.51* 0.36*
9 L2R 0.23* 0.19* 0.32* 0.22* 0.34* 0.30* 0.56* 0.39*
10 Sal-ReRank 0.30* 0.28* 0.44* 0.38* 0.47* 0.43* 0.74* 0.60*
11 Sal-Binary 0.23* 0.23* 0.36* 0.30* 0.09" 0.12" 0.32" 0.23"
12 Sal-RankScoreOfPassage 0.25* 0.26* 0.41* 0.36* 0.12 0.13" 0.44* 0.40*
13 Sal-SalienceScoreOfEntity 0.23* 0.23* 0.36* 0.30* 0.10" 0.11v 0.35" 0.27"
14 Sal-CombinedSaliencePassageScore 0.30* 0.30* 0.43* 0.36* 0.47* 0.44* 0.74* 0.61*
15 L2R 0.25* 0.26* 0.40* 0.34* 0.12* 0.13* 0.44* 0.40*

Comparison with Blanco et al. From Table 5.1, we observe that on both datasets, our
proposed system outperforms all baselines. It achieves statistically significant improve-
ments over the state-of-the-art method from Blanco et al. [13].

To analyze the effects of using entity salience for support passage retrieval in more
detail, we perform the difficulty test described in Section 5.5.2 and compare our proposed
system with that of Blanco et al. The results are shown in Figure 5.3. From Figure 5.3,
we observe that the method from Blanco et al. does well on the top (50-100%) query-
entity pairs. However, it cannot find support passages for the remaining query-entity pairs.
The query-entity pairs on the left are “difficult" for the method proposed by Blanco et al.
However, our learning-to-rank system consistently performs well on all types of query-entity
pairs (easy as well as difficult). This shows why our system outperforms the system from
Blanco et al.

Using the helps-hurts analysis described in Section 5.5.2, we find that in terms of
MAP, our proposed system helps improve the performance of 232 query-entity pairs on
BenchmarkY1-Train, and 250 query-entity pairs on BenchmarkY2-Test.

Worked Example. As an example, in Figure 5.4, we show a query-entity pair for which
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(a) BenchmarkY1-Train Results. (b) BenchmarkY2-Test Results.

Figure 5.3: Difficulty test for MAP on the two data sets, comparing the state-of-the-
art method from Blanco et al. to our learning-to-rank system consisting of features
based on query-specific entity profile and entity salience. We observe that for the
most difficult query-entity pairs (0-25%), our learning-to-rank system can find sup-
port passages whereas the method from Blanco et al. cannot. This helps to improve
the performance.

our method successfully retrieved a support passage but the method from Blanco et al.
could not. From this figure, we observe that the support passage explains the connec-
tion between the query Pesticide and the entity “United States Environmental Protection

Agency”. Moreover, the entity is salient in the support passage.

Comparison with a Learning-to-Rank System without Salience. The top part of Table
5.5 shows us that adding the salience features to the learning-to-rank system improves
performance with respect to all evaluation measures on both datasets. From the difficulty
test in Figure 5.5, we observe that considering only the profile features is not enough to do
well on the task: In the bins marks 5-75%, entity salience helps to improve the performance
and hence improves the overall results. A helps-hurts analysis shows that our system helps
139 query-entity pairs while hurting 68 on BenchmarkY1-Train. On BenchmarkY2-Test, our
system helps 191 query-entity pairs and hurts 81. Hence, without the salience component,
we would miss retrieving support passages for 139 query-entity pairs on BenchmarkY1-
Train, and 191 on BenchmarkY2-Test.

Worked Example. As an example, in Figure 5.6, we show a query-entity pair for which
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Query: Pesticide

Entity: United States Environmental Protection Agency

Support Passage:

In the United States, the Environmental Protection Agency (EPA) is responsible
for regulating pesticides under the Federal Insecticide, Fungicide, and Roden-
ticide Act (FIFRA) and the Food Quality Protection Act (FQPA). Studies must
be conducted to establish the conditions in which the material is safe to use
and the effectiveness against the intended pest(s). The EPA regulates pes-
ticides to ensure that these products do not pose adverse effects to humans
or the environment. Pesticides produced before November 1984 continue to
be reassessed in order to meet the current scientific and regulatory standards.
All registered pesticides are reviewed every 15 years to ensure they meet the
proper standards. During the registration process, a label is created. The label
contains directions for proper use of the material in addition to safety restric-
tions. Based on acute toxicity, pesticides are assigned to a Toxicity Class.

Figure 5.4: Example query and entity with top ranked support passage found by
our proposed learning-to-rank system from BenchmarkY1-Train. The method from
Blanco et al. could not find a support passage for this query-entity pair, but our pro-
posed method successfully retrieved support passages for this query-entity pair and
helped to improve the performance of our system as compared to that of Blanco et
al. We observe that this passage explains that the entity “United States Environmen-
tal Protection Agency” is relevant to the query Pesticide because the EPA regulates
the pesticides in the United States. Moreover, the entity is central to the discussion
in the passage.

our method successfully found a support passage but the system without the salience com-
ponent could not. From this figure, we observe that the support passage explains the con-
nection between the query Research in lithium-ion batteries and the entity “Massachusetts
Institute of Technology”. Moreover, the entity is salient in the support passage.

In Figure 5.7, we show an example of a query-entity pair for which both the systems
(ours and the one without salience) found a support passage. We observe that the pas-
sage on the left does not explain why the entity “Aron Rubashkin” is relevant for the query
Agriprocessors. Moreover, the entity is not even salient in the passage. However, the pas-
sage on the right clearly explains the relation between the entity and the query, with the

entity being salient in the passage.

Take-Away. To answer RQ1, entity salience is a very strong indicator of support pas-

sages. Without the salience component, the support passage retrieval system cannot find
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Table 5.3: Comparison of the performance of our system, when it is trained and
evaluated on a subset of entities with at least one passage with a salient mention in
the candidate set versus when it is trained and evaluated on all entities. We observe
that when the system is trained and evaluated on only the subset, adding salience to
the profile features leads to performance gains in terms of all evaluation measures.
When the system is trained and evaluated on all entities, adding salience to the
profile features does not affect performance. Hence, salience is a strong and useful
indicator of support passages for entities for which salience is applicable. For the
other entities, i.e., in the general case, it does not hurt the performance of the system
using it.

BenchmarkY1-Train BenchmarkY2-Test
MAP P@R MRR P@1 MAP P@R MRR P@1
. Profile 028 025 042 036 038 034 064 052
Train-Subset, Evaluate-Subset [, . "Soionce 031 030 045 040 047 043 073 0.60
Profile 030 027 033 030 038 036 050 0.45

Train-All, Evaluate-All Profile + Salience  0.30

0.27

0.33

0.30

0.38

0.36

0.50

0.45

meaningful passages in which the target entity is not only mentioned but also central to the
discussion. As has been shown in examples above, without the salience component, the
system cannot find support passages for many query-entity pairs and the performance of
the system drops. From the top portion of Table 5.5, we observe that on BenchmarkY1-
Train, adding salience to the system leads to an increase of 11% in terms of Mean Average
Precision whereas on BenchmarkY2-Test, it leads to an improvement of 24%. For those
query-entity pairs for which the system without salience does manage to find a support
passage, the passage may be non-relevant and not useful as a support passage. Hence,

it is important to consider the salience of the target entity while finding support passages.

5.6.2 Using Wikipedia instead of Query-Specific Entity-Profile

To answer RQ2, we show the results from replacing the query-specific entity profile with the
Wikipedia article of the target entity in our learning-to-rank system in Table 5.4. We observe
that the system using Wikipedia has significantly lower performance than our system which
uses the query-specific entity profile.

To analyze the performance of the system using Wikipedia on the different subsets
of query-entity pairs sorted by difficulty for our system, we present the results from the

difficulty test in Figure 5.8. We observe that on 0-25% most difficult query-entity pairs, both
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(a) BenchmarkY1-Train Results. (b) BenchmarkY2-Test Results.

Figure 5.5: Difficulty test for MAP on the two data sets, comparing two learning-to-
rank systems: one comprising of only features based on the query-specific entity
profile, and other being our proposed learning-to-rank system containing features
based on entity salience in addition to profile features. We observe that considering
the profile features alone is not enough to achieve good results on the task. On
0-75% difficult queries on the left, the salience features help to boost the retrieval
performance.

systems perform almost the same. However, for the other query-entity pairs, the system
using Wikipedia does not perform as well as the system using the query-specific entity
profile.

A helps-hurts analysis further shows that the system using Wikipedia instead of the
query-specific entity profile helps the performance (in terms of MAP) of 63 query-entity
pairs but hurts 128 of them on BenchmarkY1-Train. On BenchmarkY2-Test, the system

using Wikipedia helps 74 query-entity pairs but hurts 201 of them.

Take-Away. To answer RQ2, replacing the query-specific entity profile with the Wikipedia
article of the target entity leads to a decrease in performance. From Table 5.4, we observe
that there is a drop of 6% in terms of Mean Average Precision on BenchmarkY1-Train
and 23% on BenchmarkY2-Test, when the query-specific entity profile is replaced with the
Wikipedia article of the target entity. This confirms our hypothesis that considering the
query-specific information of the target entity is important for support passage retrieval.

The issue is that a support passage for an entity must contain query-relevant topics of the
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Query: Research in lithium-ion batteries

Entity: Massachusetts Institute of Technology

Support Passage:

In 2009, researchers at MIT developed a battery using genetically engineered
viruses to make a more environmentally friendly battery. In 2015, another
MIT group announced a flexible, puncture-resilient battery with fewer, thicker
electrodes that used a semisolid aqueous suspension lithium-ion-phosphate
(LFP)/lithium-titanium-phosphate (LTP) to achieve higher energy density than
a conventional aqueous vanadium-redox flow battery. Using suspended parti-
cles instead of solid slabs greatly reduces the tortuosity (path length of charged
particles as they move through the material).

Figure 5.6: Example query and entity with top ranked support passage found by our
proposed learning-to-rank system from BenchmarkY1-Train. The learning-to-rank
system containing only profile features could not find a support passage for this
query-entity pair, but our proposed method successfully retrieved support passages
for this query-entity pair which helped to improve the performance of our system.
We observe that this passage explains that the entity “Massachusetts Institute of
Technology” is relevant to the query Research in lithium-ion batteries because the
researchers at MIT developed a new kind of lithium-ion battery. Moreover, the entity
is central to the discussion in the passage.

target entity. However, the Wikipedia article contains many topics about an entity which
may not be necessarily important in the context of the query, and the more important and
relevant topics are lost. Considering the query-specific profile helps to narrow down on the

query-relevant topics of the target entity and ignore the other, non-relevant topics.

5.6.3 Utility of Entity Salience for All Entities in General

As discussed in Section 5.5.2, we find that many entities do not have a passage in the can-
didate set in which the entity is salient. Hence, to draw meaningful conclusions regarding
the utility of entity salience, we perform our experiments using only the subset of entities
which have a passage with a salient mention in the candidate set.

To explore the effect of entity salience on the whole dataset, in this section, we present
results from training and evaluating our learning-to-rank system on using all entities irre-
spective of whether or not they have a passage with a salient mention in the candidate set.
The results are shown in Table 5.5.

From the top part of Table 5.5, we observe that for entities which have a salient passage,
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Query: Agriprocessors
Entity: Aaron Rubashkin

Sholom Mordechai Rubashkin (born October
6, 1959) is an American former chief
executive officer of Agriprocessors, a now-
bankrupt kosher slaughterhouse and meat
packing plant in Postville, lowa, formerly
owned by his father, Aaron Rubashkin.
During his time as CEO of the plant,
Agriprocessors grew into the largest kosher
meat producer in the United States, but was
also cited for issues involving animal
treatment, food safety, environmental safety,
child labor, and hiring of illegal workers.

In 1987, Aaron Rubashkin opened the
Agriprocessors plant in Postville, lowa and put two of
his sons in charge: Sholom Rubashkin, the second
youngest, as CEO; and Heshy Rubashkin, the
youngest, as vice president of marketing and sales.
Eventually, Agriprocessors became the United
States' largest kosher slaughterhouse and meat
packing plant and the only one authorized by Israel's
Orthodox rabbinate to export beef to Israel.
According to statistics that Rubashkin gave to Cattle
Buyers Weekly, Agriprocessors' sales increased from
$80 million in 1997 to $180 million in 2002. In 2002,

Agriprocessors was ranked as one of the 30 biggest
beef-packing plants in America.

Figure 5.7: Left: Top ranked support passage found by L2R system without the
salience component. Right: Top ranked support passage found by our L2R system.
We observe that both passages mention the entity “Aron Rubashkin”. However, the
entity is not salient in the left passage whereas it is salient in the right passage. The
right passage is a better explanation of why Aron Rubashkin is related to Agriproces-
sors: he was the founder of the plant in lowa which became the largest meat-packing
plant in the US.

Table 5.4: Results for replacing our query-specific entity profile with the Wikipedia
article of the target entity in our system. These results are on the subset of enti-
ties with at least one passage in the candidate set in which the entity is salient. We
observe that using Wikipedia instead of the entity profile leads to decrease in perfor-
mance. v denotes significantly lower, at p < 0.05 using the paired t-test with respect
to our L2R (Profile + Salience) system.

BenchmarkY2-Test
MAP P@R MRR P@1

047 043 0.73 0.60
0.36" 0.32" 0.58" 043"

BenchmarkY1-Train
MAP P@R MRR P@1

031 030 045 040
0.29" 0.28" 0.42" 0.36"

1 Our L2R (Profile + Salience)
2 L2R (Wikipedia + Salience)

adding salience to the system improves performance with respect to all measures. On
the other hand, when we consider all entities, salience does not have any effect on the
performance of a system using it, as can be observed from the bottom part of Table 5.5.
We also perform a difficulty test to analyze the performance of the following two sys-
tems, when they are trained and evaluated on all entities: our proposed learning-to-rank
system, and our system without the salience component. The results are shown in Figure
5.9. We observe that the performance of our system using salience is the same as that of

our system without salience on different subsets of query-entity pairs.
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(a) BenchmarkY1-Train Results. (b) BenchmarkY2-Test Results.

Figure 5.8: Difficulty test for MAP to determine the importance of using a query-
specific entity profile to represent the target entity versus the Wikipedia article of
the entity. The queries are divided into groups based on difficulty for our proposed
system which uses the query-specific entity profile. We observe that whenever it is
difficult for the system using Wikipedia to find good support passages, using the
query-specific entity profile can help improve performance. This shows that infor-
mation from the query-specific target entity profile is more important for support
passage retrieval than that from the Wikipedia article of the target entity.
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(a) BenchmarkY1-Train Results. (b) BenchmarkY2-Test Results.

Figure 5.9: Difficulty test for MAP comparing two systems:one using the salience
component and the other without it, on all entities. We observe that the salience
component neither helps not hurts the performance of query-entity pairs in the dif-
ferent bins. This shows that although entity salience is a strong indicator of support
passages for the entities for which it is applicable, in general, it does not hurt the
performance of a system using it.
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Table 5.5: Comparison of the performance of our system, when it is trained and
evaluated on a subset of entities with at least one passage with a salient mention in
the candidate set versus when it is trained and evaluated on all entities. We observe
that when the system is trained and evaluated on only the subset, adding salience to
the profile features leads to performance gains in terms of all evaluation measures.
When the system is trained and evaluated on all entities, adding salience to the
profile features does not affect performance. Hence, salience is a strong and useful
indicator of support passages for entities for which salience is applicable. For the
other entities, i.e., in the general case, it does not hurt the performance of the system
using it.

BenchmarkY1-Train BenchmarkY2-Test
MAP P@R MRR P@1 MAP P@R MRR P@1
. Profile 028 025 042 036 038 034 064 052
Train-Subset, Evaluate-Subset [, . "Soionce 031 030 045 040 047 043 073 0.60
Profile 030 027 033 030 038 036 050 0.45

Train-All, Evaluate-All Profile + Salience  0.30

0.27

0.33

0.30

0.38

0.36

0.50

0.45

Take-Away. To answer RQ3, entity salience does not affect the performance when all en-
tities are used for training and evaluation. However, from the discussion of RQ1 in Section
5.6.1, we know that salience is a very strong indicator of support passages for entities for
which it is applicable. Considering these two observations together, we can say that con-
sidering salience in our system is important as it does not hurt the performance in general

but helps to improve performance for entities for which salience is applicable.

5.7 Conclusion

In this work, we address the problem of entity-support passage retrieval. We present a
learning-to-rank-based method which consists of two components: one component (called
prominence) identifies the query-relevant sub-topics of the target entity using a query-
specific entity-profile whereas the other component (called salience) considers whether
the target entity is central to the discussion in the support passage and not just mentioned
as an aside. Our proposed system can outperform several strong baselines in terms of
several evaluation metrics and achieve new state-of-the-art results.

We find that an issue with using salience is that few entities have a passage with a
salient mention in the candidate set of passages. Hence, we conduct our experiments on

only the subset of entities for which there is at least one passage with a salient mention in
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the candidate set. Our experiments show that salience is a very strong indicator of support
passages for entities to which salience is applicable. We also explore the effect of using
salience for all entities and find that salience does not hurt the performance of the system in
general. Our take-away from this is that salience is important for support passage retrieval;
without it the entities to which salience is applicable would suffer. On the other hand, using
it does not hurt the general performance of the system.

A prevalent practice for representing entities is through their Wikipedia pages. In this
work, we argue that such a (static) representation of the entity is not suitable for the support
passage retrieval task because support passages must contain topics related to the target
entity which are also relevant in the context of the query. Hence, we use a query-specific
profile of the target entity: Query-relevant text passages that mention the target entity. We
explore the effects of replacing this query-specific profile with the Wikipedia page of the
target entity, and find that this leads to a decline in performance. Our intuition is that the
Wikipedia page contains a lot of topics/information about the target entity but only some of
this is relevant in the context of the given query.

Our contribution to entity-support passage retrieval contributes to new knowledge-based
information access systems. For once, it allows to construct query-specific knowledge
graphs on the sub-entity level where the support passages model the knowledge base
description of the entity in the context of the query. Furthermore, entity-support passages
allow better information access for journalists, researchers, as well as any user who is seek-
ing to understand fine-grained connections between entities and queries for open-domain

information needs, and takes us one step closer to query-focused summarization.
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CHAPTER O

ENTITY ASPECTS FOR ENTITY RETRIEVAL

6.1 Introduction

6.1.1 Motivation

Entity-oriented Web search has become ubiquitous, with 40-70% of all web searches tar-
geting entities [53,72,110]. Often, the information need of Web searches can be answered
using a single entity, such as in conversational retrieval or factoid question answering. In

contrast, in this chapter, we address the topical entity retrieval task.

Topical Entity Retrieval Task. Given a short topical keyword query such as Antibiotic
Use In Livestock, return a ranked list of entities from a Knowledge Graph based on whether

the entity must, should, or could be mentioned in an article on this topic.

We foresee this task to be useful for users seeking information on (yet) unfamiliar topics:
While the information need is expressed as a short topical keyword query, the topic itself
might have several facets which must be included in an article on this topic. Hence, knowing
the set of relevant entities, ordered from central to side-topic might be helpful for the user.

Previous work on entity retrieval often relies on entity links for deriving indicators of
entity relevance [26,54]. Entity links are unique identifiers of entities: They help to dis-
ambiguate between the different mentions of the same entity in text. For example, using

a unique entity-id, an entity link can distinguish whether a mention “FDA” in text refers to

Part of this chapter published as: Shubham Chatterjee and Laura Dietz. 2021. Entity Retrieval Using
Fine-Grained Entity Aspects. In Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR '21). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3404835.3463035
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The history of the FDA can be traced to  In June 2018, the FDA released a

the latter part of the 19th century and  statement regarding new guidelines to

the Division of Chemistry of the U.S. help food and drug manufacturers

Department of Agriculture. implement protections against potential
attacks on the U.S. food supply.

Figure 6.1: Example of entity aspect for the entity mention FDA. Entity linking can
identify that the mention FDA here refers to the entity “Food and Drug Administra-
tion”, the US organization and not to “Fully Differential Amplifier”, the electronic
instrument. However, entity linking cannot discern the meaning of the entity from
its context. Entity aspect linking can remedy this situation using a unique aspect-id
to distinguish between the different aspects of an entity. Left: The entity has been
mentioned in the context of its history. Right: The entity has been mentioned in the
context of its regulations.

the US organization (“Food and Drug Administration”) or the electronic instrument (“Fully
Differential Amplifier”).

The downside of using entity links is that they can only provide limited coarse-grained
information about entities in text by distinguishing between the different mentions of the
same entity; however, entity links cannot provide more fine-grained information about the
meaning of the entity. For example, knowing that “FDA” refers to the “Food and Drug
Administration”, entity linking cannot answer the question: Has the Food and Drug Admin-
istration been mentioned in the context of its history or regulations?

We refer to the different meanings of an entity in a given context as the entity’s aspects.
Our hypothesis is that entity aspects can provide better indicators of entity relevance by
distinguishing between the different meanings (aspects) of an entity in the context of the
query. Hence, in this work, we leverage entity aspects for the entity retrieval task and study

the utility of entity aspects for entity retrieval.

6.1.2 Research Gap

As discussed in Section 6.1.1, a particular mention of an entity (e.g., FDA) may have dif-
ferent meanings depending on the context in which the entity has been mentioned (see
Figure 6.1.

Previous work on entity retrieval often derive features for entities using entity links from
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a candidate set of documents retrieved with the query [26, 76]. This idea works because
relevant text communicates knowledge through entities. For example, many documents on
“Antibiotic Use In Livestock” would also describe the ban on antibiotics in animals by the
FDA, which results in a relevance indicator for “Food and Drug Administration”. However, as
discussed in Section 6.1.1, entity linking cannot distinguish between the different meanings
of an entity from the entity’s context: An entity link is only a unique identifier of an entity
and does not preserve any further topical information about the context in which the entity
is mentioned. Entity aspect linking can remedy this situation.

Entity Aspect Linking [91,111] is a recent information extraction task: Given a mention
of an entity in a sentence, entity aspect linking refines the entity link to an entity aspect
link that provides information on the context in which the entity is mentioned by indicating
which aspect of the linked entity is referenced in this context. Using a unique aspect-id,
entity aspect links can improve upon entity links by resolving the context (aspect) in which
the entity has been mentioned in text. Hence, entity aspect linking refines an entity link with
the topical semantics of the entity’s referenced aspect.

Our hypothesis is that such entity aspect links can provide additional, and perhaps bet-
ter signals of the relevance of an entity for a query. Hence, in this work, we explore the
extent to which such fine-grained aspects of entities can help improve entity retrieval. Ana-
lyzing entity aspect links present in a set of candidate documents allows us to significantly

improve upon the current state-of-the-art in topical entity retrieval.

6.1.3 Entity Aspects Versus Entity Types

We note that entity aspects are different from entity types. Aspects refer to the topics in
which an entity is referenced, for example, FDA in the context of its history versus FDA
as a regulator; types resolve which of many roles the entity can take on, for example, US
federal agency or food safety organization. Nanni et al. [91] suggest to derive a catalog of
entity aspects from the top-level sections of the entity’s Wikipedia article, but other sources
of aspects can also be used.

While the utility of entity types for entity retrieval is well-studied [6,49,63], to the best of
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our knowledge, we are the first to study the usefulness of entity aspects for IR tasks, such

as entity retrieval.

6.1.4 Contributions

We make the following contributions through this work:

+ We propose a novel entity retrieval approach which uses entity aspect links to lever-
age the topical context in which the entity is relevant. We outperform the previous

state-of-the-art by 41%.

+ We develop novel features derived from entity aspects and entity aspect linking and

show that these guide our approach to more relevant and fewer non-relevant entities.

+ We demonstrate that using a candidate set derived from entity-support passages
(passages that are suitable to explain the relevance of an entity for a query) instead

of BM25 leads to further improvements.

6.1.5 Outline

The remainder of this chapter is organized as follows. In Section 6.2, we describe our
approach for using entity aspects for entity retrieval. In particular, we describe our apporach
for entity ranking features using entity aspects in detail in this section. In Section 6.3 we
describe the experimental methodology, followed by a discussion of the results in Section

6.4. We end the chapter with Section 6.5.

6.2 Entity Aspects for Entity Retrieval

Our work is based on the hypothesis that different mentions of an entity in a query-specific
context contribute differently to determine the relevance of that entity for the query. For
example, the aspect “Regulatory Programs” may be more important than “History” when
determining the relevance of the entity “Food and Drug Administration” for the query “An-

tibiotic Use In Livestock”.
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Figure 6.2: For the example query “Antibiotic Use in Livestock”, we identify the
relevant entity “Food and Drug Administration” as its relevant aspect “Regulatory
Programs” is both retrieved from an aspect index and linked in the candidate pas-

sage set.
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Each entity aspect describes the topical context in which the entity can be referred
to. Entity aspects are backed by explicit semantics that are manually defined by authors
of entities’ Wikipedia pages. While at a first glance, it seems like a limitation to rely on
Wikipedia for explicit semantics, the success of using Wikipedia in entity linking (e.g. TagMe
[42]) and neural training (e.g. BERT [31]) shows that Wikipedia provides a useful repository
of general-purpose knowledge that aids in many information retrieval and natural language
understanding tasks.

Our approach (see Figure 6.2) towards entity ranking is to identify relevant entity-
aspects, based on the assumption that only entities with relevant aspects are actually rele-
vant for the query. At first glance, our approach of identifying relevant entity aspects seems
to be addressing a more difficult problem than necessary for entity ranking. As the eval-
uation of entity rankings does not award credit for providing the fine-grained information
about aspects, the performance improvements seem surprising. However, working with
entity aspects allows us to be more specific about the topical context in which the entity is
relevant. The main effect is that our predicted entity rankings contain fewer mistakes in the
top of the ranking, hence obtaining significant performance improvements overall.

While the main contribution of our work is to demonstrate the benefits of using entity
aspects for this task, our work draws on several ideas discussed in the research litera-
ture. Below we explain how these ideas transfer to entity aspects, and why they make this
approach so successful.

Our approach relies on a corpus that is annotated with entity aspect links. In this work,
we utilize the aspect catalog and aspect linker implementation provided by Ramsdell et al.
[111]" to aspect link the corpus from TREC Complex Answer Retrieval benchmark [33]
which is derived from the English Wikipedia. The aspect catalog contains entity aspects

derived from Wikipedia’s top-level sections along with the text of the section.

"https://www.cs.unh.edu/~dietz/eal-dataset-2020/
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6.2.1 Aspect Retrieval Features

A popular idea in entity retrieval is to create a fielded search index of entity descriptions and
metadata in the knowledge base, or the full text of the entity’s Wikipedia article, then use a
text retrieval model to retrieve entities via their descriptions [32,54,92,160]. We transfer
this idea to entity aspects: We create a search index of entity aspect descriptions, com-
prising the entity’s name (such as Food and Drug Administration), aspect’s name (such as
Regulatory Process), aspect’s content (text of the section on Regulatory Process from the
entity’s Wikipedia article), and entities mentioned in the aspect’s content. This information
is obtained from the aspect catalog. By using multiple retrieval models, we obtain multiple
aspect retrieval features which are combined with learning-to-rank.

One may argue that since aspects are derived from sections in the entity’s Wikipedia
article, the same information is also available when retrieving entities from a full text index of
Wikipedia articles. Creating an search entry for each aspect (section) avoids the common
pitfall where entities with many aspects are penalized for their diversity by the retrieval
model, via document length components or L2-normalization of term vectors.

The downside of the retrieval approach is that Wikipedia articles do not always contain
all relevant information about an entity. This is either because Wikipedia’ policy is to only
include noteworthy information, the articles are often out-of-date, or sometimes are curated
to remove negative information (e.g. corporate scandals). Hence, we incorporate fall-back

strategies to maximize the recall (via a PRF approach).

6.2.2 Aspect Link PRF Features

Various research in entity-oriented search are based on an idea akin to Pseudo-Relevance
Feedback (PRF) [70]: After retrieving a relevant candidate set of text passages (called
“feedback run”), the frequency distribution of entity links in these passages are weighted by
the retrieval score of the passages to obtain a distribution of relevant entities. For example,
Dalton et al. [26] uses this distribution to expand the original query with relevant entities in

a manner similar to RM3 would do with words. Instead of query expansion, the distribution
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of relevant entities can be directly used as prediction for an entity retrieval query; this is
often a very strong relevance indicator [32,112].

In this work, we translate this idea of entity-PRF to entity aspects. Using a feedback
run of passages (annotated with entity aspect links), we obtain a distribution over relevant
aspects a for query ¢ using feedback passages D akin to the expansion distribution used

in RM3:

number of aspect links to a in d
total number of aspect links in d

score(alq) = Z score(d|q) -
deD

Using entity aspect links instead of entity links offers access to more fine-grained top-
ical information (“FDA/Regulatory Program” versus “FDA/History”). This helps to promote
entities that are mentioned in the context of the same aspect across multiple candidate
passages. Using several retrieval models (detailed in Section 6.3) and different candidate
sets (detailed below), we obtain multiple aspect link PRF features which are combined with

learning-to-rank.

6.2.3 Candidate Set

Our aspect-based features described above use a candidate set of passages D for the
query. A common approach is to create the candidate set using the top-K documents
of a BM25 ranking. However, non-relevant entities can often dominate such candidate
passages, which can negatively affect the identification of relevant aspects. We avoid this
by leveraging our previous work on entity-support passage retrieval [17] where the task
is, given a query and a target entity, retrieve passages which best explain why the entity is
relevant to the query.

We use our entity-support passage retrieval method [17]: We build an entity descrip-
tion consisting of passages from a query-relevant candidate set that mention the entity.
These description passages are then re-ranked using query words, expansion words, and

expansion entities.? By using entity-support passages instead of a direct BM25 ranking as

2In this work, this candidate set is retrieved with BM25, but the method can be adjusted to other methods
as well.
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candidates, we maximize the query-relevant information about each entity.
We merge all entity-support passage rankings across entities from a high-precision
entity ranking.® We merge multiple support passage rankings by marginalizing over these

entities:

Score(p|q) = > Score(ple;, q)

where p is a support passage for the entity e; given the query ¢. The top-K of this ranking
is used to build the candidate set of passages D for the query when deriving Entity Aspect
Link PRF features. Such a candidate set promotes passages that are good explanations for
multiple entities and avoids that the candidate ranking is dominated by a single frequently

occurring entity.

6.2.4 Entity Aspect Ranking to Entity Ranking

Ultimately, we need to project rankings of entity-aspects to a ranking of entities. To this end,
we consider the top- K aspects, then aggregate multiple aspects of the same entity either
by sum or max. Empirically we choose K = 100. A separate entity ranking is obtained per

aspect feature.

6.2.5 Entity Features

In addition to the entity ranking features derived using query-specific entity embeddings
from BERT, we include various other entity relevance features used in previous work. To
this end, we use a Wikipedia dump from 2016, and a corpus of English Wikipedia para-
graphs provided with the TREC Complex Answer Retrieval dataset to create a search index

representing each of the following:

» Page. Full-text of the Wikipedia page, including the title, headings, and the para-

graphs.

3We retrieve entities via the lead text of their Wikipedia articles using BM25.
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« Entity. Knowledge Graph representation of all entities, including the name of the

entity and the lead text of the entity’s Wikipedia page.

» Aspect. Top-level sections of a Wikipedia page, including the page title, section
heading, and content, which includes the full-text of the section, and the entity links

therein.
« Paragraph. Paragraphs from the corpus with full-text and entity links.

Using a keyword query and each index above, we produce entity rankings using the re-
trieval models described in Section 6.3.2.

We also use an idea based on Pseudo-Relevance Feedback [70] and the Entity Context
Model [26] that has been found to be a strong entity relevance indicator by prior work
[18, 26,32, 112] to obtain an entity ranking from an index of paragraphs. We represent a
pseudo-relevant feedback set of paragraphs retrieved using the query as a bag-of-entities.
To rank the entities in the bag, we weigh the frequency distribution of the entities by the

retrieval score of the paragraphs.

6.2.6 Combinations and Learning-To-Rank

We find that a strong method is a combination of aspect retrieval and aspect link PRF.
Hence, we filter the aspect ranking obtained using aspect retrieval features, and only re-
tain aspects that are linked in passages from the candidate set (either using BM25 or the
support passage ranking).

We also include an aggregate feature via reciprocal rank aggregation on our aspect link
features into our learning-to-rank system. Reciprocal rank aggregation is an unsupervised
rank aggregation method that has been found to be a strong relevance indicator [32]:
All distinct items d across all rankings R are assigned a new aggregated rank score from
reciprocal ranks m.

We use a Learning-to-Rank* approach to train an ideal weighed combination of all

features. We also extend the features of the original ENT-Rank approach with our entity-

“https://www.cs.unh.edu/~dietz/rank-1lips/
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aspect features to demonstrate the potential for further performance improvements to both
the previous state-of-the-art results, as well as an improvement over learning-to-rank. In
both cases, we optimize for Mean Average Precision using coordinate ascent with Z-score

normalization.

6.3 Evaluation

6.3.1 Datasets

TREC Complex Answer Retrieval (CAR). The entity retrieval task of the TREC Complex
Answer Retrieval (CAR) [33]° track offers a suitable benchmark to study the topical entity
retrieval task: Given a topical keyword query such as Antibiotic Use In Livestock, the entity
retrieval task is to return a ranked list of entities based on whether the entity must, should, or
could be mentioned in an article on this topic. The CAR dataset contains both manual and
automatic entity ground truth, as well as an entity linked corpus consisting of paragraphs
from the entire English Wikipedia. The automatic ground truth is constructed synthetically:
all entities on the Wikipedia page corresponding to the query are relevant. The manual
ground truth was constructed after a manual assessment conducted by NIST using pool-

based evaluation. We use two subsets from the TREC CAR v2.1 data release:

+ BenchmarkY1-Train based on a Wikipedia dump from 2016. The ground truth is

automatic with 117 page-level queries, and 3,031 positive entity assessments.

+ BenchmarkY2-Test based partly on a Wikipedia dump from 2018 and partly on the
Textbook Question Answering [65] dataset (questions from middle school science
curriculum). The ground truth is manual. There are 65 page-level queries with 3173
positive entity assessments, and 271 section-level queries with 1356 positive assess-

ments.

The CAR dataset also contains a large collection of Wikipedia pages from 2016 in an
easily parsable format (unprocessedAllButBenchmark). Query pages are excluded. We

use this collection to create the page index representation used in Section 6.2.5.

Shttp://trec-car.cs.unh.edu
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DBpedia-Entity v2. Although the focus of this dissertation is on topical queries, addition-
ally, we also evaluate the efficacy of our approach on the DBpedia-Entity v2 [55]° dataset.
DBpedia-Entity v2 is a collection of queries collected from several established entity re-
trieval benchmarking campaigns. It uses the DBpedia knowledge base (October 2015).

The dataset contains the following categories of queries:

+ SemSearch ES consisting of named entity queries, e.g., brooklyn bridge.

INEX-LD consisting of IR-style keyword queries, e.g., electronic music genres.

List Search consisting of queries which seek a list of entities, e.g., Professional

sports teams in Philadelphia.

QALD-2 consisting of natural language queries, e.g., Who owns Aldi?.

Since we use the paragraphs, entity links, sections, etc. from Wikipedia, we use the
version’ of DBpedia-Entity v2 projected onto the Wikipedia dump from TREC CAR v2.1.
Since our methods are not included in the assessment pool, we remove the unjudged

entities retrieved by our methods to enable a fair comparison.

6.3.2 Evaluation Paradigm

Evaluation Metrics. Mean Average Precision (MAP), Precision at R (P@R), and Normal-
ized Discounted Cumulative Gain at 100 (NDCG@100). We conduct significance testing

using paired-t-tests.

Learning-To-Rank We perform list-wise Learning-To-Rank (LTR) using Coordinate As-
cent optimized for MAP. We use 5-fold cross-validation for fine-tuning the BERT model as

well as training the LTR model on both TREC CAR and DBpedia-Entity v2.8

®https://github.com/iai-group/DBpedia-Entity
"https://github.com/TREMA-UNH/DBpediaV2-entity-CAR
8The different subsets of queries available in the DBpedia-Entity v2 collection were merged for training.
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Feature Generating Retrieval Models. We produce entity rankings using the following
retrieval models: (1) BM25, and (2) Query Likelihood with Dirichlet Smoothing (1 = 1500),

both with and without RM3-style query expansion.

6.3.3 Baselines
We include the following entity ranking systems as baselines:

1. CatalogRetrieval. We index the aspect catalog, and directly retrieve aspects from

this index with the query using BM25 without any other components of our approach.

2. GEEER [50]. The entity retrieval system from Gerritse et al. (described in Section
3.2) using Wikipedia2Vec [155] to re-rank entities.

3. GEEER-BERT. Same as GEEER but using BERT [106] instead of Wikipedia2Vec.

We use the name of the Wikipedia page of the entity to embed the entity using BERT.

4. ENT-Rank [32] A Learning-To-Rank model that uses entity, neighbors, and text fea-

tures.

5. BM2F-CA. Best-performing system on the DBpedia-Entity v2 dataset provided by the

creators.

6. UNH-e-L2R. This is the best performing official submission (using Benchmarky2-
Test) to the entity retrieval track in TREC CAR Year 2. Results taken from the TREC

CAR submission, which are not available for BenchmarkY1-Train.

6.3.4 Research Questions

We address the following research questions in this work:

RQ1 To what extent do entity apect-based features improve entity retrieval performance?
RQ2 Why do entity aspect-based features help improve entity retrieval performance?

RQ3 Is it worthwhile dedicating effort in analyzing the entity aspect links present in a can-

didate paragraph ranking derived from an entity-support passage ranking?
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6.4 Results and Discussions

We conduct page-level experiments using BenchmarkY1-Train from the CAR dataset.
The results are shown in Table 6.1. As the official CAR results are on title-heading queries,
additionally, we also conduct section-level experiments using BenchmarkY2-Test. The
results are shown in Table 6.2. The results on DBpedia-Entity v2 is shown in Table 6.3.
Below, we discuss the research questions outlined in Section 6.3.4 with respect to the
page-level experiments using CAR BenchmarkY1-Train. We use the query Antibiotic Use

In Livestock as an illustrative example throughout our discussions.

6.4.1 Overall Results

Page-Level Results on CAR BenchmarkY1-Train. The overall results from our page-
level experiments on CAR BenchmarkY1-Train is shown in Table 6.1. We observe that our
Learning-To-Rank using features based on entity aspects (LTR-ASP) outperforms all base-
lines in terms of all evaluation measures. In particular, LTR-ASP obtains an improvement
of 56% over ENT-Rank [32], the current state-of-the-art system on this benchmark: LTR-
ASP achieves M AP = 0.50 whereas ENT-Rank achieves M AP = 0.32. Further, we also
outperform the neural re-ranking methods based on BERT and Wikipedia2Vec by a large

margin.

Section-Level Results on CAR BenchmarkY2-Test. The overall results from our section-
level experiments on CAR BenchmarkY2-Test is shown in Table 6.2. We make similar ob-
servations as those in Table 6.1. For example, our system LTR-ASP achieves an overall
MAP = 0.45 whereas ENT-Rank achieves an overall M AP = 0.32: This is an improve-
ment of 41% over ENT-Rank. LTR-ASP also outpeforms the best system from the official

TREC CAR submissions (UNH-e-L2R) by 41% in terms of MAP.

Results on DBpedia-Entity v2. The overall results on DBpedia-Entity v2 is shown in
Table 6.2. Here, we notice that our system LTR-ASP outperforms the best entity ranking

system BM25F-CA on this dataset on all benchmarks in terms of all evaluation measures.
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Table 6.1: Results on BenchmarkY1-Train page-level using automatic ground truth.
denotes significant improvement and v denotes significant deterioration compared
to ENT-Rank (denoted x) using a paired-t-test at p < 0.05.

MAP P@R NDCG@100

ENT-Rank* [32] 0.32* 0.36* 0.46*
GEEER [50] 0.10"  0.16” 0.26"
GEEER-BERT 0.217  0.28” 0.43”
CatalogRetrieval 0.04™  0.09" 0.157

LTR-ASP (Ours) 0.50* 0.50* 0.63*

Overall, BM25F-CA obtains M AP = 0.45 whereas LTR-ASP obtains M AP = 0.49, an
improvement of 9%.

We also observe that LTR-ASP performs better than ENT-Rank for SemSearch_ES and
INEX_LD queries; on the other benchmarks, LTR-ASP is either second or tied with ENT-
Rank. This makes sense because both SemSearch_ES and INEX_LD consist of IR-style
keyword queries which are very similar to the topical keyword queries from CAR. As our
approach is geared towards such keyword queries, it is natural that our results also reflect

this.

6.4.2 Entity Aspects for Entity Retrieval

To analyze the extent to which entity aspect-based features help imporve entity retrieval
performance (RQ1), we analyze our results on BenchmarkY1-Train. We perform an ab-
lation study where we divide our features into three subsets: aspect-based features us-
ing BM25 candidate passages, aspect-based features using entity-support passages, and
other entity features. The results are shown in Table 6.4.

From Table 6.4, we observe that aspect features alone achieve M AP = 0.42 whereas
entity features alone achieve M AP = 0.37. However, a combination of the three achieves
the maximum improvement. The aspect-based features improve performance by 35% over

the entity features.

Take-Away. Regarding RQ1, the ablation study shows that entity aspect-based features

are important for the entity retrieval task: The aspect features help to improve performance
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Table 6.2: Results on BenchmarkY2-Test (separated by its subsets on Wikipedia and
TQA) section-level using the manual ground truth. s denotes significant improve-
ment and v denotes significant deterioration compared to .

All MAP P@R NDCG@100
ENT-Rank* [32] 0.32* 0.32* 0.52*
GEEER [50] 0.22" 0.247 0.407
GEEER-BERT 0.15"  0.17" 0.347
CatalogRetrieval 0.14* 0.18" 0.27"
CAR Rank 1: UNH-e-L2R 0.31  0.31 0.51
LTR-ASP (Ours) 0.45* 0.45* 0.62*

Textbook Question Answering [65]

ENT-Rank* [32] 0.38*  0.38" 0.61*
GEEER [50] 0.29" 0.32" 0.53"
GEEER-BERT 0.16 0.18” 0.417
CatalogRetrieval 0.17"  0.227 0.33”
CAR Rank 1: UNH-e-L2R 0.38  0.39 0.61
LTR-ASP (Ours) 0.53* 0.53* 0.73*
Wikipedia

ENT-Rank* [32] 0.27*  0.26* 0.43*
GEEER [50] 0.15  0.16” 0.28"
GEEER-BERT 0.13  0.157 0.27"
CatalogRetrieval 0.13 0.147 0.227
CAR Rank 1: UNH-e-L2R 025 0.4 0.41
LTR-ASP (Qurs) 0.38* 0.38* 0.52*

by 35% over the other entity features. We discuss this further in Section 6.4.3.

6.4.3 Importance of Entity Aspects

Query-Level Analysis. To better understand the benefits of using aspect-based features,
we analyze which queries are most helped or hurt by the aspect features. To this end, we
divide the queries into different levels of difficulty according to the performance of the entity
features, with the 5% most difficult queries for the entity features to the left and the 5%
easiest ones to the right. The results are shown in Figure 6.3.

From Figure 6.3, we observe that whenever it is difficult to perform the task using tra-

ditional entity features (e.g., bin 0-5%), aspect-based features help to improve the overall
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Table 6.3: Results on DBpedia-Entity v2 (separated by different subsets). « denotes
significant improvement and v denotes significant deterioration compared to x.

Al MAP P@R NDCG@100
ENT-Rank* [32] 0.48* 0.44* 0.71*
BM25F-CA [55] 0.45 0.43* 0.68

GEEER [50] 0.37"  0.38” 0.57"
GEEER-BERT 0.37"  0.38” 0.57"
CatalogRetrieval 0.11  0.14* 0.25

LTR-ASP (Ours) 0.49 0.45 0.72

SemSearch_ES

ENT-Rank* [32] 0.59* 0.50* 0.78*
BM25F-CA [55] 0.61  0.55 0.78
GEEER [50] 0.56" 0.53" 0.727
GEEER-BERT 0.56"  0.53” 0.727
CatalogRetrieval 0.14  0.16 0.29

LTR-ASP (Ours) 0.63* 0.57*  0.81°

ListSearch

ENT-Rank* [32] 0.49* 047"  0.74*
BM25F-CA [55] 0.44 0.43* 0.68
GEEER [50] 0.34"  0.38" 0.54"
GEEER-BERT  0.34" 0.38" 0.547

CatalogRetrieval 0.10  0.14* 0.24
LTR-ASP (Ours) 0.49 0.45 0.72
INDEX_LD

ENT-Rank* [32] 0.43* 0.42* 0.70*
BM25F-CA [55] 0.42" 0.41* 0.67"
GEEER [50] 0.34  0.35” 0.557
GEEER-BERT 0.34"  0.35” 0.55"
CatalogRetrieval 0.10" 0.14* 0.24”

LTR-ASP (Ours) 0.46* 0.43 0.71

QALD2

ENT-Rank* [32] 0.40* 0.37* 0.64*
BM25F-CA [55] 0.37* 0.36* 0.46”
GEEER [50] 0277 0.297 0.48"
GEEER-BERT 0.27"  0.297 0.48"
CatalogRetrieval 0.10* 0.12* 0.227

LTR-ASP (Ours) 0.40 0.38 0.64
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Table 6.4: Results of ablation study on BenchmarkY1-Train for page-level experi-
ments.

L2R: Aspect Entity
Feedback: BM25 Entity-Support Psg MAP P@R NDCG@100
X 037 039 047
X X 042 047 0.61
X X 048 049 0.62
X X 041 044 0.53
X X X 0.50 0.50 0.62

performance of the our system LTR-ASP. We observe that the queries which were previ-
ously in the lower 5-50% percentile range with respect to the entity features obtain a MAP
of 0.10, where aspect features maintain a MAP of 0.35. Even on the remaining query set,

aspect features obtain a MAP of above 0.50.

Entity-Level Analysis. To understand why the aspect-based features provide a perfor-
mance boost when used in a L2R setting, we further analyze our results on the entity-level.
For each query in BenchmarkY1-Train, we inspect the top-100 entities in the ranking ob-
tained by aspect-based features and entity features. We then find the number of relevant
entities found by: (1) Both, (2) Only aspect-based features, and (3) Only entity features.
We use the query “Antibiotic Use In Livestock” as an illustrative example here.

We find that among the 100 entities that we inspect, 16 entities are retrieved by both
aspect-based features and entity features. Of these 16 common entities retrieved by both, 7
are relevant. However, aspect-based features always places these relevant entities higher
in the ranking. For example, the entity “Food and Drug Administration” is placed at Rank-3
by aspect-based features but at Rank-55 by entity features.

Moreover, 11 of the remaining 84 entities retrieved by aspect-based features are rele-
vant, but none of the remaining 84 entities retrieved by entity features are relevant. Hence,
aspect-based features also retrieve more relevant entities than entity features. Some ex-
ample relevant entities retrieved by aspect-based features but not by entity features are

“Animal Feed”, “Antibiotic Misuse”, and “Antifungal”.
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Figure 6.3: Difficulty test for MAP, comparing entity features to aspect features and
LTR-ASP on BenchmarkY1-Train page-level. We notice that whenever it is difficult
to perform the task using traditional entity retrieval features, aspect-based features
help to improve performance.

Take-Away. The results of this analysis show that aspect-based features are more infor-
mative than traditional entity ranking features derived using term-based retrieval models.
Although the non-aspect-based features perform well on their own, we receive a perfor-
mance boost when these features are combined with aspect-based features (RQ1).

This performance boost can be attributed to the fact that aspect-based features not
only promote the relevant entities higher up in the ranking, but also retrieve more relevant
entities. On further feature-by-feature analysis, we find that the aspect-based features
obtained using entity support passages are very strong relevance indicators and provide
the maximum boost to the performance of the L2R system. We discuss this further in the

next section (RQ2).

6.4.4 Entity-Support Passages for Deriving Aspect-based Features

To analyze the importance of the aspect-based features derived from the entity-support
passages, we perform an ablation study where we first remove the aspect-based features

obtained using the support passages, and then remove the aspect-based features obtained

103



Table 6.5: Results for analyzing why aspect-based features derived from entity-
support passages are strong relevance indicators. We notice that there are more rel-
evant entities in paragraphs at the top of the ranking obtained using entity-support
passages.

Average Percentage of Relevant Entities in

Candidate Paragraph Ranking Obtained Using Top-10 Top-50
Entity-Support Passage Ranking 61% 41%
BM25 47% 28%

using the BM25 candidate set from our feature mix. We then combine the remaining fea-
tures using L2R. The results on BenchmarkY1-Train page-level are shown in Table 6.4.

We observe that when aspect-based features derived using entity-support passages
are removed, there is a huge performance drop, from M AP = 0.50 obtained using all
features to M AP = 0.41. However, when the aspect-based features obtained using BM25
candidate set are removed, the performance drops only slightly, from M AP = 0.50 to
MAP = 0.48. This shows that the aspect-based features obtained using entity support
passages are a stronger relevance indicator for entities.

We also find that a combination of aspect retrieval and aspect link PRF is a strong
feature. Our aspect retrieval feature with BM25 achieves M AP = 0.04 whereas aspect
link PRF with a BM25 candidate set achieves M AP = 0.17. However, the combination of
the two achieves M AP = 0.20. Replacing the BM25 candidate set with a support passage
candidate set for aspect link PRF in the combination achieves further improvement with
MAP = 0.40.

The performance boost obtained when using entity aspect links from entity-support
passages could be attributed to the way entity-support passages are ranked: by using
other entities which frequently occur in the vicinity of the target entity in a candidate set
of passages retrieved with the query. Then passages from the candidate set containing a
link to many such frequently co-occurring entities are ranked higher. Hence, the entities
that co-occur frequently with other query-relevant entities in query-relevant passages are
emphasized. This prevents some other (non-relevant) frequent entities from dominating
the ranking.

To confirm this, we collect the entities present in the top-10 and top-50 passages from
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two candidate sets: (1) BM25 and (2) derived using support passage ranking (SP-Derived),
and analyze how many of these are relevant. The results are shown in Table 6.5. The
results are shown in Table 6.5. We observe that are more relevant entities in passages at
the top of the ranking in the candidate paragraph ranking derived from an entity support

passage ranking.

Take-Away. Regarding RQ3, our approach to entity-support passage retrieval results in
passages containing many query-relevant entities to be placed higher in the support pas-
sage ranking. This causes such passages to be placed higher in a passage ranking de-
rived from such an entity-support passage ranking. As a result, the entities found in top
passages are mostly relevant. Hence, it is worthwhile dedicating effort in analyzing the
entity aspect links present in a candidate paragraph ranking derived from an entity-support

passage ranking

6.5 Conclusion

In this chapter, we address the entity retrieval task using fine-grained aspects of entities.
We demonstrate the benefits of integrating entity aspects into an entity retrieval system.
Our results show that aspect-based features are more informative than traditional en-
tity ranking features, and outperform several strong baselines, including BERT-based re-
ranking method. When combined with other entity relevance features discussed in the
literature, we obtain further improvements.

We obtain this performance boost because previously missing relevant entities are iden-
tified by aspect retrieval and aspect link PRF features when combined with L2R. Hence,
relevant entities are promoted to the top of the ranking. We further find positive effects
of carefully choosing the candidate set of passages for a query: significant performance
improvements are obtained when replacing a BM25 candidate set with a candidate set
derived from entity-support passages. Finally, our method outperforms the recent entity
ranking system ENT-Rank by 41%.

In this work we demonstrate the benefits of using aspects to gain fine-grained topical
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information about entities using explicit semantics provided by authors of Wikipedia articles.
While entity aspect linking is not widely studied in the IR community, we hope that the

demonstration of its merits leads to further research in this area.
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CHAPTER 1

LEARNING QUERY-SPECIFIC ENTITY REPRESENTATIONS FOR

ENTITY RETRIEVAL

7.1 Introduction

7.1.1 Motivation

An important aspect of entity-oriented research pertains to the representation of enti-
ties. Commonly, the embedding of the introductory paragraph (lead text) from an entity’s
Wikipedia page is used as the entity’s representation [77,80,151]. An issue with using
the lead text is that it is a static description of the entity: Often, the lead text contains only
generic information about the entity that is the same for every query and may not even be
relevant for the query. For example, the entity “Food and Drug Administration” (FDA) is
relevant to the topical keyword query “Genetically Modified Organism” as an organization
that approved and released a kind of genetically engineered insulin; however, the lead text
from the Wikipedia page of the FDA does not contain this information. In fact, the lead
text has been found to be useful as an entity’s description in less than 50% cases for the
ClueWeb12 collection [35]. Hence, in this work, we want to use a query-specific textual

description of an entity to encode the query-relevant information about entities.

Task. Given a query and an entity, produce a query-specific dense vector representation

(embedding) of the entity.

Part of this chapter published as: Shubham Chatterjee and Laura Dietz. 2022. BERT-ER: Query-
specific BERT Entity Representations for Entity Ranking. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR '22). Association for Computing
Machinery, New York, NY, USA.
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Figure 7.1: Example of query-specific representations for the query “Genetically
Modified Organism” and entity “Food and Drug Administration”. The lead text is
a generic description of the entity and has no information about the query. The PRF-
passage describes the entity in the context of the query by first defining what a GMO
is, then stating that the FDA regulates GMO food. As a result, the PRF-passage is
a better textual description of the entity than the lead text. An issue with the PRF-
passage is that the entity is not central to the discussion in the passage and the
connection between FDA and GMO foods is made as a passing reference, i.e., pas-
sage is relevant to query but not to the entity. The support passage is a PRF-passage
that is relevant to both the query and entity. The connection between entity and the
query is central to the discussion in the support passage, and the support passage
clarifies how the FDA regulates GMOs, including that the FDA allowed the use of the
first genetically modified insulin (not shown in the figure). The aspect further clari-
fies the meaning of the entity in the context of the query — FDA is mentioned in the
context of “Regulatory Program” in the support passage; the text from the aspect
elaborates on this deeper query-relevant meaning of the entity.

7.1.2 Research Gap

As discussed in Section 7.1.1, the lead text from an entity’s Wikipedia page is a static

textual description of the entity. As a result, the corresponding entity embedding is static in
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nature, i.e., the embedding is the same, irrespective of the query. Our intuition is that such
static entity embeddings are not ideal for downstream IR tasks.

Similarly, while entity embeddings obtained using graph embedding methods [14, 73,
121,139] encode the general semantics and knowledge of entities available in a Knowledge
Graph, the embeddings are static. Recently, models such as ERNIE [159] and E-BERT
[106] have been proposed in an effort to inject information from Knowledge Graphs into
BERT [31]. However, these models too use a static textual description of the entity, either
from Freebase or Wikipedia, resulting in static embeddings.

Static entity embeddings obtained using Wikipedia or Knowledge Graphs are easy to
pre-compute and store. They have also been shown to be useful for downstream (query-
independent) knowledge-driven NLP tasks such as entity linking [47,106,156], entity typing
[103,159] and relation classification [106,159]. However, our intuition is that such embed-
dings may not be ideal for IR tasks. For example, often, a query and document are matched
in the entity-space [77,80,91, 151] through the similarity between the embedding of the
entities mentioned in the query and the document. Static entity embeddings without any
knowledge of the query would be unable to identify when two entities are similar/related
in the context of the query. For example, the Wikipedia page of the entity “Food and Drug
Administration” does not mention the entity “Robert Swanson”, yet these two entities are
similar/related in the context of the query “Genetically Modified Organism” because Robert
Swanson was the founder of the company that produced the first genetically engineered
insulin approved for use by the Food and Drug Administration. Our hypothesis is that an en-
tity embedding that incorporates query-specific knowledge about the entity would be more
beneficial in a downstream IR task.

In this work, we use a query-specific textual description of an entity to encode the
query-relevant information about entities using BERT [31]. We evaluate the impact of our
query-specific BERT Entity Representations (BERT-ER) on a downstream entity ranking
task: Given a keyword query, return a ranked list of entities ordered by relevance. The
prevalent approach for representing entities is to produce a BERT embedding of the lead

text. This approach is appealing because it is simple to implement and use; unfortunately,
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it leads to poor results, as we demonstrate in our experimental evaluation. We provide an
approach for obtaining query-specific entity embeddings using BERT that performs much
better than the prevalent approach. This improvement is achieved by incorporating query-
relevant information about the entity in its representation.

In Chapter 5, we discussed about entity-support passages and in Chapter 6, we saw
that using entity aspects (top-level Wikipedia sections) can help improve entity retrieval
performance. Both entity-support passages and entity aspects help clarify the meaning of
the entity in the context of the query. Hence, both are suitable for use as the query-specific
description of an entity. Hence, in this chapter, explore the utility of entity-support passages
and entity aspects for leaning query-specific vector representations of entities using BERT.

We explore the utility of three types of query-specific textual descriptions (Figure

7.1) of entities for learning query-specific entity embeddings using BERT:

» Aspect (top-level section from Wikipedia). We identify the relevant top-level sec-
tions from an entity’s Wikipedia page, and use the text of the highest ranked section
as the entity’s query-specific description. Prior work [91,111] refers to the top-level
sections as an entity’s aspects. In this work, we too refer to the top-level sections from

Wikipedia as an entity’s aspects. We discuss this in more detail in Section 7.2.2.

* PRF-passage. This is the simplest and most straightforward query-specific textual
description of an entity. The approach is based in Pseudo-Relevance Feedback [70]
and entity linking. We use the text of the highest ranked pseudo-relevant candidate
passage that mentions an entity as the entity’s query-specific textual description. We

discuss this in more detail in Section 7.2.3.

+ Entity-support passage. An entity’s support passage [13,17,61] is a PRF-passage
that mentions the entity and explains to a human, why an entity is relevant to a query.
We use the text of the highest ranked support passage as an entity’s query-specific

description. We discuss this in more detail in Section 7.2.4.
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7.1.3 Contributions

The novel contribution of this work is new knowledge about query-specific entity embed-
dings that will not only benefit the IR community but also other related research areas. In
the experimental evaluation, we demonstrate the benefits of using our query-specific BERT
entity embeddings using several large entity ranking benchmarks consisting of a diverse

set of queries (question answering, keyword queries, list search queries, etc.).

+ We obtain query-specific BERT Entity Representations (BERT-ER) by incorporating
the query-relevant knowledge about an entity into its representation. This query-
relevant knowledge is obtained using pseudo-relevant candidate passages, support

passages, and relevant aspects (top-level sections from Wikipedia).

» Using BERT-ER in our entity ranking system, we outperform the entity ranking sys-
tem that uses the BERT embedding of the lead text of entities by 13—42% on two
large-scale entity ranking test collections. We also outperform systems using entity

embeddings from Wikipedia2Vec [155], ERNIE [159], E-BERT [106].

» We provide a detailed empirical evaluation demonstrating that compared to the preva-
lent entity embedding methods, our query-specific BERT entity embeddings yield

better performance for IR tasks such as entity ranking.

7.1.4 Outline

The remainder of this chapter is organized as follows. In Section 7.2, we describe our
approach for obtaining the the query-specific entity representation using various query-
specific textual descriptions of the entity described in Section 7.1.2. In Section 7.3, we
describe our approach for entity ranking using our query-specific entity representations.
In Section 7.4 we describe the experimental methodology, followed by a discussion of the

results in Section 7.5. We end the chapter with Section 7.6.
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7.2 Query-Specific BERT Entity Representations

Given a query and an entity, we want to produce a query-specific dense vector represen-
tation (embedding) of the entity. As discussed in Section 7.1, the prevalent approach for
obtaining an entity’s embedding uses the lead text from an entity’s Wikipedia page. It is
appealing because it is easy to implement; however, the resulting entity embeddings are
static and not query-specific. Our intuition is that such static entity embeddings are not
ideal for IR tasks.

In this work, we use query-specific entity descriptions, i.e., text that clarifies why an
entity is relevant to a query. Our assumption is that such a query-specific description pro-
vides a suitable and easy-to-implement method of providing the model with query-relevant
information about an entity to learn the entity’s embedding. We obtain query-specific BERT

Entity Representations (BERT-ER) by fine-tuning BERT for the entity ranking task.

7.2.1 Fine-tuning BERT

BERT-based neural re-ranking models such as MonoBERT and DuoBERT [95] have shown
to be useful for the passage ranking task. Hence, we fine-tune a BERT model for entity
ranking in two ways: (1) MonoBERT-style, point-wise model using cross-entropy loss',
and (2) DuoBERT-style , pair-wise model using margin ranking loss.? The input to BERT
is a sequence of query tokens and description tokens, separated by the special token
[SEP], and preceded by the special token [CLS]. We use the embedding of the [CLS] token
obtained from the last hidden layer of BERT as the entity’s query-specific embedding.
Below, we discuss the different query-specific entity descriptions used to derive query-

specific entity embeddings in this work.

7.2.2 Aspects: Top-Level Wikipedia Sections

As discussed above, an entity’s embedding obtained using the lead text from the entity’s

Wikipedia page is static and often encodes non-relevant information. Hence, we identify

"https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
2https://pytorch.org/docs/stable/generated/torch.nn.MarginRankinglLoss . html
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the query-relevant information from the Wikipedia page to be used as the entity’s textual de-
scription. To this end, we identify the particular top-level section from the entity’s Wikipedia
page that is most relevant for the query and use its text to embed the entity.

Following previous work [43,91, 111, 114], we refer to the top-level sections from
Wikipedia as aspects, and use a catalog of aspects provided by Ramsdell et al. [111].
To identify the most relevant top-level section (aspect) from an entity’s Wikipedia page, we
create a search index of aspects containing the full-text of all aspects from the catalog. We
retrieve a candidate set of aspects (sections) A from this aspect index with the query using
BM25.

An issue with directly using aspects from A is that many entities corresponding the
aspects in A may not even be relevant to the query. To remedy this, we leverage prior work
on entity aspect linking. Entity Aspect Linking [91,111] refines an entity link to an entity
aspect link by clarifying the meaning of an entity from the context in which the entity has
been mentioned, for example, the entity “Food and Drug Administration” in the context of
its history or regulations.

We follow a useful assumption often encountered in entity-oriented research [26, 32,
112] to further improve the quality of the candidate set of aspects .A: The entities mentioned
in passages from a candidate set of passages for the query are relevant for the query. We
transfer this idea to entity aspects. First, we retrieve a candidate set of passages D for the
query using BM25, then we retain only aspects a € A that are linked to atleast one passage
p € D to obtain a filtered candidate set of aspects .A’. We use the text of the top-ranked
aspect a, € A’ of an entity e as the entity’s description.

The downside of the the above approach is that often, Wikipedia articles are outdated
or have some (negative) information removed. As a result, they do not contain all the query-
relevant information. To alleviate this problem, we explore other sources of query-specific

entity descriptions (Section 7.2.3).
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7.2.3 Pseudo-Relevant Candidate Passage

Alternatively, we use ideas from Pseudo-Relevance Feedback to obtain an entity’s query-
specific description. We use the candidate set of passages D for the query directly as base
information: We use the text of the highest ranked passage p. € D that mentions the entity
e (identified, for example, via entity links) as the entity’s query-specific description.

This approach is easy to implement and based on a widely used Pseudo-Relevance
Feedback technique. The downside is that although the candidate passage is relevant to
the query, the entity may not be salient, i.e., central to the discussion in the passage, and
the connection between the query and entity may be made as a passing reference. In other
words, the passage may be relevant to the query but not to the entity. To overcome this

limitation, we explore alternative query-specific entity descriptions. (Section 7.2.4).

7.2.4 Entity Support Passage

Prior work on entity support passage retrieval [13,17, 61] identifies a passage that is
relevant to both the query and the entity, and explains why the entity is relevant for a query.
Hence, alternatively, we also use an entity’s support passage as the entity’s query-specific
description.

We extend the ideas from previous work on entity support passage retrieval to retrieve
support passages for each entity (referred to as “target entity”) in a candidate entity rank-
ing.® Starting with the pseudo-relevant candidate set of passages D obtained in Section
7.2.3, we first obtain a filtered candidate set D, for a target entity e by retaining passages
p € D that mention the entity e. Then, we identify the £ most frequently mentioned entities
e, € D.. We re-rank passages p € D, for the entity e by the number of frequent entities e,

in the passage: Score.(p) = >. . Freq(e, € D.), where Freq(e, € D.) is the number of

63;61)
times e, appears in D.. We obtain the final score of a passage p € D, by interpolating the
passage’s score for the entity Score.(p) with the passage’s score for the query Scoreq(p)

(obtained from D).

SWe use the entity ranking obtained using the combination of Pseudo-Relevance Feedback and Entity
Context Model described in Section 7.3.3
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Additionally, we re-rank passages p € D, based on the salience* of the target entity e in
the passage. Finally, we use the various support passage rankings obtained above as fea-
tures to train a supervised Learning-To-Rank model, and produce one combined support
passage ranking for each query and target entity. We use the text of the highest ranked

support passage for each target entity as the target entity’s query-specific description.

7.3 Downstream Task: Entity Ranking

7.3.1 BERT-based Entity Ranking

Given a keyword query, the entity ranking task is to return a ranked list of entities from
a Knowledge Graph ordered by relevance of each entity for the query. As discussed in
Section 7.2, we use MonBERT/DuoBERT-style fine-tuning to fine-tune BERT for the entity
ranking task using our query-specific entity descriptions. To rank entities using BERT, the
score of an entity is obtained by passing the embedding of the [CLS] token through a

fully-connected layer trained jointly with the model.

7.3.2 List-wise Learning-To-Rank

MonoBERT is analogous to point-wise Learning-To-Rank (LTR), and DuoBERT is analo-
gous to pair-wise LTR. However, as discussed in Section 3.2, the current state-of-the-art
entity ranking models use list-wise LTR. Hence, using list-wise Learning-To-Rank, we com-
bine the entity rankings obtained from BERT using the query-specific entity representations
with other entity relevance features used in previous work [18,26,32] (discussed below) to

obtain the final entity ranking for a query.

7.3.3 Other Entity Features

The other entity features used in this chapter have been described in Section 6.2.5.

4We use the salience detection system from Ponza et al. [109].
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7.4 Evaluation

7.4.1 Datasets

The datasets used in the chapter have been described previously in Section 6.3.1.

7.4.2 Evaluation Paradigm

The evaluation paradigm used in the chapter has been described previously in Section

6.3.2.

7.4.3 Details of BERT for Entity Ranking

Our model is implemented in PyTorch using HuggingFace.®. We use the bert-base-uncased
version of BERT. Our model is the BERT model with a fully-connected layer on top. For
fine-tuning our model, we use the PyTorch implementation of the Cross-Entropy Loss and
Margin Ranking Loss. The model is fine-tuned using the Adam [68]° optimizer with a learn-
ing rate of 2e — 5 and batch size of 8. We also use a linear learning rate schedule with 1000

warm-up steps.

7.4.4 Baselines

In addition to the baselines described previously in Section 6.3.3, we include the following

systems as baselines in this chapter:

1. GEEER-ERNIE. Same as GEEER [50] but using ERNIE [159] instead of Wikipedia2Vec
[155].

2. GEEER-E-BERT. Same as GEEER but using E-BERT [106] instead of Wikipedia2Vec.

3. BERT-LeadText++. We fine-tune BERT for entity ranking using the lead text from an
entity’s Wikipedia page. The resulting entity rankings are used as features within a

Learning-To-Rank system with other entity features (detailed in Section 6.2.5).

Shttps://huggingface.co/docs/transformers/model_doc/bert
bhttps://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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4. LTR-ASP [18]. Our Learning-To-Rank model from Chapter 6 that uses features

based on entity aspects and entity support passages.

7.4.5 Research Questions

We address the following research questions in this chapter:

RQ1 Is it sufficient to use the lead text of an entity’s Wikipedia page as the entity’s descrip-

tion? Are query-specific entity descriptions better?

RQ2 To what extent do query-specific entity descriptions help improve entity ranking per-

formance? What is the reason for this performance improvement?

RQ3 How do embeddings obtained using BERT-ER compare to those obtained using

Wikipedia2vec for entity ranking? Which of these is better?

7.5 Results and Discussions

The overall results on CAR BenchmarkY1-Train are shown in Table 7.1, on CAR BenchmarkY2-
Test in Table 7.2, and on DBpedia-Entity v2 in Table 7.3 (only best baselines shown due
to lack of space). Below, we discuss the results with reference to the research questions
outlined in Section 7.4.5. We use the query “Genetically Modified Organism” (GMO) as
an illustrative query throughout our discussions below. In Tables 7.1 to 7.3, we refer to our
entity ranking system as BERT-ER++. BERT-ER++ is the Learning-To-Rank combination of
entity features described in Section 7.3.3 and entity rankings obtained by fine-tuning BERT
using query-specific entity descriptions. In Table 7.4, BERT-ER is the Learning-To-Rank
combination of all entity rankings obtained from BERT using query-specific entity descrip-

tions (excluding the entity features described in Section 7.3.3).

7.5.1 Overall Results

From Tables 7.1 to 7.3, we observe that our entity ranking system BERT-ER++ outperforms

all baselines in terms of all evaluation measures on both datasets. On the TREC CAR
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Table 7.1: Results on BenchmarkY1-Train page-level using automatic ground truth.
denotes significant improvement and v denotes significant deterioration compared
to BERT-LeadText++ (denoted x) using a paired-t-test at p < 0.05.

MAP P@R NDCG@100

BERT-LeadText++* 0.38* 0.41* 0.49*
GEEER [50] 0.15" 021" 0.30"
GEEER-E-BERT  0.13* 0.18" 0.267
GEEER-ERNIE 0.14" 0.197 0.267
GEEER-BERT 0.14" 0.21 0.28
ENT-Rank [32] 0.32"  0.36 0.467
LTR-ASP [18] 0.49*  0.50* 0.63*
BERT-ER++ 0.54* 0.54* 0.66*

dataset, in comparison to BERT-LeadText++, we obtain an improvement of 42% in terms
of MAP (MAP = 0.38 to M AP = 0.54) on BenchmarkY1-Train in Table 7.1, and 32%
in terms of MAP (M AP = 0.25 to MAP = 0.33) on BenchmarkY2-Test (All) in Table
7.2. On DBpedia-Entity v2, we obtain an improvement of 13% (overall) in terms of MAP
(MAP = 0.48 to MAP = 0.51) in Table 7.3. BERT-ER (Table 7.4) and BERT-ER++
especially improve on the recall-oriented measures MAP and NDCG@100. This shows
that query-specific entity descriptions are more informative and useful than the lead text of
an entity’s Wikipedia article that has often been used in prior work.

BERT-ER and BERT-ER++ also obtain statistically significant improvements over the
entity re-ranking systems using recent and state-of-the-art entity embedding methods:
Wikipedia2Vec [155], ERNIE [159], and E-BERT [106]. For example, on CAR BenchmarkY1-
Train in Table 7.1, GEEER [50] using Wikipedia2Vec obtain M AP = 0.15, GEEER-E-
BERT obtains M AP = 0.13, and GEEER-ERNIE obtaines M AP = 0.14; our system
BERT-ER++ obtains M AP = 0.54. Similar results are observed in Tables 7.2 and 7.3.

7.5.2 Importance of Query-Specific Descriptions

To investigate why BERT-ER++ performs so well, we remove the other entity features from
BERT-ER++ and analyze the results obtained by only BERT-ER. The results are shown in
Table 7.4. This table shows the results of fine-tuning BERT for entity ranking using the

individual query-specific entity descriptions obtained in Section 7.2 as well as a Learning-
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Table 7.2: Results on BenchmarkY2-Test (separated by its subsets on Wikipedia
and TQA) page-level using the manual ground truth. s« denotes significant improve-
ment and v denotes significant deterioration compared to ». ENT-Rank results on
BenchmarkY2-Test page-level unavailable.

Al MAP P@R NDCG@100
BERT-LeadText++* 0.25*  0.29* 0.44*
GEEER [50] 0.06° 0.117 0.18"
GEEER-E-BERT 0.04 0.08 0.13"
GEEER-ERNIE 0.04 0.08 0.147
GEEER-BERT 0.02"  0.07" 0.09”
LTR-ASP [18] 0.24 0.31* 0.46*
BERT-ER++ 0.33* 0.36*  0.54*

Textbook Question Answering [65]

BERT-LeadText++* 0.25*  0.28" 0.46*
GEEER [50] 0.06 0.107 0.19"
GEEER-E-BERT 0.03  0.07" 0.127
GEEER-ERNIE 0.03*  0.05” 0.10”
GEEER-BERT 0.01v  0.047 0.06”
LTR-ASP [18] 0.29 0.34* 0.52*
BERT-ER++ 0.33* 0.37* 0.55*
Wikipedia

BERT-LeadText++* 0.24*  0.28" 0.40*
GEEER [50] 0.07"  0.127 0.17"
GEEER-E-BERT 0.07"  0.127 0.18”
GEEER-ERNIE 0.05"  0.09" 0.13”
GEEER-BERT 0.05" 0.127 0.147
LTR-ASP [18] 0.29 0.32* 0.47*
BERT-ER++ 0.34* 0.36* 0.50*

To-Rank combination of these (denoted as BERT-ER in the table). We use Equation 3.1
to rank entities using Wikipedia2Vec, E-BERT and ERNIE. We show results for only CAR
BenchmarkY1-Train and DBpedia-Entity v2 (All).

Ablation Study. From Table 7.4, we observe that BERT-ER outperforms BERT-LeadText
on both datasets. On CAR BenchmarkY1-Train, BERT-ER achieves M AP = 0.34 whereas
BERT-LeadText achieves M AP = 0.16. On DBpedia-Entity v2, BERT-ER achieves M AP =
0.22 whereas BERT-LeadText achieves M AP = 0.07. We also observe that BERT-SupportPsg,
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Table 7.3: Results on DBpedia-Entity v2 (separated by different subsets). « denotes
significant improvement and v denotes significant deterioration compared to . Only
best baselines shown.

Al MAP P@R NDCG@100
BERT-LeadText++* 0.45* 0.41* 0.68*
BM25F-CA [55] 045 0.43* 0.68
ENT-Rank [32] 0.48*  0.44* 0.71*
GEEER [50] 0.37"  0.38" 0.57"
LTR-ASP [18] 043" 0.39" 0.68
BERT-ER++ 051 047  0.73*

SemSearch_ES
BERT-LeadText++* 0.60* 0.54* 0.77*

BM25F-CA [55] 0.61 0.55 0.78
ENT-Rank [32] 0.59 0.50" 0.78
GEEER [50] 0.56~ 0.53" 0.72"
LTR-ASP [18] 0.55" 047 0.747
BERT-ER++ 0.64* 0.58* 0.81*
ListSearch

BERT-LeadText++* 0.43* 0.40* 0.69*
BM25F-CA [55] 0.44 0.43* 0.68
ENT-Rank [32] 0.49* 047 0.74*
GEEER [50] 0.34~ 0.38” 0.54”
LTR-ASP [18] 043 041* 0.69
BERT-ER++ 0.51* 047" 0.74*
INDEX LD

BERT-LeadText++* 0.43* 0.40* 0.69*
BM25F-CA [55]  0.42" 0.41* 0.67"

ENT-Rank [32] 0.43  0.42* 0.70*
GEEER [50] 0.34"  0.357 0.557
LTR-ASP [18] 0.41"  0.38 0.67
BERT-ER++ 0.47* 0.44*  0.71*
QALD2

BERT-LeadText++* 0.34* 0.32* 0.60*
BM25F-CA [55]  0.37* 0.36* 0.46
ENT-Rank [32] 0.40°  0.37 0.64*

GEEER [50] 0.27"  0.297 0.48"
LTR-ASP [18] 0.36*  0.32 0.62*
BERT-ER++ 0.43* 0.39°  0.66
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Table 7.4: Ablation study. Results on CAR BenchmarkY1-Train (Automatic) and
DBpedia-Entity v2 (All) for entity ranking using different types of embeddings. 4
denotes significant improvement and v significant deterioration compared to x.

CAR Y1-Train (Automatic) DBpedia-Entity v2 (All)
MAP P@R NDCG@100 MAP P@R NDCG@100

BERT-LeadText* 0.16*  0.20* 0.25* 0.07*  0.08* 0.12*
Wikipedia2Vec [155] 0.10" 0.16 0.237 0.05"  0.077 0.10”
E-BERT [106] 0.11"  0.13 0.19" 0.09° 0.15* 0.22*
ERNIE [159] 0.05"  0.10 0.14 0.09* 0.12* 0.16*
BERT-BM25Psg 0.06" 0.07" 0.11" 0.08* 0.10* 0.14*
BERT-SupportPsg ~ 0.29*  0.32* 0.44* 0.14* 0.16* 0.24*
BERT-Aspects 0.22*  0.28* 0.37* 0.18* 0.21* 0.30*
BERT-ER 0.34* 0.36* 0.48* 0.22* 0.23* 0.35*

BERT-Aspects, and BERT-ER outperform Wikipedia2Vec, E-BERT and ERNIE on both
datasets. This is because Wikipedia2Vec, E-BERT and ERNIE produce query-independent
entity embeddings (embeddings have no knowledge of the query) using a query-independent
textual description of an entity (often, the Freebase description or lead text). Hence, their
performance on an IR task (here, entity ranking) is not good. BERT-SupportPsg and BERT-
Aspects use query-specific entity embeddings obtained using query-specific entity descrip-
tions. As a result, BERT-ER (combining BERT-SupportPsg, BERT-Aspects, and BERT-
BM25Psg) is able to differentiate between relevant and non-relevant entities better and

outperforms all other methods.

Lead Text Versus Query-Specific Descriptions. To investigate the source of perfor-
mance improvements due to query-specific entity descriptions, we analyze the results at
the query-level by dividing the queries into different levels of difficulty according to the
performance (MAP) of BERT-LeadText. We put the 5% most difficult queries for BERT-
LeadText to the left and the 5% easiest ones to the right. Below, we discuss the results
only with respect to CAR BenchmarkY1-Train but similar results are obtained on the other
benchmarks.
From Figure 7.2, we observe that BERT-SupportPsg, BERT-Aspects, and BERT-BM25Psg

perform well on the “difficult” queries (e.g., bins 0-50%) on which BERT-LeadText performs
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BERT-LeadText
BERT-SupportPsg
BERT-Aspects
BERT-BM25Psg

0.5 1

Mean Average Precision

0%-5%  5%-25% 25%-50% 50%-75% 75%-95% 95%-100%

Figure 7.2: Difficulty test for MAP on CAR BenchmarkY1-Train, comparing entity
rankings obtained by fine-tuning BERT using different query-specific entity descrip-
tions. Baseline: BERT-LeadText. 5% most difficult queries for BERT-LeadText to the
left and the 5% easiest ones to the right. Performance reported as macro-averages
across queries. For the difficult queries (0-50%), relevant entities are found using
BM25 passages, entity support passages, entity aspects. Hence, our entity ranking
system outperforms several baselines.

poorly. BERT-SupportPsg is always better than BERT-LeadText, even for queries where
BERT-LeadText performs the best (bin 95-100%). BERT-Aspects are better than BERT-
LeadText on 75% of the queries. We also notice that BERT-BM25Psg is complementary
to BERT-LeadText: When the performance of BERT-LeadText is low, BERT-BM25Psg per-
forms well, for example, in bin 25-50%, and vice-versa.

We find that BERT-SupportPsg improves performance (helps) on 92 queries, BERT-
Aspects helps 95 queries, and BERT-BM25Psg helps 18 queries. On inspecting the top-
100 entities for some queries that are helped, we find that compared to BERT-LeadText,
BERT-SupportPsg, BERT-Aspects, and BERT-BM25Psg place relevant entities higher in

the ranking. For example, BERT-LeadText places the relevant entity “Organic Consumers
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Query: Genetically Modified Organism
Entity: Organic Consumers Association

The Organic Consumers Association (OCA) is
a non-profit advocacy group for the organic
agriculture industry based in Minnesota. It was
formed in 1998 by members of the organic
industry and consumers of organic products
after the U.S. Department of Agriculture's
controversial initial version of their proposed

Organic food are foods that are produced using
methods involving no agricultural synthetic
inputs, for instance, genetically modified
organisms (GMO) [...] The Organic Consumers
Association has said that risks have not been
adequately identified and managed and that
there are unanswered questions regarding the

regulations for organic food was introduced.  Potential long-term impact on human health from
[...] food derived from GMOs. [...]
Lead Text Support Passage

Figure 7.3: Example query and entity with description. Left: Lead text. The passage
is a generic description of the entity and does not elaborate upon the connection
between the query and entity. Right: Support passage. The passage is relevant to
the query and elaborates that the entity “Organic Consumers Association” is rele-
vant to GMOs because it regulates GMO food. This query-relevant knowledge helps
BERT-SupportPsg learn that the entity is relevant for the query and promotes it up
the ranking, from rank-57 placed by BERT-LeadText to rank-13.

Association” at rank 57 whereas BERT-SupportPsg places it at rank 13 (see Figure 7.3). By
promoting relevant entities higher up in the ranking, query-specific entity descriptions help
to improve the precision at the top of the ranking. Moreover, we are able to improve perfor-

mance on the “difficult” queries for BERT-LeadText using query-specific entity descriptions.

BM25 Passage as Description. From Table 7.4, we observe that on CAR BenchmarkY1-
Train, BERT-BM25Psg obtains M AP = 0.06 whereas BERT-SupportPsg obtains M AP =
0.29. Using the difficulty test above, we find that BERT-SupportPsg obtains M AP = 0.30
on the lower 0—-50% (difficult) queries where BERT-BM25Psg obtains M AP = 0.15. This
shows that using an entity’s support passage as its description is better than using a query-
relevant BM25-passage that mentions the entity. As discussed in Section 7.2.4, this is
because sometimes, the entity may not be salient to the discussion in the BM25-passage,
and the connection between the query and entity may be made as a passing reference, i.e.,
although the passage is relevant to the query, it is non-relevant for the entity (see Figure
7.1 for example). A support passage addresses this issue because the support passage
retrieval method only considers passages which are relevant to the query and mention the

entity in a salient manner.
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Figure 7.4: Visualizing clusters of relevant entities using t-SNE. We observe that
relevant entities are better clustered using BERT-SupportPsg (left) than using
Wikipedia2Vec (right).

Take-away. Regarding RQ1, it is not always sufficient to use the lead text of an entity as
the entity’s description; query-specific entity descriptions are better.

Regarding RQ2, although BERT-LeadText++ often performs well, our system BERT-
ER++ using query-specific entity descriptions improves entity ranking performance by 13—
42% over BERT-LeadText++. On its own (without other entity features), BERT-ER out-
performs not only BERT-LeadText but also entity rankings obtained using Wikipedia2Vec,
ERNIE, and E-BERT. This performance boost happens because our system can promote
relevant entities to the top of the ranking while demoting non-relevant entities to the bottom.
This happens because query-specific descriptions help our model to learn query-relevant

information and minimize the non-relevant information.

7.5.3 BERT-ER Versus Wikipedia2Vec

Gerritse et al. [50] have shown that entity embeddings from a recent graph embedding
approach called Wikipedia2Vec [155] are useful for entity ranking. As our work heavily
relies on Wikipedia and uses Wikipedia as a Knowledge Base, we compare the perfor-

mance of our query-specific BERT-ER to Wikipedia2Vec. We use the Wikipedia2Vec entity
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embeddings with the graph component made available by Gerritse et al. [50].”.

Overall Results. From Table 7.4, we observe that BERT-ER outperforms Wikipedia2Vec
on both CAR BenchmarkY1-Train and DBpedia-Entity v2. When performing the difficulty
test described in Section 7.5.2, we find that BERT-ER obtains M AP = 0.30 for queries
in the lower 0-50% range where Wikipedia2Vec obtains M AP = 0.05. Moreover, consid-
ering the query-specific descriptions individually, we observe that BERT-SupportPsg and
BERT-Aspects consistently outperform Wikipedia2Vec on both datasets. This suggests
that compared to Wikipedia2Vec, the entity embeddings obtained from BERT using query-
specific entity descriptions capture the similarity/relevance of the entity for the query in a
better way.

To verify this, we inspect the entity rankings for the query GMO obtained using Wikipedia2Vec
and BERT-SupportPsg in Table 7.4. We find that BERT-SupportPsg places the relevant en-
tity “Robert Swanson” at the top of the ranking (rank 3) compared to Wikipedia2Vec that
places the entity at the bottom (rank 8). Moreover, BERT-SupportPsg demotes the non-
relevant entity “Developmental Biology” that is placed higher by Wikipedia2Vec (rank 3)
to the bottom of the ranking (rank 10). Our intuition is that this happens because entity
embeddings obtained using BERT-SupportPsg are query-specific and encode the query-
relevant knowledge about the entity that is helpful for determining the entity’s relevance for
the query. On the other hand, Wikipedia2Vec encodes the general knowledge about the

entity available on Wikipedia, most of which is non-relevant in the context of the query.

Context-Dependent Entity Relatedness. As discussed in Section 7.1, queries and doc-
uments are often matched in the entity-space through the cosine similarity of the embed-
dings of entities mentioned in the query and document. Hence, it is important that the
entity embeddings be able to capture context-dependent similarity between entities. For
example, the entities “Food and Drug Administration” and “Robert Swanson” are related in
the context of GMOs since Robert Swanson was the founder of the company that produced

the first genetically engineered insulin approved for use by the Food and Drug Administra-

’Available from: https://github.com/informagi/GEEER
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tion. We find that compared to Wikipedia2Vec, our query-specific BERT entity embeddings
capture this context-dependent similarity between two entities in a better way. For example,
compared to Wikipedia2Vec, BERT-SupportPsg assigns a higher similarity to the entities

above.

Clustering Entities using Embeddings. As an additional evaluation, we assess whether
the embeddings satisfy the cluster hypothesis [69]: documents (entities) relevant to a query
cluster together. We consider the embeddings of relevant entities as points to be clustered
and evaluate the quality of the resulting clusters. We use the following three metrics for
evaluation: David-Bouldin score [27] (lower scores better), Silhouette score [119] (higher
scores better), and Calinski-Harabasz score [16] (higher scores better).

From Table 7.5, we observe that clusters formed using embeddings from BERT-SupportPsg
are better than clusters formed using Wikipedia2Vec. We also present a t-SNE [132] vi-
sualization of the resulting clusters for some example queries in CAR BenchmarkY1-Train.
As we observe from Figure 7.4, the relevant entities for a query (e.g., “Yogurt”, and “Oxy-
gen”) are close together, and the clusters are better separated using BERT-SupportPsg

than using Wikipedia2Vec.

Take-away. Regarding RQ3, our query-specific BERT-ER outperforms Wikipedia2Vec on
all datasets. BERT-ER finds relevant entities for the (difficult) queries for which Wikipedia2Vec
fails because compared to Wikipedia2vec, BERT-ER captures the context-dependent sim-
ilarity between query-entity pairs in a better way. BERT-ER can promote relevant entities
to the top of the ranking while demoting the non-relevant entities to the bottom. This also
ties back to RQ1 and RQ2: As BERT-ER uses query-specific entity descriptions, it enables
BERT to focus on the query-relevant information to learn the embeddings of entities. As
a result, these embeddings can differentiate between relevant and non-relevant entities

better than Wikipedia2Vec.
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Table 7.5: Results on BenchmarkY1-Train for clustering relevant entities. Evaluation
measures: David-Bouldin score (lower better), Silhouette score (higher better), and
Calinski-Harabasz score (higher better).

David-Bouldin Silhouette Calinski-Harabasz

BERT-SupportPsg 3.87 -0.03 22.75
Wikipedia2Vec 5.29 -0.12 20.30

7.6 Conclusion

We present BERT-ER, query-specific BERT Entity Representations learnt by fine-tuning
BERT for the entity ranking task. In contrast to the prevalent approach of using the static
lead text from an entity’s Wikipedia page as the entity’s description, we study the utility
of three types of query-specific entity descriptions: pseudo-relevant candidate passage,
entity support passage and entity aspect.

Using BERT-ER for entity ranking, we obtain a performance improvement of 13—42%
(MAP) over a system using the lead text as the entity’s description, across a diverse range
of queries from two large-scale entity ranking test collections. We also outperform entity
ranking systems using Wikipedia2Vec, E-BERT, and ERNIE. We show that query-specific
descriptions help an entity ranking system by promoting relevant entities to the top of the
ranking, thereby increasing the precision at the top of the ranking. We also demonstrate
that compared to Wikipedia2Vec, BERT-ER representations can identify when entities are
related in the context of the query in a better way. We also show, both qualitatively and
quantitatively, that compared to Wikipedia2Vec, our query-specific BERT-ER produce better
clusters of relevant entities.

In the long-term, we believe that our approach to query-specific entity representations
will lead to significant improvements in diverse IR and text analysis tasks, including question
answering, and summarization. By demonstrating the importance of query-specific entity

descriptions, we hope to promote more research in this area.

127



CHAPTER 8

ENTITY SALIENCE AND ENTITY RELATEDNESS FOR ENTITY

ASPECT LINKING

8.1 Introduction

In Chapters 6 and 7, we leveraged entity aspects for obtaining fine-grained knowledge
about entities from the context in which the entities have been mentioned. We showed
that entity aspects and entity aspect links are useful for learning query-specific entity rep-
resentations and for entity ranking. Although we briefly touched upon and introduced entity
aspects and entity aspect linking in Chapters 6 and 7, in this chapter, we formally introduce
them to the reader and explore the utility of entity salience and (static) entity relatedness

measures for the task of entity aspect linking.

8.1.1 Motivation

Consider a journalist writing an article on the Coronavirus Disease 2019 (COVID-19) pan-
demic in which she analyzes the different angles of the pandemic on the economy and
worker’s safety. COVID-19 has been widely discussed in the news, social media, and re-
search commentary in various aspects such as transmission, pathology, experimental treat-
ment, food safety, protests, and stay-at-home-orders. So the journalist has to sift through
hundreds of associated texts to identify those that discuss the right context. The journalist
finds it challenging to identify different texts that are relevant for her article without being
overwhelmed with other aspects of COVID-19. Of course, keyword searches help her, but
she would also like to understand the larger connections between her topic and other poli-
cies, research findings, and incidents. One relevant text passage for her task is displayed

in Figure 8.1, top.

128



Several meat processing plants around the U.S. are sitting idle this week be-
cause workers have been infected with the coronavirus. Tyson Foods, one
of the country’s biggest meat processors, says it suspended operations at its
pork plant in Columbus Junction, lowa, after more than two dozen workers
got sick with COVID-19. National Beef Packing stopped slaughtering cat-
tle at another lowa plant, and JBS USA shut down work at a beef plant in
Pennsylvania.

* Meat packing industry: Meatpackers / Today

+ United States: Culture / Food

+ Coronavirus Disease 2019: Cause / Transmission
» Tyson Foods: Controversies / Coronavirus (COVID-19) pandemic
+ Continuous production: Shut-downs / Safety

» Columbus Junction, lowa: History

 National Beef: Food Safety

+ Cattle: Economy / Cattle meat production

 lowa: Economy / Manufacturing

» Meat Industry: Effects on Livestock Workers

» Animal Slaughter: National laws / United States

+ JBS USA: Coronavirus Outbreak

* Pennsylvania: Economy / Agriculture

Figure 8.1: Entity Aspect Linking Example. Top: An example paragraph about a
COVID-19 outbreak in the meat packing industry, where the entity [Coronavirus Dis-
ease 2019] is mentioned with its aspect “transmission”. Bottom: Entities mentioned
in text with their referenced aspects (here taken from Wikipedia sections). From the
fine-grained entity aspect links, the relevance of this paragraph for the journalist’s
task emerges. The paragraph is taken from NPR https://n.pr/35XMdli.
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For such support systems, entity linking tools [41, 83, 104] identify and disambiguate
entity mentions, such as of the entity “Coronavirus Disease 2019.” However, the resulting
entity links do not differentiate between different aspects of the entity that are being dis-
cussed. The journalist in the motivating example would be best helped with a fine-grained
extension of entity links—we call this task entity aspect linking. Given a catalog of as-
pects for each entity, entity aspect linking predicts for each entity, which of its aspects is
referenced in the context.

Figure 8.1 lists the most relevant entity aspects for the entities mentioned in the text
above. In this example, the catalog of entity aspects is derived from sections in the
Wikipedia article of the mentioned entity—other sources for aspect catalogs can be a rep-
utation management platform or journalistic notes, as long as a brief description of each
aspect is available. We refer to this description as aspect content.

For very popular topics such as COVID-19, aspect prediction can be addressed with
lexicalized text classification. However, our goal is to develop a support system that also
works for less popular topics, where the manual annotation of training data would defeat
the purpose.

Finally, the benefits of an entity-aspect-linker go much beyond classifying into different
aspects of a single target entity (such as COVID-19). While knowledge graphs have shown
a lot of advantages, entity aspect linking allows to build a sub-entity knowledge graph,
where nodes represent entity aspects, which are grouped into entities. Because the as-
pects are associated with content that mentions other entities, we can establish relations

between entity-aspects by entity-aspect-linking the content of aspects.

Entity Aspect Linking Task. Given a mention Mg for entity £ in a context C' such a
tweet, sentence or paragraph and a set of n predefined aspects Ap = {A;, As, A, -+, Ay}
along with their contents, link the mention Mg to an aspect A; € Ag that best captures the

addressed topic.

In the following, we distinguish between context and content: the context is the text

surrounding the entity mention we seek to aspect-link. With content, we refer to content
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Figure 8.2: Graphical representation of various concepts in aspect linking.

associated with the aspect. This is depicted in Figure 8.2.

8.1.2 Research Gap

Nanni et al. [91] introduce the entity aspect linking task and suggest a combination of
text similarity metrics between mention context and aspect content. One of the similarity
metrics includes the overlap and similarity of other entities mentioned in context and as-
pect content. However, their approach would consider all entities equally important for the
aspect-linking decision. We believe the approach can be improved by incorporating the
entity salience and entity relatedness.

In context and content, only few entities are salient (that is, central), while most other
entities are mentioned in passing, such as in examples, circumstantial references, or clari-
fications. We alleviate this problem by incorporating the salience of the entity in the aspect
content. We hypothesize that incorporating the salience of the entity while aspect linking
would improve performance. Many approaches for entity salience detection have been de-
veloped recently [37,109, 150]. In this work, we use the state-of-the-art salience detection
system from Ponza et al. [109] to incorporate the salience of the entity in aspect linking.
We present several entity salience-based indicators and show that it is indeed useful to

incorporate the salience of an entity along with the lexical and semantic indicators in entity
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aspect linking. We present a detailed analysis of the conditions under which salience works
and fails.

In context and content, many entities are closely related but will not be exact matches.
We alleviate this by incorporating the relatedness of the entities in the aspect content to
the target entity (the entity we are trying to aspect link). We hypothesize that aspects
with content which have many highly related entities to the target entity are more likely
expressions of the right aspect. We explore if entity relatedness is helpful to link contexts
to aspect content whenever they are not mentioning identical entities, but entities that are
highly related. Several entity relatedness measures have been suggested which predict the
similarity between two entities [108, 115, 120, 158]. We experiment with using a state-of-
the-art entity relatedness detection system from Piccinno et al. [104]. We show that using
a measure of entity relatedness from an external tool to match entity aspects, when used
in combination with the lexical and semantic features can improve performance on several

baselines.

8.1.3 Contributions

Our contributions are as follows:

1. We present a novel method of EAL which incorporates the salience of the target entity
in the aspect. We show that entity salience detection can help by learning informa-
tion which is complementary to some lexical and semantic features and provides an

improvement of 10% on the existing state-of-the-art for EAL.

2. We show that entity relatedness based indicators are not only strong on their own
but also help to boost retrieval performance on the EAL task by improving retrieval
effectiveness by upto 8% when used in conjunction with entity salience, lexical and

semantic indicators.

3. We show that although a static measure of relatedness from an off-the-shelf tool can
help the task, the performance is inferior to using the frequency of co-occurrence of

an entity with another entity as a relatedness measure.
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8.1.4 Outline

The remainder of this chapter is organized as follows. As our method builds on the features
suggested by Nanni et al. [91], we briefly describe them in Section 8.2. In Section 8.3, we
describe our approach to entity aspect linking using entity salience and entity relatedness.
In Section 8.4 we describe the experimental methodology, followed by a discussion of the

results in Section 8.5. We end the chapter with Section 8.6.

8.2 Background: EAL Method of Nanni et al.

Nanni et al. [91] uses a “bag of words” vector space model to represent entity aspects.
They consider three different ways of comparing the context of the entity mention based on

the following entity aspect fields:

1. Header. Rank aspects based on similarity of the mention in context to the header of

each section in the Wikipedia page.

2. Content. Rank aspects based on the similarity between the mention in context and

the content of each section of the Wikipedia page of the entity.

3. Entity. Overlap of entities mentioned in the context of the entity mention and the

content of a section on the Wikipedia page of the entity.
They use five methods to derive features from these fields:

1. TF-IDF. Cosine similarity between the TF-IDF (logarithmic, L2-normalized) vector of

contextual mention and aspect field.

2. BM25. Rank aspect representations using the contextual mention as a query using

BM25 (ky = 2,b = 0.75).

3. Word Embeddings. Cosine similarity between the mention in context and the aspect

using pre-trained GloVe [101] embeddings of dimension 300.
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Passage 1. The British government came under heightened pressure to dis-
close details about a secretive scientific advisory group after a report on Friday
that a top political aide to Prime Minister Boris Johnson had taken part in the
group’s meetings on the coronavirus pandemic.

Passage 2. British Prime Minister Boris Johnson is resisting growing calls to
reopen the UK from its lockdown because he is still so “frightened” from his
own near-fatal brush with the bug, according to a report .

Figure 8.3: Salient versus Non-Salient Passage. We notice that Passage 2 discusses
how the entity Boris Johnson in his role as the Prime Minister of the UK is affecting
the pandemic situation whereas Passage 1 just mentions the entity on the side. We
say that Boris Johnson is salient, i.e., central in Passage 2.
4. Entity Embeddings. Using 500 dimensional RDF2Vec [115] embeddings to embed
entities in the context of the entity mention and a section from the Wikipedia page

of the entity, then compute the document vector using the TF-IDF of an an entity in

context of the entity mention and its embedding.
5. Term Overlap. Number of shared words after tokenization.

6. Size. a context-independent feature, which is the numbers of words in an entity

aspect’s text.

Furthermore, they explore different context sizes: sentence, paragraph, and section.

8.3 Approach

Our goal is to enrich entity links with fine-grained aspects of the entities. In this work,
we incorporate entity importance through entity salience and relatedness. We refer to the
entity that we want to link to the correct aspect link as the target entity. In the following,
we discuss several ideas as micro-approaches. In the evaluation, we will compare them on

their own, and through a supervised combination that uses each as a feature.

8.3.1 Entity Salience for Entity Aspect Linking

Our first extension is to incorporate indicators from entity salience detection. As discussed

in Section 8.1.2, only few entities are salient in the content and context while most other
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Aspect. Prime Minister of UK

Content. Former Prime Minister Theresa May has criticised world leaders for
failing “to forge a coherent international response” to the coronavirus pandemic.
Mrs May’s intervention comes as Boris Johnson and Sir Keir Starmer face each
other at Prime Minister’s Questions for the first time later.

Figure 8.4: Example aspect with content to depict entity relatedness intuition. This
aspect may be a good aspect for the entity Boris Johnson since it mentions several
related entities such as Theresa May and Sir Keir Starmer.

entities are mentioned as a passing reference (see Figure 8.3). Hence, we would prefer to
link an entity to the aspect in which the entity is salient. We hypothesize that entity salience
is a useful indicator of aspects for entities. Due to its superior performance and ease of
use, we use the entity salience detection system from Ponza et al. called SWAT [109] to
find the salience of an entity in text. Given some text, SWAT returns the entities along with
their salience scores in the text. We use salience detection in our aspect-linking approach

by incorporating the following indicators.

1. Salience of Entity Mention in aspect (Sal-EM). Score of the aspect is equal to the
salience score of the entity mention in the aspect if the entity is salient, and zero

otherwise.

2. Salient Entities in Context (SEC). Score an aspect by summing over the salience
score of entities e € £/, where £ = E4 n E¢, E4 = aspect entities, and E- = salient

entities in sentence, paragraph and section context.

3. All Entities in Context (AEC). To investigate the extent to which salient entities can
affect the performance, we also experiment with using both salient and non-salient

entities from SWAT for E¢ in (2) above.

8.3.2 Entity Relatedness for Entity Aspect Linking

Entity Relatedness is a measure of how strongly related two entities are. For example, con-
sider the entities, Boris Johnson, Theresa May, and Donald Trump. Intuitively, one would
say that Boris Johnson is more strongly related to Theresa May than to Donald Trump be-

cause both Boris Johnson and Theresa May are British politicians. We hypothesize that
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this measure of entity relatedness can help in aspect linking. More concretely, we hypothe-
size that an aspect mentioning many related entities to the target entity is a good candidate
for an aspect for the given target entity (see Figure 8.4.

We use two measures of relatedness in this work:

1. Frequency of co-occurring entities. We assume that entities that co-occur fre-
quently with the target entity are highly related to the target entity. We calculate
the relatedness of an entity e, to an entity e; by counting the number of times e, is

mentioned in the context of e;.

2. Relatedness from an external tool. Due to its superior performance and ease of
use, we use the Entity Relatedness system from Piccinno et al. called WAT [104] to
find relatedness between pairs of entities. Given a list of entities, WAT provides the

relatedness measure between every pair of entities in the list.

Co-occurring entities with an entity from context. The current state-of-the-art method
for EAL from Nanni et al. [91] uses exact matches of entities in the context and aspect
content. However, since there are only few such entities, we explore methods to derive
an expanded set of prominent entities ¢/, then rank aspects by how frequently they match
these most prominent entities ¢’.

For every entity e in the context of the target entity e (sentence, paragraph or section),
we retrieve top-k' passages from a background corpus using e¢’s name as a query. We
construct a bag of potential expansion entities (henceforth called PROM in this paper) from
all entities mentioned in all £ x k£ passages that were retrieved through E queries, one for
each entity e in the context. We calculate the frequency tf.(¢’) with which entities occur in

the passage ranking for entity e as follows:

the(e') = ) ti(e'p) (8.1)

pePe.
where P, are the passages mentioning e in the passage ranking obtained using e as query

and tf(¢’|p) is the frequency of ¢’ in p. From this frequency, we derive a prominence P(¢'|er)

"We use k = 100.
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and use it to reweigh entities in this bag. The prominence not only incorporates the degree
of association of ¢’ with the contextual entity e, but also how consistently ¢’ is associated
with other entities e that occur in the context we seek to link. Akin to language models, the

term frequency tf.(e’) is normalized to sum to one over all context entities e”.

P(eller) = = 3757 el 82)

eler) = — = = = .
g E e ¢ Ze” tf@(e”)

Finally, we match prominent entities ¢’ in target aspects a: the more frequent prominent

entities ¢’ are mentioned in the aspect content, the higher the aspect is ranked.

Score(a) = Y P(¢|er) (8.3)

e'ea

We explore three variants of this approach.

1. Simple Frequency Distribution (SF-Dist). Using the prominence score P(€’|er)
produced via passage ranking of all entities e mentioned in the context. This co-
occurrence-based entity scoring metric allows us to match more entities ¢’ in the as-
pect than solely using entities in the context e. However, as any expansion approach,

it is prone to promote spurious matches.

2. Weighted Frequency Distribution (WF-Dist). To remedy the promotion of spuri-
ous matches, we combine the prominence score with an entity-relatedness score

between entities ¢’ and the target entity er.

Score(a) = Z Relatedness(¢’, er) - P(€'|er) (8.4)

e'ea
3. Relatedness Distribution (Rel-Dist). Same approach as in Equation 8.4 but the
prominence score is ignored. We only use the prominence approach to select a set

of entities ¢’.

Co-occurring entities with the target entity. Since contextual entities e might be less

well suited than the target entity e, we explore several methods that emphasize a connec-
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tion to the target entity.

1. Rel-Dist-PROM. Using the prominence approach above, but building an entity set

only for the target entity e, while ignoring other contextual entities e.

2. Rel-Dist-Wiki. Instead of identifying entities through other passages, we consider
entities ¢/ mentioned on the Wikipedia page of the target entity er. These entities ¢’

are ranked by relatedness to er.

Instead of ranking aspects a by a sum of prominence/relatedness scores that they con-
tain, we invert the approach and rank aspects by retrieval models. The query is formed by
the title of the target entity which is expanded with top 20 entities ¢/ — these are weighted
in the query akin to RM3 [70]. We explore weighted combinations of the following retrieval
models as implemented in Lucene: (1) BM25 (default parameters), (2) Language Models
with Jelinek-Mercer (LMJM) smoothing (A = 0.4), and (3) Language Models with Dirichlet

(LMDS) smoothing, with both RM1 and RM3 expansion models on entities.

1. RS-Asp-Freq-PROM. Expand query weighted by prominence score and retrieve as-

pects.

2. RS-Asp-Rel-PROM. Expand query weighted by relatedness score and retrieve as-

pects.

3. RS-Asp-Rel-Wiki. Expand with top 20 entities by relatedness (to er) on Wikipedia

page of e and retrieve aspects.

8.4 Evaluation

In this section, a quantitative evaluation of our system for the Entity Aspect Linking (EAL)
task is presented on the entity-aspect dataset from Nanni et al. [91]. We begin by giving
a brief overview of the datasets used in this work in Section 8.4.1. We then describe our
experimental settings (Section 8.4.2) followed by the baselines (Section 8.4.3). We end

the section by presenting some research questions pertaining to three broad components
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of our system: Entity Salience, Entity Relatedness and Co-occurring entities, which our

experiments aim to address (Section 8.4.4).

8.4.1 Entity Aspect Linking Benchmark

We use the Entity Aspect Linking dataset from Nanni et al. [91]. It consists of 201 entity
mentions from Wikipedia along with their sentence, paragraph and section context, and a
list of candidate aspects for the mention. We use this dataset for training a Learning-to-rank
(L2R) algorithm using 5-fold cross validation.

Nanni derived this dataset from hyperlinks on Wikipedia pages that refer to sections on
other pages after omitting hyperlinks to administrative sections such as “References”, “See
Also”, etc. Each training example contains the sentence context, paragraph context, entity
mention and candidate aspects. The candidate aspects are the top-level sections of the
Wikipedia page of the entity linked to the mention. Each candidate aspect contains infor-
mation about its section header, text, and entities that are contained within it. In addition to

the entity links in both context and aspect content which are provided with the dataset, we

use WAT? [104] to annotate additional entity links in the context and aspect content.

Passage Corpus. We use the corpus of paragraphs from the TREC Complex Answer
Retrieval (CAR) track [34]° dataset as a source of passages when determining the promi-
nence score in Section 8.3.2. It consists of an entity linked corpus consisting of paragraphs
from the entire English Wikipedia. We construct a Lucene index of passages and use the

top 100 passages retrieved with BM25 (Lucene default) using the entity name as the query.

Ground Truth. The dataset from Nanni et al. [91] contains contexts, entity links to tar-

gets, and the correct aspect. The dataset was automatically created and manually verified.

2WAT has both, an entity linking system and an entity relatedness prediction system. See https://
sobigdata.d4science.org/web/tagme/wat-api
Shttp://trec-car.cs.unh.edu
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8.4.2 Evaluation Paradigm

Evaluation Metrics. Our methods predict a ranking of aspects. We use Precision at 1

(P@1) and Mean Reciprocal Rank (MRR) as our evaluation metrics.

Machine Learning. We apply our methods to produce an aspect ranking for every entity
mention. We then treat each ranking as a feature and perform 5-fold cross validation with
a list-wise learning-to-rank (L2R) method (Coordinate Ascent) optimized for Precision at 1

(P@1). We use RankLib* for this purpose.

Feature Subsets We present an ablation study with various subsets of features. Below,

we define the feature subsets we use in our study.

Subset-1. All features based on entity relatedness.

Subset-2. All features based on entity salience.

Subset-3. All features based on entity relatedness along with lexical and semantic

features from Nanni et al.

Subset-4. All features based on entity salience along with lexical and semantic fea-

tures from Nanni et al.

» Subset-5. All features based on entity relatedness and entity salience along with

lexical and semantic features from Nanni et al.

8.4.3 Baselines
We include the following baselines in this work:
1. Nanni’s method. We re-implement all lexical and semantic features from Nanni et al.

[91] and use a supervised combination of sentence, paragraph and section context

features as our baselines. Their method is discussed briefly in Section 8.2.

“http://sourceforge.net/p/lemur/wiki/RankLib
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2. Size. We consider the length of each section (in number of tokens) and link the

entity-mention to the longest.

8.4.4 Research Questions

We study the following research questions in this chapter:
RQ1 To what extent can entity salience help EAL?
RQ2 To what extent can entity relatedness help EAL?

RQ3 Is the frequency or relatedness of co-occurring entities a better indicator of aspects?

8.5 Results and Discussions

The results from our experiments are presented in Table 8.1. Below, we discuss each
research question presented in Section 8.4.4. Note that in our work, we treat frequency
of co-occurrence as a measure of relatedness between two entities, with the assumption
that more frequent entities are also highly related. In addition, we also use the relatedness
measure obtained from an external tool [104] and compare which contributes more to the
task. In the discussion that follows, we use the term relatedness distribution to denote
the relatedness distribution over co-occurring entities which is obtained using the external
tool, and the term frequency distribution to denote the relatedness distribution obtained by

counting how frequently an entity co-occurs with the target entity.

8.5.1 Entity Salience

From Table 8.1, we observe that a supervised combination of all salience features (Subset-
2, P@1 = 0.59) outperforms two of the four baselines, Nanni et al. (Section) (P@1 = 0.53)
and Size (P@1 = 0.39). We also observe that a combination of all salience features with
the lexical and semantic features (Subset-4, P@1 = 0.72) outperforms all baselines and
provides an improvement of 10% over the best performing baseline, Nanni et al. (Sentence)

(P@1 = 0.65). However, considering all entities (salient and non-salient) in the context
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Table 8.1: Performance with standard error of individual entity salience and related-
ness features and combined with L2R, including subsets/ablations.

Method P@1 MRR Success@5 NDCG@10
Nanni et al. (Sentence) 0.67+0.08 0.79+0.02 0.97+0.03 0.85+0.03
Nanni et al. (Paragraph) 0.64+0.03 0.78+0.03 0.99+0.08 0.84+0.03
Nanni et al. (Section) 0.53+0.08 0.71£0.03 0.97+0.03 0.78+£0.03
Size 0.39+0.03 0.60+0.03 0.93+0.03  0.70+£0.03
Sal-EM 0.19+0.03 0.46+0.03 0.82+0.03  0.58+0.03
SEC (Sentence) 0.23+0.03 0.53+0.03 0.85+0.03 0.63+0.03
AEC (Sentence) 0.51+0.08 0.70+0.03 0.95+0.03 0.77+0.03

0.54+0.08 0.72+0.03 0.96+0.03 0.79+0.03
0.49+0.03 0.67+0.03 0.94+0.03 0.75+0.03
0.43+0.03 0.62+0.03 0.94+0.03 0.72+0.03

SF-Dist-PROM 0.35+0.03 0.59+0.03 0.93+0.03 0.69+0.03
Rel-Dist-PROM 0.36+0.03 0.60+0.03 0.90+0.03 0.69+0.03
RS-Asp-Freq-PROM (LMJM + RM1)  0.35+0.03 0.59+0.03 0.90+0.03  0.67+0.03
RS-Asp-Rel-PROM (LMJM + RM1)  0.40+0.03 0.60+0.03 0.91+0.03  0.69+0.03

Rel-Dist-Wiki 0.37+0.03 0.60+0.03 0.92+0.03  0.69+0.03
RS-Asp-Rel-Wiki (BM25 + RM3) 0.394+0.03 0.61+0.03 0.93+0.03 0.70+0.03

Subset-1 (Only Relatedness) 0.48+0.03 0.68+0.03 0.96+0.083 0.75+0.03
Subset-2 (Only Salience) 0.59+0.03 0.72+0.03 0.93+0.083 0.78+0.03
Subset-3 (Rel. + Lex. + Sem.) 0.66+0.03 0.78+0.03 0.97+0.03 0.83+0.03
Subset-4 (Sal + Lex. + Sem.) 0.72+0.08 0.82+0.03 0.97+0.03 0.87+0.03
Subset-5 (Sal. + Rel. + Lex. + Sem.) 0.70+0.03 0.81+0.08 0.97+0.03 0.85+0.03

SF-Dist (Sentence)
WE-Dist (Sentence)
Rel-Dist (Sentence)

P

(AEC Sentence, P@1 = 0.51) performs better than considering only the salient entities

(SEC Sentence, P@1 = 0.23).

Salient versus non-salient entities. These observations show the effectiveness of using

salience. However, they also indicate that considering non-salient entities together with the

salient ones help improve performance. To investigate this further, we manually confirmed

that SWAT correctly identifies salient entities in text. However, SWAT returns many empty

results when asked for only salient entities than when asked for all (salient or otherwise)

entities. For example, using the sentence context of an entity mention, SWAT returns an

empty result for 100 of the 201 entity mentions when asked for only the salient entities

and 13 of 201 entity mentions when asked for all entities. This shows the limitations of

SWAT and why the results obtained using SEC (Sentence) is lower than AEC (Sentence).
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Our intuition is that the other entities, although non-salient, have some inherent semantic
meaning and hence considering them together with the salient entities helps the task. This
is the case for the paragraph and section contexts too but we do not show the results here

due to space constraints.

Issue with exact entity matching. One issue with matching entities in such an exact
way is that very often, there are no matches. In such cases, a lot of aspects receive
a score of zero in our methods (SEC and AEC in Section 8.3.1). This also shows why
the AEC (Sentence) outperforms SEC (Sentence) in Table 8.1. There are more matching
entities when matching all aspect entities (as in AEC) than when matching only salient
aspect entities (as in SEC), with salient context entities. To illustrate this issue, we present
an example from our dataset in Figure 8.5. We observe that the entity Kyoto Protocol is
salient in the context (shown by bold italic) but not in the content (shown by only bold).
Hence, SEC would score this aspect zero since there are no matching salient entities, but

AEC would not.

Difficulty test. To investigate the extent to which salience helps, we divide the entity
mentions into different levels of difficulty according to the performance (P@1) of the Nanni
et al. (Sentence) method, with the 5% most difficult queries for this method to the left and
the 5% easiest ones to the right, and compare the performance with the Subset-4. The

results are shown in Figure 8.6.

Take-Away. With respect to RQ1, we can say that entity salience does indeed affect the
task positively. We are able to outperform all the baselines with the help of salience and
achieve an improvement of 10% on the best performing baseline. We see that salience
helps to boost performance when the aspect linking decisions get difficult by learning in-
formation which is complementary to the lexical and semantic features. However, exactly
matching entities between context and aspect content leads to finding no matches for most
aspects and hence most aspects receive a score of zero. Added to this are the limitations of

SWAT in finding salient entities. Hence, entity salience is helpful but needs to be balanced
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Mention. Annex 1

Sentence Context. Under the Kyoto Protocol, the ‘caps’ or quotas for Green-
house gases for the developed Annex 1 countries are known as Assigned
Amounts™ and are listed in Annex B.

Aspect Content. The United Nations Climate Change Conference are
yearly conferences held in the framework of the UNFCC. They serve as
the formal meeting of the UNFCC Parties ("Conferences of the Parties”)
(COP) to assess progress in dealing with climate change, and beginning in
the mid-1990s, to negotiate the Kyoto Protocol to establish legally binding
obligations for developed countries to reduce their greenhouse gas emis-
sions.

Figure 8.5: Example mention with SWAT annotated sentence context and aspect
content. The salient entities are in bold italic and the non-salient ones are in bold.

with additional entities to be effective.

8.5.2 Entity Relatedness
We observe the following from Table 8.1.

1. A supervised combination of all relatedness features (Subset-1, P@1 = 0.48) does
not perform very well on its own, doing better than only one baseline, Size (P@1 =

0.39).

2. A combination of relatedness features with the lexical and semantic features (Subset-
3, P@1 = 0.66) does significantly better than all baselines. However, the improve-
ment over the best performing baseline (Nanni et al. (Sentence), P@1 = 0.65) is

little.

3. We achieve an improvement of 8% on the best performing baseline (Nanni et al.
(Sentence), P@1 = 0.65) by using a combination of salience and relatedness fea-

tures with the lexical and semantic features (Subset-5, P@1 = 0.70).

4. Using only salience based indicators (Subset-2, P@1 = 0.59) works better than using

only relatedness based indicators (Subset-1, P@1 = 0.48).

5. Adding relatedness based indicators to the mix results in a slight decrease in perfor-

mance from P@1 = 0.72 on Subset-4 to P@1 = 0.70 on Subset-5.
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Figure 8.6: Difficulty-test for P@1, comparing Nanni et al.(Sentence) to various L2R
systems. We observe that whenever it is difficult to perform the task using Nanni et
al. (Sentence), entity salience supports our L2R system (Subset-2 and Subset-4).

Drawbacks of WAT. These observations indicate that entity relatedness does indeed af-
fect the task positively. However, salience is more informative than relatedness as is evident
from the superior performance of Subset-2 over Subset-1 and Subset-4 over Subset-3. On
further investigation, we found that WAT finds many false positives and false negatives. For
example, given the entity list consisting of World War I, Vietnam War and France, it predicts
that World War | is related to Vietnam War (false positive) but unrelated to France (false
negative). This is because WAT does not take the query or the context of the entity into
account but makes predictions based on graph-based features such as number of inlinks

and outlinks to and from a particular entity node in a knowledge graph.

Difficulty Test. To investigate the extent to which relatedness helps, we present results
from the difficulty test explained in Section 8.5.1 in Figure 8.6. We observe that whenever
it is difficult to perform the task using Nanni et al. (Sentence), entity relatedness supports

our L2R system (Subset-3 and Subset-5).
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Take-Away. With respect to RQ2, we may say that relatedness does indeed affect the
task positively. Although the relatedness of entities by itself may not perform very well, it
shows its strength in a supervised combination with lexical and semantic features lead-
ing to performance improvement of 8% over the best baseline. Moreover, a L2R system
containing relatedness based features help to boost performance when aspect linking de-
cisions get difficult. However, the limitations of WAT hinder the performance of a system

using it.

8.5.3 Frequency vs Relatedness

We observe from Table 8.1 that ranking aspects using SF-Dist (Sentence) (P@1 = 0.54)
outperforms WF-Dist (Sentence) (P@1 = 0.49), which in turn outperforms Rel-Dist (Sen-
tence) (P@1 = 0.43).

Quality of entity rankings obtained using frequency and relatedness. These obser-
vations indicate that using the frequency of co-occurring entities as a relatedness measure
is more informative than the relatedness obtained from WAT. To investigate this further and
to answer RQ3, we produce entity rankings for every aspect using: (1) Frequency (SF-Dist
in Section 8.3.2) and (2) Relatedness (Rel-Dist in Section 8.3.2) of entities. We evaluate
these entity rankings using a “ground truth” of aspects where we define any entity men-
tioned in the aspect as relevant for the aspect. We use Mean-Average Precision (MAP) as
our evaluation metric for this experiment.

We found that the entity rankings obtained using frequency distribution (prominence)
are indeed better than those obtained using relatedness distribution. For example, entity
ranking obtained using section context and frequency distribution has MAP = 0.13 whereas

that obtained using relatedness distribution has MAP = 0.04.

Helps-hurts analysis. We also perform an additional experiment where we analyse the
number of entities that were helped (in terms of P@1) by using frequency distribution of
co-occurring entities as compared to using the relatedness distribution. We found that

using frequency distribution over the co-occurring entities helps more queries than using a
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relatedness distribution. For example, with section, using frequency distribution helps 1160
aspects while hurting just 3 as compared to using relatedness. This shows why the entity
ranking obtained using frequency and section context performs better than that obtained
using relatedness, and consequently, why the SF-Dist methods perform better than the

Rel-Dist method in Table 8.1.

Take-Away. With respect to RQ3, although relatedness from WAT can help when the as-
pect linking decisions get more difficult, as compared to frequency, it hurts the performance

of a method using it.

8.6 Conclusion

This chapter addresses the task of entity aspect linking and studies the effectiveness of
using entity salience and relatedness on the task using two off-the-shelf tools not trained
for this task. We show that although these tools are not perfect and do not pose a solution
on their own, a supervised combination of salience and relatedness features with lexical
and semantic features can outperform several established baselines. In particular, we
show that such a supervised combination learns complementary information which aids
the performance of the supervised system. Moreover, we find that using the frequency of
co-occurring entities as a relatedness measure between two entities is better than using
their relatedness from an off-the-shelf-tool.

Despite this success, we believe that there is potential for further improvement, if
salience detection and entity relatedness would be customized for the entity aspect linking
task. One issue is that relatedness is both unaware of the context and the aspect content.
Extending entity relatedness measures to consider relatedness-in-context (similar to the
prominence score) is likely to offer further improvements. Analogously, salience detection
is currently trained for a linguistic purpose, that is unaware of the downstream task. We
speculate that developing a new salience-like component that can identify which entities
in the context are sufficiently central to be incorporated in the matching decision. Both

a context-ware entity relatedness and a task-aware salience detector—once available—
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would also be useful for other downstream tasks.
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CHAPTER 9

SUMMARY

Through this dissertation, we advance the state-of-the-art in IR by developing neural entity-
oriented search algorithms that understand text at a deeper level by obtaining a deeper un-
derstanding of entities in the text. We explore the utility of methods such as entity salience
and (query-specific) entity relatedness whose utility for IR tasks were not well-studied pre-
viously, thus adding new knowledge to the field regarding which ideas/concepts work the
best. With the development of deep learning for IR/NLP, emphasis is often placed on
developing more complex models; however, thorough this dissertation, we find that (sim-
ple) retrieval-based approaches can yield significant performance improvements without
increasing model/training complexity.

We explore two major research directions in this dissertation that inform each-other and
together help to advance the state-of-the-art in IR: (1) Obtaining fine-grained and query-
specific knowledge about entities from the context of entity mentions, and (2) Using this
knowledge to automatically learn query-specific vector representations of entities. We ob-
tain this query-specific knowledge from two sources: (1) entity-support passages retrieved
from a text corpus, and (2) entity aspects (obtained using entity aspect linking) which are
top-level sections from Wikipedia. We show that the two sources provide complimentary in-
formation about entities. Together, they allow us to understand the query-relevant aspects
of an entity, which we leverage for text matching during retrieval (Chapters 6 and 7).

With respect to entity-support passage retrieval (Chapter 5), we explore the utility of
entity salience for the task and show that salience is a high precision indicator that leads to
improvements when applicable. As noted earlier, current entity-oriented search systems of-
ten use the introductory paragraph from Wikipedia as the entity’s description. Through our

work on entity-support passage retrieval, we show that significant performance improve-
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ments can be obtained when replacing (generic) information from Wikipedia with query-
specific knowledge obtained through Pseudo-Relevance Feedback. Our intuition is that the
Wikipedia page contains a lot of topics/information about the target entity but only some
of this is relevant in the context of the given query. Hence, identifying and distinguishing
this query-relevant information from the other information on the Wikipedia page leads to
improvements.

Our research studies the question: How can we identify the query-relevant parts from
Wikipedia? To this end, we identify the top-level sections (entity aspects) from the Wikipedia
page of an entity that provides information about the entity in the context of the query. We
leverage entity aspects for IR and evaluate their efficacy in the context of the entity ranking
task in two ways: (1) Using entity aspects directly by deriving entity relevance features from
them in Chapter 6, and (2) Using the entity aspects to learn query-specific entity represen-
tations using BERT in Chapter 7. In both cases, we find that using entity aspects leads to
significant performance improvements over several state-of-the-art entity ranking systems
(both neural as well as non-neural) on two large-scale entity ranking test collections.

Our query-specific entity representations are able to identify when two entities are sim-
ilar in the context of the query even when they are apparently unrelated in the Knowledge
Graph. We show this through our work on entity ranking in Chapter 7. Through this dis-
sertation, we make a significant contribution to the emerging and growing field of learning
BERT-based entity representations.

Entity ranking is a very important task in information retrieval: Often, queries such as
Where was Mother Teresa born? can be answered using entities. Our work on entity
ranking using the question-answering queries from DBpedia-Entity v2 dataset significantly
advances the state-of-the-art in the area. In particular, we show that incorporating fine-
grained query-specific knowledge into the entity retrieval system often leads to significant
performance improvements. Further, we propose a new end-to-end entity ranking system
that does not require extensive feature engineering and learns entity relevance indicators

automatically from training data.
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cuapter 10

FUTURE WORK

The research presented in this dissertation serves as a stepping-stone for further research
in the field of neural entity-oriented information retrieval and extraction. The ideas pre-
sented in this dissertation has the potential to not only impact the field of IR but also other
related fields such as Natural Language Processing and Question-Answering. Below, we

discuss some possible future directions that one might pursue:

* Query-specific entity representations for question-answering systems. In this
dissertation, we show how to obtain query-specific knowledge about an entity and
use this knowledge to learn vector representation of the entity. Our work in learn-
ing query-specific entity representations has the potential to have significant impact
on question-answering. Often, the first step in question-answering is Answer Sen-
tence Selection: Selecting the sentence containing (or constituting) the answer to
a question from a set of retrieved relevant documents. In such cases, the ques-
tion and candidate sentence may be matched in the entity-space using our query-
specific entity representations. Our intuition is that query-specific entity represen-
tations can improve on this component, hence improving the overall quality of the

question-answering system.

« Automatic hyperlinking of news articles. In addition to providing links to articles
that give the reader background or contextual information, journalists sometimes link
mentions of concepts, artifacts, entities, etc. to internal or external pages with in-
depth information that will help the reader better understand the article. Our work
on entity-support passage retrieval can be used to automatically hyperlink entities,
concepts, or references in news articles to another resource that provides more in-

formation on the linked thing.
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« Automatic clustering of news articles. In the news domain, it is often required to
cluster (long) news articles on the same topic together. This clustering method would
need a measure of text similarity to perform well. Our research on entity aspect
linking has the potential to impact this domain: Our research on entity aspect linking
focuses on developing models that can match an aspect to the context, thus trying
to model the similarity between the aspect and the context. This can aid the news

clustering system.

Finally, we envision this dissertation to serve as a stepping stone towards building more
intelligent information finding systems. Such systems would one day respond to a user’s
open-ended and complex information needs with a complete answer instead of a ranked

list of results, thus (finally) transforming the “search” engine into an “answering” engine.
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