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Abstract

I examine vaccination behavior during a measles outbreak. By abandoning the rational 

expectations framework, I develop a model of vaccine behavior which recreates 

empirically observed vaccine hesitancy, as well as vaccination spikes during an outbreak. 

I use an agent-based model to simulate disease spread and agent behavior in a measles 

outbreak, in which rational agents minimize their expected costs by choosing their 

vaccination state. I allow some agents to instead use a heuristic, and others to have 

misinformation regarding vaccine risks, and finds that both reduce welfare. Including a 

social network has an ambiguous effect, as using more relevant local data allows agents 

to better estimate their risk from disease, but the same social network amplifies the 

impact of misinformation. I then examine a series of regulator interventions, and find that

using a social media campaign to change agent’s perceptions of their peers’ views is the 

most cost-effective intervention. This presents regulators with a new framework with 

which to understand vaccine hesitancy, and an expanded menu of options to employ in 

the event of an outbreak. 
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1. Introduction

Rational expectations theory does not seem to apply well to the problem of vaccination. Vaccination is 

a very inexpensive procedure which averts very expensive outcomes, and so we would expect 

individuals to vaccinate in advance of a disease outbreak. Yet when we observe vaccination behavior 

empirically, we see that vaccination rates remain well below recommended levels until an outbreak 

happens. Then a spike in vaccinations is observed, but too late to prevent the outbreak in the first place.

By departing from an assumption of rational expectations, I seek to reconcile this delayed vaccination 

rate we observe with a theoretical model of vaccination behavior in a measles outbreak, which allows 

for the imperfect information that rational expectation models struggle with (Colander et al., 2009, p. 

7). 

Measles is a deadly disease which spreads very quickly, making it a major concern for public health 

officials. The Measles-Mumps-Rubella (MMR) vaccine provides prophylactic protection, but its uptake

is well below the near-universal adoption recommended by the U.S. Centers for Disease Control and 

Prevention (CDC) to obtain herd immunity. Measles spreads exceptionally fast, so even a modest drop 

in vaccination rates can lead to outbreaks. For example, New York City had only a 73% vaccination 

rate in 2019, and its number of measles cases grew from 1 to 650 despite extensive interventions by the

Department of Health and Mental Hygiene (Zucker et al., 2020). 

Relatively low vaccination rates are puzzling because vaccines provide large social benefits, in terms of

millions of lives and billions of dollars saved over the past two decades (Ozawa et al., 2017). Vaccines 

are one of the few medical interventions which can reduce total medical costs by preventing disease 

and expensive treatments later (Armstrong, 2007). This alone should, in principle, be a compelling 
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argument for everyone to vaccinate, but there are additional benefits which can accrue: once a certain 

percent of the population is immune, that illness can no longer spread and eventually dies out. This 

represents a large positive externality, in which even individuals who do not vaccinate benefit from the 

vaccination of others. 

With modest production costs for vaccines and large health benefits from vaccination, persistently low 

vaccination rates (relative to public health recommendations) suggest that most agents do not behave 

according to rational expectations theory, due at least in part to individuals having an inaccurate 

perception of risk (Brahmbhatt and Dutta, 2008). Furthermore, models which incorporate agents that do

not have rational expectations, and may instead rely on a rule of thumb, may be good at predicting 

behavior in response to disease outbreaks (Lee and McKibbin, 2004). 

There are factors to explain such low vaccination rates beyond the simple observation that many people

do not incorporate positive externalities into their self-interested decision-making. First, when disease 

prevalence is low enough (perhaps due to relatively-high vaccination rates), the marginal benefits from 

vaccination may fall below the vaccine’s price; Geoffard and Philipson (1997) refer to this endogeneity

as “prevalence-dependent demand” and discuss how it prevents eradication. This is examined more 

recently by Manfredi et al. (2009). Second, some people may not be equipped to make rational 

decisions which compare complex marginal costs to marginal benefits and instead rely on heuristics (or

simpler “rules of thumb”) when making their vaccination decisions (MacDonald et al., 2012; Omer et 

al., 2017). Third, even rational behavior to compare marginal costs to marginal benefits may be 

hampered by misinformation about the debunked link of Autism Spectrum Disorder (ASD) with 

vaccines (Fombonne et al., 2020; Himelboim et al., 2020; Taylor et al., 2014). Fourth, there is growing 

interest in how social networks may impact these different issues (Betsch et al., 2013; Milani et al., 

2020; Smith and Graham, 2017). 
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This dissertation incorporates each of these factors incrementally into an economic model of decision-

making in order to disentangle their independent effects. I use an agent-based model (ABM) to 

simulate a hypothetical outbreak of measles within a heterogeneous population. There are two primary 

reasons to examine a hypothetical outbreak. First, it allows the likelihood of catching measles to vary 

over time; this, in turn, affects the benefits from vaccinating over time, so that I may incorporate how 

vaccination decisions are affected by changes in risk. Second, simulating an outbreak allows us to 

estimate important policy-relevant outcomes (i.e., numbers infected, healthcare costs, disability costs, 

and deaths) and, critically, how those final outcomes from otherwise-identical initial outbreaks vary 

across different models for economic behavior.  Although many aspects of this model are informed by 

empirical observations, the underlying objective of my analysis is largely theoretical in nature: I seek to

demonstrate how agents’ vaccination decisions, and the outcomes that follow from them, are impacted 

by incorporating heuristic behavior, ASD misinformation, and social networks into the model. 

Once I explain why individuals may be vaccine hesitant, the question becomes what the government 

can do about it. Typically policy instruments such as subsidies and mass education have seen only 

modest increases in vaccination rates. The usual instruments employed are public education measures 

to provide better information, and subsidies to change the price. 

There are advantages to using an ABM for my analysis, given three important factors in disease spread.

First, the location of the agents is important for determining infections. Second, there is an 

asymptomatic period in which an agent with measles is infecting others but not displaying symptoms. 

As a result, agents are consistently working with dated information about observable symptom status; 

incorporating this feature is critical. Third, vaccination decisions evolve over time endogenously. 

Disease spread is affected by vaccination status, and vaccination decisions are affected by disease 
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incidence, leading to an endogenous feedback loop that can be difficult to examine with other empirical

models. But ABMs incorporate such endogeneity with relative ease. 

I begin with a model of approximately rational behavior with full information. In this benchmark 

model, rational agents examine the expected costs of measles in a vaccinated state versus an 

unvaccinated state; if the vaccinated state’s net costs are lower, they choose to vaccinate1. When I 

introduce some heuristic users, those agents instead use a simple decision rule that they vaccinate only 

if the observed disease incidence rises above a certain threshold. When misinformation is introduced, I 

allow some agents to have a false belief that vaccines may cause ASD in a small portion of cases (and 

incorporate that “cost” into their expected costs of vaccinating). Finally, when I add social networks, all

agents can use more relevant local data about disease incidence, but the social networks may also 

exacerbate the effects of misinformation. With the initial benchmark case of rational behavior with full 

information, incorporating these three additional dimensions (i.e., heuristic users, misinformation, 

social networks) generates eight different scenarios through their permutations. 

The spatial and timing aspects of the ABM are important; even if individuals made decisions with a 

perfect process, a delay exists between when data is collected (e.g., by the CDC) and when it is 

published. Similarly, there is necessarily limited information on local areas to protect patients’ private 

information. Even an ideally behaved homo economicus would be acting to counter an outbreak as it 

occurred last week, and on average. Given the exponential spread of diseases, this means the delayed 

information provision could lead to undervaccination. Thus, we can think of outbreaks as happening in 

the time between when an individual becomes infected, and when they begin to show symptoms; even 

with otherwise perfect information, that delay permits diseases to spread.

1 By computationally rational, I refer to a model in which agents accurately tally costs, but may or may not accurately 
judge probability of infection. Details follow in subsequent sections. 
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By using a spatio-temporal agent-based model, I incorporate the cost, not only of the vaccine, but also 

of not vaccinating. That is, the agent models the spread of measles based on cases only on the cases at 

the present time, drawing from both global statistics and local information from their social network. 

Thus, because the distribution of ill individuals changes with time, and some agents may hold the false 

but earnest belief in long-term and delayed reactions to vaccination, a spatially implicit, inter-temporal 

model is necessary.

The agent is a child-parent pair, aged 18 months to 17 years. The parent observes data, receives 

education, communicates with other parents, and makes decisions on behalf of the child, while the 

child experiences the impact of health, vaccination and infection, and spreads the disease to children in 

other child-parent pairings. The vaccination decision is assumed to be made each day.2 

Within the model, the agent chooses at each time step whether to vaccinate or not, based on which 

action minimizes their expected costs. This approach has two benefits: firstly, its simplicity lends it 

well to modeling. More importantly, it reflects a bias discussed in literature (Gershoff and Koehler, 

2011) that people tend to gravitate toward simple calculations and solutions, (so-called “Enumeration 

Bias”) and toward (ceteris paribus) risks resulting from inaction instead of from action (“Omission 

Bias”). The cost of not vaccinating is a cost of omission, playing into the Omission Bias. These costs, 

while large, have a relatively small number of negative health outcomes, while the misinformed 

dangers of vaccinating have an ever-growing and changing list of negative outcomes, which plays into 

the Enumeration Bias.

Most famously these misinformed dangers include Autism Spectrum Disorders, but also includes many 

other factors such as death, diabetes, etc. (Dubé et al., 2015). This suggests that a bias exists toward not

2 Two factors are abstracted out by this decision: first, while the majority of vaccine hesitant individuals tend to be female
(Smith and Graham, 2017), this does not need to be included, as my model has the parents making the decision for the 
children. As such, gender demographics are assumed to balance out. Second, this model does not make allowances for 
siblings; while this may be an interesting extension in the future, it is not modeled here for the sake of expediency. 

p. 5 of 108



vaccinating because its dangers are better known. Contributing to this is that the unsubstantiated claims

of vaccine dangers have been proliferated by social media (Callender, 2016). The result is that the 

public seems to be paying too much attention to the dangers of vaccinating, and too little to the dangers

of not vaccinating.

A variety of interventions will be examined: subsidizing the cost of the vaccines to the agents; 

educating agents on the risks of the disease; implementing a vaccine ambassador program where 

members of the public are trained to educate their peers; mass vaccination where all agents are 

vaccinated before an outbreak; and targeted vaccination, where vaccines are administered to anyone 

who may have been in contact with an infected individual. A feature worthy of note is that, for 

education, a backlash effect is modeled; that is, for every 100 people educated, 23 tend to become more

entrenched in their incorrect views (Attwell and Freeman, 2015). As such, education has the potential 

to make some individuals’ assessment of costs more incorrect. 

I find that agents using misinformation unambiguously reduces societal welfare, and can capture the 

empirically observed vaccination behavior in vaccine-hesitant communities. Heuristics as modeled also

show a decrease in welfare. Incorporating social networks has an ambiguous effect: the gains from 

improved agent forecasting using local information are counterbalanced by losses due to exacerbated 

misinformation. 

With respect to government intervention, I find that social nudges are the most effective. However, ring

vaccination provides a second-best alternative. Ring vaccination is defined here as the process by 

which, when an individual begins to show symptoms, a prophylactic vaccine is mandated for anyone 

potentially exposed. Policy interventions are discussed in more detail in Section 3.5. Interventions (p.

36).
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The remainder of the dissertation is organized as follows: Review of previous work in the areas of 

vaccination decisions and disease spread is provided in Section 2. Literature Review (p. 7). Section 3. 

Theoretical Model (p. 12) describes the model in detail and compares the performance of the model 

over the three charactaristics of heuristics, misinformation, and social networks. It also defines the 

interventions the regulator is able to perform. Section 5. Intervention Results (p. 43)  discusses the 

outcomes of the various regulator interventions. Section 6. Select Sensitivity Analyses (p. 55) shows 

how model outcomes change as certain parameters change. The paper concludes in Section 7. 

Conclusion (p. 59). Details of the exact model specification can be found in Appendix A: Modeling 

Specification (p. 74). 

2. Literature Review

The beneficial impacts of vaccines are well-studied (Armstrong, 2007; Ozawa et al., 2017; Seither et 

al., 2014; White et al., 1985). In addition to benefiting society by preventing extremely costly 

outbreaks, they further reduce the healthcare costs an individual may expect to face. The risks 

associated with vaccinating are nearly entirely mild, and uniformly nonfatal (Govaert et al., 1993). 

Despite the known benefits, vaccines have regularly been underutilized by the general public 

(Callender, 2016; Fine and Clarkson, 1986). 

The general theme of the literature to date is extensive, but specialized research. As shall be elaborated 

on, there are many important factors which determine vaccination behavior, but the literature has 

focused on the individual factors; few papers attempt to combine them. As far as I am aware, none have

performed an economic analysis which incorporates the observed imperfect information that 
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individuals use. As a result the literature is full of incremental progress, but fails to comprehensively 

explain the phenomenon of vaccine hesitancy and examine the impact to society. 

2.1. Vaccination Decisions

As noted above, the benefits of vaccines have been extensively studied (Armstrong, 2007; Ozawa et al.,

2017; Seither et al., 2014; White et al., 1985). These benefits come in two forms, the individual and the 

collective. Individually, being vaccinated against measles lowers the probability that one will fall ill, 

and even if one does become sick, it reduces the severity of the disease, which means vaccines can 

reduce the overall medical expenditures of an individual. Collectively, they can prevent large outbreaks

altogether by inducing herd immunity, the state where enough of a population is immune that the 

disease cannot propagate. 

Despite these benefits, vaccines have been regularly underutilized by the public (Callender, 2016; Fine 

and Clarkson, 1986). Given that the price of the MMR vaccine is relatively low (see, for example, 

“Current CDC Vaccine Price List” 2021), and that vaccine-adverse reactions are nearly always mild 

and uniformly nonfatal (Govaert et al., 1993), it is not clear why vaccine uptake is not higher. 

Economic factors such as vaccine price, demographic characteristics, implicit costs, and time (e.g., 

combining several inoculations into a single injection) are contributing factors but generally have 

minimal effects (Chen et al., 2011; Davis, 2010; Jacobson and Sewell, 2002; Kondo et al., 2009; 

Kulpeng et al., 2013; Manfredi et al., 2009).3 Giving vaccines away for free does not result in near-

universal uptake (Fisher, 2012); this suggests that are more complexities to consider in understanding 

vaccination decisions. 

3  The psychology literature has examined cognitive biases (Gigerenzer and Edwards, 2003; Hotez et al., 2020; 
MacDonald et al., 2012). The sociology literature has examined the impacts of peer pressure (Day, 2021; Schoeppe et 
al., 2017; Sobkowicz and Sobkowicz, 2021).
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2.1.1. Dynamic Demand

One complexity is that the demand for vaccinations is unlikely to be static over time. Instead, the 

demand for a vaccine is likely to be dependent on how changes in the risk of catching the disease 

impact the marginal benefits of vaccinating. This is the notion of “prevalence-dependent demand” 

introduced by Geoffard and Philipson (1997). Because the demand for vaccinations decreases as the 

disease prevalence decreases, disease eradication is elusive; so when vaccination rates decline, the 

prevalence can resurface, leading to cycles over time. Dror et al. (2020) and Amirthalingam et al. 

(2013) indeed find that vaccination decisions are dependent on variation in prevalence, but these 

studies do not allow for the disease spread to also be impacted by vaccination decisions. 

2.1.2. Heuristics

A second complexity is that these individual cost-benefit calculations are themselves quite complicated 

for many people, so the assumption of rational behavior may not hold for everyone. Healthcare costs 

are often obscure, and the probabilities of disease, disability, and death are often difficult to grasp. 

Many people, including trained professionals, have trouble estimating exponential functions 

(Gigerenzer and Edwards, 2003). Given that disease spreads exponentially, it is reasonable to expect 

that at least some agents would be unable or unwilling to devote the resources to accurately gauge risk 

from a disease outbreak and may instead use a simple heuristic (or “rule of thumb”). In particular, 

people may choose to vaccinate only if they believe that a disease is a threat (Jacobson et al., 2015).4 

4  Other heuristics have been proposed, including peer opinion (Metzger et al., 2010), institutional trust (Razai et al., 
2021), and a plethora of cognitive biases (Omer, Amin, and Limaye 2017; Salmon et al. 2015).

p. 9 of 108



2.1.3. Misinformation

A third complexity is the potential for misinformation. In a 1998 study published in the Lancet, Andrew

Wakefield and colleagues presented results suggesting that there was a connection between the MMR 

vaccine and pervasive developmental disorder in children (Wakefield et al., 1998). Despite the 

retraction of this Wakefield et al. study by the Lancet editors (Horton, 2010), the narrative of vaccine-

induced ASD remains; 16% of caregivers believed in some link between vaccines and ASD (Fombonne

et al., 2020). This misinformation has since spread to incorporate a large range of ailments, including 

minor ones like rash (Callender, 2016), Sudden Infant Death Syndrome (Yang and Shaw, 2018), and 

long-term complications such as ADHD (ibid.), and overloaded immune system (Berman, 2020). These

fears of nonexistent outcomes affect vaccination decisions (Imhoff and Lamberty, 2020; Romer and 

Jamieson, 2020; Roozenbeek et al., 2020) with very real consequences (Salmon et al., 2015). Such a 

drop in vaccination has been associated with new outbreaks of vaccine-preventable diseases (Siddiqui 

et al., 2013).

Solutions to this wrinkle have been explored. In small groups, it’s been shown that an education 

initiative helps raise the intent to vaccinate (Valdez et al., 2015). However, when actually attempted 

(Attwell and Freeman, 2015), the results were mixed; while 77% of the participants did have a positive 

response, the remainder was more polarized in their rejection of vaccines. 

I incorporate this education backlash effect, betrayal aversion, and economic considerations within a 

bounded rationality framework, all while modeling how the spread of the disease is impacted by and 

impacts people’s vaccination decisions. 
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2.1.4. Social Networks

A fourth complexity is how social networks affect each of these considerations. On the one hand, social

networks can provide more-localized information about disease prevalence in a way that is not feasible 

in the absence of a social network. In this context, a parent may be better able to make a vaccination 

decision based on more-relevant local data for the prevalence of measles (as opposed to information 

only about the global prevalence of measles); this could benefit both those making rational decisions 

and those using heuristics. On the other hand, though, social networks have the ability to alter an 

individual’s misinformation about the risks of vaccination-induced ASD; this has been shown recently 

by Hotez et al. (2020),5 though Lord et al. (1979) presented early evidence of confirmation bias being 

reinforced by our social networks. Such networks can moderate misinformation; a single vaccine-

hesitant individual in a sea of vaccinating agents is more likely to vaccinate (Attwell and Freeman, 

2015). But multiple vaccine-hesitant individuals who become better able to interact with each other can

form ideological echo chambers, as social networks tend to asymmetrically reinforce opinions people 

already hold (Wojcieszak et al., 2021). This tendency has been emphasized in the context of 

vaccination decisions (Sobkowicz and Sobkowicz, 2021; Wu and Zhang, 2013), though has not yet 

been examined in an economic context. 

2.2. Disease Spread

A second relevant area is the epidemiological literature on modeling the spread of disease, namely the 

“Susceptible-Exposed-Infectious-Recovered” (SEIR) model. Such models have been extensively used 

to model outbreaks (Biswas et al., 2014; Li et al., 1999), including models which include a vaccination 

5  The connection between misinformation and social networks is not limited to ASD. Other related issues include 
“immune overload” (i.e., a concern about the simultaneous administration of three attenuated viruses) (Hulsey and 
Bland, 2015) and misinformation understating the effectiveness of vaccines (Valdez et al., 2015). However, for the 
purposes of this paper, I will examine only the false link between vaccines and ASD.  
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component (d’Onofrio, 2002; De la Sen et al., 2012). However, these epidemiological SEIR models 

have only incorporated vaccine use exogenously, either through an assumption of an incomplete take-

up rate or perhaps a mandate on the population, which can be ineffective when put into practice 

(Richwine et al., 2019). Jaharuddin and Bakhtiar (2020) present a model which does allow vaccine 

uptake to vary, but is still a form of regulator intervention, not spontaneous agent behavior. A solid 

theoretical understanding of vaccination behaviors in an outbreak context should therefore allow for 

heterogeneity in individual behavior, especially in response to changing conditions. 

3. Theoretical Model

The theoretical model employed is an agent-based model, simulating 500 agents over 150 time periods.

The model simulates both the spread of measles in an outbreak, as well as agent’s response to the 

outbreak via vaccination decisions, and tracks outcomes such as social cost per capita and vaccination 

rate. This is discussed in more detail in subsection 3.1. Benchmark of Rational Behavior with Full 

Information (p. 13), which discusses how we expect a fully informed agent, computing costs properly 

using a reasonable approximation of disease spread, to act. Subsection 3.2. Incorporating Heuristic 

Behavior (p. 23) examines the impact of allowing some agents to use a “rule of thumb” instead of 

performing a cost-benefit analysis, while subsection 3.3. Incorporating Autism Misinformation (p. 26) 

details how a misinformed agent would act. Subsection 3.4. Incorporating Social Networks (p. 31) 

details how social networks are implemented and their impact on our model. Subsection 3.5. 

Interventions (p. 36) details the various interventions regulators may perform, and how they are 

implemented. A complete specification for the model can be found in Appendix A: Modeling 

Specification (p. 74). 
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3.1. Benchmark of Rational Behavior with Full Information

I begin by first examining a model which assumes rational behavior with full information. I use this as 

a benchmark to generate baseline outcomes, against which I compare the results of other model 

specifications (i.e., incorporating heuristics, misinformation, and social networks). This section also 

serves to introduce the general modeling framework (which will carry over into those additional 

models). I discuss the model in broad terms here in the text; for a full description of its more technical 

mechanisms, see Appendix A: Modeling Specification (p. 74). 

The model consists of 500 agents randomly distributed in a geometric space6. Each agent represents a 

parent-child pair, in which the parent gathers information and makes decisions, while the child is 

subjected to disease spread. I assume the parent has fully internalized the utility of the child, and each 

parent-child pair is treated as a single agent. 

The simulation has 150 time periods7, with each period representing one day. At the start of the 

simulation, one agent is infected with measles, which then spreads spatially throughout the population 

over time (The SEIR modeling for disease spread is described in Section 3.2. further below). The 

agents will, in every period, decide whether to get vaccinated based on the expected costs of 

vaccinating versus the expected costs of remaining unvaccinated (The economic modeling for this 

vaccination decision is described in Section 3.1.1. below). In my model, they make this decision in the 

absence of any vaccine mandates and consider only their individual benefit from vaccination (i.e., they 

do not consider the positive externalities from vaccinating). 

Importantly, the expected costs of measles (whether vaccinated or unvaccinated) are dependent on the 

probability of being infected by measles. When individuals gauge their risk of infection, they do so by 

6 For details, see Appendix A.6. Spatial Distribution  (p. 84). 
7 This number is chosen for completeness; in practice, the simulation reaches equilibrium after around 60 time periods. 
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observing the percent of the population that is currently showing symptoms and assuming that the 

probability of infection is directly proportional to that incidence of symptoms8. This is not a perfectly 

accurate forecast of future events; because such future events are unknown, it represents an 

approximation used by the agents for the purposes of their decision making9. One could imagine a 

constant of proportionality such that an agent’s forecast approximates the true outcome. A detailed 

analysis of how this constant of proportionality impacts model performance can be found in Appendix

D.1.1 Incidence Multiplier (IMULT) (p. 97). 

As noted above, the percent symptomatic is different than the percent of the population truly infected 

because being infected is unobservable during a three-to-five day asymptomatic period. Nevertheless, I 

refer to this as the “full information” scenario because even accomplished epidemiologists have trouble

accurately modeling the true spread of an outbreak in real time (Daunizeau et al., 2020). 

After 150 days, the simulation ends, and data is gathered for four key outcomes: vaccination rates, 

attack rates (i.e., what percent of the population became ill), number of deaths, and total social costs 

(described in more detail below). To generate confidence intervals, 1,000 simulations for each of the 

eight scenarios are run.10  

3.1.1. Modeling Vaccination Decisions

In general, economists assume agents seek to maximize utility. In this model, I assume agents minimize

expected costs and damages from the disease and its vaccine. This assumption is made for two reasons. 

First, it gives great gains in simplicity. Costs can be directly observed, and thus there is ample data to 

8 The perceived probability of infection is capped at 100%. 
9 Because agents make the vaccination decision each time period, the farthest they need to forecast is two weeks. If they 

forecast two weeks in advance, they can vaccinate in time for the vaccine to become effective. Forecasting 15 days in 
advance gives no added benefit; they will face the same outcome as if they wait a day, forecast 14 days ahead, and end 
up in the same immune state on day 15 as if they had a longer forecast. 

10 In the context of this model, the 95% confidence interval comes only from variance in how the disease spreads through 
the population. All characteristics are the same through simulation runs, with the only variation coming from the path 
the disease takes. See Appendix A.7. Stochasticity (p. 84) for a detailed discussion. 
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inform my choices for parameters regarding costs. Furthermore, by minimizing expected costs, one 

only has to compute the probabilities and magnitudes of each cost and add them together. An expected 

utility framework would require computing every combination of costs, finding the corresponding 

utility level, adjusting for the probability of those outcomes, and summing them. Given the number of 

outcomes involved in a measles case, this would quickly become prohibitively computationally 

intensive. 

Second, as alluded to above, using an expected utility model would require defining the utility function,

including the level of risk aversion. Without defining such a utility function, there would be no way for 

the model to compare different outcomes. If such a function were defined, its choice would be 

completely arbitrary, and I expect the model would be highly sensitive to the specification of that utility

function.11 By assuming risk-neutral agents, maximizing expected utility becomes equivalent to 

maximizing expected wealth, or minimizing expected costs.

For the purpose of this model, agents decide on their vaccination behavior by comparing their expected

costs if they are vaccinated E[CVAC] against the expected costs if they are not vaccinated E[CUNV] and 

choosing the lower expected cost.12 Moreover, I incorporate additional heterogeneity in utility costs 

across agents by adding a normally distributed error term with mean zero to the following decision 

rule: vaccinate in period t if E[CUNV,t] - E[CVAC,t] > ε. 

The costs conditional on becoming sick with measles are shown in Figure 1: The Average Cost of 

Measles Case by Vaccination Status (p. 16). They are grouped into three broad categories: the treatment

costs, disability costs, and mortality. Treatment costs, defined as T, are the short-term outpatient and 

hospitalization costs for a case of measles. The disability costs, defined as D, are the long-term 

11 While this would be an interesting extension to the model, such an expected utility framework, including sensitivity to 
the functional form of the utility function, is not explored here. 

12 These costs are dollar valuations, which include dollar values for willingness to pay to avoid death. 
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disutility from potential complications caused by measles, namely deafness and neurological sequelae. 

Finally, the mortality cost, defined as M, arises because a small percentage of measles cases lead to 

death (with a cost equal to that probability of death times the Value of a Statistical Life). Note that the 

left side of this figure shows the expected costs of a measles case for someone who is unvaccinated, 

while the right side shows the expected costs of a measles case for someone who is vaccinated. While 

vaccines lower the probability of infection (albeit not down to a zero probability), an additional benefit 

is that vaccines also reduce the severity of infection, thereby lowering the average conditional costs of 

treatment, disability, and mortality. I define this reduction in severity as 0<b<1, such that TVAC=bTUNV, 

DVAC=bDUNV, and MVAC=bMUNV. For a detailed discussion on where these values come from, see

Appendix B: Parameterization (p. 85). 

Figure 1: The Average Cost of Measles Case by Vaccination Status

The expected costs of measles are produced by taking the above cost of a case of measles, and 

multiplying them by the risk of being infected, r(st), where this probability is a function of the percent 

of the population in period t who are showing symptoms, st; individuals who are infected, but latent, 

cannot be counted in one’s measure of risk. As noted above, the primary benefit from vaccinations is 

that they reduce the probability of infection, holding the percent symptomatic constant: 
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pVAC(st)=kpUNV(st) where 0<k<1. We can therefore express the expected costs of measles if unvaccinated 

and the expected costs of measles if vaccinated as: 

E[CUNV,t] = pUNV(st) x (TUNV + DUNV + MUNV)

E[CVAC,t] = pVAC(st) x (TVAC + DVAC + MVAC) + PV + AV

     = kb x pUNV(st) x (TUNV + DUNV + MUNV) + PV + AV

where PV is the vaccine’s price and AV is the expected disutility costs of vaccine adverse reactions 

(VARs). The adverse reaction I am modeling is aseptic meningitis13. These adverse reactions are rare 

and uniformly nonfatal. (To be clear, these are not the debunked links to autism.)

Estimates for these two expected costs are shown in Figure 2: Expected Costs of Measles by 

Vaccination Status and Risk (p. 17), where the left shows them for a relatively low probability of being 

infected and the right shows them for a relatively high probability of being infected. At this relatively 

13 This VAR is chosen because it is the only one with substantial attached costs. More common VARs include soreness, 
fatigue, and even anaphylaxis or seizures. However, all of those either require no medical intervention (soreness, 
fatigue) or else temporary intervention (e.g., anaphylaxis, seizures) with relatively low costs. Aseptic meningitis 
requires several days of hospitalization, with substantial cost. Compared to this, the other costs are considered 
negligible. 
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low level of risk (i.e., 0.25% risk), an agent would be roughly indifferent between remaining 

unvaccinated and becoming vaccinated. As risk rises, both unvaccinated costs and vaccinated costs rise,

but the unvaccinated cost rises much more quickly due to the multiplicative effect of kb. As a result, at 

the relatively high level of risk (i.e., 0.5% risk), an agent’s expected costs of remaining unvaccinated 

are roughly twice as large as the costs of becoming vaccinated, and thus the agent would decide to 

vaccinate. 

More formally, this vaccination decision rule of E[CUNV,t] - E[CVAC,t] > ε can then be expressed as:

vaccinate if pUNV(st) x (TUNV + DUNV + MUNV) x (1-kb) - PV - AV > ε

Each of these factors influencing the vaccination decision is relatively intuitive. Regarding the 

underlying disease’s characteristics, an agent is more likely to vaccinate when the risk of catching 

measles, pUNV(st), is higher or the cost of a case of measles, TUNV + DUNV + MUNV, is higher. Regarding 

the vaccine’s characteristics, an agent is more likely to vaccinate when its price, PV, is lower, when its 

adverse reactions, AV, are smaller, or when its benefits, 1-kb, are greater (recall that b→0 for reduced 

severity and k→0 for reduced infections each imply that the vaccine’s effectiveness is better). As noted 

above, I assume that agents do not consider the positive externalities of vaccination in their own 

decisions to vaccinate, and there are no public mandates to vaccinate. Moreover, I assume that agents 

do not have private or public insurance to cover the costs of vaccines or treatment.  

In the model, agents decide whether to vaccinate in each period t. The only parameter in the above 

decision rule which varies over time is the risk of infection; all the other parameters are static. Recall 

that the risk of infection is based on the proportion of the population that shows symptoms of measles. 

That said, agents are assumed to know that there is a nonzero baseline risk of infection even if none of 

the 500 agents in the model are actually showing symptoms. I therefore define p0 ≡ pUNV(s=0) and have 
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pUNV(st) ≥ p0 for all st > 0. Put differently, agents update their perception of risk in each period by 

selecting the maximum of baseline risk or the level of risk based on observable symptoms in the 

population. This allows some agents to start off vaccinated in the model despite no one actually 

showing symptoms (yet); I choose the value for this baseline risk so that the vaccination rate in the first

period is 50%. 

3.1.2. Modeling Disease Spread

The disease begins spreading by infecting a random agent in the first period of the simulation. It 

spreads through the population following a modified Susceptible-Exposed-Infected-Recovered (SEIR) 

model. All agents start out in a susceptible state, where they are not infected but vulnerable. If an 

infected neighbor has contact with the agent, they become exposed. In this state, they are incubating the

disease, but not showing symptoms or infecting others. 

After an amount of time, which is heterogeneous across agents, the infected agent begins infecting 

others, but is still not showing symptoms. After another heterogeneous amount of time, the agent 

begins showing symptoms and continues to be infectious. After three to five days, an agent continues to

show symptoms, but ceases to infect others, a state commonly called “turning the corner.” Finally, an 

agent will recover, and is immune to further infection.14 This SEIR process is shown in Figure 3: The 

Susceptible-Exposed-Infected-Recovered (SEIR) Model (p. 20) , and discussed in more detail in

Appendix A: Modeling Specification (p. 74). 

14 In the time horizon of this model, waning immunity from contracting the disease or from vaccines are not considered 
significant. Thus, in this model, immunity is considered permanent. 
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Figure 3: The Susceptible-Exposed-Infected-Recovered (SEIR) Model

Vaccinating puts an agent into an inoculated state. Once in this state, the severity of sickness is reduced 

should they become ill. After two weeks in this inoculated state, an agent will become immune with a 

probability of 1-k. An immune agent will never become infected. Agents that are not immune remain 

inoculated. If an agent becomes ill before that two-week inoculation period elapses, or because the 

vaccine was not fully effective, they face the reduced costs of being ill. After recovering, they become 

immune. 

The disease spreads through the population in my ABM in the following manner. An infective agent 

will attempt to infect one random agent who is located nearby.15 If that agent is susceptible, they 

become exposed, and enter the latent state. If that agent is immune or already infected, there is no 

15 For a discussion of where these rates, lengths, and other parameters come from, see Appendix B: Parameterization (p.
85). 
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effect. This behavior simulates the fact that a sick individual in a healthy population will spread the 

disease more quickly than in an already ill population. It also captures the impact of herd immunity. 

There are two additional salient features to the model. First, individuals in an asymptomatic period are 

contributing to the disease spread but are not counted in the observable risk measure, while individuals 

who have “turned the corner” are counted in the observable risk measure but are not actually spreading 

the disease. This means that when agents make their vaccination decisions based on data for the 

observed incidence of symptoms, they are using dated information about the true rate of infection 

(which is unobservable). In essence, an outbreak spreads during the time between when an agent starts 

to infect others and starts to show symptoms, and this gap can lead to suboptimal decisions ex post, 

even when agents are rational and use all of the observable information available to them. 

The second feature is the inoculation time of vaccines. Because it takes two weeks to be rendered fully 

immune, an agent who decides to vaccinate due to an imminent risk will not reap the full benefits of 

vaccination for two weeks. Because of how quickly measles spread, this may be much too late. For 

instance, an agent choosing to vaccinate because the population’s infection rate appears high will get 

the benefit of reduced disease severity, but because it is likely they will become exposed before the two

weeks have elapsed, will not receive the potential benefit of immunity. 

3.1.3. Results for Rational Behavior with Full Information

Figure 4 shows the results for vaccination rates over time from this benchmark model assuming 

rational behavior with full information. As noted above, I am primarily interested in the implications of 

making alternative assumptions about the theoretical model for how agents make their vaccination 

decisions (i.e., bounded rationality’s heuristics, ASD misinformation, and social networks), so the 

magnitudes presented here should not be considered to have much meaning outside of comparing them 
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to the outcomes from the subsequent scenarios I present. The parameters were chosen so that the 

baseline vaccination rate was 50%, and the final vaccination rate was about 90%. The results represent 

the average values over 1,000 simulations. 

While the first measles infection begins on the first day, the initial baseline vaccination rate of 50% is 

unaffected until the first individual starts to show symptoms around day 25. Thereafter, agents begin 

vaccinating more and more quickly, until those increased vaccination decisions eventually taper off 

around day 60. 

While most of the action surrounding vaccination happens between days 30 and 60, the disease is 

spreading through the population before day 30; after day 60, the disease has generally run its course. 

Despite the occurrence of a deadly measles outbreak, the final vaccination rate of under 90% does not 

achieve a higher rate due to the heterogeneity of agents (i.e., some have a higher threshold of expected 

utility costs that they require before vaccinating). 
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Table 1: Final Outcomes (p. 23) shows the results for the four main outcomes I use in my comparison 

of this benchmark case of rational behavior with full information to the other scenarios (incorporating 

heuristics, misinformation, and social networks). Vaccination Rate is the percentage of agents who 

received a vaccine by the time the simulation ends; it is 87.2% here. Attack Rate is the percentage of 

agents who ever became ill during the simulation; it is 47.1% here. Mortality Rate is the expected 

number of deaths; it is 1.83 deaths per 10,000 people here. Social Cost per Capita is the total cost to 

society, as derived from the price paid for the vaccine, the costs of adverse reactions, the cost of 

measles treatment (i.e., outpatient and inpatient care), the willingness-to-pay measure to avoid 

disability, and the willingness-to-pay measure to avoid death shown in Figure 1. Based on results not 

shown, 54.8% of the $4,082 social cost is from mortality, and 43.8% is from disability.  

Table 1: Final Outcomes Assuming Rational Behavior with Full Information

Vaccination 
Rate

Attack 
Rate

Mortality Rate
Per 10,000 

Social Cost 
per Capita

87.2% 47.1% 1.83 $4,082
(0.16%) (0.16%)  (0.005)  ($10)

*Numbers in parentheses represent 95% confidence intervals. 

3.2. Incorporating Heuristic Behavior

3.2.1 Modeling Heuristics

I now examine the effects of allowing some agents to use a simple heuristic instead of making the 

calculation of expected costs consistent with rational behavior. I assume that 15% of agents use a 

heuristic to decide whether to vaccinate, while the remaining 85% decide whether to vaccinate if 

E[CUNV,t] - E[CVAC,t] > ε as outlined in Section 3.1. Specifically, I assume that heuristic users vaccinate if
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the observed symptom incidence rises above a certain threshold, ̅s; i.e., their decision rule is: vaccinate 

if st >  s̅.16 The remaining model for the disease spread functions as described above in Subsection 3.1. 

3.2.2 Results Incorporating Heuristics

Figure 5: Vaccination Path over time for Some Heuristic Users and Full Information (p. 24) shows the 

vaccination path over time during a key period of the simulation. The blue line represents the 

benchmark results presented in Section 3.3 from assuming the entire population exhibits rational 

behavior with full information. The yellow line shows the vaccination rate for the 15% subset who use 

a heuristic (i.e., they do not vaccinate until a critical threshold is reached), and the orange line shows 

the average vaccination rate across the combined sample of mostly rational behavior and some heuristic

users. As observed in the previous section, the changes in vaccination rates generally occur between 

days 30 and 60 of the simulation, so my figure here (and similar figures below) focuses on this window.

Figure 5: Vaccination Path over time for Some Heuristic Users and Full Information

16 This value is assumed. I am not aware of any literature that examines what heuristics the general population uses to 
judge their risk from disease. As such, given the lack of data, a value is assumed. 

p. 24 of 108



The value for the heuristic threshold parameter, s̅, is chosen so that the vaccination rate’s average over 

the simulation’s 150 days is approximately the same as the average vaccination rate in the benchmark 

simulation. However, the nature of the heuristic decision rule implies that the vaccination rate across 

the entire population is relatively lower than the benchmark during the initial periods, but it is relatively

higher than the benchmark during the later periods.17 

Table 2: Final Outcomes with Some Heuristics (p. 25) shows the results for the four main outcomes 

considered. The observation that the final vaccination rate is higher for the assumption of some 

heuristic users (i.e., 91.5%) than for the benchmark assumption of fully rational agents (87.2%), but the

attack rate is also higher (i.e., 55.1% versus 47.1%) may seem counter intuitive at first (since one 

would generally expect higher vaccination rates to lower the attack rate); but this increased attack rate 

occurs because the heuristic agents essentially waited too long to vaccinate. The relatively higher attack

rate is consistent with the higher mortality rate (i.e., 2.04 versus 1.93 deaths per 10,000) and the higher 

social costs (i.e., $4,537 versus $4,082). 

Table 2: Final Outcomes with Some Heuristics

Vaccination 
Rate

Attack 
Rate

Mortality Rate
Per 10,000 

Social Cost 
per Capita

All Rational 87.2% 47.1% 1.83 $4,082
& Fully Informed (0.16%) (0.16%)  (0.005)  ($10)
Some Heuristics 91.5% 55.1% 2.04 $4,537
& Fully Informed (0.16%) (0.17%) (0.005) ($10)
*Numbers in parentheses represent 95% confidence intervals. 

I note that, while these results seem to indicate that heuristics are unambiguously bad for society, one 

could imagine a parameter set in which this is not the case. For a sufficiently low value of  s̅, we would 

expect heuristics user behavior to be equal to the average rational agent behavior, with the only 

17  Note that this figure shows the average vaccination rates by period across 1,000 simulations. However, in each 
individual simulation, the change in the vaccination rate is more monolithic as the incidence passes the threshold. That 
threshold is reached on a different day for each simulation. For instance, on day 45, roughly 20% of simulations had all 
heuristics users vaccinated, and 80% of simulations hard no heuristic users vaccinated.
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difference being vaccinating en bloc rather than piecemeal18. If we made the value of  ̅s heterogeneous 

across agents, and distributed sufficiently, the two populations could be made indistinguishable. The 

threshold value of 7.5% was chosen to illustrate the nature of the model, not for any significance. 

3.3. Incorporating Autism Misinformation

3.3.1 Modeling Misinformation

I now examine the effects of allowing some agents to be affected by misinformation about the 

debunked link between vaccines and ASD. I compare this case here to my initial assumption of rational

behavior with full information. In this case here, I assume that everyone makes a rational decision, 

albeit a potentially misinformed rational decision. (In the initial version of this model incorporating 

misinformation, no agents use a heuristic.) 

A recent study found that 16% of caregivers of a child with ASD believe that vaccines contributed to 

causing the disease (Fombonne et al., 2020). I therefore assume that 16% of agents in my model 

believe that there is some probability y that receiving a vaccine will induce ASD. Moreover, among 

those 16%, I assume that agents have beliefs of varying strength, as represented by different yi drawn 

from a distribution. Each agent with misinformation now faces an additional perceived cost; they now 

treat their perceived cost of vaccination as AV* = AV + y x ASD. (For the remaining 84%, yi = 0.) 

Both the well-informed and the misinformed exhibit rational behavior specified by the vaccination 

decision rule: E[CUNV,t] - E[CVAC,t
*] > ε. Note that while actual costs are unchanged, misinformation 

about AV* does enter into their perception of costs and thus their decision rule. A visualization of this 

change to incorporate misinformation can be seen in Figure 6: Expected Cost of Measles Given 

18 Indeed, for a value of  ̅s lower than the level of risk that makes a rational agent indifferent to vaccination, I would 
expect to see improvement to society from using heuristics. 
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Vaccination Status, Risk, and ASD Belief (p. 27). Note that for even a very small belief in vaccine-

induced ASD risk, a rational agent would not vaccinate until the measles risk became extremely high 

(i.e., higher than the 0.5% shown here). 

(The remainder of the SEIR model for disease spread follows as in Section 3.1.2. Modeling Disease 

Spread (p. 19).) 

Figure 6: Expected Cost of Measles Given Vaccination Status, Risk, and ASD Belief

* Belief in 0.01% chance of Vaccine Induced ASD 

3.3.2 Results with Misinformation

Figure 7: Vaccination Path over time for Fully Rational Users with Some Misinformation (p. 28) shows

the vaccination path over time during the simulation. As before, the blue line represents the benchmark 

results presented in Section 3.1.3. Results for Rational Behavior with Full Information (p. 21) with 

rational agents with full information. The green line shows the vaccination rate for the 16% portion of 
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the population which is rational but misinformed19 about the link to ASD (y ≠ 0), and the yellow line 

shows the average vaccination rate across the combined sample of some fully-informed and some 

misinformed users. As discussed previously, the figure focuses on days 30 to 60 of the simulation. 

As expected, misinformed agents vaccinate at a much lower rate than fully informed ones. Despite this 

difference, some misinformed agents believe the link is weak enough to justify vaccinating before the 

outbreak, and the majority of the misinformed agents are convinced to vaccinate by the end. However, 

across the entire population, vaccinations occur later than one composed only of fully informed 

individuals. 

19 I use this term to differentiate between two causes of sub-optimal decisions. Agents can arrive at incorrect conclusions 
either through a rational decision rule with bad information, or by using an irrational decision rule. A heuristic user 
represents this latter case, where the method they use to decide is flawed. Such an agent’s actions are inconsistent with 
maximizing their utility. An agent misinformed about ASD uses a sound method of decision making, but mistakenly 
incorporates misinformation regarding ASD into their otherwise correct cost-benefit analysis. This method, while 
misinformed, is a sound one and, if the agent takes the misinformation as true, is consistent with minimizing their costs.
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Table 3: Final Outcomes with Some Misinformation (p. 29) shows the results for the four main 

outcomes. The final vaccination rate has dropped slightly (86.5% versus 87.2%), which is consistent 

with a minority of the population viewing vaccination as more costly. The attack rate is much larger 

(53.0% versus 47.1%), due to both the late vaccination from vaccine hesitancy, and the fact that some 

individuals never vaccinate. The higher attack rate results in higher mortality (2.06 versus 1.83) and 

social cost per capita ($4,573 vs $4,082). 

Table 3: Final Outcomes with Some Misinformation

Vaccination 
Rate

Attack 
Rate

Mortality Rate
Per 10,000 

Social Cost 
per Capita

All Rational 87.2% 47.1% 1.83 $4,082
& Fully Informed (0.16%) (0.16%)  (0.005)  ($10)
All Rational & 86.5% 53.0% 2.06 $4,573
Some Misinformation (0.16%) (0.16%) (0.005) ($11)
*Numbers in parentheses represent 95% confidence intervals. 

3.3.3 Results Combining Both Heuristics and Misinformation

What then happens when I combine both heuristics and misinformation? To do this I have four groups 

of agents, for whom their rationality and information status are simultaneously determined. Recall that 

85% of agents are fully rational, and 84% are fully informed. Therefore,71.4% (i.e.., 0.85*0.84) are 

fully rational and fully informed, 13.6% are rational but misinformed, 12.6% use a heuristic yet have 

full information, and 2.4% use a heuristic and are misinformed20.

Table 4: Final Outcomes With Heuristics and Misinformation (p. 31) presents the results for all four 

outcomes across the four permutations of heuristics and misinformation, and Figure 8: Social Cost per 

Capita for Heuristic and Misinformation Permutations (p. 30) focuses on the Social Costs Per Capita 

20 Note that because the cost of ASD would not factor into a heuristic decision rule, the misinformed heuristic users will 
act identically to the fully informed heuristic users and not ultimately be affected by misinformation. 
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outcomes across those four scenarios, as that one measure summarizes the general pattern of the results

quite well. The error bars in the figure represent the 95% confidence intervals. 

As expected, because heuristics and misinformation each result in worse outcomes independently (i.e. 

$4,537 and $4,573 versus $4,082, respectively), combining the two yields even worse outcomes (i.e., 

$4,931 versus $4,082). Interestingly though, the two effects are not additive. This is because the 

heuristic user who misbelieves there is a vaccine-induced ASD link does not actually incorporate this 

misinformation into their non-rational decision making; their decision rule is based only on 

symptomatic incidence. 
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Table 4: Final Outcomes With Heuristics and Misinformation

Vaccination 
Rate

Attack 
Rate

Mortality Rate
Per 10,000 

Social Cost 
per Capita

All Rational 87.2% 47.1% 1.83 $4,082
& Fully Informed (0.16%) (0.16%)  (0.005)  ($10)
Some Heuristics 91.5% 55.1% 2.04 $4,537

& Fully Informed (0.16%) (0.17%) (0.005) ($10)
All Rational & 86.5% 53.0% 2.06 $4,573
Some Misinformation (0.16%) (0.16%) (0.005) ($11)
Some Heuristics & 90.8% 60.3% 2.22 $4,931
Some Misinformation (0.11%) (0.17%) (0.005) ($11)
*Numbers in parentheses represent 95% confidence intervals. 

3.4. Incorporating Social Networks

3.4.1 Modeling Social Networks

I now examine the effects of incorporating social networks into the models for vaccination decisions 

considered in the prior three sections. As indicated above, I expect that social networks can have two 

distinct effects on vaccination decisions. 

First, they can provide more accurate information about the risk of catching measles from agents. For 

the models of vaccination behavior in the prior sections, I assume that agents based their measure of 

risk based on the percent of all 500 agents showing symptoms (i.e., a “global” average incidence). 

However, an agent’s social network likely includes neighbors who pose a more immediate threat of 

infection if ill due to their geographic proximity, so an agent who incorporates the percent of agents in 

their social network showing symptoms (i.e., a “local” average incidence) into their measure of risk 

will have improved information about the likelihood of catching measles. 

Second, social networks can, in principle, provide more accurate information about the “risk” of 

vaccine-induced ASD. For one of the 16% of agents misinformed about the link to ASD, a social 
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network with relatively few agents sharing that misbelief might temper their strength of belief (which I 

model as the percent of ASD cases “caused” by vaccines) while a social network with relatively more 

agents sharing that misbelief might increase their strength of belief. Moreover, I expect the effect of 

social networks on one’s belief about vaccine risks to be asymmetric; i.e., decreasing misinformation 

will have a smaller impact than exacerbating misinformation. 

I therefore incorporate both of these aspects of a social network into my model for vaccination 

decisions. For each agent i, there is one set of agents who are geographically close, whom I label 

“neighbors.” The neighbors represent any agent with whom an individual has regular in-person contact.

Each agent i also has a second set of agents that are randomly distributed throughout the geometric 

space, whom I label social media “friends.” Every other agent belongs to one, both, or neither of these 

two categories for agent i. Figure 9: Visualization of a Social Network (p. 33). Details of how this 

network is formed can be found in Appendix A: Modeling Specification (p. 74).
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Each individual now has two data sets to draw from: they can observe the global symptomatic rate St, 

as would be reported by a governing agency, and can also calculate the symptomatic rate within their 

network, si,t.21 When performing vaccination decisions, agents use a weighted average of the two, such 

that st = (St + w si,t) / (1 + w). I assume a w > 1 to reflect that an agent is likely to weigh local 

information more heavily than a global average. 

21  Agents draw from a pool of both neighbors and friends to determine si,t. I argue that this represents people using social 
media to gather information on their local area at a very low cost, as well as keeping tabs on the wider world via more 
distant friends. 
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For misinformation about vaccine-induced ASD, I model the effect of social networks using the 

following approach. Recall that I assume that 16% of agents believe that there is some nonzero 

probability, yi, that receiving a vaccine will induce ASD. I now allow that agent i’s belief to increase or 

decrease based on whether their social network’s average belief, Yi, is higher or lower than the average 

belief across the entire population,  ̅y. (This includes all the y=0 values from agents who do not believe 

in any such link.) If Yi <  ̅y, one’s network is relatively well-informed about vaccine-induced ASD, and 

i’s belief used to compute costs is reduced by an amount proportional to that ratio. If Yi >  ̅y, one’s 

network is relatively poorly-informed, and i’s belief used to compute costs is increased by an amount 

proportional to that ratio. I assume that the magnitude of these changes is asymmetric (i.e., the increase 

is larger in magnitude than the decrease) to reflect the ideological “echo chamber” described above. 
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3.4.2 Results with Social Networks

Figure 10: Social Cost per Capita with Social Networks (p. 35) shows the results of incorporating 

social networks into the models presented above. As expected, giving agents access to better 

information in the fully-informed scenarios results in better outcomes, as agents can vaccinate sooner 

when an outbreak appears to threaten them personally. For the benchmark model of all rational agents 

with full information, the presence of social networks decreases social costs per capita from $4,082 to 

$3,950. For the second model of some heuristic users, the presence of social networks decreases social 

costs per capita from $4,537 to $4,232. Even though some agents use an overly-simple decision rule on

whether to vaccinate, basing that decision on the local incidence of symptoms rising above some 

particular threshold is more beneficial than waiting for the global incidence to rise above that threshold.

However, when misinformation is present, these gains from the improved information about the risk of 

catching measles can be outweighed by the losses due to exacerbating misinformed agents’ beliefs 
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about vaccine-induced ASD. For the third case of all rational agents facing some misinformation, the 

presence of social networks increases social costs per capita from $4,573 to $4,796. For the fourth case 

of mostly rational agents facing some misinformation, the presence of social networks increases social 

costs per capita from $4,931 to $4,975.  

3.5. Interventions

This subsection explores the following interventions: subsidies, education, mass vaccination, ring 

vaccination, and vaccine ambassadors. Subsidies were examined in the previous chapter, and mass 

vaccination is a simple mandate from the regulator that all agents vaccinate immediately. Ring 

vaccination is the process where, once an agent begins showing symptoms, any individuals who have 

had contact with the agent are immediately required to vaccinate. Education in this context will refer to 

an intervention designed to change each agent’s individual belief that vaccines cause ASD. Social 

media campaigns instead target an agent’s socially-adjusted belief that vaccines cause ASD. 

Furthermore, I examine combinations of these interventions, as discussed in 3.5.6. Intervention 

Combinations (p. 42). 

For the purposes of this subsection, the regulator is assumed to be the local government. Its objective is

to minimize total damage to society, as measured by total societal cost per capita. It is assumed to be 

capable of swift action, and to expend whatever funds are required to accomplish its goals. When 

analyzing the results of these interventions, we use a model with social networks and misinformation, 

but no heuristics users. In order to better ground these results in empirical fact, for any analysis of 

regulator interventions, I changed the value for the confirmation bias factor ξ to 3.5, to reflect the data 

in Gilbey and Hill (2012). All other parameters are as found in Appendix B: Parameterization (p. 85). 

p. 36 of 108



3.5.1. Subsidies

I examine how government subsidies might be used to increase vaccination rates. In all my models thus

far, agents pay the full price for the MMR vaccine. The government can subsidize vaccines by covering

some of the MMR price or provide the MMR vaccine for free. The government could also, in principle,

provide individuals with a free vaccine and an additional cash payment in exchange for them 

vaccinating. Similarly, the government could fine individuals who do not vaccinate; these cases 

function identically in terms of the difference in expected costs for vaccinating, so I consider the case 

of the government providing subsidies. 

Specifically, I assume that agents face a one-time cash transfer of T≥0 from the government only if they

become vaccinated. This changes their cost of being vaccinated to: 

E[CVAC,t] = kb x pUNV(st) x (TUNV + DUNV + MUNV) + PV – T + AV

I illustrate the results by focusing on the social costs per capita. When the government provides such a 

cash payment, the money is presumed to come from taxes. Thus, each payment can represent a simple 

transfer of funds (without a direct social cost per se). These subsidies are assumed to be financed 

through taxes, and represent transfers of wealth. These transfers are not without loss, however; it is 

assumed that 32% of each transfer is lost to dead weight loss per Feldstein (1999). These losses are 

counted as losses to society as a whole, but are not internalized by individual agents. 

I examine five subsidy levels: No subsidy ($0), a subsidy for the full price of the vaccine (PV), and a 

full subsidy plus rebates for $100, $500, and $1,000. These correspond to PV* values of  PV, 0, -100, -

500, and -1000 respectively22. 

22 Aside from the fully subsidized costs, these figures have no particular significance, and are chosen strictly for the sake 
of being round numbers. 
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3.5.2. Mass Vaccination

Mass vaccination will be a mandate by the regulator that all individuals not medically exempt 

immediately vaccinate. The price of the vaccine is paid for directly by the regulator. This option is 

included to illustrate what some public health officials consider to be a best-case response. However, 

such a solution is seldom politically feasible, so it will be examined only to provide comparison to the 

others.

This intervention can either be active or inactive. If active, the regulator requires mass vaccination 

immediately. If inactive, they never mandate a population-wide vaccine. Note that this intervention 

bypasses the agent’s decision rules entirely, as vaccination becomes a requirement imposed externally 

rather than decided internally. 

3.5.3. Ring Vaccination

Ring Vaccination is a process designed to slow the spread of a disease with fewer mandated 

vaccinations than the mass vaccination scenario. In this process, once an agent begins to show 

symptoms, any individual they could have had contact with are immediately instructed to vaccinate. 

This presents several advantages and disadvantages. 

The chief disadvantage is that this is necessarily a reactive strategy; a ring vaccination only triggers 

when an agent has begun to show symptoms, which means that agent has already been spreading the 

disease for several days. As a result, it is likely that the disease will continue to spread. 
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The main advantage is that it requires individuals most at risk of exposure to vaccinate immediately. 

This can dramatically slow the spread of a disease, and even individuals who have been exposed gain a 

benefit. Although the vaccine’s main benefit is prophylactic, it also has a therapeutic component. If a 

patient receives a vaccine after being infected, but before they show symptoms, they will still face the 

disease at a reduced severity (Gershon, 2015). 

A secondary advantage is that such a strategy is more politically feasible. Because it responds to a clear

and proximate danger, and because it doesn’t overtly require mass participation, such a solution is more

likely be more politically palatable than mass vaccination. 

This intervention can either be active or inactive; if active, it triggers every time an agent begins to 

show symptoms. If inactive, it never triggers. As above, note that this intervention bypasses the 

decision rule of affected agents.

3.5.4. Education

The regulator may attempt to educate the masses. The idea is simple: if agents have bad information, 

get them better information. However, this is the most complicated intervention from a mechanistic 

viewpoint: what exactly does education do? For the purposes of this paper, I assume it changes 

behavior in one way only: it will change the agent’s expectation that vaccines cause ASD (hereafter 

called “ASD belief”). 

Recall that each agent has a heterogeneous belief that vaccines cause ASD at a probability of yi. For 

84% of agents, yi=0 (Fombonne et al., 2020), and for the remainder it is assumed that yi~N(0.25%, 

0.1%). 
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As observed by Attwell & Freeman (2015), the impact of education on attitude is not monotonic; while 

77% of those educated reported improved attitudes toward vaccination, the remaining 23% became 

more set in their views. I model this as follows. 

When an individual is subjected to a public education program, they receive a draw from a random 

exponential distribution (λ=0.25)23, denoted D, which is used to modify their perceived costs to the 

vaccine. This will do two things: first, it will influence their beliefs with respect to ASD; second, it can 

make them accept vaccination in a similar way to a neighborhood effect. The shape of the distribution 

is chosen to be consistent with Sobkowicz (2016), though a truncated normal distribution and beta 

distribution have also been employed in this role.

With respect to the ASD outcome, the draw from the exponential distribution will flatly divide their 

expected outcome of ASD. This is shown in Equation 2: Impact of Education on ASD Belief (p. 40), 

where ASDpost is the post-education expectation of ASD from a vaccine, ASDpre is the initial (pre-

education) expectation, and D is the random draw as described above. Note that this means that some 

individuals will believe ASD is more likely because of the program, perhaps believing in a government 

or big pharma cover-up. This is deliberate, and consistent with Attwell & Freeman (2015). The results 

of the model are insensitive to incorporating this backlash effect, as shown in Appendix D.3 Education 

Backlash (p. 104). 

23 This λ is chosen such that 23% of the draws lie below 1, and the remainder above, meaning 77% of the draws show a 
reduction in perceived probability, while 23% see an increase, in order to stay consistent with Attwell and Freeman. 
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This intervention has three levels, defined by how much of the population (selected at random) is 

subjected to a public education program: 0%, meaning no education is in place, 50% which implies half

the population is educated, and 100% which implies the entire population is exposed to a public 

education program. An education program faces costs of $21 per person educated (Karanth et al., 

2017)24. This intervention may be used in concert with others. 

3.5.5. Vaccine Ambassadors

This intervention is a social media intervention, designed not to change agent’s inherent beliefs yi, but 

rather their socially adjusted belief yi*, using peer effects to change behavior rather than pure 

information. They do this by educating agents on vaccine safety and giving them a media platform, and

so “dilute” the impact of the misinformed by increasing the quantity of informed discussion. 

I call these selected agents “vaccine ambassadors”. Such an approach has been shown to produce a 2.7 

percentage point increase in vaccine uptake (Attwell and Freeman, 2015). For the purposes of this 

model, the regulator will disseminate materials featuring the vaccine ambassador at the same cost as the

education intervention, above. The impact is described below.

Recall that each agent has a socially-adjusted ASD belief of yi*. This belief stems from the average 

belief level in their social network, Yi, and to what degree their network differs from the global mean  ̅y,

as defined by a percent difference between the two ydif. If their network is, on average, well-informed 

relative to the global mean, ( ̅y) then their own belief is weakened. That is, if Yi < ̅y, then yi* = (1 - ydif) 

yi. Conversely, if their network is worse informed relative to the mean, it amplifies their misinformed 

belief. Furthermore, it does so asymmetrically. So if Yi >  ̅y, then yi* = (1 + ξ ydif) yi for some ξ>0.  

24 This study gives a range of possible values. As the size of the targeted population increases, the per-person cost 
decreases. I use the cost for lowest population size given in the study, as it most closely matches my model. However, 
education may prove more cost-effective as the targeted population increases. 
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Previously, Yi was defined by Yi = 1/n x Σyj, where n is the total number of individual’s in the agent’s 

social network. Each agent who is targeted by a vaccine ambassador intervention has that yj = 0 voice 

“counted” α extra times. Thus, for an agent i who has received a vaccine ambassador intervention, Yi = 

1/(n + α) Σyi. The value for α is determined by calibration. (See Appendix C.1 Calibration, p. 93) 

This intervention is investigated at five levels, each corresponding to what percentage of the population

the regulator exposes to the vaccine ambassador materials: 0%, 5%, 25%, 50%, and 100%. This 

intervention may be attempted in concert with other interventions. 

3.5.6. Intervention Combinations

In addition to investigating how each intervention performs in isolation, I also examine select 

combinations. A summary of all investigated scenarios are described in Table 5: Scenario Summary (p.

42). The leftmost column is the name by which I refer to the scenario, and the remaining columns 

indicate which interventions are active, and to what level. The subsidy level indicates a dollar value for 

a payment given to agents who vaccinate. The education and vaccine ambassador entries indicate what 

percentage of the populace is subjected to that intervention. Targeted and mass vaccination are either 

“yes” if the intervention is active, or “no” if it is not. 

Table 5: Scenario Summary

Scenario Name Subsidy Education Vaccine 
Ambassadors

Ring 
Vaccination

Mass 
Vaccination

Baseline 0 0 0 No No

Full Subsidy 78.68 0 0 No No

$100 Rebate 178.68 0 0 No No

$500 Rebate 578.68 0 0 No No

$1,000 Rebate 1078.68 0 0 No No

50% Education 0 50 0 No No
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Scenario Name Subsidy Education Vaccine 
Ambassadors

Ring 
Vaccination

Mass 
Vaccination

100% Education 0 100 0 No No

5% Vaccine Ambassador 5 0 0 No No

25% Vaccine Ambassador 25 0 0 No No

50% Vaccine Ambassador 50 0 0 No No

100% Vaccine Ambassador 100 0 0 No No

Ring Vaccination 0 0 0 Yes No

Mass Vaccination 0 0 0 No Yes

Rebate + Edu 578.68 100 0 No No

Rebate + Vac. Amb. 578.68 0 25 No No

Rebate + Ring 578.68 0 0 Yes No

Edu + Vac. Amb. 0 100 25 No No

Edu + Ring 0 100 0 Yes No

Vac. Amb. + Ring 0 0 25 Yes No

Rebate + Edu + Vac. Amb. 578.68 100 25 No No

Rebate + Edu + Ring 578.68 100 0 Yes No

Rebate + Vac. Amb. + Ring 578.68 0 25 Yes No

Edu + Vac. Amb. + Ring 0 100 25 Yes No

All Interventions 578.68 100 25 Yes No

5. Intervention Results

To determine the results of the interventions, I examine the per capita social cost for each intervention 

described in Section 3.5.6. Intervention Combinations (p. 42). For each figure, the error bars represent 

a 95% confidence interval for the 1,000 simulations run25. Select summaries are shown in this section. 

This section only shows results for total societal costs, for as described above, the other metrics tend to 

25 See Appendix A.7. Stochasticity (p. 84) for a detailed discussion on the origin of this variance. 
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be reflected in total societal cost. For a complete table of results, including the performance of other 

metrics, see Appendix E: Supplementary Tables (p. 106). 

5.1 Mandated Vaccines

I first examine the impact of mandating vaccines. This includes mass vaccination, for which all but the 

medically exempt agents are required to vaccinate before the outbreak, and ring vaccination, in which 

anyone potentially exposed to a newly symptomatic individual is required to vaccinate. 

Figure 11: Results for Mandated Vaccines (p. 44) shows that both ring vaccination ($1,628) and mass 

vaccination ($95) show a marked improvement over the baseline no intervention case ($4,764). This is 

hardly surprising; by bypassing the agent’s decision making process, any flaws in that process are 

similarly avoided. This can be seen by how the mass vaccination costs is only slightly above the 

individual expected costs of vaccinating; this shows that it stops an outbreak very quickly, and very few
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cases of measles are experienced. While both interventions result in high vaccination rates, the attack 

rate for the mass vaccination case is almost zero, while the attack rate for the ring vaccination 

intervention is 23.7%. (See Table 11: Results of Single Interventions, p. 106 in Appendix E: 

Supplementary Tables for details.) Two further details are worthy of note. 

First, ring vaccination represents a marked improvement over the no intervention case, meaning that if 

mass vaccination is not feasible, ring vaccination may be a highly effective strategy. However, the 

model does not incorporate the costs of contact tracing and coordination, which may be substantial. 

Armbruster and Brandeau (2007) find a minimum annual cost of maintaining such a capacity to be 

$18,00026. 

Second, the mass vaccination is assumed to occur before the outbreak. However, this model assumes 

that an outbreak is inevitable. The ring vaccination strategy has zero costs if an outbreak does not 

occur27, while the mass vaccination continues to have the vaccination costs accrue even in the absence 

of an outbreak. A real-world regulator must weigh the probable savings during an outbreak against the 

constant costs incurred regardless of disease spread. 

5.2 Subsidized Vaccines

I now examine the impact of subsidizing the price of vaccines. The levels included are a full price 

subsidy, making vaccines free for agents, and providing free vaccines as well as a $100, $500, and 

$1,000 incentive to agents to vaccinate. Costs to society include the deadweight loss from these 

transfers. 

26 This value is particularly portable as Armbruster and Brandeau (2007) also use a population of 500 agents for their 
study. Furthermore, this value maintains a contact tracing capacity only of 3; during peak disease spread, this would be 
insufficient in my model to adequately apply ring vaccinations. 

27 Recall that this model does not implement the $18,000 annual cost of contact tracing infrastructure described above. 
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Figure 12: Results for Subsidies (p. 46) shows that while simply making the vaccines free has no 

impact on total costs to society, larger rebates have progressively higher gains. In principle, there is a 

larger subsidy amount at which a marginal increase in that subsidy instead increases total societal cost 

(because the additional deadweight loss from those subsidies is larger than the marginal improvements 

in measles disability and mortality). However, even very large subsidy levels (such as $10,000) 

continue to lead to decreases in societal costs in this model. Because of the political impracticability of 

such large subsidies (or penalties)28, for the remainder of the paper, I acknowledge that such a 

minimum social cost theoretically exists, but only examine the $500 rebate level for the remainder of 

the dissertation. 

28 Larger subsidies up to $2,000 have been studied (Robertson et al., 2021). However, given that the largest rebate I could 
find record of was $100 (Fischels, 2021), I limit myself to values at or below $1,000 as feasible.
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Noteworthy is that these changes in cost do not represent changes in final vaccine uptake, which is 

nearly identical across all cases, but only when agents choose to take the vaccine. If we examine only 

the final vaccination rates, we find a completely inelastic price elasticity of demand for prices. This is 

consistent with Kondo, Hoshi, and Okubo (2009), who empirically find nearly zero elasticities for the 

influenza vaccine. However, this may not tell the whole story. It is more informative to examine how 

rebates change demand before an outbreak. 

By selecting the vaccination rates on day 10, before the first agent begins to show symptoms, I can 

estimate the effect of only price on the demand for vaccines. I find a 50.50% (±2.27%) vaccination rate 

for the $1,000 rebate case on day 10, and find only a 46.91% (±2.38%) vaccination rate for the $500 

rebate case on the same day. This 3.59% difference in quantity consumed, divided by the 100% 

increase in price, gives an elasticity of -0.0359. This is within the figures found by Kondo, Hoshi and 

Okubo when they restrict their analysis by season. This suggests that these findings that rebates must 

be large are consistent with empirical fact. 

A limitation of this model is that the figures above assume that an outbreak is inevitable. In reality, 

outbreaks are an uncertain occurrence. Subsidies, such as those detailed above, would cause 

deadweight loss in both the outbreak and the no-outbreak states. The benefits, in the form of reduced 

outbreak severity, would only accrue in an outbreak state. While a $1,000 rebate may be cost-effective 

in an outbreak state, it may not be when an outbreak is uncertain, depending on the frequency of 

outbreaks29. 

29 This problem could be circumvented by using a system wherein rebates are inactive unless a publish health organization
declares an outbreak. However, two problems arise with this possibility. First, not all cases are reported, and even if 
they are, exactly when a public health official declares an outbreak may be arbitrary. Second, it creates an incentive for 
agents to not vaccinate until there is an outbreak, then vaccinate immediately, in order to avoid loss of income via the 
rebates. Thus, I assume here that rebates apply in non-outbreak as well as outbreak states for simplicity. 
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5.3 Education

For this model, an education intervention is designed to change how likely individual agents are to 

erroneously believe vaccines are to cause ASD. Figure 13: Results of Education (p. 48) shows that 

education does not give any gains. There appears to be a slight upward trend in costs to society, 

presumably driven by the costs of education, but such differences are not statistically significant. 

This implies that an education campaign which targets only ASD misinformation is likely to fail. While

it improves the views of some agents, the variance in these improvements means some are necessarily 

not convinced, and these unconvinced agents still fail to vaccinate. This is consistent with findings in 

the literature (Nyhan et al., 2014; Sadaf et al., 2013).

However, it should be noted that other types of campaigns are possible: campaigns better educating 

individuals about the risk of not vaccinating could provide another avenue for future study. This would 

have to be done by providing agents with a better estimate of the probability of infection pUNV(st), as the

costs of the illness are assumed to be entirely and accurate internalized. 
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5.4 Vaccine Ambassadors

A vaccine ambassador program targets the social aspect of ASD misinformation. By putting out an 

advertising campaign showing real individuals in the vaccine hesitant community, a regulator can 

artificially inflate the perception that one’s peers are not worried about ASD. I examine four campaign 

levels, which seek to reach 5%, 25%, 50%, and 100% of the population. Figure 14: Results for Vaccine 

Ambassadors (p. 49) shows that such interventions are highly effective. Even the lowest level of a 

vaccine ambassador program shows significant gains ($1,228 vs $4,764). 

Figure 15: Detail of Vaccine Ambassador Interventions (p. 50) shows how the interventions compare to

each other. While moving from a 5% to a 25% level shows small but statistically significant 

improvement ($1,193 vs $1,228), any higher levels are not significantly different. If anything, they may

be slightly higher, owing to the increased cost of the program. This would imply that a 25% level is 
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enough to begin developing herd immunity, and any further efforts do not result in improved disease 

outcomes. 

The gains from such a program may seem to be out of proportion to the 2.7 pp increase in vaccine 

uptake shown in Attwell and Freeman (2015). The key difference is that Attwell and Freeman observed

such a difference in vaccination in the absence of an outbreak. When an outbreak is present, even that 

relatively modest decrease in perceived cost of vaccinating results in agents vaccinating sooner. 

Because they vaccinate sooner, they incur fewer costs, hence the relatively large difference in behavior 

from a no-outbreak scenario. 

5.5 Combined Interventions

Due to the large number of intervention combinations, I will only discuss the noteworthy results. A full 

set of tables for all results can be found in Appendix E: Results Tables. 
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First, I combine a 25% vaccine ambassador campaign with ring vaccination. Figure 16: Combining 

Vaccine Ambassadors with Ring Vaccination (p. 52) shows that there are small but statistically 

significant gains from combining these two interventions. Given that they target different mechanisms, 

this makes sense; the vaccine ambassador intervention reduces the number of agents hesitant to 

vaccinate for fear of ASD, while the ring vaccination intervention reduces the impact of the time lag 

between when agents begin infecting others and when they start showing symptoms. Thus, these two 

interventions can be considered to be compliments. 

Interestingly, this is the only intervention that shows gains to society. All other combinations tested 

either did not result in a significant change, or else resulted in a worsening of outcomes. For instance,

Figure 17: Combining Education and Rebates (p. 53) shows that if I combine the ineffective education 

intervention with a rebate, I see a higher cost to society relative to rebates only ($4,630 versus $4,602). 

This cost is driven entirely by the cost of education; attack and vaccination rates as well as mortality 

remain unchanged. (Details can be found in Table 12: Results of Combined Interventions, p. 107, in

Appendix E: Supplementary Tables.) Viewed in this light, we can consider all other interventions to be 

substitutes to one another. 

This further suggests that a $500 rebate or 25% vaccine ambassador campaign each individually is 

sufficient to quickly get the population up to herd immunity. Combining either of these with each other 

or education is a duplication of efforts, which leads to a small but statistically significant increase in 

costs for no appreciable gain. 

Any combination of three or more interventions results in a small rise in total costs. All interventions at

once does not appear to be statistically different from any of the three-intervention combinations. 
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5.6 Cost-Effectiveness of Interventions

An important metric for regulators is how cost-effective an intervention is. I define cost-effectiveness 

here as the ratio of loss averted (measured in dollars) over the amount of expense required by the 

intervention. Note that this is distinct from simply minimizing total societal cost; here the regulator also

has an interest in minimizing its own expenditures. 

Table 6: Cost-effectiveness of Interventions (p. 55) shows that by far the most cost-effective approach 

is using the vaccine ambassador intervention. However, the way costs for the ad campaign scale in this 

model30 may not be realistic; instead, one could imagine that an advertising campaign carries 

substantial fixed costs. Thus, even using the most conservative value for the 100% vaccine ambassador 

intervention, it remains superior even to mass vaccination. Mass vaccination itself remains the next 

30 This model assumes that all advertising costs are variable costs.

p. 53 of 108

Figure 17: Combining Education and Rebates



most cost-effective, followed by ring vaccination. All other interventions have substantially lower 

ratios. 

This picture, however, is incomplete, as it assumes an outbreak is inevitable. Several interventions 

accrue costs even in a no-outbreak case. For instance, mass vaccination faces the same costs in either 

case, as it is assumed to happen prior to any outbreak. These per-capita costs are shown in the “No-

outbreak Cost” column. They show that while mass vaccination may be preferable in the event of an 

outbreak, the lower cost in a no-outbreak scenario may make ring vaccinations more appealing if the 

chance of an outbreak is sufficiently low. 
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Table 6: Cost-effectiveness of Interventions

Scenario Expenses Savings Ratio
No-outbreak

Cost
No-outbreak

uptake: 

Baseline $0.00 $0.00 $0.00

Mass 
Vaccination $78.52 $4,669.76 59.47 $78.52

Ring 
Vaccination $114.44 $3,136.52 27.41 $52

Full Price 
Subsidy $20.56 $3.93 0.19 $10.78 42.82%

$100 Rebate $46.65 $53.76 1.15 $25.21 44.10%

$500 Rebate $150.65 $162.55 1.08 $86.88 46.91%

$1000 Rebate $279.84 $291.43 1.04 $174.30 50.50%

5% Vaccine 
Ambassador $1.05 $3,536.49 3,368.09 $0.00

25% Vaccine 
Ambassador $5.25 $3,571.24 680.24 $0.00

50% Vaccine 
Ambassador $10.50 $3,551.92 338.28 $0.00

100% Vaccine 
Ambassador $21.00 $3,550.43 169.07 $0.00

50% Education $10.32 -$3.32 -0.32 $0.00

100% Education $20.64 -$11.45 -0.55 $0.00
Expenses represents the per-capita expenses inured by the regulator for the intervention 
Savings represents the per capita value of averted loss by the intervention 
Ratio is computed as Savings/Expenses.
No-outbreak Cost represents the cost of the intervention if there is no outbreak. 
No-outbreak uptake shows vaccine uptake driven by rebates in a no-outbreak scenario.

6. Select Sensitivity Analyses

Some sensitivity analyses are performed on the base model in Appendix D: Sensitivity Analyses (p.

97), but a few select ones are performed again with the new model parameters here. All sensitivity 

analyses change a single parameter of the model, and run 1,000 simulations for each parameter value.  
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Unless otherwise specified, all analyses are performed with no heuristics, some misinformation, and 

social networks active, with no interventions active. 

6.1. ASD Expectation

6.1.1. Mean ASD Expectation (μASD)

I vary the average misinformed belief in the probability that vaccines cause ASD (μASD) from 0% to 1%

in 0.1% increments. Figure 18: Impact of ASD Mean on Total Societal Cost (p. 57) shows the same 

relationship discussed in Appendix D: Sensitivity Analyses (p. 97). This implies that the model is fairly

sensitive to this value.

Given the scarcity of information on how much of the population is misinformed, it may be 

prohibitively difficult to find data on the strength of that belief. If such data were found, it could be 

used to refine this model further. However, even in the absence of hard data on the strength of ASD 

belief, the range of results varies only by 20% from the most extreme values. Thus, while the model is 

sensitive to average ASD belief strength, it provides a good upper and lower bound on expected costs. 
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6.1.2. ASD Expectation Variance (σASD)

As above, the variance of the ASD belief was varied from 0% to 0.5% in 0.05% increments. Figure 19: 

Impact of ASD Expectation Distribution on Total Societal Cost (p. 58) shows the same relationship 

observed in Appendix D: Sensitivity Analyses (p. 97).
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6.2. Social Media Campaign Effectiveness (α)

For this intervention, I set the vaccine ambassador intervention to the 25% level. All other settings are 

as described above. I do this by changing the effectiveness of the campaign (α). Recall that the vaccine 

ambassador intervention modifies affected agent’s socially adjusted ASD Expectation by using social 

media to “dilute” any misinformed agents with the perception of a higher quantity of informed ones. 

(See 3.5.5. Vaccine Ambassadors, p. 41, for details.) 

I vary α from 0 to 30 in increments of 3. Figure 20: Impact of Vaccine Ambassador Effectiveness on 

Total Societal Cost (p. 59) shows that the initial gains from even a weak campaign are huge, but an 

increasingly effective campaign quickly sees a reduction in marginal gains. As the campaign becomes 

stronger, it quickly reaches a point where all but the agents with the highest ASD expectation are 
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choosing to vaccinate. This intervention is assumed to apply to all agents equally. The more agents that 

have already been convinced, the more additional effort is wasted as it impacts those who have already 

decided to vaccinate. 

The model’s sensitivity to the effectiveness of the campaign applies mostly to lower levels of 

effectiveness. Given the calibrated value of 16.2, the empirical value lies firmly in the more effective 

range, for which the model is insensitive. Thus, I conclude that for likely ranges of campaign 

effectiveness, the model is insensitive to the effectiveness of the campaign. 

7. Conclusion

This dissertation illustrates how vaccine hesitancy can be explained in an economic context, in a way 

that a rational expectations model would be unable to do. It also examines interventions available to the
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regulator and finds that the second-best but politically feasible interventions of vaccine ambassadors 

and ring vaccination are the most cost effective. 

The theoretical model examines self-interested agents making vaccination decisions in the context of a 

measles outbreak, and finds that three factors can contribute to suboptimal vaccination rates. 

Misinformation has an unambiguously negative impact on vaccination rates and subsequent outcomes 

in the event of an outbreak. Heuristics also shows in my model a similarly negative outcome. While it 

is possible for a heuristic to be sensitive enough to disease to result in an outcome comparable to a fully

rational population, the lack of any data on if or how the population defines its heuristic renders the 

argument academic, and thus I do not examine heuristics further. Social networks have an ambiguous 

impact on outcomes. The more relevant local information they provide helps agents make a better 

estimate of their risk of infection, but in the presence of misinformation that same network’s capacity to

amplify incorrect beliefs represents a substantial liability, which can outweigh any benefits from more 

relevant incidence data. 

This model provides a framework to understand vaccination behavior which has been poorly explained 

to date. For instance, the relatively low price elasticity of demand for vaccines seems puzzling at first 

glance. This model shows that such changes in price fail to account for the substantial indirect costs of 

vaccination. These costs grow very large, indeed, if they incorporate misinformation regarding vaccine 

health impacts. I model them here as misinformation regarding ASD, but the model can easily be 

adapted to include other feared outcomes such as sudden infant death syndrome, multiple sclerosis, or 

any other ailment which the vaccine hesitant fear. Accounting for these costs shows that even an agent 

performing a correct cost-benefit analysis on vaccination may refuse to vaccinate if they operate on a 

false believe in risk of significant side effects, such as ASD. 
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Having established a theoretical model, I investigate the efficacy of various interventions in the context

of a model of rational but potentially misinformed agents31. That mass vaccination results in the best 

outcome is unsurprising; public health officials often advocate vaccinating early and completely. 

However, if I assume this option is not available to the regulator for whatever reason, I seek to find a 

second-best solution.

I find that interventions targeting vaccine cost directly are feasible, but only for high levels of subsidy 

that essentially pay patients to vaccinate. Beyond that, interventions that seek to change agent’s 

inherent beliefs of vaccine safety appear to be of limited use. Campaigns that seek to change the social 

context of those beliefs, however, appear to have great promise, especially if used in conjunction with 

ring vaccination techniques. 

These results come with a series of caveats. First, the education investigated here specifically targeted 

agent’s belief that vaccines cause ASD; another interesting regime to investigate is one that tries to 

better inform agents of the probability of infection, pUNV(st), which has the potential to change behavior 

through another channel. Similarly, it may be possible that the way I modeled education is inaccurate; 

further research into how education changes probability beliefs may shed more light on the subject. 

Second, I reiterate that while the mass vaccination option appears cheapest, this is only if I assume that 

an outbreak will happen. Such an intervention would accrue costs even if an outbreak never happened. 

To a lesser extent, the rebate intervention would likewise have some costs if implemented before an 

outbreak. All the other interventions are assumed to be implemented on a reactive basis; when an 

infection is observed, the campaigns are launched. If no outbreak occurs, the campaigns are not 

launched, and thus incur no costs. This may explain the lack of support for mass vaccination programs; 

31 Due to the lack of data on if or how heuristics are employed, contrasted with reasonable data on ASD misinformation, 
heuristics are disabled for all intervention analyses. 
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a topic for future research might be to examine the probability of an outbreak as compared to the 

expected costs within and outside of an outbreak state. 

Third, the Ring Vaccination intervention has costs not shown in this analysis. As mentioned previously, 

it is estimated that maintaining a contact tracing infrastructure for a group of 500 individuals costs 

$18,000 annually, or a per capita annual cost of $36. This cost is sufficiently low in an outbreak state as

to not change our analysis, but if such costs also accrue in the non-outbreak state, then it faces a similar

problem to the mass vaccination policy above. 

Fourth, my modeling of the vaccine ambassador intervention suggests it as a promising avenue, but 

there is no literature on the exact mechanism by which the “I Immunize” program, which inspired this 

intervention, functions. As a result, if the I Immunize program functions through another channel, then 

my vaccine ambassador intervention may require a different sort of implementation. 

Despite these reservations, this paper presents some promising interventions for a regulator to attempt. 

By accounting for how agents make their decisions, I offer a model consistent with the failure of 

traditional educational campaigns on vaccine safety, and potential alternatives which may offer 

effective alternatives to encourage the public to vaccinate. In particular, two policies are worthy of note

to regulators. 

First, the vaccine ambassador intervention can be implemented in an entirely reactionary context. This 

means that, in addition to being the most cost-effective intervention from the regulator’s perspective, it 

also does not have any costs in a no-outbreak state. This makes it a very promising intervention, worthy

of further study. 

Second, ring vaccination represents a solid compromise between cost-effectiveness, cost in a no-

outbreak state, and political feasibility. Unlike mass vaccination, ring vaccination may have an easier 
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time gaining traction politically, as it does not require participation of the population until an outbreak 

is in progress, at which point the need will be clear. Its cost effectiveness ratio is smaller, but still an 

order of magnitude greater than subsidies. Finally, its annual cost per capita is relatively small. 

Whatever implementation is chosen, this model provides an explanation for vaccine hesitancy in an 

economic context that the theory of rational expectations has been unable to provide. In doing so, it 

provides regulators not only with a menu of options in the event of an outbreak, but also with a 

framework through which to examine the problem of vaccine hesitancy and better craft and target 

policy interventions. 

Future work can progress around three lines of research. First, the model can be further refined. In 

particular, building a framework for risk aversion into the model could be relevant, especially given the

large costs which occur only at a low order of probability. This could have a significant impact on 

model outcomes if we assume, as much literature does, that agents are risk-averse. It could also be 

enlightening to develop a method whereby agents have an even more accurate forecast of disease 

spread, and allowing their perception of risk to be an exponential function of incidence rather than a 

linear one. 

Second, the model could be adapted to examine other diseases. The model could easily be adapted to 

examine the impacts of other diseases. Because measles is a deadly and fast-spreading disease, I expect

that examining it gives us stark results. However, the framework could also apply to less dangerous 

diseases such as chickenpox, influenza, or even COVID. By examining whether the model applies to 

behavior in other diseases, with their own costs and epidemiological characteristics, the model could be

validated more thoroughly, and its predictive power better tested. 

Finally, this model assumes that vaccine mandates are effective. In the United States, nearly every state 

mandates the MMR vaccine in order to attend public school, but all such states also have exemptions to
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the mandate. A significant literature exists which examines how restricting these exemptions lowers the

incidence of such diseases. This model has shown that, even in the absence of mandates, diseases tend 

to result in cyclical behavior: an outbreak happens, agents vaccinate, and then incidence falls. If 

removing vaccine mandate exemptions is caused by such outbreaks, then perhaps the resulting decrease

in incidence is not a product of removing exemptions, but rather a natural consequence of the outbreak.

If disease outbreaks do truly cause the removal exemptions, then the studies examining the 

effectiveness of those exemptions may not have accounted for that endogeneity, and overstated the 

impact of exemptions. The CDC began tracking state-level measles data in 2019, so in the coming 

years enough data should be available to run a more thorough analysis. 
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Appendix A: Modeling Specification

This appendix details the model I constructed to explain the low rate of vaccination consistently 

observed. It does this by modeling agent behavior in the midst of a measles outbreak,32 and presents the

findings. It contains a more detailed description than included in the main body, presented for the 

purpose of greater understanding and predictability. 

I use a computer simulation to model child-parent pairs (agents). The children experience all health 

outcomes and is subject to disease spread, while the parent collects data, makes decisions on behalf of 

the child, and maintains a social network. These agents seek to minimize their expected lifetime cost by

regularly deciding whether or not to vaccinate. They do this by comparing their perceived cost of 

vaccinating against the cost of not vaccinating. The cost of vaccinating is both in terms of vaccine price

and any real or imagined adverse reactions to the vaccine, calculated as an expected cost. The cost of 

not vaccinating depends on how likely an agent is to get sick, as well as the cost of the various health 

outcomes of becoming sick with the measles. Exactly how heavily agents weight these outcomes is 

heterogeneous among agents to account for the substantial observed variation in vaccination beliefs. 

Agents start unvaccinated and healthy. An agent who becomes infected proceeds undergoes a latency 

period where they experience no effect. They then experience an asymptomatic but infective period, in 

which they are infecting other agents in their spatial area. They then begin to show symptoms, and 

32 The model is set in an outbreak for two reasons. First, vaccination rates change most quickly during outbreaks, and tend
to change slowly otherwise. This provides useful variation in data. Second, an outbreak is a time when it would make 
the most sense to vaccinate; with the disease on one’s doorstep, it would seem rational to vaccinate. That vaccination 
rates do not spike to 100% during outbreaks seems to indicate an alternative model is required; this model attempts to 
fill that gap, and so is presented in its context. Furthermore, while outbreaks are rare, they aren’t terribly rare; they 
appear to happen at a rate of roughly one every two years. 
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continue infecting. Following this, they retain symptoms but cease infecting others, then finally recover

and are immune to further infection. The length of these periods is heterogeneous among agents. 

Each scenario (i.e., set of parameters) is modeled at 1 day time steps for 150 days33. Agent position is 

spatially implicit to account for two factors: first, the disease only spreads within a certain range. This 

means the natural clustering of individuals simulates the hot-beds of measles outbreaks which I observe

in the world. Second, it provides a basis for individuals to make their vaccination decisions in 

accordance with the model. 

The remainder of this chapter is organized as follows: Section A.2 Theoretical Model (p. 75) details the

general framework employed. Section A.3 Vaccination Decision (p. 79) examines how agents make a 

vaccination decision, while Section A.4 Disease Spread (p. 81) describes how the disease spreads 

within and among agents. Section A.5 Social Networks (p. 82) describes how social networks impact 

vaccination decisions. All simulations are performed in Anylogic 8 University34.

A.2 Theoretical Model

This subsection outlines the model that describes vaccination behavior. Within the model, each agent 

represents a child-parent pair. The child is subjected to disease spread, vaccination, and spreads disease,

while the parent gathers information and decides whether or not to get vaccinated each time period. 

Because the parent is assumed to fully internalize the child’s utility, this pair is treated as a single agent.

The agent seeks to maximize utility by minimizing expected costs via choosing whether or not to 

vaccinate. 

33 This number is chosen because, after 100 days, the simulation has reached equilibrium, after which no changes are 
observed. 50 days are added for safety.

34 Version 8.7.12, Build Build: 8.7.12.202205250455 x64
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A.2.1 Rational Behavior 

Agents face costs during an outbreak. These costs come from the costs associated with measles, as well

as costs associated with the vaccine. They do this by, in each period, comparing that period’s expected 

cost in a vaccinated state, E[CVAC, t] against the expected costs if they are unvaccinated, E[CUNV, t]. If 

being vaccinated offers the lower expected cost, the agent chooses to vaccinate. Each agent also 

possesses a heterogeneous error term εi, representing the different attitudes towards vaccination35. Thus,

the rational decision rule is formally: Vaccinate if E[CVAC, t] – E[CUNV, t] > εi. 

The costs of measles depends on one’s vaccination status, and the probability of contracting measles 

depends both on the vaccination status and on how prevalent measles is at that time. The costs 

associated are direct treatment costs T, disability costs D, and mortality costs M. Treatment includes 

cost of being hospitalized CHOS, and the cost of outpatient visits, CMD, with their corresponding 

probabilities. Thus T = pHOS CHOS + pMD CMD. For details on the values of these parameters, see

Appendix B: Parameterization (p. 85). Similarly, M = pdeaf Cdeaf + pNS CNS, where Cdeaf is the lifetime cost

of deafness as measured by lost wages, and CNS is the lifetime cost of Neurological Sequelae. Finally, D

includes both the cost of dying directly from the measles infection CDEATH as measured by the Value of 

Statistical Life, as well as the cost of delayed death due to Subacute sclerosing panencephalitis (SSPE), 

noted as CSSPE. Thus, we can write D = pDEATH CDEATH + pSSPE CSSPE. 

As mentioned above, these costs also depend on an agent’s vaccination state. A vaccinated patient tends

to experience symptoms less severe than an unvaccinated patient. Thus, we can write that for a 

vaccinated agent, the costs they expect to incur given a sickness is a scalar multiple b of the costs an 

unvaccinated individual faces (0<b<1). In mathematical terms, (TVAC + DVAC + MVAC) = (b TUNV + b DUNV

+ b MUNV) = b x (TUNV + DUNV + MUNV). 

35 This term is assumed to be ~N(0, σE). 
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Agents gauge how likely they are to contract measles p(st) based on the portion of the population 

currently displaying symptoms at that time, denoted by st.36 Being vaccinated also reduces the 

probability that an agent will contract measles. Being vaccinated generates immunity at a predictable 

rate of (1 – k). Thus, pVAC(st) = kpUNV(st). 

Agents choosing to vaccinate must also pay the price of the vaccine, PV, and face a rare and uniformly 

nonfatal chance of a Vaccine Adverse Reaction (VAR), as denoted by AV. Such reactions require 

hospitalization, but have no lasting effects. Thus, AV = VAR CHOS, where VAR is the rate at which such 

reactions occur. Again I stress that this does not include the debunked links to Autism. An agent’s 

expected costs in both states for a given time period t is therefore: 

The rational decision rule can, therefore, be written as vaccinate if pUNV(st) x (TUNV + DUNV + MUNV) x (1 

– kb) – PV – AV > εi. Note that, because the agent makes this decision each time period, they do not 

apply any discounting. This is one of two areas where an agent’s projection of costs may be inaccurate; 

because the vaccine takes two weeks to induce immunity, the actual costs they face may be higher even

if vaccinated. However, this is counterbalanced by the fact that agents are using symptomatic incidence

of the present st to forecast future spread tends to underestimate the resulting spread, and thus cost of 

being unvaccinated. 

36 For the purposes of this paper, let p(st) = max{1, IMULT x st, sBG} where sBG is the background level of risk, and IMULT is a 
scalar multiplier to incidence. It is through IMULT that any agent expectations of future spread are captured. 
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E [CUNV , t ]=pUNV (st)×(T UNV+DUNV +M UNV )
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A.2.2 Heuristics and Misinformation

Agents using a heuristic use a modified decision rule. Instead of vaccinating based on cost, they instead

use a simple threshold. Heuristic users will vaccinate if st >  ̅s. 

Misinformation is similarly simple to include. Each agent has a heterogeneous belief that vaccines can 

cause ASD with a probability of w. For 16% of the population, w ~N(μASD, σASD) . For the remaining 

84% of the population, w=0. The mean and standard deviation are assumed, and subjected to sensitivity

analyses, as shown in Appendix D: Sensitivity Analyses (p. 97). 

A.2.3 Disease Spread

The disease itself progresses normally as shown in  Figure 21: Transition Matrix. (p. 4) Individuals 

begin susceptible, and at a rate of r per infected individual per day, are infected by sick others. Once 

infected, they are latent but noninfective for a period LN days. Once this passes, as shown by the use of 

the heavyside step function θ(.) they immediately progress to being asymptomatic but begin infecting 

others. This latent infective period lasts LI days, at which point they begin showing symptoms and keep

infecting others. This symptomatic and infective period lasts SI days, at which point they still show 

symptoms but cease infecting others. This lasts for SN days, at which point they are recovered an 

immune to further infection. 

The length of these periods can be different from agent-to-agent; the lengths of each period are further 

discussed in section  Figure 21: Transition Matrix (p. 79). A detailed description of all parameters, and 

their origins, can be found in Appendix B: Parameterization (p. 85).
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[
1−r r 0 0 0 0

0 1−θ (t−LN) θ (t−LN ) 0 0 0
0 0 1−θ (t−LN−LI) t−LN−LI 0 0
0 0 0 1−θ (t−LN−LI−SI ) θ (t−LN−LI−SI) 0
0 0 0 0 1−θ (t−LN −LI−S I−S N ) θ (t−LN−LI−SI−S N)
0 0 0 0 0 1

]
Figure 21: Transition Matrix

These periods are heterogeneous across agents. 

A.3 Vaccination Decision

As described above, agents decide whether or not to vaccinate according to their decision rule. 

Heuristic users employ a simple threshold, while rational users calculate costs and pick the lowest one. 

When determining costs, agents include only costs they themselves will face individually; they do not 

consider any positive externality they may generate by being vaccinated. 

I describe the rational decision first, and describe subsequent scenarios as variants of the rational 

baseline. 

A.3.1 Rational Vaccination Decision

Rational agents generate two costs: The costs in a vaccinated state, E[CVAC], and the costs in an 

unvaccinated state, E[CUNV]. E[CUNV] is calculated as outlined in A.2.1 Rational Behavior  (p. 76), using

the parameters as described in Appendix B: Parameterization (p. 85), which are given for unvaccinated 

cases. This also generates E[CVAC]. 

In order to determine the probability of being infected, they select the higher of the background risk 

sBG, and the global symptomatic rate in that time period, st. To generate the global symptomatic rate, an 

agent examines all agents in the world. They find the percent of the population that are currently 
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showing symptoms (either infective symptomatic or turned-the-corner). They then multiply this by a 

scalar value, IMULT to account for the fact that disease spreads in an exponential, not linear, manner. 

Once both pUNV(st) and E[CUNV] are found, the decision rule is simple. If Equation 4: Rational Agent 

Decision Rule (p. 80) evaluates as true, the agent immediately vaccinates. 

In this model, all costs of vaccination occur upon the instant of vaccination. 

A.3.2 Heuristic Vaccination Decision

Heuristic users instead use a simple threshold. As outlined in the previous section, heuristic users will 

vaccinate if st >  ̅s. 

A.3.3 Misinformed Vaccination Decision 

Agents incorporating misinformation regarding ASD have an extra cost included in their analysis. For 

these agents, AV* = AV + yi x CASD, where AV* is the agent’s adjusted expected cost of a vaccine-adverse 

reaction, y is the agent heterogeneous believed probability of vaccine-induced ASD, and CASD is the true

estimated cost of ASD. 

To determine each agent’s w, first agents are randomly assigned a misinformed status; each agent has a 

16% chance to be misinformed. If an agent is not misinformed, w is set to 0, and thus the agent behaves

rationally as in A.3.1 Rational Vaccination Decision (p. 79). Otherwise, the agent receives a random 

draw from a normal distribution and assign it to their belief, such that y = N(μASD, σASD). 
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When calculating their expected costs as in Equation 4: Rational Agent Decision Rule, they use AV* for

their expected costs from VARs. Note that the true probability of w is 0, so such costs are never 

actually incurred, though misinformed agents behave as if their belief were true. 

A.4 Disease Spread

Agents start susceptible to infection. If infected, they go through a latent period, then begin infecting 

others while they themselves are asymptomatic. Then they begin to show symptoms, and after a period,

cease infecting others. After a time, if they do not perish from the illness, they recover. Recovered 

individuals are presumed to be immune.

The length of these periods is heterogeneous to each agent. The length of these periods is drawn from 

triangular distributions, the parameters of which can be found in Appendix B: Parameterization, 

Subsection B.1 Measles (p. 85).

Having established the model that will be employed, now we must codify it. The model will run at 1 

day time steps for 150 days37. Agent position is spatially implicit to account for two factors: first, the 

disease only spreads within a certain range. This means the natural clustering of individuals simulates 

the hot-beds of measles outbreaks which we observe in the world. Second, it provides a basis for 

individuals to make their vaccination decisions in accordance with the above model. 

Costs for being sick accrue the instant an agent enters the symptomatic state for the purposes of this 

model. 

Agents continue to act as described in Section A.2 Theoretical Model (p. 75), picking the lowest cost of

vaccinating or not vaccinating. The state transitions can be described by Figure 3: The Susceptible-

37 This number is chosen because, after 100 days, the simulation has reached equilibrium, after which no changes are 
observed. 50 days are added for safety.
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Exposed-Infected-Recovered (SEIR) Model (p. 20Error: Reference source not found). The Health State

Chart describes how the agent’s health changes over time. 

A.5 Social Networks

Social networks have two components: neighbors, which represent any other agents an individual will 

have physical contact with, and thus can infect or be infected by; and friends, which represent 

individuals an agent keeps in contact with through nonphysical means, like social media. Both these 

groups are included in an agent’s social network. 

Social networks perform two functions. First, they can provide more relevant data on how a disease is 

spreading close to an agent, which I term “local information.” Second, they provide a way for agents to

modify their own belief that ASD is caused by vaccines (here termed “ASD belief”). If an agent is in a 

group with below average ASD belief, the agent’s ASD belief will also go down. If, however, an agent 

is in a group with above average ASD belief, that individual’s ASD belief goes increases. Such an 

increase is assumed to be asymmetrically larger than a decrease, to account for confirmation bias. 

A.5.1 Social Network Specification 

Neighbors within a social network are defined in-model as any individual within the distance across 

which disease can spread. That is, every neighbor is an individual who can have contact with and infect

an agent, and every such individual is a neighbor. 

Friends follow a scale-free network per Ma et al. (2013) and are randomly selected from the entire 

population. These agents can also be neighbors, but can come from anywhere in the simulation. 
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Note that if an agent is in both groups (i.e., both a neighbor and a friend) then they are counted twice in

subsequent calculations. This is to reflect that known and proximate sources of information are taken to

be more credible. 

A.5.2 Disease Incidence in Social Networks 

While social networks are active, there are two sources of information for current incidence. There 

remains the global incidence rate, which I denote sG,t and a local incidence rate, sL,t, defined as the 

average symptomatic rate for all individuals within an agent’s social network. An agent’s adjusted 

estimate of risk accounts for both these factors, but may weigh one more heavily. They also will 

continue to use the background risk, if it is higher. As such, an agent’s adjusted assessment of risk can 

be seen in Equation 5: Weighted Incidence in a Social Network (p. 83), where w is the relative weight 

an agent puts on local incidence, and st* is an agent’s adjusted assessment of risk. 

A.5.3 Misinformation in Social Networks 

Agents in social network have their beliefs moderated by those in their networks. To do this, each agent

determines the average level of ASD belief within their network (Yi) including all agents who believe in

no link. They then find how much their network’s belief differs from the network average ( ̅y) defining 

the difference as ydif = ( ̅y – Yi)/Yi. Finally, their own belief is modified proportional to this difference. 

However, the degree to which it changes depends on whether they have a more well-informed (Yi <  ̅y) 
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in a Social Network

st
*=max {sBG , IMULT⋅

sG, t+w sL ,t

1+w
}



or more misinformed (Yi >  ̅w) network. For a well informed network, the adjusted ASD belief y* = (1 

– ydif) x y. For a misinformed network, individuals who already have a nonzero ASD belief will be more

likely to take their peer’s agreement as evidence of legitimacy. Thus, y* = (1 + ydif ξ) x w, where ξ is a 

confirmation bias factor. Note that for well-informed agents, w* remains zero.

When determining the costs in a vaccinated state, they use Av* = AV + y* x CASD. 

A.6. Spatial Distribution 

The model is spatially implicit. Agents are distributed at random in 1000×1000 grid, with their location

drawing from a uniform distribution. Agents can spread disease within a circular area centered around 

that agent. Neighbors are defined similarly. Agent positions are static. 

A.7. Stochasticity

There are few sources of stochasticity in the model. All agent charactaristics, such as location, agent-

heterogeneous parameters, ASD belief, etc. are the same from simulation run to simulation run. Further,

unless a paremeter is changed for the purposes of analysis, the parameters are also unchanged across 

different scnarios. For instance, an agent will have the same εi term in the benchmark case as in the 

misinformation case. The agent will have a different εi only in the sensitivity analysis that changes the 

distribution from which εi is drawn. 

The source of stochasticity comes from how the disease spreads. Because all parameters are the same 

across simulation runs, including the location of the initial infection, the only thing that changes is how 

the disease spreads. This comes from the fact that, each day, infected agents randomly select another 

agent to expose. It is that random selection that drives variance within simulation runs. 
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Appendix B: Parameterization

The parameters for the model are shown in Table 7: Measles Progression Parameters and Sources. 

(p86) The exact process for determining these parameters, and of how they are use, are discussed in 

each subsection. Of particular note, however, are the parameters estimated by calibration. Although 

units (meters) are included, to maintain consistency with the model environment, these distances are 

abstractions, and not intend to be in any way representative of a physical fact. 

B.1 Measles

Once infected, an individual begins to infect others. The mean daily infectivity of measles in 1973 was 

roughly 1 (London and Yorke, 1973) which, while it displays seasonal variation, is assumed to be 

constant for the purposes of this paper, though other potential data sources (Edmunds et al., 1994) 

remain. Each individual is able to expose any other individual within a certain radius to infection; that 

distance is determined by calibration. (See Appendix C: Calibration and Verification, p. 93) At a rate of

once per day (ibid), an infected individual selects one of their neighbors, who may be of any infection 

and vaccination state, and exposes them to the virus. 

This occurs only in the infective period. The disease begins with the host being exposed. 8-12 days 

later, they develop symptoms, which intensify and include a rash in 2-4 days (Perry and Halsey, 2004). 

3-10 days after rash onset, the patient is recovered. The host is infectious starting 3-5 days before 

symptom onset, and ceases to be infections up to 4 days after the appearance of a rash. (ibid). 

Once symptomatic, some individuals will require a doctor’s visit (Carabin et al., 2002). Among 

vaccinated individuals, this is 20%, while among unvaccinated, it is 50% (White et al., 1985). 1.5% of 
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them will require hospitalization, which will then require two follow-up visits. (ibid.) The costs for 

these have very wide error bars; hospitalization is estimated to cost $4,032-46,060, while doctor visits 

are estimated to cost $88-526 (Seither et al., 2014). 

Table 7: Measles Progression Parameters and Sources

Parameter Symbol Value Unit Source
Daily infectivity r 1 Infections per

day
London & Yorke, 1973

Minimum latent noninfective period LN,MIN 3 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Median latent noninfective period LN,MED 6 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Maximum latent noninfective 
period

LN,MAX 9 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Minimum latent infective period LI, MIN 3 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Median latent infective period LI, MED 4 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Maximum latent infective period LI, MAX 5 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Symptomatic infective period SI 4 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Minimum symptomatic 
noninfective period

SN, MIN 0 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Median symptomatic noninfective 
period

SN, MED 3 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

Maximum symptomatic 
noninfective period

SN, MAX 6 days Biellik & Clements, 1997; Perry & 
Halsey, 2004

While many cases of measles will be straightforward, 40% of all cases will have at least one 

complication (Bester, 2016). These include pneumonia (5%), diarrhea (8%), otitis media (7%), 

encephalitis (1-3%), panencephalitis (1%), subacute sclerosing panencephalitis (0.01%) and death 

(0.2%; ibid). All of these are significant enough to require hospitalization. Any fatalities from these 

complications is subsumed into the general 0.2% fatality rate. Encephalitis is carries with it special 

complications. 

Roughly 25% of encephalitis cases result in neurologic damage (ibid). This can have a cost beyond the 

hospital care, which is estimated at $877,150 in 1998 USD (Shiel et al., 1998). This amounts to roughly
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1.4 M in 2021USD. Also worthy of elaboration is subacute sclerosing panencephalitis (SSPE) which is 

a fatal, long-term condition which can develop years after the initial infection. Its symptoms include 

personality change, cognitive decline, and motor dysfunction, culminating in death. This also is 

significant enough to warrant separate consideration. 

Because SSPE is fatal, it ends in death. The average period from measles infection to developing SSPE 

is 6.84 years, and the period from diagnosis to death is 2.5 years (Farrington, 1991). Thus, a total 

average time between measles onset and death from SSPE is 9.34 years. Applying the discount factor 

(discussed in subsection B.4 Vaccination Decision, p. 91) to the value of statistical life (below) we can 

estimate the cost of SSPE to be $528,000. Hospitalization costs for SSPE were not considered.38 

The cost of death is the value of statistical life, as taken from Kniesner & Viscusi, (2019). For this 

estimate, the least biased estimate reported by the authors of $10 M is used.39 While not a precise 

measure, its historical use in judging the merits of public programs makes it appropriate to use in this 

case. 

Table 8: Measles Pathology Parameters and Sources

Parameter Symbol Value Unit Source
Infection spread distance dI 340 meters Calibration
Encephalitis incidence penceph 0.02 % Buchanan and Bonthius 2012
Neurologic sequelae incidence pNE 25 % Buchanan and Bonthius 2012
SSPE incidence pSSPE 0.01 % White, Koplan, and Orenstein 1985
Hospitalization Incidence pHOS 1.540 % White, Koplan, and Orenstein 1985
Outpatient visit incidence qMD 50 % Carabin et al., 2003; White et al., 

1985
Deafness incidence pDEAF 1.75 % Cohen et al., 2014
Fatality rate pDEATH 0.2 % Bester, 2016

38 A lack of reliable data on the hospitalization rate of SSPE patients made this value impossible to reliably calculate. 
Furthermore, as the cost of death is much higher than the cost of hospitalization, the cost of death is assumed to 
dominate.

39 This VSL is selected for three reasons. First, it uses revealed preferences by examining wage differentials, eliminating 
the possibility of stated preference bias. Second, it employs the Census of Fatal Occupational Injuries dataset, which 
removes much of the selection and publication bias which is found in other datasets. Finally, as a matter of practicality, 
the value lies firmly on the mean of other revealed-preference VSL estimates. 

40 This probability greater than 1 reflects that most patients require more than one outpatient visit.
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Two final outcomes of note are permanent deafness, which occurs at a rate between 0.1% and 3.4% of 

infections (Cohen et al., 2014). A mean value of 1.75% is used in the model. Lifetime cost of deafness 

is estimated to be between $356,000 and $609,000 (Welsh, 1991). A mean value of $475,000 is used. 

Because the exact health outcomes do not impact any model agents other than the patient, rather than 

modeling each outcome, when considering damages a simple expectation will be taken. While it is not 

the most realistic to have each mumps case pay for 5% of a meningitis infection (the expected costs 

from meningitis being the product of their price tag and their probability) it does greatly simplify the 

model and, as noted, the exact health incomes should have no impact on the spread. 

Costs for these outcomes are calculated upon entering the noninfective symptomatic state and added to 

the total at that time. 

Putting it all together, we can see that the expected cost of becoming sick with measles when 

unvaccinated is given by  Equation 6: Evaluated Cost of Measles (p. 88), which evaluates to roughly 

$3.63×105. 

E [Cm]=C H p(H )+CMD p (MD)+Cdeaf p(deaf )+CNS p(NS)+CSSPE p(SSPE)+Cdeath p(death)
=$307⋅0.5+$25,046⋅0.015+$ 4.75⋅105⋅0.00005+$1.4⋅106⋅0.25+$ 5.28⋅105⋅0.0001+$ 1⋅107⋅0.00125

=$363,105.74
Equation 6: Evaluated Cost of Measles

B.2 Vaccination

Preexposure vaccination is considered to have two benefits: First, it renders immune between 80% and 

97%  of those who are so vaccinated (Publication on Cost-Benefits, 2019). A value of 87% is used as a 

baseline (Herceg et al., 1994; Kim-Farley et al., 1985). Second, those who do become ill face a milder 

set of symptoms relative to those who were not vaccinated. (ibid.) For the purposes of this paper, two 

weeks are required between vaccination and full efficacy. (ibid.) If an individual is infected before that 
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allotted time has passed, they are presumed to become ill, but with the milder symptoms associated 

with having been prevaccinated. 

Vaccination has been shown to reduce both the oral virus concentration and, presumably, infectivity by 

roughly 50% (Fanoy et al., 2011). While no quantitative figures were found on outcomes, it will be 

assumed that the probability of any negative outcome is reduced by a commensurate amount. This may 

be overstating the impact of mumps on vaccinated individuals; the virus often has to build to a critical 

level to cause harm, so a 50% reduction in viral population may result in a much larger reduction in 

negative health outcomes. However, due to the absence of harder figures, this neophyte will assume a 

linear relationship. 

While a vaccine can also be administered therapeutically after exposure to prevent the case from 

experiencing clinical symptoms (Gershon, 2015), this possibility is dismissed for the purposes of this 

paper in the interest of expediency, and because the incubation period is sufficiently long that relatively

few people will be made aware of their exposure within 3 days. 

The value for background risk is chosen to produce an initial vaccination rate consistent with vaccine-

hesitant communities. See Appendix C: Calibration and Verification, Section C.1.2 Background Risk 

(p. 94) for details. The value for the Vaccine Incidence Multiplier is chosen to account for how 

laypeople tend to estimate exponential values. Christandl (2008) shows that most individuals use a 

linear approximation plus a correction factor when performing such tasks. A value of 6 was chosen as 

an approximate representation of a reasonable projection for rapidly growing exponential function.41 

The heuristic vaccination threshold is assumed, as no such data was found. 

41 Respondents were asked to estimate the result of 25 years of exponential growth at a rate of 5%. The highest estimates 
were a 650% increase. Because measles spreads much faster than 5%, and the time frame for interactivity is in the 
neighborhood of 25 periods, a high value of 600% was selected. 
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Table 9: Vaccine Parameters and Sources

Parameter Symbol Value Unit Source
Vaccine-induced immunity rate k 87 % Herceg et al., 1994; Kim-Farley 

et al., 1985
Vaccine-induced symptom 
reduction

b 50 % Fanoy et al., 2011

Vaccine Adverse Reaction 
Probability

VAR 0.01 % Hviid et al., 2008; Irani, 2008

Vaccination decision search 
radius

dinfec 314.5 meters Calibration

Vaccination medial exemption 
rate

VEX 0.2 % Seither et al., 2014

Background Risk sBG 0 % Calibration
Vaccine Incidence Multiplier IMULT 6 unitless Christandl, 2008

Agent Error Standard Deviation σE $ Calibration

Heuristic Vaccination Threshold  ̅s 7.5 % Assumption

Mean ASD Expectation μASD 0.25 % Assumption

ASD Standard Deviation σASD 0.1 % Assumption

Confirmation Bias Factor ξ 5 unitless Assumption

The decision of whether or when agents choose to vaccinate is discussed in another section. The price 

for the vaccine ($78.678) is taken from the current CDC Vaccine Price List (2021).

The characteristics for ASD Misinformation are selected in order to get the misinformed agents close to

the 70% vaccination level described by Goldstein et al. (1996). They are subjected to sensitivity 

analyses in Appendix D: Sensitivity Analyses (p. 97). 
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B.3 Vaccination Adverse Reactions

Vaccination is presumed to have a low risk of complication, between 1 in 6,000 and in in 62,000 

(median 1 in 11,000), as per Hviid et al. (2008) The main medically relevant complication is aseptic 

meningitis. This is assumed to occur over average of 15 days (Irani, 2008). At the median rate, the 

likelihood of any one patient developing an adverse reaction in the 15 day period is 9.09 x 10-5. As 

shown in  Equation 7: Daily probability of adverse vaccine reaction (p. 91) the daily probability of 

developing an adverse reaction is roughly 6x10-6. 

(1−p)15=1−9.09×10−5 → 1− p=(1−9.09×10−5)
1
15≈1−6×10−6

p≈6×10−6

Equation 7: Daily probability of adverse vaccine reaction

The cost of a vaccine adverse reaction is given by the cost of hospitalization; it is uniformly nonfatal 

and leaves no lasting effects, so E[CVAR] = $25,046. 

B.4 Vaccination Decision

The vaccination decision follows the process described in Chapter 2. The values for how big the

“local area” is are obtained from calibration. 

The constant for Betrayal Aversion comes from Aimone & Houser (2013). In this paper, participants 

play a variant of the Prisoner’s Dilemma against a computer for money, where they can either split a 

lesser amount of money, each getting $5 with certainty, or else chose to trust the other player. If the 

other player similarly trusts, they each get $15. If the other player betrays, the betrayer gets $28 while 

the trusting player gets $2. 
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They find that, when facing a computer that assigns betrayal at the same rate as human participants, 

92% of participants extend trust, compared to 65% when they will be aware if they’ve been betrayed. 

This suggests that the value of a loss from betrayal is worth 7.5% more than a loss from random 

chance42. In other words, a $1 loss from a betrayal is valued at $1.075. 

Table 10: Cost Parameters and Sources

Parameter Symbol Value Unit Source
Vaccine price PV 78.68 $US CDC Vaccine Price List, 2021
Hospitalization cost CHOS 25046 $US Seither et al., 2014
Outpatient visit cost CMD 307 $US Seither et al., 2014
Lifetime cost of Neurological 
Sequelae (NPV)

CNS 1400000 $US Shiel et al., 1998

Lifetime cost of SSPE (NPV) CSSPE 528000 $US Farrington, 1991; Hotz & Miller, 
1993

Lifetime cost of deafness (NPV) Cdeaf 475000 $US Welsh, 1991
Cost of death (NPV) CDEATH 10000000$US Kniesner & Viscusi, 2019
Betrayal Aversion Scalar BAV 1.07 scalar Aimone & Houser, 2012
Per-person education cost CEDUC 21 $US Karanth et al., 2017
Vaccine Ambassador Impact VAimp 0.35 % Calibration

42 The expected utility of knowing one has been betrayed is: EU(KNOW) = 0.346·$5 + 0.654·[0.692·$2 + 0.308·$15] = 
$5.66. The expected utility from not knowing is: EU(DON’T KNOW) = 0.080·$5 + 0.920·[0.679·$2 + 0.321·$15] = 
$6.06. Thus, [EU(DON’T KNOW) – EU(KNOW)]/EU(DON’T KNOW) = 0.0695. So a $1 gain in a random 
experiment is worth 1 – 0.0695 = $0.9305 in an experiment with betrayal. Thus, a $1 loss from non-betrayal is worth 
$1/0.9305 = $1.07 in the presence of betrayal. 

Special thanks to Aziz Saglam for his help formulating this.
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Appendix C: Calibration and Verification

C.1 Calibration

C.1.1 Infection Spread Distance

For calibration, we need to determine the appropriate the radius within which measles can spread. In 

order to be sure we are matching the spread correctly, I select from literature data where both the mean 

incidence rate was known and where the vaccination rate was known. For this, the 2013-2014 measles 

outbreak in the Netherlands is taken to be the model.

In this outbreak, there were two stages of infection. First, the initial infection began on May 27, 2013 

with two cases, and peaked by July 14, 2013 with 180 reported cases. On June 17, a national outbreak 

management team (OMT) began acting to stop the spread of Measles. That marks the end of the initial 

infection. Subsequently, parents were allowed and encouraged to vaccinate their children. 

The precise vaccination rate for the originating community was not reported, but a range of 60-90% 

vaccine coverage was stated by the authors. A middle value of 75% is assumed. Furthermore, 

Woudenberg et al. (2017) notes that only 7-9% of Measles cases are reported. Correcting for this, we 

would expect 2,250 individuals to have become infected after 19 days. This is out of a population of 

25,000 as reported by Lisowski et al. (2019). This works out to an attack rate of 9%.

Having established that we expect a 9% attack rate at 75% vaccination at 19 days after the first 

symptoms, I ran an optimization in Anylogic to minimize the squared difference between my 

simulation and the actual results. To do this I count the total number of infected and recovered 

individuals at time=29 in my model.43 

43 This time was chosen to allow individuals to develop symptoms in the model. With a median of 10 days between being 
infected and developing symptoms, I expect the first agents to show symptoms at t=10, allowing the 19 days after the 
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The results of the calibration, however, have experienced substantial variation. Out of 20 calibration 

attempts, the Sum of Squared Errors was equal to 0.007 or 0.008. For each attempt, a median of the 

lowest SSE was computed. These values ranged from 102 m (minimum) to 425 m (maximum), with a 

median of 297.5 m, and standard error of 111 m. 

This implies that the model is insensitive to infection radius. This is explored in greater detail in

Appendix D: Sensitivity Analyses (p. 97) but for the baseline model the median result (297.5 m) is 

used.  

C.1.2 Background Risk

Similar to the above method, the value for background risk (sBG) was selected by matching the model 

with empirical data. Since I am focusing my analysis on vulnerable communities, I calibrate my 

background risk to produce an initial vaccination level of 68%44. 

I set the initial infection to 0 to ensure I capture only background risk. I also ensure social networks, 

misinformation, and heuristics are disabled. I then vary the background risk level between 0 and 0.16%

at 0.001% intervals. By minimizing the squared difference between the resulting vaccination rate and 

68%, I find that a background risk level of 0.025%. 

A wide range of parameter values produce similar results. This implies that the model is relatively 

insensitive to the value of background risk.

C.1.3 Agent Error

When determining the agent’s error term (εi), I need to determine both the mean and the standard 

deviation of the normal distribution it is drawn from. The mean I assume is 0; that is, agents have no 

first infection in the model to mirror what was observed in the Netherlands. 
44 This value is selected to be consistent with Dayan and Rubin (2008).
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bias towards or against vaccination on average. The standard deviation (σE) I determine in a similar 

process to the above. I set the initial infection rate to 0, but this time permit both social networks and 

misinformation to be active. I allow the standard deviation σE to vary from $1 to $100,000. 

The resulting values range extremely widely. This is expected; because the distribution is still centered 

at 0, on average the dispersion does not change the overall vaccination rate. Ultimately, I select a value 

of $5,000 because it produces a reasonably smooth curve of vaccination over time. The model is highly

insensitive to this value, so my selection does not seem to be of importance. Further analysis is 

discussed in Appendix D: Sensitivity Analyses (p. 97). 

C.1.4. Vaccine Ambassador Impact

To calibrate the effectiveness of the vaccine ambassadors, I seek to recreate the 2.7 percentage point 

increase in vaccine uptake in Attwell and Freeman (2015). To do this, I set the initial infection to 0 and 

enable misinformation and social networks. I also require an appropriate number of vaccine 

ambassadors. In the Atwell and Freeman paper, the 2.7 pp increase in vaccination came from around 

12,000 “views” of a Facebook poster, out of a population of 29,000. I approximate this to, on average, 

40% of individuals having been exposed to the vaccine ambassador intervention. 

I vary the vaccine ambassador impact variable, α, between 0 and 50 in 0.1 unit increments, to minimize

the squared difference between my final vaccination rate, and a 2.7 pp increase from my baseline, 

resulting in a final vaccination rate of 47.5%. This resulted in a value of α=16.2. The model was highly 

insensitive to this value; above roughly 16, the results were nearly identical, indicating that there may 

be a threshold effect.
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C.2 Verification

In this outbreak, there were two stages of infection. First, the initial infection began on May 27, 2013 

with two cases, and peaked by July 14, 2013 with 180 reported cases. On June 17, a national outbreak 

management team (OMT) began acting to stop the spread of Measles. That marks the end of the initial 

infection. Subsequently, parents were allowed and encouraged to vaccinate their children. 

As expected, the disease starts at the point of infection, and spreads outward. As a larger portion

of agents begin to show symptoms, we start to see healthy agents choose to vaccinate. This shows that 

our model is behaving as intended. 
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Appendix D: Sensitivity Analyses

This appendix contains the sensitivity analyses run on the base model as presented in Chapter 2. Each 

sensitivity analysis modifies one of the base parameters, and runs 1,000 simulations with each new 

parameter value. Unless otherwise noted, all simulations are run with heuristics, misinformation, and 

social networks present in the model. The metric used to evaluate performance is total societal cost per 

capita, measured in USD. Error bars indicate 95% confidence intervals. 

D.1 Rational Agent Parameters

This section varies parameters governing all rational agents. 

D.1.1 Incidence Multiplier (IMULT)

Our selection of IMULT was initially arbitrary. Because the agents are using a linear measure of present 

incidence to approximate the future exponential spread of disease, any value will necessarily be an 

approximation, and one driven by individual psychology. Thus, I vary the incidence multiplier IMULT 

from 0.5 to 10 in 0.5 increments. Figure 23: Impact of Incidence Perception Multiplier on Total 

Societal Cost (p. 98) shows that as IMULT gets higher, the total societal cost decreases. 

This is expected; as individuals consider each observed case to be riskier (as codified by being 

multiplied by IMULT to determine the agent’s risk) they are more likely to vaccinate sooner, leading to 

better societal outcomes. Furthermore, for small levels of IMULT, the model is highly sensitive to the 

exact value chosen. However as I approach high values, the marginal impact of each unit increase of 

IMULT becomes negligible. 
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This suggests that the way in individuals judge risk matters. Direct proportionality (that is, p(infection) 

= IMULT x st) was chosen for simplicity. However, if further evidence comes to light which suggests a 

more accurate mental model by which individuals gauge risk, this could be incorporated to further 

refine the model. 

D.1.2 Agent Decision Error (εi)

To determine the impact of the agent’s heterogeneous error term εi on outcome, I vary the distribution 

from which that term is drawn. Recall that εi ~N(0, σE
2) . I vary σE from $0 to $10,000 in $1,000 

increments. Figure 24: Impact of Agent Error Term on Total Societal Cost (p. 99) shows that as the 

error term increases, so too does total societal cost. Small changes from my selected value of $5,000 

don’t change the magnitudes of the results appreciably, and the general ordering of results among the 

different models is unaffected. 
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This marginal sensitivity is expected. σE = 0 implies that agents perform perfect cost-benefit analyses, 

subject to any heuristics or misinformation present. As σE increases, there will be larger groups of 

agents that vaccinate early or late. Because the normal distribution is symmetrical, I expect the number 

of early vaccine recipients to be approximately equal to the number of late vaccine recipients. 

However, because herd immunity requires a high threshold to be effective, raising the number of late 

vaccine recipients has a much larger cost (in terms of propagated disease) than the benefits from the 

early vaccine recipients. 

D.1.3 Social Network Incidence Weighting (w)

I vary the amount of weight individuals put on incidence within their social network (w) from 0.5 to 

10.0 in 0.5 increments. Figure 25: Impact of Increasing Social Network Weight on Total Societal Cost 
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(p. 100) shows that as individuals weight observations among their social network more heavily than 

the global average, total societal costs decrease, but at a decreasing rate. 

This at first glance seems to suggest that the most effective decision making metric is based only on our

local area. However, this may be an artifact of my small simulation size. It is conceivable that, for a 

very large population for which one individual is unlikely to know any agents in an outbreak location, 

using global data may yield better results. This is a limitation of the model and computing power, and 

so I decline to speculate on the interpretation of this relationship. 

Instead, I note only that the model is sensitive to the exact value of w, and that the value it takes would 

help determine whether adding a social network results in an improvement or loss to society in the 

context of vaccination decisions.  
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D.2 Misinformation Parameters

This section governs parameters that only affect misinformed agents who mistakenly believe in a link 

between vaccines and ASD. 

D.2.1 ASD Expectation Mean (μASD) 

I vary the misinformed agent belief that vaccines cause ASD by changing the distribution from which 

that value is drawn. Recall that the perceived probability of vaccines causing ASD is yi ~ N(μASD, σASD
2). 

I vary μASD from 0% to 1% in 0.1% increments. 

Figure 26: Impact of Mean ASD Expectation on Total Societal Cost (p. 102) shows that, as agents on 

average believe in a stronger link between vaccines and ASD, societal costs increase. This increase 

tapers off for very large values, but around the chosen ASD mean of 0.25%, small changes can lead to 

fairly large differences in outcome.

This is because of a threshold effect caused by the binary choice between vaccinating and not 

vaccinating. For very high values of μASD, vaccine hesitant individuals consider the cost of vaccinating 

to be much higher than the cost of not vaccinating. As such, any small deviations caused by random 

chance, or by marginal changes in μASD itself, aren’t enough to change the balance point. Put another 

way, if an agent perceives vaccinating to cost $300 and not vaccinating to cost $100, even a 50% 

change in the cost of vaccinating will not change the outcome. 
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This implies that, while the model is somewhat sensitive to the mean belief in how likely vaccines are 

to cause ASD, it will impact the magnitudes of the results, the order of the results (namely, that 

misinformation and heuristics unambiguously decrease welfare) is unlikely to change.

D.2.2 ASD Expectation Standard Deviation (σASD)

Similar to above, I vary σASD from 0 to 0.5% in 0.05% increments.  Figure 27: Impact of the 

Distribution of ASD Expectation on Total Societal Cost (p. 103) shows that, as agents experience more 

variation in their belief of how likely vaccines are to cause ASD (as codified by σASD), costs to society 

go down. 
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This may seem counter intuitive at first. Given the behavior of the mean (see D.2.1 ASD Expectation 

Mean (μASD) , p. 101), I would expect the threshold effect to mean that higher dispersion would lead 

to an increase in social costs. By increasing the number of very-high ASD belief agents, I would expect

more hold-outs, and thus a higher social cost. 

Instead, for very low values of σASD, social cost is quite high, but as σASD rises, social costs fall, though 

the magnitude of the change is very small. This decrease is driven by the social aspect. Agents’ socially

adjusted ASD belief is changed asymmetrically by their social network’s average ASD belief. Thus, 

when agents’ individual ASD expectations vary more greatly, the smaller (more accurate) expectations 

weigh more heavily in all agents’ socially adjusted ASD expectation. 

This can be seen more clearly when I run an analysis with social networks disabled. Figure 28: Impact 

of ASD Expectation Distribution Without Social Networks (p. 104) shows such simulations, in which 

increasing dispersion actually sees an increase in social costs, as I would expect. This confirms that it’s 
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the social network which means variation in ASD belief and improve outcomes. In a situation for 

which social networks are disabled, increasing the variation in ASD belief unambiguously and 

significantly increases social costs. 

D.3 Education Backlash

The education intervention includes a 23% chance than an educated agent will be less willing to 

vaccinate, contrary to the intent of the intervention. To test the impact, we run a series of 1,000 

simulations where, instead of resulting in a higher belief that vaccines cause ASD for 23% of agents, it 

instead has no effect. That is, their ASD expectation remains unchanged by education. The remaining 

77% of agents have improved ASD expectations as before. 

Figure 29: Impact of Education Backlash (p. 105) shows that the model is highly insensitive to this 

specification. Not only is there no statistically significant difference between the two cases, but the 
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baseline values are nearly identical. This suggests that it is not a backlash effect that drives the 

inefficacy of the education intervention, but rather how the education intervention itself works in the 

first place. 
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Appendix E: Supplementary Tables

Table 11: Results of Single Interventions

Total Societal Cost
Per capita

Vaccination
Rate

Attack
Rate

Mortality
(per 10k pop)

Baseline $4,764 81.60% 52.40% 2.16
($15) (0.18%) (0.18%) (0.01)

Mass 
Vaccination

$95 99.80% 0.20% 0.04

($2) (0.01%) (0.03%) (0)

Ring 
Vaccination

$1,628 99.70% 23.70% 0.72

($21) (0.04%) (0.32%) (0.01)

Full Price 
Subsidy

$4,760 81.60% 52.40% 2.12

($15) (0.18%) (0.18%) (0.01)

$100 Rebate $4,711 81.60% 51.10% 2.12
($15) (0.17%) (0.18%) (0.01)

$500 Rebate $4,602 81.40% 48.30% 2.08
($16) (0.17%) (0.19%) (0.01)

$1000 
Rebate

$4,473 81.10% 44.90% 2

($16) (0.16%) (0.19%) (0.01)
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Total Societal Cost
Per capita

Vaccination
Rate

Attack
Rate

Mortality
(per 10k pop)

5% Vaccine 
Ambassador

$1,228 99.00% 17.20% 0.56

($17) (0.06%) (0.26%) (0.01)

25% Vaccine 
Ambassador

$1,193 99.30% 16.70% 0.52

($17) (0.05%) (0.26%) (0.01)

50% Vaccine 
Ambassador

$1,212 99.30% 17.00% 0.56

($17) (0.05%) (0.26%) (0.01)

100% 
Vaccine 
Ambassador

$1,214 99.40% 17.10% 0.56

($17) (0.05%) (0.25%) (0.01)

50% 
Education

$4,768 81.80% 52.40% 2.16

($15) (0.17%) (0.19%) (0.01)

100% 
Education

$4,776 81.70% 52.40% 2.16

($15) (0.18%) (0.18%) (0.01)

No Backlash $4,776 81.80% 52.40% 2.16
($16) (0.18%) (0.18%) (0.01)

Table 12: Results of Combined Interventions

Total Societal
Cost Per 
capita

Vaccination
Rate

Attack
Rate

Mortality
(per 10k pop)

Baseline $4,764 0.816 0.524 2.16

($15) (0.18%) (0.18%) (0.01)

Mass Vaccination $95 0.998 0.002 0.04

($2) (0.01%) (0.03%) (0)

Ring Vaccination $1,628 0.997 0.237 0.72

($21) (0.04%) (0.32%) (0.01)

$500 Rebate $4,602 0.814 0.483 2.08

($16) (0.17%) (0.19%) (0.01)

5% Vaccine Ambassador $1,228 0.99 0.172 0.56
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Total Societal
Cost Per 
capita

Vaccination
Rate

Attack
Rate

Mortality
(per 10k pop)

($17) (0.06%) (0.26%) (0.01)

25% Vaccine Ambassador $1,193 0.993 0.167 0.52

($17) (0.05%) (0.26%) (0.01)

100% Education $4,776 0.817 0.524 2.16

($15) (0.18%) (0.18%) (0.01)

25% Vac. Amb. + Ring $1,079 0.997 0.152 0.48

($16) (0.03%) (0.25%) (0.01)

Rebate + Vac. Amb. $1,272 0.992 0.152 0.56

($16) (0.06%) (0.24%) (0.01)

Education + $500 Rebate $4,630 0.814 0.484 2.08

($16) (0.18%) (0.18%) (0.01)

Ring + $500 Rebate $1,619 0.996 0.208 0.72

($20) (0.06%) (0.31%) (0.01)

Educ. + Vac. Amb. + $1,124 0.997 0.156 0.52

Ring ($16) (0.02%) (0.25%) (0.01)

Rebate + Educ. + Vac. 
Amb. $1,279 0.991 0.149 0.56

($17) (0.07%) (0.25%) (0.01)

Rebate + Educ. + Ring $1,656 0.996 0.21 0.76

($20) (0.05%) (0.31%) (0.01)

Rebate + Vac. Amb. + $1,170 0.997 0.138 0.52

Ring ($16) (0.03%) (0.24%) (0.01)

All Interventions $1,188 0.996 0.138 0.52

($15) (0.03%) (0.24%) (0.01)
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