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Band Gap Information Extraction from 
Materials Science Literature - A Pilot 

Study

Abstract
Purpose — The purpose of this paper is to present our preliminary work on extracting band 
gap information of materials from academic papers. With increasing demand for renewable 
energy, band gap information will help material scientists design and implement novel 
photovoltaic (PV) cells.

Design/methodology/approach — We collected 1.44 million titles and abstracts of scholarly 
articles related to materials science, and then filtered the collection to 11,939 articles that 
potentially contain relevant information about materials and their band gap values. 
ChemDataExtractor was extended to extract information about PV materials and their band 
gap information. Evaluation was performed on randomly sampled information records of 415 
papers. 

Findings — Our findings show that the current system is able to correctly extract information 
for 51.32% articles, with partially correct extraction for 36.62% articles and incorrect for 
12.04%. We have also identified the errors belonging to three main categories pertaining to 
chemical entity identification, band gap information, and interdependency resolution. Future 
work will focus on addressing these errors to improve the performance of the system.

Originality — We did not find any literature to date on band gap information extraction from 
academic text using automated methods. This work is unique and original. Band gap 
information is of importance to materials scientists in applications such as solar cells, light 
emitting diodes (LED), and laser diodes. 

Keywords — band gap information extraction; photovoltaic cell; solar cell; renewable energy; 
text mining; academic text; ChemDataExtractor.
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Introduction
Global energy consumption is expected to increase nearly 50% by 2050 as a result of 

economic and population growth according to the U.S. Energy Information Administration 
(Nalley & LaRose, 2021). Renewable and clean energy needs to play a bigger role in meeting 
the demand due to the growing evidence of climate change that has been associated with 
recent catastrophic events across the world (Pidcock & McSweeney, 2021). Photovoltaic (PV) 
materials can convert light into electricity, which allows us to harness the abundant clean solar 
energy. Existing PV materials have significant drawbacks in efficiencies, containing toxic metal, 
and/or relying on scarce elements (Todorov et al., 2010; Mitzi, et al., 2011; Saparov & Mitzi, 
2016; Correa-Baena, et al., 2017). To address the problems, novel PV materials are needed. 
However, traditional avenues for the discovery and implementation of energy materials are 
inefficient, partially due to the reliance on trial-and-error methods. Recent advances in data-
driven approaches offer new opportunities for more efficient materials design and discovery.

Photovoltaic (PV) materials can convert light energy to electric current due to a 
physical phenomenon called “photovolatic effect.” For a PV material to convert light into 
electricity, photons in the light need to carry enough energy to excite electrons in the material 
into a free state to create electric current. Band gap is the minimum amount of energy required 
to excite an electron in a material into such a free state. Band gap is an intrinsic property of 
materials. Materials with too high band gaps are not suited for PV cells because photons will 
not have enough energy to excite the electrons in these materials. On the other hand, 
materials with too low band gaps are not ideal for PV cells either, because photons will carry 
excessive energy for exciting the electrons and the extra energy will be converted to heat, 
which is undesired. Knowing the band gap information is very important for material scientists 
to determine candidate materials for PV cells. This information has been widely reported in 
scientific literature from experimental and computational studies, and continues to appear in 
upcoming publications, but the volume of the literature prevents scientists from gaining a 
complete view of the band gaps of various materials. Manually collecting this information has 
been attempted (e.g. Kasap, 2006), but is inefficient and unable to keep up with the ever-
increasing volume of scientific literature. As a result, most scientific decisions are made based 
on partial information, which can lead to missed opportunities for discovering novel solar 
materials.

This study develops an automated method to extract band gap information from 
materials science literature. The method is evaluated based on the extraction results on a 
random sample of 415 articles from a collection of 11,939 materials science articles potentially 
containing band gap information. Text mining for materials science is still in its early stage 
(Kononova, et al., 2021). The closest tool available for extracting such chemical information 
from scientific literature is ChemDataExtractor, which was developed to extract spectroscopic 
attributes and experimental properties (Swain & Cole, 2016), and recently extended to extract 
material properties relevant to battery materials (Huang & Cole, 2020). We extend the 
ChemDataExtractor tool to extract band gap information. Machine-learning-based approaches 
could also be used to extract information from text. However, training data is very scarce in 
the materials science domain, and no specific training data can be found for the band gap 
information extraction task. 

As far as we know, no existing study has developed automated methods to extract 
band gap information from materials science literature. This study aims to fill this gap. In 
addition to solar cells, the band gap information is also useful for other applications, such as 
Light emitting diodes and laser diodes.
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Related Work
Text Mining for Scientific Literature

Generation of new knowledge is of utmost importance for scientific progress1. Scientific 
publications remain to be the primary channel for scientists to communicate new ideas and 
discoveries. As the volume of scientific publication continues to grow rapidly, it has become 
increasingly challenging for scientists to keep up with the latest development in the field. This 
can lead to suboptimal decisions based on incomplete information. Text mining relies on 
natural language processing techniques and/or manually curated ontologies to analyze large 
amounts of text automatically in order to offer more efficient ways for scientists to harness the 
existing knowledge in scientific literature. This may involve extracting (Mooney & Bunescu, 
2005), summarizing (Nenkova & McKeown, 2012), aggregating (Serrano et al., 2013), 
categorizing (Brindha, Prabha & Sukumaran, 2016) and inferring (Erraguntla et al., 2012) 
information from text. In addition, by analyzing and synthesizing what has been reported in 
the literature, literature-based discoveries may also be achieved (Gordan & Dumais, 1998). 
Information extraction plays an important role in transforming the unstructured text into 
structured information that is easy to query and access. While the influx of data and expanding 
volume of scientific literature can lead to data-intensive scientific discovery (Tolle et al., 2011), 
the manual extraction of information from this unstructured or semi-structured data is 
infeasible due to its volume. Rule-based and machine-learning-based information extraction 
have been proposed to automatically extract relevant information that scatters in different 
articles (Aggarwal & Zhai, 2013), and enable subsequently aggregating and organizing this 
information for more efficient use. The rule-based approach defines textual patterns based on 
how the relevant information is reported in the literature, and uses the defined patterns to 
extract relevant information from text. This usually involves the use of regular expressions 
and/or grammar parsing (e.g. Xiao, et al., 2013; Torii et al., 2015; Wu et al., 2022). The 
machine-learning-based approach considers the information extraction task as a classification 
problem, that is, to classify whether a token belongs to the category of interest or not. A 
number of supervised machine learning models have been used for this purpose, including 
maximum entropy (Chieu & Ng, 2003), support vector machines (Isozaki & Kazawa, 2002), 
decision trees (Szarvas et al., 2006), conditional random fields (McCallum & Li, 2003) etc. 
Conditional random field (CRF) shows an advantage in considering the interdependencies in 
the sequence of tokens (Peng & McCallum, 2006). More recently, deep learning models have 
been integrated with CRF for information extraction purposes (Huang, Xu & Yu, 2015).

The progress of text mining for scientific literature varies by different domains. 
Biomedical domain spearheads in this development. It has developed large scale ontologies, 
such as MeSH (Lipscomb, 2000) and UMLS (Bodenreider, 2004), annotated biomedical 
literature with MeSH in the PubMed database, cumulated many training corpuses (e.g. Kim, 
et al., 2003; Nédellec et al., 2013), created tools for information extraction (Wei, et al., 2019), 
and provided open access to literature databases (e.g. PubMed and PubMed Central). This 
has contributed to much more organized knowledge in the biomedical domain than that in 
other domains. On the other hand, text mining for the materials science domain is still in its 
early stage (Olivetti, et al., 2020), although it is starting to gather more attention. The next 
section will review the development of text mining for the materials science domain.

1  [1] Niiniluoto, I. (2002). Scientific progress. https://plato.stanford.edu/entries/scientific-
progress/
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Text Mining for Materials Science
Scientific literature on materials science is available in abundance, but text mining in 

the domain is still in its infancy. The bottleneck is the limited number of toolkits or libraries 
available at present that can be readily used to extract useful information. While some text 
mining has been done in biomedical (Shen et al., 2020) and the intersection of chemistry and 
biomedical domain (Krallinger et al., 2017, Tarasova et al., 2019), there has been only a 
handful of research related to text mining in materials science. A recent research by Swain 
and Cole (2016) has presented a toolkit called ChemDataExtractor that can be used to mine 
information from materials science literature. They created a pipeline of NLP functions 
including tokenizer, named-entity recognizer, and parts-of-speech tagger that are chemistry 
aware. Additionally, rule-based grammars can be added to parse phrases from documents, 
thereby extracting relevant information. The capability of this toolkit to perform information 
extraction from structured and unstructured texts is also another excellent attribute. The 
ChemDataExtractor has been used recently by a few research groups since its advent to 
perform text mining for material synthesis (Kim et al., 2017) and database creation of battery 
materials (Huang & Cole, 2020). Other than the ChemDataExtractor, HIVE (Greenberg et al., 
2021) is another tool that was created to advance ontology related to materials science. The 
HIVE provides a GUI interface through which material scientists can search vocabularies and 
concepts. It also provides a quick and automated way to index entity-related textual 
information, but HIVE is still in the developmental stages. 

Chemical Named Entity Recognition

 The literature of the materials science domain has unique language characteristics. 
There is a need for the development of specific resources (datasets, tools, and libraries) for 
this domain. The first major challenge for chemical information extraction is the detection of 
chemical entities (compounds, elements, formula) as information extraction is impossible 
without detecting the entities to which the information is related. While there are many well-
known methods for named entity detection in NLP (Manning et al., 2014) the task of chemical 
entity detection is more complicated. In general, a chemical named entity (CNE) can span 
over multiple words or may be a scientific formula (e.g. Zinc Oxide, ZnSnO3) containing a mix 
of characters, numbers, and special characters. Due to the lack of training data, supervised 
machine learning models have not always been possible. Rule-based and machine-learning-
based methods have been attempted for this task.

Rule-based methods

Some earlier approaches have been lexicon-based (e.g. dictionaries) or rule-based. In 
the lexicon/dictionary-based CNE recognition (e.g. Hettne et al., 2009; Rebholz-Schuhmann 
et al., 2007; Klein, 2011), there is a predefined collection of entities like the Jochem (Hettne et 
al., 2009) or the DrugBank dictionary (Wishart et al., 2017), and each token in the text is 
matched fuzzily to the entries in the collection to find exact and/or partial matches. While these 
systems can achieve high precision, the recall is often very low. This is mostly due to the fact 
that various expressions in natural language do not necessarily match with a predefined 
collection of entities. In addition, maintaining a lexicon requires a periodic systematic update 
which is time-intensive and costly. Rule-based CNE recognition (Humphreys et al., 1998; Budi 
and Bressan, 2003; Narayanaswamy et al., 2003) is a little more generalizable approach than 
lexicon-based CNE recognition. Pattern matching rules curated from some common chemical 
naming conventions like IUPAC (Eaborn, 1988) can be used by systems to detect root forms. 
These rules are often a combination of orthographic and morphological rules that can help a 
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system understand different elements of a CNE. The drawback of a rule-based CNE 
recognition system is the lack of portability, high maintenance, and increasing complexity. With 
a slight change of naming convention, the time and effort to comprehend and revise the 
existing rules would not be cost-effective.

Machine-learning-based methods

For machine-learning-based methods, it is essential to develop field-specific corpora 
that could be used to train machine learning models. While there are several corpora like 
GENIA (Kim et al., 2003) and CRAFT (Bada et al., 2010) containing chemical mentions, they 
are not primarily concerned about chemical compounds. In Krallinger et al. (2015), the authors 
created a corpus (called CHEMDNER) including 84,355 chemical named entities from 10,000 
PubMed abstracts for a workshop task in BioCreative IV of identifying chemical entities from 
literature abstracts. CHEMDNER is one of the most well-known corpora in material informatics 
as it contains manually created gold standard annotations for chemical entities. Several 
researchers used supervised machine learning approaches over the years to detect CNE. 
Some of the commonly used machine learning algorithms for CNE detection were statistical 
models (Bikel et al., 1992), conditional random field (CRF) (Luo et al., 2018; Leaman et al., 
2015), support vector machine (SVM) (Tang et al., 2015; Azari, 2013), Naive Bayes (NB) 
(Townsend et al., 2005) and  Maximum Entropy Markov Model (MEMM) (Borthwick, 1999). 
One of the best results using the CHEMDNER dataset was achieved by a system called 
tmChem (Leaman et al., 2015) that used supervised machine learning using conditional 
random field (CRF). More recently, some different configurations of neural network based 
machine learning have also been employed for chemical named entity recognition (Luo et al., 
2018; Zhai et al., 2019; Hemati and Mehler, 2019).

Feature selection for CNE recognition is of vital importance because most tokenizers 
that achieve state-of-the-art performance in other NLP tasks cannot be readily used for 
chemical entities (Leaman et al. 2015; Corbett et al., 2007). For example, using normal 
tokenizers on a chemical name like K4(Fe(CN)6) will lead to the removal of all the “(” and “)” 
which would lead to three different chemical elements. Therefore, understanding the boundary 
of CNE is one problem that needs to be addressed. For a better detection of CNE boundary, 
most systems try to include a variety of features like presence of capitalization, presence of 
roman numerals, presence of numeral, word shape, orthographic features, and morphological 
features (Wang et al., 2008). Some other NLP techniques like lemmatization and stemming 
have been reported to improve performance (Huber et al., 2013). Some researchers also 
explored a hybrid approach (machine learning + dictionary or rule-based + dictionary) to 
improve the  performance of their system. For example, ChemSpot (Rocktäschel et al., 2012) 
uses a hybrid CRF plus lexicon-based CNE recognition system. The tagging is generated by 
both the taggers independently, and then merged using a union operation. In another study 
(Lana-Serrano et al., 2013), it was found that semantic features do not yield a better result for 
CNE recognition.

In recent years, large transformer-based language models, like BERT (Devlin et al., 
2018), have been used to achieve state-of-the-art performance in several NLP tasks like 
named entity recognition. These language models can be used with limited training data for 
any downstream task and the process is known as transfer learning. Leveraging transfer 
learning, many recent studies have performed biomedical named entity recognition which is 
partially relevant to a chemical named entity recognition. Some of the more prominent among 
them can be found in Peng et al. (2019), Sun et. al (2021), and Naseem et al. (2021). 
Interestingly, Naseem et al. (2021) achieved an accuracy of 99.99% on combined tasks for 
chemical entities and drugs (BC5CDR and BC4CHEMD) using an ALBERT large model fine-
tuned with PubMed and PMC corpus. In terms of chemical entity recognition for material 
science, no specific research has been reported that uses transfer learning with some large 
transformer-based language models.
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Figure 1: Data collection and system overview

Data Collection
To build our collection of articles related to materials science, we used the list of DOIs 

(Digital Object Identifiers) curated by Tshitoyan et al. (2019) of articles on inorganic materials. 
Using the application programming interfaces (APIs) of Springer Nature and Elsevier, we 
downloaded the title, abstract, date of publication, and journal name of all the articles. We 
collated them in a single database. The total number of research articles that we collected is 
about 1.44 million. 

Method
The primary objective of this study was to extract information about chemical 

compounds and their associated band gap values. In addition, we also wanted to extract band 
gap specifiers (like direct, indirect, electronic, etc) that specify the types of band gap if 
available. A graphical overview of the system can be found in Figure 1. Our method consists 
of four different parts, and they are:
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 Dataset filtering
 Information Extraction
 Automated screening
 Evaluation

The first step was to clean the dataset and only include titles and abstracts of literature 
that report band gap values of some chemical compounds. Our second step was directed 
towards extracting band gap information from the selected literatures by extending 
ChemDataExtractor. In this step, we created our own rule-based Band gap parser and 
combined it with existing Compound parser from ChemDataExtractor to create a record of 
information. The third stage was to clean extracted information as some records did not 
contain band gap information. The final step of our method was to come up with an evaluation 
strategy to assess the quality of information extracted by our system. We will discuss each of 
four parts in detail in the following subsections.

Dataset filtering
Not every article we collected reported band gap information. We investigated the 

database during the development phase of our system and found that many abstracts did not 
contain any information about band gap. Based on this initial investigation and consultation of 
domain experts, we decided to filter the dataset and include papers that mentioned any of the 
words “bandgap,” “band-gap,” “band gap,” “bandgaps,” “band-gaps,” or “band gaps” in their 
title or abstract. In addition, we performed a second level screening by searching for the token 
“eV,” which is the only unit for band gap values. The screening reduced the collection to 11,939 
papers. The information extraction procedure was conducted on these 11,939  titles and 
abstracts.

Information Extraction
We used ChemDataExtractor (Swain & Cole, 2016) as the basic framework for our 

information extraction process. This is a convenient toolkit that enables building customized 
modules on a pre-existing information extraction framework. It has a pipeline that consists of 
different natural language processing techniques (like tokenization, parts of speech tagging, 
and named entity recognition) for information extraction. The challenging aspect of this 
research was to create a parser that can accurately identify and extract band gap value and 
associate it with the correct chemical compound, which has not been found in literature.  
ChemDataExtractor implements multiple chemical entity taggers including a case-sensitive 
lexicon-based tagger, cased-insensitive lexicon-based tagger, and CRF tagger that was 
trained on CHEMDNER. The chemical entities mentioned in a document are returned as a 
union of these taggers. We used the chemical entity tagger from ChemDataExtractor to 
identify chemical entities mentioned in the titles and abstracts of the literature. In addition, we 
designed a parser (BandGapParser) to extract information about the band gap value and band 
gap type of different compounds. Combining information extracted from both parsers, we 
created a chemical record containing the chemical entity name, its associated band gap value, 
and the band gap specifier (i.e. the type of the band gap reported).
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Unit and Specifier
Similar to Huang and Cole (2020), we formulated some specific grammars to define 

our parser. While other material properties can be represented by units from different metric 
systems (like S.I or CGS), the band gap value of a compound usually is represented by only 
one type of unit, and that is “eV.” Several other properties that indirectly influence the band 
gap can have units similar to “eV.” For example, “eV/K” or “eVK^-1” or “eVK-1” are very 
frequently encountered in materials science literature as it is the unit of Boltzman’s constant. 
This observation was made during the development phase when we tried about 1000 samples 
of unfiltered abstracts for information extraction. We needed to ensure that our parser 
disregarded information pertaining to units closely related to “eV” but not “eV.” It was also 
noted that band gap value is often preceded or followed by the mention of a band gap specifier 
in literature. Hence, we included the different types of specifier tokens that are commonly 
encountered to extract the type of band gap the literature mentions. The regular expressions 
for the unit and the specifier can be found in Table 1.

Table 1: Property description of band gap parser using regular expressions

Band gap properties Grammar

Unit (R('^eV$') + Not(I('/') | I('K-1') | I('K')))

Specifier (Optional(I('direct') | I('indirect')) + 
Optional(I('electronic') | I('optical')) + 
Optional(I('tunable')) + Optional(I('energy')) + 
Optional(I('band')) + Optional(I('-')) +  (I('Eg') 
| I('gap') | I('gaps') | I('bandgap') | 
I('bandgaps')))

Value Representation
In addition to this, we had to ensure that the parser is capable of extracting information 

pertaining to different types of value representation. Values in scientific literature often have a 
complicated representation. In particular, there are two elements related to value 
representation: expression style and range. Expression style means the different signs and 
symbols (like “+”, “-”, “~”, “±”, and “^”) in addition to the numbers that are used to represent a 
value. It is often difficult for the parser to identify the start and end range of a value because 
of the symbols. For example: “2±0.5” can be often misinterpreted two independent values of 
“2” and “0.5”. We curated grammar to extract value-related information that is expressed using 
different combinations of symbols and numbers. Exponential numbers being one of the most 
complex representations can also be captured successfully by our parser. For example, a 
sentence like “...the band gap value was found to be 2.46X10^-3 eV…” will determine band 
gap value to be “2.46x10^-3.” Range can be attributed to the different types of symbols, 
conjunctions or adjectives (like “to”, “and”, “up to”, “–”) used to express a range of values. It is 
important to capture the range as they make the information more contextually rich. To capture 
different variations of the ranges, we defined our own rule-based grammar namely and_range, 
to_range, up_to_range, joined_range, and spaced_range. For example, the value extracted 
from a phrase like “...the band bandgap value ranges from 4.6eV to 4.2eV…” would be “4.6 to 
4.2.” The ranges that we used can be found in Table 2.
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Table 2: Description and examples of different value range types

Range Type Description Examples taken from 
extracted data

and range Two numeric values are 
mentioned with an “and” 
conjunction

...Band gap energies of the 
AP sample and the HT 
sample are estimated to be 
2.02 and 2.37eV, 
respectively,...

to range Two numeric values are 
mentioned with a “to” in 
between them

…optical band gap of the 
films were found to be 
ranging from 3.27 to 3.19 eV 
with Cd content…

spaced range When there are two different 
band gap values mentioned 
but they are not joined by 
any conjunction

….These exhibited an 
optical band gap of ≈ 3.2 eV, 
estimated…… mass 
approximation by taking into 
account a fundamental 
energy band gap of 1.2 
eV….

joined range Multiple values are found 
clustered together in a 
single sentence and may 
end with another range type

…It is established that the 
band gap E g is 0.83–0.85 
eV…

upto range When the band gap range is 
described as a maximum 
limit then sometimes “upto” 
is used

…while SiH4/NH3, produced 
nitrogen-rich alloys (x∼0.59) 
with E g upto 4.9eV…

Phrase Parsing
Phrase parsing is an essential step to understand the constituents of a sentence to 

enable information extraction. In general, the tags generated by parts-of-speech tagger are 
used in this stage to formulate a plausible segmentation of the noun phrase (NP) and verb 
phrase (VP) in a sentence. We customized phrase parsing to extract chemical entities, band 
gap values, and specifiers. Depending on the structure of phrases, the information related to 
band gap (value and specifier) can be located in different positions of a sentence. We had to 
define the various contexts where we could find the relevant information. Using a single 
grammar would have been too generalized and may have missed a lot of essential information. 
Therefore, we defined a few context-dependent rules that can capture the context of a 
sentence where the band gap information is usually presented in scientific literature. Before 
we describe the contextual grammar, we need to establish the basic elements that are merged 
together to form complex rules. There are three basic elements: cem (or chemical entity 
mentions), affix (words that are usually used before and after the band gap value to describe 
it), and value_and_specifier. The cem element is the name of the one or more chemical 
compounds or elements commonly preceded by an optional determiner (like “the”) and 
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followed by optional keywords (like “doped”, “thin films”) in different arrangements that may 
be present in the sentence containing the band gap information. The second element is affix 
which is composed of different frequently occurring words observed before or after discussing 
band gap information (like “with”, “measure”, “calculated”, “ranging”, etc.). The third or final 
element is the value_and_specifier, which is a combination of evolt value and evolt specifier 
(which is essentially the unit eV). In addition to this, we have another element called mcem 
which represents a structure where more than one cem element is joined using the word “and”. 
Combining these basic elements in various orders we created the grammar for phrase parsing. 
The orders are:
 cem+affix+value_and_specifier,
 cem+value_and_specifier+affix, 
 affix+value_and_specifier+cem, 
 affix+cem+value_and_specifier, 
 value_and_specifier+cem+affix, and 
 Value_and_specifier+affix+cem.

Our objective was to increase the scope of the grammar to accommodate varying 
scientific writing styles. 

Interdependency Resolution
ChemDataExtractor implements an interdependency resolution process that takes the 

output from phrase parsing to merge the records that refer to the same chemical entity and/or 
fill in missing chemical entity information from context. The output of the phrase parsing is a 
list of records containing all the information extracted following the grammar from single 
sentences. Sometimes, a sentence reports a band gap value without explicitly mentioning the 
chemical entity associated with it. This is handled by Interdependency Resolution using Global 
Contextual Information (Swain & Cole, 2016). Following some predefined rules, the name of 
the chemical entity of this type of record is assigned from the preceding sentence or the header 
of the text which in our case is the title of the paper.

The other function of interdependency resolution is to merge the related records about 
the same chemical entity into one record. This is usually done through the recognition of 
variations of expressions, abbreviations or labels. This is called Chemical Identifier 
Disambiguation in Swain and Cole (2016). 

These functions of interdependency resolution offer some capabilities of extracting and 
synthesizing information across sentences.

Automated Screening
We obtained a list of records from the information extraction procedure described 

above. Each record consists of information extracted using the CompoundParser (in-built 
parser of the ChemDataExtractor) and the BandGapParser. As our objective is to only extract 
information about the compounds or elements with a band gap value, we had to do some 
filtering since not all the elements or compounds extracted had a band gap value. In this post-
processing step, we filtered out the records without band gap values and only the records with 
compound name and band gap value were retained. In some cases where we did not have a 
record with both these informations, we just returned a blank list which essentially means no 
information has been extracted.
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Evaluation
To evaluate the quality of information extracted from the scientific literature, we 

randomly sampled 500 articles from the total collection of 11,939 articles. In spite of filtering 
out most of the irrelevant literature, there is still some literature which had no mention of band 
gap value. We had to manually remove them and annotate the rest with the labels described 
in Table 3. These labels represent three different levels of correctness. The number of valid 
literature was found to be 415 articles out of the set of 500. Two annotators independently 
went through the title and abstract of these articles to verify if the extracted information is 
correct, partially correct, or incorrect using the definitions listed in Table 3. In the 415 articles, 
we found 417 relevant materials and 422 associated band gap information.

In several material science articles, the authors report how they increased or 
decreased the band gap of material through different processes like doping or annealing. As 
our interest was to detect the primary material and its corresponding band gap value, we 
focused on the material used to make the solar films rather than the catalysts or doping agents. 
When evaluating, we primarily check the correctness of a record on the basis that the 
compound name of the film has been extracted along with the reported band gap value. In 
many cases, we can see that the name of the doping material or the substrate material has 
been extracted instead of the primary material for the film, and these are deemed incorrect 
material for evaluation purposes. To evaluate the correctness of the band gap value, we 
wanted to make sure that all the values reported in the paper are extracted, including the 
various ranges. If a record contains only a partial number of band gap values from the article, 
the record is annotated as partially correct. In Table 4, we have listed some examples of the 
records with different types of annotation labels.

Table 3: Description of annotation labels

Annotation labels Definition

Correct The Title and Abstract have information about a film material and 
its associated band gap value. In this scenario, both are extracted 
correctly and fully.

Partially Correct The Title and Abstract have information about a film material and 
its associated band gap value. In this case, the extracted 
information includes correct material or band gap value, but not 
both. This category also includes the cases where both material 
and band gap value are extracted, but the value is not associated 
with the correct material. In addition, when multiple band gap 
values are reported, only a subset of them are extracted.

Incorrect The Title and Abstract have information about a material and its 
associated band gap value. In this case, neither information is 
correctly extracted.
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Table 4: Annotation examples

Example Information available Information extracted Label

…donor-acceptor pairs 
located in the band gap. 
Radiative transitions from 
shallow donor levels located 
at 0.029 and 0.040 eV 
below the bottom of the 
conduction band to deep 
acceptor levels located 
0.185 and 0.356 eV…

None None NA

…The optical band gap (Eg) 
of FNS is 3.27eV with direct 
transition…

Compound Name: 
FNS

Band-gap value: 
3.27eV

Band-gap type: Optical 
band-gap

Compound Name: FNS

Band-gap value: 
3.27eV

Band-gap type: Optical 
band-gap

Correct

…Besides, the calculated 
band gap of 
Sn1/32Bi30/32F3 with V Bi 
1 2 - is 2.70 eV, which is 
smaller than that of pure 
BiF3…

Compound name: 
Sn1/32Bi30/32F3

Band-gap value: 2.70 
eV

Band-gap type: None

Compound name: Li

Band-gap value: 2.70 
eV

Band-gap type: None

Partially 
correct

…CuInxGa1-xSe2 with the 
bandgaps 1.14-1.16 and 
1.36-1.38eV have been 
evaluated…

Compound name: 
CuInxGa1-xSe2

Band-gap value: 1.14-
1.16 and 1.36-1.38eV

Band-gap type: None

None Incorrect

Results and Findings
In the preliminary phase of annotation, two annotators independently classified the 

extracted records in three major groups: correct, partially correct and incorrect. The inter-
annotator agreement was measured using Cohen’s Kappa and the value was found to be 
0.815, indicating a strong agreement. The confusion matrix of the final labels of annotations 
can be found in Table 5.
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Table 5: Confusion matrix of results from two annotators after preliminary evaluation.

Incorrect Partially Correct Correct

Incorrect 50 0 0

Partially Correct 1 126 18

Correct 0 26 194

From Table 5, we can see that the agreement between the two annotators is high. The 
disagreements mostly happen to the cases of partial correct versus correct. There were 45 
conflicts out of 415 instances, and these conflicts were discussed and mutually resolved in the 
second phase of annotation by the annotators. The final results are presented in Table 6. We 
can see that the information extracted from 51.32 percent of the literature is correct. 
Information extracted from another 36.62 percent of literature is partially correct which means 
some portion of the information available in the literature is identified and extracted correctly. 
The system failed to correctly extract information from 12.04 percent of the literature. The 
errors related to partially correct and incorrect can be identified in some major classes and 
they are explained in detail in the next subsection.

Table 6: Performance of the information extraction.

Labels Frequency Percentage

Correct 213 51.32%

Partially Correct 152 36.62%

Incorrect 50 12.04%

In addition, we also calculated the Precision and Recall of the system for Correct 
extractions and (Correct + Partially Correct) extractions (Table 7). In the context of this study, 
if we analogize extraction to retrieval, the Precision is the fraction of correct extractions among 
all extractions and the Recall is the fraction of correct extractions out of all relevant articles. 
The Precision and Recall were calculated using the following equations:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑜𝑓𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠𝑤𝑖𝑡ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑜𝑓𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠𝑤𝑖𝑡ℎ𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑜𝑓𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠𝑤𝑖𝑡ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑜𝑓𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠𝑤𝑖𝑡ℎ𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

We have two different gradients of correctness. Considering extractions that were 
labeled as Correct, we found that the number of articles with correct extractions is 213. The 
total number of articles with extractions is 365. Therefore, the Precision was 0.58. If we 
consider the Partially Correct labels in addition to the Correct labels, then the Precision was 
1. This suggests that for articles with any extracted records, the results are either partially 
correct or correct.

Page 13 of 21 Aslib Journal of Information Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Aslib Journal of Inform
ation M

anagem
ent

14

The numerator remains the same for Recall but the total number of articles with the 
relevant information was 415. Therefore, for Correct extractions, the recall was 0.513. If we 
consider Partially Correct extractions in addition to Correct extractions then the recall was 0.88.

Table 7: Precision and Recall of the extracted records.

Precision Recall

Correct 0.58 0.513

Correct + Partially Correct 1.00 0.88

The extraction system was also applied to the 11,939 articles that date from 1962 to 
2020. No extraction record was obtained for 2,573 articles (21.56%). We suspect some of 
these articles did not report band gap values for compounds, like the 85 articles in the 
randomly sampled 500 articles for our manual evaluation. For the remaining 9,366 articles 
(78.45%), 10,608 band gap values were extracted for 10,292 compound names. Due to the 
sheer volume of the articles, we were unable to evaluate the correctness of the extraction. 
The performance metrics on the randomly sampled 415 articles should offer some insights. 

Error analysis
On analyzing the partially correct and incorrect information records extracted by the 

system, we found that the errors are due to three main reasons: 1) failure to identify and extract 
the correct material of the film, 2) failure to extract the correct band gap information pertaining 
to value or specifier, and, 3) failure to relate the correct compound with the band gap value 
due to interdependency resolution issues. The three types of errors are related to each other 
because if name or value is not correctly recognized and extracted, then there is no question 
of interdependency error. Therefore, in a way the first two errors preclude the third type of 
error. 

The error analysis includes two steps: In the first step, we checked to see if the system 
had extracted the compound name and the band gap information. If both information is 
extracted correctly but not related to each other, then we concluded that there are some 
interdependency resolution issues. We analyzed the 202 records individually to find the 
categories of error and discuss their variations below:

 Compound name error
In many instances, the name of the compound is not recognized by the system. We 

identified that sometimes in these articles compound names are represented in 

different ways like using special characters (x) to denote the different concentration of 

elements in a compound (e.g. Ge1−x−ySixSny), using special characters (/) to show 

different layers of a solar film (e.g. AgBr/Ag4P2O7), and sometimes the names are 

extremely long and too complex for the system to recognize it as a single entity (e.g. 

Two soluble poly(1,4-phenylene vinylene-4,4′-biphenylene vinylene)s). In total, we 
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found 50 instances of compound name error from the 202 instances of partially correct 

and incorrect records.

 Band gap information error
There were mainly three types of errors pertaining to band gap information and they 
were either inability to extract multiple band gap values represented by range, failure 
to extract the band gap specifier when that information is present in the article, and 
extraction of information that is not band gap value but represented by the unit of “eV.” 
For example, the first type of error was encountered when there were two band gap 
value ranges in the abstract “The band gap values of the films annealed at 500 and 
300°C were 3.3—4.0 eV and 3.4—4.2 eV, respectively.” The first range was extracted 
but the second range was missed. The second type of error was found when two 
different band gap specifiers are mentioned in the same sentence, for example, 
“Optical transmission data of CuCrO2 films indicate a direct band gap and an indirect-
gap of about 3.15eV and 2.66eV, respectively.” Only the first band gap specifier was 
extracted. The third type of band gap information error occurred when other type of 
gap energies are mentioned in the abstract like: “HOMO LUMO gap energies of the 
clusters (CeO2)13 and (CeO1.5)13 are calculated to be almost 0 and 3.05eV, 
respectively.” The system failed to comprehend that “HOMO LUMO gap energies” is 
not the same as band gap energy. While this error is a critical error, the number of 
records that had the error was the least and only 39 instances had this type of error.

 Interdependency error:
This was the most frequent form of error with 114 instances and contributed to 56.43% 
of the total error. We found that on several instances even after identifying the 
compound and the band gap information correctly, the system failed to relate them 
properly. It failed to understand the context of the article and erroneously attributed the 
band gap value to a wrong chemical entity. For example, in an abstract there are two 
different chemical entities like Copper indium diselenide (CIS) and Indium gallium 
diselenide (CIGS) and direct band gap values of CIGS is reported as “between 1.02 
eV and 1.68eV.” The system extracted both the information correctly but failed to link 
CIGS and instead linked CIS with the band gap value.
 
Table 8 summarizes the error categories, their frequencies and percentages. One 

record was identified to have both compound name error and band gap information error, 
therefore the sum of the errors exceeds the total number of records by one.

Table 8: Error categories and their occurrences.

Error Category Frequency Percentage

Compound name error 50 24.63%

Band gap information error 39 19.21%

Interdependency error 114 56.16%
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Conclusion
In this paper we describe our preliminary work on the extraction of band gap 

information related to PV material from the titles and abstracts of scholarly articles related to 
materials science. We built our corpus from a set of 1.44 million literature and filtered it to 
11,939 articles that are potentially relevant to the task. To evaluate the performance of our 
approach, we randomly sampled information extracted from 415 articles. We found that our 
system can correctly extract information from the majority of articles (51.32%) and can extract 
partially correct information from 36.62% of articles. We analyzed the errors and found three 
primary reasons that contributed to the error. Our study shows that it is possible to obtain a 
large part of usable information by our approach and interdependency resolution between the 
material name and the band gap information is of utmost importance because it contributed to 
the majority of the errors.

Limitations and Future Work
Overall, the objective of the study was to understand the challenges of extracting 

information pertaining to PV material. From this pilot study, we have found the reasons that 
contributed to the errors. In the future, we will try to address these issues and develop a system 
that would be more robust with the capability to better comprehend the context of the article. 
While it will be challenging to disambiguate and resolve the interdependency between 
chemical entities and their band gap values, our initial results are promising and we hope to 
build on them. It should be noted that one limitation of the study is when we evaluated the 
performance of the information extraction, we directly rated the extracted results to be correct, 
partially correct, and incorrect by two independent annotators. A more rigorous procedure is 
to obtain the ground truth first, and then compare the extracted results with the ground truth. 
We acknowledge that there may be biases arising from our procedure. We have since 
reviewed the articles and obtained the ground truth for future studies. There are also other 
limitations of the study. One is the full-text availability. We had to remove a majority of the 
abstracts because they do not contain band gap values of materials. However, some of these 
values may be reported in the full-text rather than in abstracts. The availability of full-text is 
still an obstacle for text mining. 
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