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PREFACE 

Given the complexity of the process of designing rules to regulate the use of 

common-pool resources, I argue that all policy proposals must be considered as 

experiments.  

– E. Ostrom, (1999) 

 

 The research presented in this dissertation represents contributions to transdisciplinary 

research projects, each examining critical issues at the intersection of human society and the 

natural environment.  Three chapters each examine a unique environmental or resource problem, 

and an evaluation of possible management interventions that address the problem.  Chapters I 

and II have been published in the peer reviewed literature, and citations for these works can be 

found in the bibliography under Zuidema et al. (2018) and (2020), respectively.  Chapter III is 

being prepared as a manuscript as well.  The three studies together provide a cross-section of 

issues facing water resources and aquatic habitat, and by examining them together, a potentially 

generalizable framework emerges for understanding key requirements for successful adaptations 

in sustainable watershed management. 

The research presented here was inspired and motivated by the interdisciplinarity of the 

research teams.  It is my sincere hope that the findings presented here can advance the role of 

hydrologic sciences and hydrologic modeling in the context of large societally relevant questions 

through the nascent discipline of sociohydrology.  Apparent in the progression of the three 

studies is the formalization of the key understanding regarding the nature and design of 

adaptations developed through my interactions with a diverse set of scholars in hydrology, 

biogeochemistry, decision-science, environmental economics, and geography. 
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ABSTRACT 

 

Increasing population, changing climate, and on-going legacies of environmental 

mismanagement motivate our need for deeper understanding of the process and limits of 

adaptation towards sustainable management of water resources.  Movements towards open-

science and transdisciplinary research have enabled deeper assessments of the co-evolution of 

human society and changing landscapes.  Policies and decisions enabling environmental 

restoration or sustainable resource use have been actively pursued for decades.  The social 

barriers that prevent adaptations to succeed are deep and entrenched, but equally important are 

the physical barriers.  Successful adaptations in water resource management need to explicitly 

consider the joint interactions of intervention magnitude, or intensity, over the feasible extent of 

its operation.  While a seemingly simple concept, many solutions to water resource management 

would be impossible to achieve without adequate consideration of these constraints. 

In these three studies specific management practices were evaluated in the context of whole 

watershed responses and found to characterize this common constraint despite the diversity of 

applications.  The three studies impose alternative management practices within a model of 

watershed-scale hydrologic processes, and the success of each practice was ultimately 

determined by the geographic constraints over which it could act, not by any deficiency in the 

policy’s capacity to affect a sufficient intensity of change.   

In Chapter 1, current rates of road salt loading and potential levels of aquatic habitat impairment 

are estimated for a New England watershed.  The potential for reducing impairment through a 

combination of reduced salt application and buildout are investigated.  Chapter 2 examines issues 

of aquifer sustainability in the Pacific Northwest and evaluates tradeoffs in modernizing 
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irrigation technology.  As irrigation efficiency increased less water recharged the aquifer, which 

exacerbated aquifer drawdown.  Drawdown was offset by enhanced aquifer recharge directly 

from the river.  The study analyzes the constraints under which aquifer drawdown can be 

eliminated while minimizing any reduction in streamflow.  Chapter 3 evaluates the efficacy of 

two programs that incentivize the restoration of wetlands within the Mississippi River basin to 

reduce nitrogen export as nitrate export to the Gulf of Mexico.  A more thorough consideration 

of geographic and engineering constraints on restoration illustrates how complementary 

management practices would be necessary to meet nutrient reduction goals.  Finally, Chapter 4 

analyzes the three studies and develops the concepts of intensity and extensity in successful 

practices in watershed management.  Chapter 4 also lays out the common methodology of model 

experimentation in silico used throughout these studies, and defends the epistemological 

framework chosen. 
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CHAPTER I:  

CONTROLS OF CHLORIDE LOADING AND IMPAIRMENT AT THE RIVER 

NETWORK SCALE IN NEW ENGLAND 
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Increasing sodium chloride in watersheds alters aquatic biodiversity  (Findlay and Kelly, 2011b; 

Cañedo-Argüelles et al., 2013, 2016). Both climate and development interact to control chloride 

contamination in temperate watersheds (Jackson and Jobbagy, 2005; Kaushal et al., 2005; Corsi 

et al., 2010, 2015).  Aquatic biota are sensitive to salt content directly through biological 

maintenance of cellular osmotic balance (Cañedo-Argüelles et al., 2013), indirectly through 

mobilization of toxic metals (Findlay and Kelly, 2011b), or correlatively through a host of 

chemical and habitat alterations (de Zwart et al., 2006).  The widespread increases of freshwater 

salinization (Murray, 1977; Ghassemi et al., 1995; Kaushal et al., 2005; Anning and Flynn, 

2014), and growing evidence for altered aquatic community structure at salt concentrations lower 

than regulatory recommendations (Findlay and Kelly, 2011b; Morgan et al., 2012; Cañedo-

Argüelles et al., 2013) motivate increased attention to regulating this ecotoxicological hazard 

(Cañedo-Argüelles et al., 2016).   

Globally (Cañedo-Argüelles et al., 2013; Ghassemi et al., 1995), and in the United States 

(Anning and Flynn, 2014), irrigation is the primary cause of freshwater salinization.  However, 

in New England where irrigated agriculture is minimal, the U.S. Environmental Protection 

Agency rated 22.8% of streams as poor or fair for salt content (USEPA, 2013).   Since the mid-

20th century, winter-time roadway deicing has become a primary driver of increasing freshwater 

salinity throughout northern temperate regions (Jackson and Jobbagy, 2005).  Concentrations of 

chloride in streams covary with sodium chloride (halite) purchased for deicing purposes in 

northeastern (Godwin et al., 2003; Jackson and Jobbagy, 2005; Kaushal et al., 2005; Kelly et al., 

2008; Trowbridge et al., 2010) and mid-western (Sander et al., 2007; Corsi et al., 2010, 2015) 

watersheds. Most roadway deicers are chloride salts, with halite being by far the predominant 
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source (Granato et al., 2015).  We currently lack generalizable estimates of road salt application 

rates at regional scales. 

Road salt application rates are largely controlled by the amount of snow and frozen precipitation 

received (Sander et al., 2007; Kelly et al., 2008).  A significant fraction of applied deicer 

infiltrates to and accumulates in groundwater. As a result, streams maintain elevated chloride 

concentrations during summer when groundwater dominates streamflow (Godwin et al., 2003; 

Kelly et al., 2008, 2012; Daley et al., 2009; Kincaid and Findlay, 2009; Cooper et al., 2014).  

Baseflow chloride concentrations can exceed concentrations that biota can tolerate for extended 

periods (Findlay and Kelly, 2011b; Corsi et al., 2015) when animal activity is often greatest 

(Demars et al., 2011).   

Empirical studies of road-salt driven salinization have previously focused on multi-year trends 

and have focused less on interannual meteorological variability, though such variability is 

evident (e.g. Kaushal et al., 2005, fig. 2).  In many temperate regions, such as New England, 

significant changes are expected to both winter and summer climate (Hayhoe et al., 2006; 

Campbell et al., 2010; Wake et al., 2014a, b).  Though the duration winters are expected to warm 

and shorten, it is not clear that the form of precipitation will necessarily lead to a reduction in 

required road salt usage (Arvidsson et al., 2012).  Presently there have been few attempts to 

utilize macro-scale models to investigate changes in road salt usage and chloride impairment 

associated with interannual dynamics of climate and human development.   

In this study, we examined the ability of a macro-scale model to represent the dynamics of 

chloride solute transport and characterize potential chloride impairment of a relatively large 

watershed across both space and time.  We developed and applied the Non-point Anthropogenic 

Chloride Loading (NACL) and transport model within the Framework for Aquatic Modeling in 
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the Earth System (FrAMES)  (Vörösmarty et al., 1998; Wollheim et al., 2008b; Wisser et al., 

2010; Stewart et al., 2013).  We focused on simulating chloride because the single anion is the 

primary driver of salinization throughout the study region, and is largely conservative in the 

hydrologic system (Kirchner et al., 2010) making it ideal for process-based representation.  

However, we relate chloride to specific conductance because the latter was the primary metric 

measured, and characterizes the total osmotic stress experienced by vulnerable aquatic species 

(Cañedo-Argüelles et al., 2013). Using data from an extensive network of electrical conductance 

sensors we inferred a regional loading and transport function to parameterize FrAMES-NACL.  

We hypothesized that road salt application rates derived from inventory estimates at northern 

U.S. locations (Godwin et al., 2003; Sander et al., 2007; Trowbridge et al., 2010) are the same as 

derived by calibration to stream chloride concentrations.  Furthermore, we hypothesized that 

climate indices of summer dryness are as important to predict interannual variability in warm-

season impairment as frozen precipitation the preceding winter in both small and large rivers.  

Understanding chloride response during meteorologically different years enhances our ability to 

manage chloride pollution of watersheds as annual precipitation regimes (Hayhoe et al., 2006) or 

land-cover (Samal et al., 2017) shift.   

Materials and Methods  

Study Watershed 

The Merrimack (13,000 km2) River watershed is representative of the northeastern USA 

watersheds (Figure 1) with increasing development towards the river outlet.  Beginning in the 

White Mountain National Forest, the Merrimack flows 280 km south to the head of tide dam in 

Lawrence, MA.   The watershed includes pristine and highly valued aquatic ecosystems that are 

important habitat for sport fishing (NH Fish and Game Department, 2015), and may be 
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threatened by increasing salinity.  Though we focus on the Merrimack River watershed (MRW) 

because the watershed is illustrative of the processes relevant throughout the region, we utilize 

additional observational data from the neighboring Piscataqua River watershed (PRW) to inform 

model behavior.  

The population in the MRW has been increasing steadily at 5-15% per decade since 1940 

(NHOEP; U.S. Census Bureau, 2015), and is expected to double in the coming century 

(Bierwagen et al., 2010).  The population residing in the MRW is approximately 1.7 million 

people.  Impervious areas have increased from 4.6 to 5.1% between 2000 and 2010.  For the 

MRW, annual precipitation averages 1100 mm, precipitation during winter months averages 260 

mm, with 220 mm of winter precipitation falling in frozen forms.  Projections of future climate 

suggest the potential for warmer winters (Contosta et al., 2017) consistent with recent trends 

(Burakowski et al., 2008) that may counteract increasing salt loading concomitant with continued 

development. 
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Figure 1: Study domain in the Merrimack and Piscataqua River watersheds in New Hampshire 

and neighboring Maine and Massachusetts. The map indicated the median number of days 

exceeding the 600-mS cm−1 threshold between 1998 and 2014. Lotic Volunteers Temperature, 

Electrical Conductivity, and Stage (LoVoTECS) stations in headwater (less than order 6) and 

mainstem (order 6 and greater) are depicted in closed gray and open white circles, respectively, 

and size is based on the number of days with qualified data. Lake Winnipesaukee and the Great 

Bay Estuary were excluded from analysis. 

 

Conductivity Sensor Network 

A network of in-situ, high frequency sensors characterized specific conductance in streams, 

rivers, and storm drainage infrastructure in diverse landcover throughout New Hampshire, 



7 

 

eastern Massachusetts, and western Maine (Contosta et al., 2017; Inserillo et al., 2017).  The 

Lotic Volunteers Temperature, Electrical Conductivity and Stage (LoVoTECS) network 

collected data throughout the study region from 2011 to 2016.  The network utilized long-term 

in-situ deployments of data-logging potentiometric electrical conductivity and pressure 

transducer sensors (and HOBO U24 specific conductivity and HOBO U20 stage, respectively) at 

locations throughout the study region (Figure 1).  Sampled catchments exhibited 0 – 54% 

impervious cover and ranged in size from 1.4 𝑘𝑚2 to 7300 𝑘𝑚2.  Sensor data are distributed 

through the Data Discovery Center (http://ddc.unh.edu).  Periodic chemical analysis of stream 

water throughout the network showed a strong linear correspondence (Figure AI.1) between 

specific conductance (𝑘0) and riverine chloride concentration (𝐶𝑅) across the network following 

Equation 1, similar to relationships reported by others (Novotny et al., 2008; Trowbridge et al., 

2010). 

𝑘0 = 3.96𝐶𝑅 + 31.2 Eq. 1 

At low chloride concentrations, Equation 1 is greater than observed chloride concentrations 

evidenced by the separation between the linear best fit from locally-weighted scatter-plot 

smoothing (LOWESS) regression of the data around 20 𝑚𝑔 Cl 𝐿−1 (Figure AI.1), which is 

attributed to the decreasing contribution of chloride to total electrolytic composition in pristine 

waters.  The linear regression equation was used to convert between chloride and specific 

conductance in this study because it was consistent with the LOWESS at higher chloride 

concentrations that were the focus of the study.  We found no significant differences from 

Equation 1 based on stream size or sub-region. 

The LoVoTECS network included 47 stations with data in the Merrimack and Piscataqua River 

watersheds (Figure 1).  These stations recorded data at 1 to 3 minute intervals, which were 
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resampled to hourly averages for comparison to chemistry data, and resampled to daily averages 

for model calibration and validation.  For model calibration, we used data from 39 stations that 

had between 170 and 1240 days of data between 2011 and 2015. 

Model and Application 

The Non-point Anthropogenic Chloride Loading (NACL) Model 

We developed a module for Non-point Anthropogenic Chloride Loading (NACL) within 

FrAMES, a fully distributed, rasterized modeling platform used for studies of hydrologic and 

aquatic biogeochemical processes across scales (Wollheim et al., 2008b; Wisser et al., 2010; 

Stewart et al., 2011, 2013).  FrAMES controls vertical water transfer and terrestrial runoff 

generation (Figure AI.2a) which is routed through a 1-D simulated river network (Vörösmarty et 

al., 1998; Wisser et al., 2010).  The model uses a series of conceptual stores representing 

snowpack, soil storage, quick-flow storage, baseflow generating groundwater storage, and river 

storage across each 45-second (≈1.4 km2) pixel of the study domain.  Chloride moves through 

soils and groundwater conservatively according to the simulated hydrological partitioning 

(Figure AI.2b).  Chloride from precipitation and road salt is applied to the watershed at the soil 

or impervious surface.  Chloride from domestic and agricultural sources is loaded directly to 

shallow groundwater.   FrAMES-NACL transports chloride mass through the river network 

using a linear reservoir routing scheme.  Within each reach, chloride is converted to specific 

conductance (𝑘0 [μS cm−1]) using Equation 1.  Additional changes to FrAMES to account for 

the dynamics of chloride including long-term storage in groundwater and direct snowmelt on 

impervious surfaces are discussed in the Appendix I.  We parameterize chloride loading from 

precipitation, domestic waste, agricultural runoff, and road salt application using data and 

assumptions defined in Appendix I.  Briefly, road salt is applied to a fraction of treated 
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impervious areas based on amount of received snowfall, at a rate specified by the deicer loading 

parameter (𝐶𝐷𝐸𝐼 [kg Cl mm−1m−2 ]).  FrAMES-NACL is tested by comparing the relationship 

between chloride and impervious cover between simulations and observations (Kaushal et al., 

2005; Daley et al., 2009).  Table AI.1 provides descriptions of 10 parameters of the model 

relevant to this study.  Geographic and meteorological data ingested by the FrAMES-NACL are 

described in Appendix I. 

Assessing road salt loading 

To address our first hypothesis, we use FrAMES-NACL to calibrate deicer application rate 

(𝐶𝐷𝐸𝐼), and compare to empirical estimates of deicer application rates obtained from three studies 

(Godwin et al., 2003; Sander et al., 2007; Trowbridge et al., 2010) that inventoried road salt 

usage.  Calibration used a Markov-Chain Monte Carlo (MCMC) approach (Appendix I) aimed to 

minimize model-observation misfit for discharge (𝑄 [mm d-1]) and chloride, after conversion to 

specific conductance (𝑘0 [μS cm-1]).  Observations represented daily mean discharge (𝑄) from 

USGS stream gages (n=28) and specific conductance (𝑘0) (n=39 LoVoTECS network stations). 

We compared station specific probabilities of non-exceedance (PONE) for both discharge and 

specific conductivity using the acceptance ratio (Appendix I), Nash-Sutcliffe efficiency, root 

mean squared error, and median residuals.  We also assessed model performance using root 

mean square error on daily and temporally aggregated time-series for the suite of stations in our 

dataset.   

Characterizing road salt impairment 

We utilize FrAMES-NACL to investigate the influence of climatic drivers interacting with 

present day land use to generate riverine chloride impairment throughout the river network.  We 

quantify the degree to which interannual climate variability explains variation in two metrics of 
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impairment in time and space.   We select a threshold of 600 [𝜇𝑆 𝑐𝑚−1] to define chloride 

impairment (Appendix I) during the biological active (productive) season of mid-April through 

October, typical of ecotoxicological assessments of aquatic species (Ejsmond et al., 2010; 

Ippolito et al., 2012; Kraus et al., 2013).  Impaired reach days (IRD) is calculated by counting the 

number of productive season days the riverine specific conductance predicted for a grid-cell 

exceeds 600 𝜇𝑆 𝑐𝑚−1 multiplying by the local river length in the grid cell and summing for the 

entire river network.  We also use the outlet summer concentration (OSC) from USGS gaging 

station 01100000 on the Merrimack River at Lowell, Massachusetts as a metric that integrates all 

upstream processes.  FrAMES-NACL predictions of stations that exhibited impairment were 

validated against LoVoTECS stations exhibiting impairment using the Peirce skill score.  The 

Peirce skill score is the probability of detecting an exceedance (600 𝜇𝑆 𝑐𝑚−1) minus the 

probability of a false detection (Manzato, 2007).   We controlled for stations with incomplete 

data records.  Comparisons were limited to stations with at least 90 days of data during each 

productive season.  To validate predictions of the OSC metric, predicted and observed August 

mean concentrations were compared at all fifth or greater order stations along the Merrimack 

River (n=8 stations).  

The importance of seasonality on stream impairment due to road salt was characterized by 

correlating interannual variance in simulated impairment with a suite of watershed average 

meteorological indices.   Indices tested for control on stream impairment included the total 

annual precipitation, total season precipitation (preceding winter [DJF], spring [MAM], summer 

[JJA], autumn [SON]), preceding winter snowfall, annual number of dry days (days with less 

than 1 mm precipitation), the annual number of days with heavy (>10 mm) precipitation, number 

of summer (𝑇𝑎𝑣𝑔 ≥ 25°C) days, and the number of dry (<1 mm) summer (𝑇𝑎𝑣𝑔 ≥ 25°C) days.  
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We expected the number of dry days each year to be the most predictive of chloride impairment 

throughout the river network, as it should be the main driver of baseflow conditions when 

chloride levels are high.  We standardized each year’s impairment metrics and climatic indices 

for years between 1998 and 2014 (n = 17) to z-scores after confirming normal distributions 

using a Shapiro-Wilks test at 𝛼 = 0.05.  Using ordinary least-squares, we regress impairment 

metrics against climate indices testing for significance at 𝛼 = 0.05.  

Results and Discussion  

NACL model behavior  

The time-series of discharge indicate reasonable timing and magnitude of flows across sites 

(Figure AI.4).  At the optimal parameter values found by the MCMC, the median station residual 

of mean summer runoff was +9.8% of observations, and ranged from -79% to +55%.  Probability 

of non-exceedance (PONE) of discharge correspond closely between observations and FrAMES-

NACL (acceptance ratio 𝑅𝐴 and NSE were 0.88 and 0.93 for calibration stations and 0.85 and 

0.99 for validation stations, respectively Table AI.2, Figure AI.5a) with a very small negative 

bias of -0.04 [𝑚3𝑠−1] (Table AI.2), reflecting reliable representation of the distribution of storm 

magnitudes.  FrAMES-NACL predicts flashier hydrology at all watershed scales, and as time-

series are averaged over longer intervals, root mean square error (RMSE) of modeled runoff 

decreases from 3.3 to 2.3 𝑚3𝑠−1 (Table AI.2).   

FrAMES-NACL correctly identifies stations that are observed to exceed the 600 𝜇𝑆 𝑐𝑚−1 

threshold (Figure AI.5b), indicating that the model can be used to predict the spatial distribution 

of exceedance values.  The acceptance ratio (𝑅𝐴) calculated on probabilities of non-exceedance 

is 0.53 for calibration stations, and 0.38 for downstream stations reserved for validation (Table 

AI.2).  The calibrated NSE on specific conductivity for PONE is 0.75, and lower for validation 
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stations (Table AI.2).  Because low values of specific conductance are over-predicted by 

Equation 1, specific conductivity at stations with low human development, including many of the 

stations on the largest river segments, is biased high indicated by a positive median residual 𝑟̂0.5 

(Table AI.2) and decreasing the NSE for these stations. Despite the low NSE, absolute 

performance described by the root mean square error (32 𝜇𝑆 𝑐𝑚−1, Table AI.2) at downstream 

stations are much lower than for upstream stations (180 𝜇𝑆 𝑐𝑚−1) indicating that upstream 

errors cancel out.   

FrAMES-NACL correctly captures 1) temporally stable baseflow chloride concentrations 2) 

small increases in baseflow concentration late in the summer for moderately to highly developed 

catchments, and 3) winter-time peaks from deicer application only in highly developed 

catchments (Figure 2).  As with discharge times-series, resampling the specific conductivity 

time-series to week or longer timescales (most consistent with our analysis) improves the RMSE 

of model performance.  Whereas annual modeled specific conductivity exhibited a high bias 

(Table AI.2), mean summer specific conductance was biased slightly low (median residual -

7.4%).  During summer storms, the model’s dilution response is often flashier than observed, 

consistent with the flashy response observed in discharge.  Since we focus on summer periods 

when exceedance values are most biologically relevant, the low bias means our estimates of 

impairment are conservative.   
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Figure 2: Time series of specific conductivity at five stations comparing the Framework for 

Aquatic Modeling in the Earth Systems (FrAMES) Nonpoint Anthropogenic Chloride Loading 

(NACL) data (blue) with observational data (black). Values in parentheses denote catchment 

area. Light bands indicate the productive season (mid-April through October). Dashed red lines 

depict the 600-mS cm−1 impairment threshold. The percentage of reporting days exceeding the 

impairment threshold is provided for each year where applicable. 

 

Mean annual chloride concentration in rivers correlates with upstream development density 

(Nimiroski and Waldron, 2002; Kaushal et al., 2005; Novotny et al., 2008; Daley et al., 2009; 
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Trowbridge et al., 2010; Kelting et al., 2012; Corsi et al., 2015).  FrAMES-NACL predicted 

increases in mean annual chloride as a function of impervious surfaces similar to Daley et al. 

(2009) for the study region (Figure 3a).  FrAMES predictions are also similar to those reported 

by Kaushal et al. (2005) over the range of imperviousness in their study. 

Road salt loading parameterization 

FrAMES-NACL predicted an average road salt loading rate of 6.5 𝑔 Cl 𝑚𝑚−1𝑚−2 with a 95% 

credible interval in (5.3,11 𝑔 Cl 𝑚𝑚−1𝑚−2) (Figure AI.6).  The majority (95%) of 𝐶𝐷𝐸𝐼 posterior 

distribution is within the uncertainty of the local inventory estimate from Trowbridge et al. 

(2010) (T10), and completely bounded by the range of all three inventory studies.  Moreover, the 

appropriateness of estimated road salt inputs (36 ± 24 [𝑀𝑔 𝐶𝑙 𝑘𝑚−2]) from FrAMES-NACL is 

further supported by the consistency in the ratio of road salt to total inputs of chloride between 

this study (89%) and estimates from southeastern New York  (91%, (Kelly et al., 2008)).  A 

lower ratio of road salt to total chloride in Minnesota (61%) (Novotny et al., 2009) reflects 

significantly lower agricultural input in the MRW.  The similarity in ranges of model uncertainty 

and inventory uncertainty suggest the model is capturing road salt loading to within expectations.  

Therefore, our hypothesis that deicer application rates inferred from stream chemistry and from 

inventories of applicators are equivalent is supported.  Methodology presented here may be an 

appropriate alternative to inventorying deicer application rates, or to corroborate, or scale 

estimates from such studies. 
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Figure 3:  Boxplots binned by imperviousness of the Framework for Aquatic Modeling in the 

Earth Systems (FrAMES) - Nonpoint Anthropogenic Chloride Loading (NACL) model for 

headwater (a) flow-weighted mean annual specific conductance, and (b) number of USEPA 

chronic threshold exceedances for chloride. Relationships between imperviousness and mean 

annual chloride concentrations (Kaushall et al., 2005; Daley et al., 2009) are given in terms of 

specific conductivity following Eq. [1]. USEPA chronic exceedances of the chloride standard 

from Trowbridge et al. (2010) uses mean annual concentration from Daley et al. (2009). The 

band of most biologic stress identified by Coles et al. (2004) is shown in (b). 

 

Despite the consistencies between FrAMES-NACL estimates of loading and the pool of 

inventory studies, loading in the Merrimack was distinct from any one inventory.   Best estimates 

of loading rate from three inventories yield 3.8, 11, and 12 𝑔 Cl 𝑚𝑚−1𝑚−2 from T10, Sander et 

al. [2007] (S07), and Godwin et al. [2003] (G03), respectively.   𝐶𝐷𝐸𝐼 therefore has a mode 73% 

higher than the local inventory of T10, and 40 to 45% lower than values from other inventories 

(G03,S07).   
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Differences in loading may be attributed to location or to time varying application rates.  Mean 

winter temperature in Twin Cities S07 is approximately 3°𝐶 cooler than the MRW explaining 

the higher loading from that study (by reduced effectiveness of sodium chloride as a deicer); 

however, climatologic explanations do not explain greater loading in the Mohawk River G03 

than the MRW because mean winter temperatures are similar.  The study catchments of T10 are 

located within the MRW, but are located towards the southern extent of the domain at lower 

elevations, making a climatological explanation possible since average winter-temperatures 

average approximately 6°𝐶 warmer in southern portions of the watershed.  In addition, temporal 

variation in loading rates (Jackson and Jobbagy, 2005) provide a realistic explanation for greater 

estimated road salt loading between our study and that by T10. Stream concentrations used for 

calibration reflect average loading over the recent past integrated by the transit time distributions 

through the studied catchments. Road salt loading may be higher on average over that time 

period than the single winter of the study of T10. 

Chloride impairment in the Merrimack River Watershed 

Validation of chloride impairment metrics 

FrAMES-NACL accurately identified stations in our observation network exceeding the 

impairment threshold (600 [𝜇𝑆 𝑐𝑚−1]).  The Peirce skill score was a perfect 1.0 ± 0.02 for 

identifying stations with exceedances of either 1 day or 30 days above the threshold for stations 

that have at least 90 days of data in a productive season.  However, FrAMES-NACL under-

predicts the number of days above 600 [μS cm−1] by about 55% for stations that do exhibit 

exceedances. Under-prediction of exceedance duration is consistent with the more dynamic 

nature of conductivity in the model (e.g. Figure 2 and AI.4b). Observations indicate that stations 

cluster near zero and 100 days of impairment (for stations with complete data coverage through 



17 

 

the productive season) whereas FrAMES-NACL predicts a more even distribution of 

intermediate days impaired.  Thus, FrAMES-NACL provides an underestimate of number of 

days impaired, while accurately estimating locations of impairment, allowing us to make 

qualified inferences at the network scale.   

FrAMES-NACL captured both the longitudinal trend in observed chloride between 2012 and 

2014, and at the furthest downstream station (at Lowell MA) between 1999 and 2004 (Figure 

AI.7), which validate the Outlet Summer Concentration (OSC) metric.  All observational data on 

Figure AI.7 were not used in model calibration.  For the basin profile stations, the relative 

absolute error was 15.4 ±5.3% (Figure AI.7b).  Moreover, the mean of summertime USGS grab 

samples from 1999 to 2004 at Lowell (195 ± 44 [𝜇𝑆 𝑐𝑚−1], 𝑛 = 23) was not significantly (𝛼 ≤

0.05) different from simulated values on sampled days (213 ± 64 [𝜇𝑆 𝑐𝑚−1]) (Figure AI.7c).   

Recent chloride impairment  

FrAMES-NACL predicts that up to 11% of the Merrimack River network exceed the 600 

𝜇𝑆 𝑐𝑚−1 chloride threshold at least one day in the productive season (Figure 1).  Figure 1 shows 

that impaired reaches are most prevalent in the southern Merrimack watershed and consist 

predominately of headwater (1st order) reaches elsewhere.  The largest river exhibiting any 

impairment is 4th order river draining 211 km2; however, the largest stream with a median value 

of impaired days each year above zero over the 17-year record is 2nd order draining 14 km2.  The 

period mean of IRD, the product of river length exceeding 600 𝜇𝑆 𝑐𝑚−1 times duration of 

impairment, was 1.3 × 105 ± 4.0 × 104 [𝑘𝑚 𝑑] (±𝜎 interannual variability).  The period mean 

for OSC (summer-time conductivity at basin mouth) was 216 ± 27 [μS cm−1], which is lower 

than the 600 [μS cm−1] impairment criteria threshold but higher than pristine conditions.   
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FrAMES-NACL shows that a threshold of imperviousness leading to chloride impairment exists 

at less than 20% impervious cover.  The annual number of exceedances of the USEPA chronic 

water quality threshold for chloride (230 𝑚𝑔 CL 𝐿−1 for 4 days) predicted by FrAMES-NACL 

are similar to that predicted from the relationship between chloride exceedances and mean 

annual chloride concentration identified by Trowbridge et al. (2010, fig. 4) (Figure 3b), when 

using mean annual chloride from Daley et al. (2009) as the predictor (Figure 3a).  Both 

FrAMES-NACL and the function of Trowbridge et al. (2010) predict negligible USEPA chronic 

exceedances below 20% impervious cover.  Exceedances per year increase linearly through 

about 60% impervious cover (Figure 3b).   Previous findings for streams in New England found 

changing aquatic community structure at mean impervious cover ranging from 14-18% (Figure 

3b) (Coles et al., 2004).  Impairment of aquatic taxa observed at impervious cover lower than 

20% is consistent with stress from prolonged exposure to chloride at lower concentrations than 

230 𝑚𝑔 CL 𝐿−1 (Cañedo-Argüelles et al., 2013; Findlay and Kelly, 2011b). 

Interannual variability in riverine chloride impairment  

Between 1998 and 2014, both metrics of chloride impairment (IRD, OSC) suggest that climate 

drives variability in impairment (Figure 4).  The two impairment metrics correlate with different 

individual meteorological indices.  Even with the damping from groundwater storage the 

predicted interannual standard deviation of riverine impairment was 12% for IRD and 18% for 

OSC (Figure 4).  IRD was positively correlated with snowfall (WINS) (𝑟2 = 0.34, 𝑝 = 0.015) 

and OSC inversely correlated with summer precipitation (SUMP) (𝑟2 = 0.50, 𝑝 = 0.001) 

(Figure 4a-d).  We hypothesized number of dry days (NDD) should correlate with increased 

impairment.  Though greater NDD led to greater impairment, the relationships were not 

statistically significant, (𝑝 = 0.075, and 0.068 for IRD and OSC, respectively) providing only 
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weak support for our hypothesis (Figure 4c,f).  Inverse correlations of OSC with SUMP support 

summertime dryness as an important factor in controlling productive season salt impairment in 

larger rivers (Figure 4d).  

The positive correlation between IRD and WINS (Figure 4b) results from salt application being 

driven by frozen precipitation during the winter.  Most road salt infiltrates groundwater (𝑓ℎ𝑐𝑖 is 

low) and despite the large groundwater exchange pool, shallow groundwater is responsive 

enough to propagate the effects from the previous winter.  Since small streams dominate total 

network length (Leopold, 1964) the IRD is driven by small stream responses particularly in 

urban headwaters.   

Greater WINS has an inverse effect on OSC, a metric for large river, because it increases dilution 

from pristine catchments during snowmelt; however, the relationship is not statistically 

significant (𝑝 = 0.66; Figure 4e).    The weak correlation between WINS (i.e. recent loading) 

and downstream concentrations (OSC) illustrates the importance of the scale dependent 

processes of river network dilution on defining concentrations experienced by aquatic organisms.   

As SUMP increases, IRD and OSC decline, though only the response of OSC is much stronger 

(Figure 4a,d).  WINS and SUMP have similar effects on the OSC metric because both dilute 

chloride emanating from the relatively few headwater catchments that are chloride sources.  

Dilution from high SUMP has a limited effect on the IRD metric because higher than average 

precipitation cannot substantially alter chloride concentration in a large groundwater storage 

pool.  Instead, SUMP can only increase the time that a contaminated headwater catchment is 

diluted by storm runoff, thereby lowering IRD in some catchments.  Despite the overly dynamic 

response of FrAMES-NACL (Section 5.1), this influence of SUMP on IRD was not significant 

(Figure 4a). 



20 

 

Figure 4: Interannual correlations between impaired reach days (IRD) and outlet summer 

concentration (OSC) impairment metrics and select meteorological indices, including total 

summer precipitation (SUMP), winter frozen precipitation (WINS), and number of dry days 

(NDD). Bold lines represent best fit for relationships, with dotted lines representing 95% 

confidence intervals on the fit. *,** Significant at the 0.05 and 0.01 probability levels, 

respectively. 

 

Studies of riverine chloride contamination tend to focus on the trends of annual or seasonal 

chloride concentration (Anning and Flynn, 2014; Corsi et al., 2015).  One study reported 20% 

interannual variability in mean annual chloride concentrations from subcatchments surrounding 

Baltimore Maryland (Kaushal et al., 2005 fig. 2), similar to this study (Figure 4).  Following 

significant floods in southeastern New Hampshire during 2006 and 2007, observed chloride 

concentrations across a broad range of discharge were distinctly lower, suggesting flushing of 

legacy chloride from the fifth order watershed (Daley et al., 2009). The mechanisms that control 

the dilution of road salt at impacted reaches should be considered as an important secondary 

predictor of potential habitat degradation (e.g. Hale et al. 2014).  Mechanisms that can influence 

dilution potential from clean headwaters include drinking and irrigation water abstractions in 

headwaters, and storage behind recreational dams.  If climate patterns change (Hayhoe et al., 



21 

 

2006), reduced headwater dilution capacity from increasing forest evapotranspiration or drought 

would exacerbate the effects of chloride contamination.  

Limitations of Model Structure  

Our immobile zone parameterization for long-tail groundwater transport appears reasonable. 

Optimized values for the immobile zone exchange mechanism (𝛼𝑀𝐼𝑀𝑇 ≈ 1
400 𝑑⁄ ), suggest a 

groundwater transit time >1 to 2 years consistent with typical catchment transit times 

(McDonnell et al., 2010), including catchments of the Merrimack River (Benettin et al., 2015), 

and shallow groundwater flow-paths (Morgenstern et al., 2010).  Some observations of 

groundwater transit time  (e.g. Morgenstern et al., 2010; Stewart et al., 2010) are longer than 

calibrated here,  and other immobile zones would be required to represent the broad range of 

groundwater transport timescales (Haggerty and Gorelick, 1995).  

Greater dilution during rain events (Figure 2) result in underestimates of specific conductance in 

developed catchments.  The greater model responsiveness compared to observations follows 

primarily from assuming timescales of transport and hydrodynamic response to be equal in the 

soil and surface flow-paths, though transport should lag hydrodynamic catchment response 

(Beven, 1982; Kirchner et al., 2000).  

Neglected processes may account for FrAMES-NACL’s stronger dilution response than 

observations.  Non-conservative chloride transport and processing including organochlorine 

formation, microbial processing, plant uptake, and storage in sediment micropores would 

dampen catchment chloride response (Bastviken et al., 2007; Kincaid and Findlay, 2009; Redon 

et al., 2011, 2012; Shaw et al., 2012; Öberg and Bastviken, 2012), however, these processes are 

most significant in pristine systems, and diminish in importance as total loading (e.g. via road 
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salt) increases (Svensson et al., 2010).  Prolonged chloride storage on rough road surfaces is 

mobilized during precipitation through the summer, and first flush specific conductance can 

locally exceed 50 𝑚𝑔 Cl 𝐿−1 (230 𝜇𝑆 𝑐𝑚−1) (Ostendorf et al., 2001), considerably greater than 

that represented by NACL (typically < 1 𝑚𝑔 Cl 𝐿−1).  Representing a reservoir for chloride 

storage and release from infrastructure (Ostendorf et al., 2006) is an appropriate improvement for 

future work.   A final possibility is that storm events mobilize more groundwater with elevated 

chloride than represented by FrAMES-NACL (McDonnell, 1990, 2013; Kirchner et al., 2000).  

The shallow groundwater pool is represented with an exponential RTD; a gamma distribution 

(with 𝛼 < 1), characteristic of many environmental systems (Hrachowitz et al., 2010), may 

better represent rapid mobilization from groundwater with high chloride.  Models accounting for 

these processes can be tested against observational data to evaluate evidence for these 

mechanisms. 

Conclusions from contemporary analyses 

We find road salt loading inferred from stream chloride concentrations at regional watershed 

scales to be consistent with inventoried estimates.  A combination of inventory approaches and 

catchment scale chloride mass balance modeling informed by stream chemistry data is likely to 

provide more realistic estimates of chloride balance through time.  Loading estimates, derived 

here and from existing inventories, are considerably greater than recommended deicer 

application rates, offering an opportunity for improved management that can reduce impairment.  

Based on sensitivity of FrAMES-NACL to interannual variability of winter snowfall, which 

drives loading via road salt applications, adoption of loading recommendations may reduce 

chloride impairment within several seasons throughout much of the moderately developed 

MRW.  The variability of the large river chloride is predominately controlled by dilution from 
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water available from pristine catchments upstream, so management strategies on large rivers 

need to recognize the role of the entire river network.   

Future Scenarios of Chloride Impairment 

Changes in snow management, climate, and population influence the rate of loading and flushing 

of road salt from catchments.  Projections of the stress of chloride to aquatic organisms must 

simultaneously consider the interactions of these changes with their associated timescales.  We 

evaluate a suite of land-cover change and management drivers of aquatic habitat change within 

the context of key uncertainties in groundwater storage, legacy road salt application, and future 

climate.  We specifically ask whether transitioning to recommended rates of road salt application 

(Environment Canada, 2004; Salt Institute, 2007) would improve aquatic habitat within the 

context of growing population and commensurate increase in impervious surfaces.  As an 

additional hypothesis, we ask whether maintaining status quo rates of salt application would 

exacerbate the decline in aquatic habitat even if all new development followed an in-filling 

paradigm on existing developed areas.  Examining these opposing drivers in greater detail can 

inform how management of impervious surfaces for winter travel may affect the viability of lotic 

and lentic ecosystems in developed regions.   

Methods for future scenario experiments 

Future scenarios focused on the Upper Merrimack River Watershed (UMRW) defined as the 

river upstream and including the confluence of the Merrimack and Nashua Rivers in Nashua, 

New Hampshire USA.  The two rivers drain 10,545 km2 in New Hampshire and Massachusetts.  

The study region is described in Samal et al. (2017).  Moderate development throughout the 

watershed is concentrated along the largest rivers and increases near the outlet.  At present 
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approximately 3.1% of the watershed is covered by impervious surfaces that potentially receive 

deicing treatment. 

To evaluate the roles of build-out pattern and deicer application rate in the context of future 

aquatic impairment, a suite of scenarios considered these factors and potential uncertainties 

associated with future climate projections (Table 1).  Future simulations followed the analysis of 

Samal et al. (2017) using land-cover scenarios developed for New Hampshire by Thorn et al. 

(2017).  We analyzed pair-wise differences between estimates of impairment for the last two 

decades of the 21st century between combinations of the scenarios analyzed.  We pooled 

estimates of impairment for simulations derived from each downscaled climate model and 

compared the distributions of impairment across build-out scenarios and deicer application rates.  

The results were strongly dependent on winter weather embodied by the two carbon emission 

pathways (IPCC, 2000) with a high emissions track (A1FI) leading to significantly warmer 

winters at the end of the century, and a hard reduction in emissions (B1) leading to modestly 

warmer winters than present-day.  Therefore, significant differences in road salt application were 

projected for each emissions pathway, which are largely imposed as an external force on the 

UMRW.  Therefore, analyses for each pathway were performed separately.  Uncertainties 

internal to the analysis are defined by the Global Climate Model (GCM) generating the coarse 

climate projections that were downscaled to produce data for this analysis; either GFDL (Dunne 

et al., 2012) or CCSM (Stern, 2012).  Climate data were downscaled using Localized 

Constructed Analogs algorithm (Pierce et al., 2014).  Three land-cover and population change 

scenarios were simulated following Thorn et al. (2017); Linear Trends assumed constant growth 

and build-out patterns as observed in the region over the recent past, whereas the Community 

and Backyard scenarios assumed greater population increases with urban infilling and sprawling 
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development patterns, respectively.  The Community scenario assumed all new population 

growth and impervious area was concentrated in existing developed area and the Backyard 

scenario assumed zoning regulations favored larger building lots leading to greater impervious 

surface cover (Thorn et al., 2017).  We compared the distribution of impairment between each 

sample and current estimates of impairment using the Tukey range test (Tukey, 1949) testing for 

differences between group means at an alpha value of 0.05. 

Table 1: Dimensions of variates defining scenarios to characterize future chloride impairment. 

 

 

 

 

Results of future scenario experiments 

The two downscaled climate inputs resulted in divergent trajectories of deicer application.  

Under the Linear trends build out scenario, with status quo deicer application rates (6.5 g Cl mm-

1 m-2), deicer inputs averaged approximately 200 Gg Cl y-1 with GFDL climate input following 

the low emissions pathway (B1), whereas deicer application averaged 480 Gg y-1 using the 

CCSM data as input due to the greater frozen precipitation projected by that climate model for 

New England (Figure 5).  Deicer flux predicted using downscaled inputs from GFDL and CCSM 

under the high emissions pathway were more similar and much lower (averaging 140 and 160 

Gg y-1 after 2050 for GFDL and CCSM, respectively) as the models predict far less frozen 

precipitation late in the 21st century (Figure 6).  These ranges of deicer application fluxes were 
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incorporated into the ranges of FrAMES-NACL projections of impairment by deicer application 

rate, and build-out scenario.   

 

Figure 5: Time-series of annual deicer for the high emissions pathway, and current trends 

buildout assumptions.  Status quo loading in black, recommended loading in blue. 

 

Figure 6: Time-series of annual deicer for the moderate emissions pathway, and current trends 

buildout assumptions.  Status quo loading in black, recommended loading in blue. 
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Impervious surface area change through buildout is another primary driver of changing chloride 

load from road deicer.  The Backyard build out scenario predicted greater impervious area over 

the domain (increasing from 330 km2 to 700 km2 or from 3.1% to 6.6% of the basin).  This 

differs considerably from the Community trajectory where impervious areas decrease to 300 km2 

or 2.8% of the basin as farmland replaced developed land late in the century.  For reference, the 

comparable amount of impervious area predicted for the Linear trends scenario is 452 km2 or 

4.2% of the catchment area.  

Three dimensions were critical for defining the potential changes for chloride impairment of 

streams (Figures 7 and 8).  First, chloride impairment was higher under the moderate emissions 

pathway (Figure 7) due to maintenance of cooler winter temperatures throughout the 21st 

century.  However, the lower chloride impairment resulting from a higher emissions pathway 

(Figure 8) was partially offset by a greater impairment associated with increasing water 

temperature.  The impairment metric selected for temperature follows Stewart et al. (2013) and 

indicates a lower abundance of cool-water fish species.  It should be noted that the two 

impairment metrics measure slightly different aspects of aquatic habitat quality, and a direct 

comparison between impairment duration-length between the two metrics was unwarranted; a 

total length of impairment is not presented.  The impairment metric selected reflects potential 

declines in fish abundance and close to a level that affected zooplankton (Figure 9).  Recent 

findings suggest that prolonged chloride concentrations just below the threshold selected here 

result in 10% reduction in crustacean and rotifer abundance in lakes, along with declines in taxa 

richness (Hébert et al., 2022).   

Examination of chloride impairment under the low emissions pathway (Figure 7) suggested that 

a transition to recommended deicer application rate would be sufficient to maintain today’s level 
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of reach impairment in the UMRW with any buildout strategy.  With present-day deicer 

application rates, linear trends in buildout (Linear), or dispersed buildout (Backyard), chloride 

impairment was expected to increase from present day levels.  With present-day application 

rates, impairment under the infilled buildout (Community) was indistinguishable from either 

current levels or the increase associated with Linear trends.  Maintaining recent application rates 

and the Backyard buildout pattern led to more than 400% increase in chloride impairment.  To 

contextualize these findings, following the publication of the Special Report on Emissions 

Scenarios by the Intergovernmental Panel on Climate Change (IPCC, 2000), it appears that 

global carbon emissions were most consistent with A1FI (Allison et al., 2009), the highest rate of 

emissions considered. 

 

Figure 7:  Chloride impairment for scenarios that followed the moderate emissions pathway (B1) 

measured as the reach length times the average numbers of days per year from 2080 to 2100 that 

stream chloride concentration exceeded 140 mg L-1. 

 

Chloride impairment projected following the high emissions pathway was generally lower than 

present day (Figure 8).  Under the current deicer application rate, impairment was lower when 
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assuming linear increase in population and buildout (Linear).  Impairment for the Community or 

Backyard buildout scenarios was not different from current impairment or the lower impairment 

level of Linear.  If recommended deicer application rates were adopted; however, chloride 

impairment was projected to decline for each buildout scenario.  Counter-intuitively, the highest 

rate of impairment for the high emissions pathway, and recommended deicer application rates 

was for the Community buildout scenario, despite this scenario representing the most aggressive 

suite of policy adoptions for environmental protection.  This scenario has the highest 

concentration of impervious surfaces, which were sufficient to yield greater impervious despite 

less intense application of deicer per application area.  Still, impairment was projected to decline 

to approximately half of present-day levels.  Again, this would be paired with a substantial 

warming of stream water, expected to have significant adverse effects on aquatic habitat (Samal 

et al., 2017, Figure 10). 

 

Figure 8: Chloride impairment for scenarios that followed the high emissions pathway (A1FI) 

measured as the reach length times the average numbers of days per year from 2080 to 2100 that 

stream chloride concentration exceeded 140 mg L-1. 
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Figure 9: Observed ecosystem effects associated with chloride concentrations (expressed as 

specific conductance according to Equation 1), or regulatory recommendations for chloride 

concentration in the environment.  a (Morgan et al., 2012) b (USEPA, 2012) c (Findlay and Kelly, 

2011a) 
d (Cañedo-Argüelles et al., 2013).   

 

 

Figure 10: Temperature impairment between high and low emissions pathways based on a seven-

day average water temperature exceeding 29°C protective of cool water fish (Eaton and Scheller, 

1996).  
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Discussion of future scenarios experiments 

Regardless of emissions pathway, transitioning to recommended rates of deicer application was 

less likely to be associated with an increase in stream chloride impairment.  Maintaining current 

deicing rates could lead to increasing impairment in some scenarios.  Therefore, the scenarios 

performed here suggest that recommended application rates are a more relevant intervention for 

chloride impairment than buildout paradigm.  However, if deicer application rates remained 

constant, impairment was consistent with current levels if development followed an infilling 

buildout paradigm (Community scenario) under either emissions pathway.  The emissions 

pathways used to project future climate in this analysis are not associated with any probability, 

so no assessment of likelihood of chloride projections represented either pathway (Figures 3 and 

4) was conducted.  Outside of chloride impairment, numerous water quality and environmental 

service benefits suggest management policies that target the Community scenario (Borsuk et al., 

2019). 
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CHAPTER II 

INTERPLAY OF CHANGING IRRIGATION TECHNOLOGIES AND WATER REUSE: 

EXAMPLE FROM THE UPPER SNAKE RIVER BASIN, IDAHO, USA 
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Introduction 

Access to irrigation water is critical to determining the future resiliency of many agricultural 

systems (Foley et al., 2011), and challenges of providing irrigation water require close scrutiny 

of its efficient use (Grafton et al., 2018).  The goal of resilient agricultural systems should reflect 

a global need to reduce water scarcity (Rosa, 2017), with adaptations that are often context 

specific (Vanham et al., 2018).  Successful management of water resources to protect against 

water scarcity requires consideration of the specific interactions of multiple actors (Keller and 

Keller, 1995). 

One suite of solutions where water is scarce is to modernize irrigation technology to ensure that 

the greatest proportion of supplied water is used for beneficial crop growth (Gleick et al., 2011; 

Jägermeyr et al., 2015, 2016).   Improving classical irrigation efficiency (CIE), the ratio of 

beneficial consumptive use to gross irrigation abstractions, is critical to meet agricultural 

production needs (Jägermeyr et al., 2016) and additionally has myriad co-benefits such as 

reduced energy use and improved water quality (Gleick et al., 2011; Vanham et al., 2018).  

However, more efficient irrigation systems tend to counterintuitively increase total water 

consumed, or at least do not decrease use to the degree expected.  As efficiency increases, 

usually at a cost to the irrigator, the water available from reduced losses can be applied for higher 

value and more water intensive crops (rebound) or for expanding crop areas (slippage) (Contor 

and Taylor, 2013; Grafton et al., 2018; Pfeiffer and Lin, 2014; Tran et al., 2019), especially when 

users are encouraged to extract a full water allotment by legal doctrines such as the Prior 

Appropriations system used in the US West.  Increasing CIE also tends to reduce non-

consumptive losses that downstream users rely on (Foster and van Steenbergen, 2011; 

Frederiksen and Allen, 2011; Grafton et al., 2018; Grogan et al., 2017; Simons et al., 2015).  
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Non-consumed losses, the fraction of water applied by irrigation that flows back to the 

landscape, follow different pathways.  The term irrigation returns can refer to flow or flow 

structures conveying non-consumed water off irrigated fields and back to a canal system (e.g. 

Lin Y. and Garcia L. A., 2012), percolation back to a source aquifer (e.g. Dewandel et al., 2008), 

or more generally to all water not consumed by irrigation water application or delivery (Grogan 

et al., 2017; Keller and Keller, 1995; Simons et al., 2015); we adopt the latter meaning when 

referring to irrigation or incidental returns. 

Investigators of water resources argue that the reuse of incidental returns increases the basin or 

global efficiency of supplied water, making technological investments that increase CIE less 

effective when considered at basin-scales rather than at farm-scales (Keller et al., 1996).  The 

effect has been observed empirically in well-studied basins (Simons et al., 2015).  Increasing 

CIE is almost certainly a critical component to maintain the resiliency of agricultural systems 

when only surface or groundwater supplies irrigation and will necessarily reduce the incidental 

return to the system.  In settings that conjunctively use both surface and groundwater resources, 

managed aquifer recharge (MAR) can increases the adaptability and resiliency of irrigated 

agriculture (Dillon et al., 2020).  MAR adds water to aquifer storage when available, eliminates 

the need for infrastructure associated with surface reservoirs, minimizes surface evaporation, and 

can be less expensive than surface storage (Arshad et al., 2014; Dillon, 2005; Dillon et al., 2019; 

Maliva, 2014; Scanlon et al., 2016).  MAR as part of a conjunctively managed water resource 

system has been demonstrated to maintain water supplies for irrigated agriculture during drought 

(Foster and van Steenbergen, 2011; Guyennon et al., 2017; Niswonger et al., 2017; Scanlon et 

al., 2016; Tran et al., 2020).  However, water used for MAR tends to reduce flow leaving a 

catchment (Yaraghi et al., 2019), which may have important downstream consequences.  In other 
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cases, MAR may affect annual flows slightly (e.g. Niswonger et al., 2017), but can shift timing 

of baseflow entering rivers from the aquifer to summer months, providing important temperature 

refugia for aquatic species (Van Kirk et al., 2020). 

Despite the potential benefits from coupling MAR with conjunctively managed water sources, 

there remain challenges in uptake of the practice (Dillon et al., 2020) to address globally 

declining aquifer storage (Bierkens and Wada, 2019).  Outside specific regulatory intervention, 

the practice of MAR can marginally reduce the cost to pump groundwater such that MAR would 

be expected to result in rebound and slippage effects (Tran et al., 2019) where more land is 

planted, or more water intensive crops are grown to utilize the available water.  Benefits from the 

conjunctive management of water resources and MAR are projected to be greater in arid 

environments (Scanlon et al., 2016).   

The two interventions presented above, increasing the efficiency of irrigation through 

technological modernization and MAR appear to synergistically alleviate the drawbacks of each 

practice.  In the absence of slippage, increasing CIE can reduce incidental recharge (Simons et 

al., 2015), but retains greater flow within the river, whereas MAR increases recharge but reduces 

annual river flow (Yaraghi et al., 2019).  Balancing the two interventions could potentially 

achieve greater resiliency of irrigated agriculture than either alone.  To date there have been 

limited analyses to include both strategies in the same framework.  Tran et al. (2019) account for 

specific efficient irrigation practices within the context of multiple potential drivers in an hydro-

economic analysis.  Other examples of mechanistic models applied to the problem of MAR and 

conjunctive resource management have assumed static efficiencies of irrigation technology and 

crops (Niswonger et al., 2017; Scherberg et al., 2014).  Here we consider the coupled influences 

of irrigation technology modernization and MAR on water resources to assess the limits to which 
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either intervention could achieve aquifer stabilization, while maintaining downstream flows 

above critical thresholds.   

We quantify the impact of changing irrigation efficiency on basin water stocks, aquifer recharge, 

downstream discharge, and within-basin water reuse using the test case of the Upper Snake River 

Basin (USRB) of Idaho, USA, an intensive agricultural setting in the semi-arid American west 

(Figure 11) that relies on both surface and groundwater.  Arid and semi-arid agriculture can be 

very important economically; 31-36% of the nation’s net farm income is produced in arid or 

semi-arid regions (Trabucco and Zomer, 2019; USDA NASS, 2014).  Historic flood irrigation 

with river water elevated aquifer head above pre-irrigation levels, and in the latter half of 20th 

century aquifer storage has declined (Kjelstrom, 1995) due to increasing groundwater pumping 

and decreasing recharge of surface water as irrigation technology has modernized.  Therefore, 

aquifer stabilization is critical for establishing resilience of the agricultural system (IWRB, 

2016).  Implementation of recharge (as MAR) and other management actions to ensure a resilient 

agricultural system in the USRB may provide important insights relevant throughout arid and 

semi-arid regions where surface evaporative fluxes are similarly high (Carr et al., 2010; 

Ghassemi et al., 1995; Tal, 2016). 

Careful application of improved irrigation efficiency and MAR has been part of on-going 

management strategies in the USRB.  Water is governed in Idaho under the Doctrine of Prior 

Appropriation, which allocates water to users according to the date when they first put water to 

continuous beneficial use.  As aquifer drawdown has continued, aquifer recharge, water 

transfers, and other water conservation efforts have been classified as beneficial uses (Fereday et 

al., 2018).  Water users have self-organized in an effort to stabilize the aquifer and optimize use 

of the water within the USRB, and have moved to a more conjunctive management of surface 
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and groundwater resources (Gilmore, 2019).  A moratorium on ground water permits 

(Higginson, 1992) and conservation efforts have resulted in a reduction in consumptive ground 

water use, and motivated the adoption of targets for 0.3 km3 y-1 of MAR as an intervention 

(IWRB, 2016); however, aquifer storage may still be declining.  Simultaneously, maintaining 

sufficient downstream flow from the basin is strictly required for senior water rights holders and 

hydropower generation (IWRB, 1985).  The USRB is an ideal setting to assess the trade-offs 

between within-basin aquifer storage and downstream supply through conjunctive management. 

In this study, we frame a series of model parameterizations together to test hypotheses guided by 

the key constraints of water resource management in the USRB.  We utilized a distributed model 

of hydrologic function and human water use to estimate the recharge required to a) stabilize the 

aquifer under present-day irrigation efficiencies, and b) offset reduced irrigation returns from 

continued modernization of irrigation technology.  We performed simulations introducing 

progressively more efficient irrigation technology to a baseline representation of the USRB, 

which required reduced withdrawals from the Snake River, but which hastened aquifer 

drawdown by decreasing recharge of incidental returns.  These simulations were paired with 

counterparts introducing enough managed aquifer recharge to ensure negligible change in aquifer 

storage (stabilization) over the same period.  We hypothesized that only a fraction of the reduced 

incidental returns from modernizing technology would be needed to maintain aquifer volume if 

introduced as MAR.  An alternative hypothesis is that asynchronicity in recharge water 

availability and irrigation demand, coupled with fast flow through the aquifer system, would 

require greater recharge rates than if water was introduced as inefficient irrigation and reused 

contemporaneously.    For each simulation we calculated the total amount of previous incidental 

returns reused as gross irrigation, using the model’s core capability of tracking water sources 
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through all pools of the hydrologic cycle.  We hypothesized that simulations with additional 

MAR would exhibit lower reuse than simulations without MAR because a greater proportion of 

recent snowmelt would recharge the regional aquifer.  Alternatively, additional MAR reduces 

surface water availability and may promote groundwater abstractions that would favour greater 

reuse as most irrigation returns percolate to recharge the aquifer.   

Methods and Data 

The following sections describe the setting, describe the formulation of hydrologic fractions used 

here, the experiments conducted, the Water Balance Model (WBM) – a distributed hydrologic 

model representing anthropogenic water uses, model input data, and validation criteria. 

Upper Snake River Basin 

The Upper Snake River Basin (USRB) is a semi-arid steppe ecosystem with a snowmelt 

dominated Mediterranean climate in western Wyoming, and southern Idaho, USA (Figure 11).  

The 92,700 km2 basin is bounded to the east by the Teton Mountains, and to the north by the 

Sawtooth and Bitterroot Mountain ranges.  Precipitation over the Snake River Plain is generally 

less than 250 mm/year but averages about 400 mm/year (or 46.3 km3/year) over the whole basin 

with most water entering the river network as montane snowmelt.  The basin is underlain by 

Quaternary basalts of the Snake River Group (Whitehead, 1992), which form the highly 

transmissive Eastern Snake Plain Aquifer (ESPA).  Irrigation in the USRB began in the late 

1800s and gravity drained flood irrigation was the primary mode of irrigation until the mid-

1900s (Wulfhorst and Glenn, 2002; Lovin, 2002).   Incidental recharge from the non-

consumptive losses of irrigation water increased storage in the ESPA, and increased discharge 

from a dense collection of springs in the Snake River canyon between Milner and King Hill, 

Idaho (Kjelstrom, 1995).  Through the latter half of the 20th century, aquifer head declined due to 
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increasing reliance on groundwater for irrigation and reduced incidental recharge (Moreland, 

1976) as flood-irrigated land transitioned to sprinklers.  Aquifer stabilization at today’s head is a 

primary concern in the basin, even though head is above pre-irrigation levels.  State agencies are 

practicing managed aquifer recharge (MAR), the deliberate infiltration of seasonally available 

water for use throughout the year, as one technique in the conjunctive management of water 

resources (IWRB, 2009, 2016).   

 

 

Figure 11: Location of Upper Snake River Basin (USRB) a headwater of the Columbia River in 

the US States of Idaho, and Wyoming (a).  Configuration of major hydrologic features of USRB, 

including the two compartments conceptualized for the Eastern Snake Plain Aquifer (ESPA), 

locations of reach gains where losing rivers drain to the ESPA, the location of simulated 

abstractions for enhanced aquifer recharge (EAR), springs where flow from the ESPA drains 

back to the Upper Snake River, the river network scaled by mean annual flow, and extents of 

administrative basins (Administrative Basins, 2018) indicating areas using common surface 

water sources for irrigation (b). Average fraction of gross irrigation comprised of incidental 

returns (irrigation reuse - R) (c). 

 

Groundwater age dating and geochemical analysis established that the downgradient portions of 

the aquifer consist of between 60 and 80% of water used for irrigation and derived from the 

Snake River (Lindholm, 1996; Plummer et al., 2000).  A highly managed network of reservoirs 
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and canals convey about 12 km3 y-1 of water to croplands (Maupin et al., 2014), equivalent to 

about 25% of annual precipitation to the basin.  At least 5.5 km3 of water is stored in the three 

largest reservoirs alone.  An additional 2.5 km3 y-1 is abstracted from the ESPA by irrigators 

(Dieter et al., 2018; Maupin et al., 2014), and approximately 5 km3 y-1 of water returns from the 

ESPA to the Snake River through a series of springs (Covington and Weaver, 1991; Kjelstrom, 

1995).  Inflows to the ESPA include several losing rivers at the northern extent of the USRB and 

the Snake River, which loses water directly to the ESPA near American Falls reservoir 

(Lindholm, 1996; McVay, 2015).  Spring flows out of the ESPA are critical for maintaining an 

aquaculture industry along the Snake River canyon and constitute a majority of Snake River 

discharge out of the USRB supporting critical aquatic habitats, hydroelectric generation 

potential, and irrigation of downstream agriculture.  Water available from the Upper Snake River 

and the ESPA irrigate numerous agricultural products with dairy forage, beet sugar, and potato 

being the most economically-important (USDA NASS, 2014).   

Hydrologic fractions and irrigation resource use 

Defining efficiency of agricultural water use is complicated because water lost non-productively 

by one water user may be used productively elsewhere downstream in the basin, making terms 

describing efficiency or resource sufficiency specific to the spatial scale considered.  We 

describe irrigation efficiency using hydrologic fractions that describe the fate of water abstracted 

from either surface or groundwater sources for the purpose of irrigation (Frederiksen and Allen, 

2011; Haie and Keller, 2008; Lankford, 2012; Perry, 2011).  Water abstracted as gross irrigation 

(𝐺) can have three fates when added to irrigated pixels at the plot-scale: i) beneficial use (𝐵) is 

the irrigation water used for beneficial crop growth; ii) non-beneficial consumption (𝑁) is water 

evaporated non-beneficially from soil or canals; or iii) non-consumptive loss (𝐿, herein 
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incidental returns or incidental recharge) is runoff  or percolation as a liquid that remains in the 

basin (Figure 12).  Of these plot-scale fates of gross irrigation water, 𝐵 and 𝑁 are both assumed 

terminal because liquid water leaves the domain as vapor or in crops.  Incidental returns (𝐿) on 

the other hand remain in the system and fates at the basin scale include export (𝑋) via streamflow 

at the basin outlet, evaporation (𝐸) from the surface water network, human use (𝑈), reuse as 

gross irrigation (R), and net storage (𝑆) primarily in the aquifer; however net storage in surface 

reservoirs, and soil is also calculated. 

WBM tracks key component volumes, including incidental returns (𝐿), to all terrestrial 

compartments of the hydrologic system permitting direct computation of gross irrigation water 

reuse (𝑅).  In our analysis we assume that all incidental returns are recoverable, and therefore do 

not make a distinction between recoverable and non-recoverable returns (as in Lankford, 2012), 

and directly assess the volumes of water recovered in gross abstractions.  Gross irrigation reuse 

(𝑅) is the weighted sum of abstractions consisting of incidental return in each source and is 

calculated daily Equation 2.   

𝑅𝑖,𝑗 = 𝐼𝐴𝑞𝑓 ⋅ 𝑓𝐴𝑞𝑓
𝑖𝑟𝑟

𝑖,𝑗
+ 𝐼𝑅𝑠𝑣𝑟 ⋅ 𝑓𝑅𝑠𝑣𝑟

𝑖𝑟𝑟
𝑘,𝑙

              Eq. 2 

where 𝑖 and 𝑗 are row and column indices for the point of irrigation water application; 𝐼𝐴𝑞𝑓 and 

𝐼𝑅𝑠𝑣𝑟 are the abstracted irrigation water from aquifer, and surface reservoirs, respectively; 𝑓𝐴𝑞𝑓
𝑖𝑟𝑟  

and 𝑓𝑅𝑠𝑣𝑟
𝑖𝑟𝑟  are the fraction of irrigation return flow water in aquifer and reservoir water, 

respectively; and 𝑘 and 𝑙 are row and column indices for the pixel of the surface supply 

reservoir.  The metric was summed spatially and temporally and compared to total gross 

irrigation (𝐺) to calculate a ratio of irrigation water reused within the USRB.  Irrigation 

efficiency is calculated as classical irrigation efficiency (CIE) given by Equation 3, and effective 
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irrigation efficiency (EIE) following the quantity (Type N) model of Haie and Keller (2008) 

given by Equation 4.   

𝐶𝐼𝐸 =
𝐵

𝐺
                     Eq. 3 

𝐸𝐼𝐸 =
𝐵

𝐺−𝑅
                        Eq. 4 

Note, 𝑅 does not quantify how many times a given parcel, or on average all irrigation water, is 

reused, as in the distinct definition of R as the index of unsustainable groundwater reuse in 

Grogan et al. (2017).  Rather, it identifies what portion of total irrigation water has been through 

cycles of use (Figure 12).    

Experiment structure 

There is strong connection between the Upper Snake River and ESPA in the USRB, both through 

reach gains and sinks from the Snake River to the ESPA and from springs back to the Snake 

River.  These connections are not unlike alluvial aquifers where conjunctive management of 

water resources is most common (Foster and van Steenbergen, 2011).  We therefore use 

predictive inference (Ferraro et al., 2019) to assess the potential for trade-offs between 

downstream flow and aquifer drawdown as irrigation efficiency and MAR change independently.  

We should note that the experiments we perform potentially violate water law and precedent in 

the basin (Gilmore, 2019), so natural experiments (Penny et al., 2020) to interrogate similar 

processes are impractical.  To test our hypothesis that only a fraction of reduced incidental 

recharge is needed as managed aquifer recharge (MAR) to increase water availability basin-

wide, we simulate a suite of alternative model parameterizations to capture increasing irrigation 

efficiency (as CIE) paired with and without MAR.  In WBM, we introduce a fraction of daily 

flow from the Snake River immediately above the American Falls Reservoir directly to the 
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ESPA to represent recharge as an intervention.  Because our simulations also reflect changes in 

aquifer recharge related to changing flow in the river source, we use the term enhanced aquifer 

recharge (EAR) to refer to all induced changes in aquifer recharge in our model simulations.  

Specific changes to simulated irrigation technologies for each parameterization are described 

below.  We then assess our hypothesis by calculating a management benefit (MB) metric that 

compares the change in net incidental recharge to the change in EAR required for aquifer 

stabilization by difference for each parameterization.   The MB is the magnitude by which the 

increase in required EAR is less than the loss in net incidental recharge and calculated by 

Equation 5. 

𝑀𝐵 = (𝐼𝑟𝑐ℎ
∗ − 𝐼𝑟𝑐ℎ) − (𝐸𝐴𝑅 − 𝐸𝐴𝑅∗) −

𝑑𝑉𝐸𝑆𝑃𝐴

𝑑𝑡
    Eq. 5 

where 𝐼𝑟𝑐ℎ is net incidental recharge (incidental recharge minus groundwater abstraction), 𝐸𝐴𝑅 

is the enhanced aquifer recharge flux, and * represents the flux at the present-day baseline.  For 

each parameterization, we compare the change in aquifer storage with the relative change in 

discharge from baseline to evaluate the combination of aquifer and streamflow capture needed to 

support irrigation abstraction at a given level of efficiency.  In this manuscript, our definition of 

streamflow capture is general, any decreasing discharge out of the basin due to altered 

management practice, and does not specifically mean the change in streamflow and recharge 

resulting from increased groundwater pumping (Konikow and Leake, 2014). 
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Figure 12: Diagram of fates of water abstracted for irrigation across the USRB.  Flow-line widths 

are scaled proportional to fluxes across the simulation domain between 2008 and 2017 at the 

baseline parameterization.  White depicts abstractions from pristine sources, whereas water lost 

non-consumptively from irrigation delivery or application during the model epoch is grey.  

Equilibrium (Eqbm) and geochemical (Geochem.) fractions of groundwater abstractions relax 

assumptions about aquifer water composition and are discussed below.  Labels of irrigation 

fluxes are: G – gross irrigation abstractions, B – beneficial consumption by crops, N – non-

beneficial consumption, L – non-consumptive losses or incidental returns, and the remaining 

fluxes refer to the fate of incidental returns: R – reuse in gross irrigation, E – evaporation, U – 

human use, X – export, and S – storage in aquifer, soils, and reservoirs. 
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For each simulated suite of irrigation technology parameters, we run paired simulations with and 

without EAR.  For EAR simulations we target aquifer stabilization defined as a long-term (e.g. 

decadal) average change in groundwater storage of the entire ESPA close to zero during the 

contemporary time-period from 2008 through 2017 Equation 6. 

𝑑𝑉𝐸𝑆𝑃𝐴

𝑑𝑡
∼ 0: − 0.1 <

𝑑𝑉𝐸𝑆𝑃𝐴

𝑑𝑡
< 0.1 [km3 y-1]     Eq. 6 

Once values for ESPA exchange were calculated for the baseline representation, simulations 

were conducted with these values for each of the nine more efficient irrigation technology 

parameterizations (Table 2).  Then, additional EAR was estimated through manual calibration to 

achieve a stabilization of ESPA volume for the baseline and each of the efficiency 

parameterizations.  For all model simulations, aquifer stabilization, basin discharge, and 

hydrologic fractions including reuse were calculated from hydrologic model output.  In 

calculating MB, the change in aquifer volume is subtracted to account for small deviations from 

aquifer stability that remain after calibration. 

Water Balance Model 

We used the University of New Hampshire Water Balance Model (WBM) to characterize water 

balance and assess water resource fates (Vörösmarty et al., 1989; Wisser et al., 2010).  WBM 

is a distributed hydrologic model utilizing conceptual soil, surface runoff, and shallow 

groundwater pools, a one-dimensional river network utilizing hydrologic routing schemes, and 

representations of human controls on the hydrologic cycle such as dams, impervious surfaces, 

irrigation, livestock, industrial, and domestic water use.   WBM tracks specific components of 

water fluxes, notably irrigation returns, through each represented pool assuming each pool is 

well-mixed at each daily time-step (Grogan et al., 2017).   
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Several modifications were implemented in WBM for the present work; a more complete 

description of the fundamental WBM model structure is available elsewhere (Grogan, 2016; 

Grogan et al., 2017; Wisser et al., 2010).  In previous applications of water tracking in WBM 

(Grogan et al., 2017), component stocks were adequately cycled as representative of the various 

components following model spin-up.  To address concerns that water components retain a 

memory of assumptions at initialization owing to new groundwater representation described 

below, all stored water at model initialization was tracked as relict water, a measure of water 

remaining in the system prior to the dynamic model simulation epoch.   We introduced an upper 

volumetric bound to the surface runoff pool to rectify a low bias in runoff during extreme 

precipitation and snowmelt events.  The fraction of surplus soil water (soil water-content above 

field capacity) that flows to the shallow groundwater pool (𝛾,unitless), and it’s complement (1-

𝛾), which is directed to the surface runoff pool, are generally about 0.5 and robust in a range 

from 0.4 to 0.6 (Grogan et al., 2017; Samal et al., 2017; Stewart et al., 2013; Zuidema et al., 

2018).  Due to the highly permeable geology found along the Eastern Snake Plain, 𝛾 was 

increased to represent high initial infiltration rates common throughout the Eastern Snake Plain 

(IDWR, 2013).  For our simulations, 𝛾 was spatially variable (ranging from 0.38 to 0.96, mean = 

0.73) based on elevation as a proxy for the extents of the Eastern Snake Plain (Figure AI.1).  

Other parameters defining the major hydrologic controls were established by work across 

multiple scales (Grogan et al., 2017; Samal et al., 2017; Stewart et al., 2013; Wisser et al., 2010; 

Zuidema et al., 2018) and were not calibrated for this application in the USRB.   

Several features were added to WBM to implement the experiment.  To represent the intense 

management of USRB water resources, reservoir outflow from the three largest reservoirs were 

specified; therefore, WBM predicted reservoir volume as a consequence of managed release.  
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Irrigation technology was revised in WBM to a process-based representation that redistributes 

inefficient irrigation water via surface runoff flows, groundwater percolation, and evaporation 

during both delivery and application stages.  The system explicitly represented non-beneficial 

consumption as evaporation of sprinkler mists and evaporation from canal and soil surfaces, 

using technology specific parameters reflecting county-wide averages from USGS water use 

statistics (Dieter et al., 2018; Maupin et al., 2014).  A representative fraction of 4% of sprinkler 

applied water is evaporated as mists (Bavi et al., 2009; McLean et al., 2000; Uddin et al., 2010).  

Further, during the irrigation season, water is assumed to be evaporating at potential rates 

throughout the canal network.  We assume crop ET is required (i.e. beneficial) for both 

transpiration and salt flushing, but water applied during an irrigation event in excess of daily 

crop demand wets soil above field capacity.  Incidental losses during application followed 

Jägermeyr et al. (2015) and we used their estimates of the distribution uniformity parameter that 

prescribed excess water needed to satisfy net irrigation demand based on the type of technology, 

either drip, sprinkler, or flood.  Excess water evaporates (non-beneficially) at the potential rate, 

and remaining liquid water is returned non-consumptively at the end of the timestep via either 

percolation, or runoff if vertical hydraulic conductivity is too low.  The algorithm describing 

irrigation water fates is detailed in Appendix II.  

We defined surface water sources for each administrative basin in Idaho (Administrative Basins, 

2018) to come from one or more reservoirs based on the canal network’s distribution (Figure 

AI.2).  All daily surface abstractions for irrigation are made from the pool of source reservoirs 

providing water to each administrative basin proportional to their available storage.  

Groundwater abstractions for irrigation of croplands were calculated as the difference in demand 

not satisfied by surface water sources.  A more detailed aquifer representation was needed here 
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than in previous WBM studies. We simulated the ESPA over the same extents as the ESPAM2.1 

model (IDWR, 2013) using a lumped formulation that received distributed recharge from natural 

and incidental sources and reach gains from specific losing rivers (Figure 11), provided a pool of 

groundwater available for irrigation, and discharged to a series of 213 springs along the Snake 

River canyon (Covington and Weaver, 1991).  Discharge from springs was head dependent and 

sub-daily head and outflow were calculated numerically using a third order scheme (Bogacki and 

Shampine, 1989).  We represented the aquifer as upgradient (northeast) and downgradient 

(southwest) lumped compartments (Figure 11) to reflect two characteristic types of water 

identified by Plummer et al. (2000), old groundwater in the upgradient portion, and young water 

derived from incidental recharge of Snake River water in the downgradient or southwest portion.  

Storage parameters were estimated for each section: upgradient specific yield is 0.06 and 

thickness of the aquifer is 250 m; downgradient  specific yield is 0.05 and thickness is 220 m  

(Garabedian, 1992; Whitehead, 1992; IDWR, 2013).  We represented the hydraulic connection 

between the ESPA and the American Falls Reservoir (Garabedian, 1992; IDWR, 2013) as a 

drain/spring pair.  Additional details of the implementation of the lumped aquifer solution are 

presented in Appendix II. 

Input Data 

We used a topological network of the Upper Snake River Basin (USRB) that covered an area of 

92,900 km2 at a spatial resolution of 30-arcseconds (approximately 780-m) based on 

HydroSHEDS (Lehner et al., 2008) but refined to better represent drainage as mapped by the US 

Geological Survey’s National Hydrography Data (National Hydrography Dataset (NHD), 2019).  

Reservoir data was derived from the National Inventory of Dams (National inventory of dams, 

2020) and updated manually to include additional dams, refine reservoir capacities, remove 
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secondary structures on reservoirs, and refine the locations and upstream drainage areas.  

Reservoir outflow came from observed flow data from USGS gaging stations located 

immediately downstream of three primary irrigation reservoirs: gage 13011000 in Moran, WY 

below Jackson Reservoir, gage 13032500 in Irwin, ID below Palisades Reservoir, and gage 

13077000 in Neeley, ID, below American Falls Reservoir.  No data regarding direct abstractions 

from reservoirs were available from these sources.  Additionally, we increased the total 

capacities represented in WBM of these three reservoirs by 10% to approximate storage of their 

downstream canal systems.  There were 128 dams and corresponding waterbodies in the USRB 

domain.  WBM simulations used gridMET (Abatzoglou, 2013) for contemporary precipitation 

and temperature and MERRA2 for open water evaporation (Gelaro et al., 2017).  We utilized a 

temperature based evaporation equation (Hamon, 1963) for calculating potential 

evapotranspiration (PET) and a temperature-index based snow accumulation and melt 

formulation (Willmott et al., 1985).  Human population density, which controls both domestic 

and industrial water demand, came from SEDAC Gridded Population of the World (CIESIN et 

al., 2016).  WBM simulations used Food and Agricultural Organization (FAO) estimates of 

livestock density for cattle (Steinfeld et al., 2006) at 5 minute resolution following Wisser et al. 

(2010).  These data compared favorably with USDA National Agricultural Summary Statistics 

(NASS) for 2005 but exhibit more realistic spatial variability than county-level averages in 

NASS.  Over the USRB domain, NASS livestock density is approximately 2 head/km2 density 

representing a low bias of the FAO data of less than 1%.  We utilized USDA Soil SURvey 

GeOgraphic (SSURGO) data to parameterize available water capacity for USRB soils.   We 

specified a rate of 115 mm/day for percolation below land occupied by canals and irrigated lands 

exceeding saturation following findings from the Idaho Water Resources Board (2016). 
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WBM adapts FAO’s methodology (Allen et al., 1998) to estimate crop water requirements 

based on reference ET, soil moisture,  crop coefficient (𝑘𝑐) and is detailed in previous work 

(Wisser et al., 2010; Grogan et al., 2017).  Here, we utilized the US Department of 

Agriculture’s Crop Data Layer (CDL) estimates of crop types and land cover at 30 m resolution 

(Han et al., 2012) after remapping crop groups (Table AII.1).  The proportions of irrigation 

delivery technologies were spatially homogenous and reflected the average lengths of 

technologies in the USGS National Hydrography Dataset (nhd.usgs.gov).  The relative 

proportions of application technology varied by county following USGS surveys (Maupin et al., 

2014; Dieter et al., 2018).  To address our first two hypotheses, parameterizations were defined 

that represent nine progressively more efficient suites of irrigation technology, identified here as 

parameterizations Eff.A through Eff.I.  The nine parameterizations are controlled by the relative 

fraction of flood irrigation (with corresponding increases in sprinkler area), the relative fraction 

of drip irrigation (with corresponding decreases in flood and sprinkler area), the fraction of 

canals (with corresponding increases in pipes), and the percolation factor of canal bottoms (Table 

2).   

Model validation metrics 

Model assessment used a composite objective function that described model-observation misfit 

across four primary metrics.  We compared: 1) monthly flow from the springs draining the ESPA 

against total gains minus diversions between the Kimberly and King Hill, Idaho USGS gaging 

stations provided by the IDWR (Sukow, 2011, personal comm.);  2) annual gross and surface 

water abstractions for irrigation over the USRB aggregated by county for the years 2010 and 

2015 and compared to USGS water use statistics (Dieter et al., 2018; Maupin et al., 2014); 3) 

seasonal river discharge at locations upstream of actively regulated reservoirs at USGS gages 
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13010065 (Flagg Ranch, Wyoming), 13137500 (Trail Creek, Ketchum, Idaho), and 13039500 

(Henry’s Fork, Lake, Idaho);  and 4) seasonal storage within the actively regulated Snake River 

reservoirs against data from the US Bureau of Reclamation Hydromet database.  A standard suite 

of statistics were used to assess each of these metrics, and we report percent bias and Nash-

Sutcliffe efficiency (NSE) for the period between 2008 and 2017 (Table AII.2).  Manual 

parameter calibration established reasonable estimates for the water exchange between the Snake 

River and ESPA near American Falls.  Exchange between the Snake River and ESPA affects 

reservoir volume estimates, aquifer volume (and therefore spring flows), and can affect surface 

irrigation estimates as abstractions are necessarily curtailed if American Falls reservoir does not 

have sufficient storage to meet demand.  Therefore, focusing on all four metrics to establish 

performance was necessary.  

 

Table 2: Definition of efficiency parameterizations.  
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Results 

Model Validation  

Though most processes within the model were uncalibrated, WBM accurately represented 

observations of the key fluxes in the USRB that we tested.  The spatial distribution of 

abstractions is accurate for both total and surface sources of irrigation water (Figure AI.3).  Mean 

annual discharge from springs draining the ESPA is unbiased (Figure AI.4).  Interannual 

variability in peak runoff is generally well captured (Figure AI.5a), and timing of peak runoff 

generation from snowmelt is accurate; however, the onset of snowmelt tends towards an early 

bias in most years.  Though discharge from the headwaters of the Upper Snake River in the 

Teton Mountains was well characterized (e.g. monthly discharge NSE 0.72 and bias of 13% at 

Flagg Ranch, WY – Figure AI.5a), the intense management of reservoirs in the USRB results in 

cascading errors in simulating the timing, rates, and magnitudes of reservoir drawdown (Figure 

AI.5).  Representing the hydrology of heavily managed basins, such as the USRB where most 

large reservoirs are managed as a single system (not just three reservoirs where we forced 

outflows to observations), with macro-scale models is challenging and development of robust 

representations of management of reservoir series are important directions of future research 

(Adam et al., 2007; Masaki et al., 2017).  

To address our specific hypotheses, we compared a series of model parameterizations from a 

common baseline.  Biases in model representation of the USRB from utilizing a minimally 

calibrated model are common between each hypothetical parameterization of changing irrigation 

efficiency.  Therefore, the differences between model simulations are informative of the effect 

that interventions of irrigation technology have on semi-arid agricultural basins generally.  

Inferences specific to the USRB’s response to similar management interventions are inevitable, 
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so it is worth considering how known model misfit could influence interpretations of the fate of 

incidental returns, irrigation reuse, and the effectiveness of coupling EAR with increased 

irrigation efficiency for the USRB specifically.  We note several obvious biases between the 

model simulation at baseline and observations.  First, WBM predicts the onset of snowmelt early 

in most years (Figure AI.5a), which leads to overfilling of the major reservoirs along the cascade 

of reservoirs through the Upper Snake River.  Early season discharge leads to overfilling of 

reservoirs compared to observations, and then shunting of water downstream causing both a high 

bias in early season discharge at the basin outlet (Figure AI.5f), and less water in storage late in 

the season.  Excess discharge at the outlet ranges between 0.65 to 8.75 km3 y-1 with a median of 

2.86 km3 y-1.  Furthermore, the early shift in snowmelt makes less water available in the 

reservoir cascade later in the year leading to overdraft of Palisades Reservoir late in the irrigation 

season in 2010, 2012, 2015, and 2016, and therefore less water available to American Falls 

reservoir in those years.  Model simulations that more accurately captured the timing of 

snowmelt onset with the known reservoir management would retain more snowmelt in the 

reservoir cascade making more snowmelt available to maintain reservoir levels near 

observations, and for irrigation.  Therefore, less groundwater would likely be used for irrigation 

resulting in less aquifer drawdown and a lower rate of gross irrigation reuse of incidental returns.  

We also note that seasonal dynamics of the water table and therefore discharge through springs 

were highly damped relative to observations, which results from our lumped aquifer 

parameterization.  Prior analysis shows that annual cycles in spring discharge results from fluxes 

that occur within 20 km of the springs (Boggs et al., 2010).  Though mean spring discharge is 

unbiased, incidental recharge to the aquifer and pumping from the aquifer are spread over the 

two compartments of the aquifer and exceed the space scales that would create seasonal 
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dynamics.  Suppressed seasonality of spring discharge could reduce seasonality of downstream 

flows; however, there are no major abstractions of surface water downstream of springs in our 

representation of the USRB.  Moreover, seasonal head fluctuations could reduce pumping by 

either drying wells, or increasing pumping costs; however, these dynamics are unrepresented in 

the model, and have not been widely reported as affecting wells drawing from the ESPA.  

Therefore, we consider the results of our model would be unchanged if seasonal dynamics in 

aquifer head were more closely aligned with observations. 

Simulated irrigation abstractions are generally low compared to USGS observations (Figure 

AI.3) and could be increased by either forcing lower efficiency of baseline irrigation practice or 

increasing evapotranspiration from crops.  The efficiency of irrigation technologies is reasonably 

characterized empirically in the baseline parameterization; however, uncertainties with regard to 

specific technological parameterizations certainly exist.  For instance, the distribution uniformity 

parameter that controls the amount of water applied to a field during an irrigation event can vary 

dramatically at field scales (Burt et al., 1997).  Following the analysis of Jägermeyr et al. (2015), 

we use the parameters selected from their sensitivity analysis that optimized trade-offs between 

crop yield and water use for each technology type.  The distribution uniformity, as well as 

parameters controlling percolation beneath canals and soil infiltration rates, could create less 

efficient irrigation technologies that would reduce the bias in irrigation water used; however, we 

avoided calibrating to avoid overfitting with respect to drivers of incidental returns and non-

beneficial use.  Though unbiased at global scales, the potential evapotranspiration calculation 

used here (Hamon, 1963) may underestimate the flux from the semi-arid environment of the 

USRB.  Alternatives such as the Penman-Monteith (Monteith, 1965), resulted in poorer 

representation of the spatial variability in irrigation abstractions though the whole-basin total 
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abstractions were less biased.  An increase in irrigation abstractions from higher potential 

evapotranspiration would increase the baseline CIE by increasing the beneficial consumption of 

crops, while increasing non-beneficial use and incidental returns only slightly.  The excess 

volume of water lost via simulated discharge from early onset of snowmelt is less than the 

difference between WBM’s and USGS’s use estimates for gross irrigation water use in the 

USRB.  Increased abstraction may reduce water available for EAR leading to greater trade-offs 

between changing streamflow capture and aquifer drawdown. 

Comparison of baseline simulations with other studies 

The fraction of incidental returns to the ESPA predicted by simulations is a critical factor for 

interpreting these results, and we compared simulations with both empirical estimates and 

previous modelling studies.  The fraction of incidental returns in ESPA storage was lower than 

the fraction of incidental returns entering the aquifer as recharge because the aquifer equilibrates 

over longer timescales than the simulations were conducted.  The composition of the aquifer was 

dominated by relict water because we identified all water in the system as relict at the end of 

spin-up in these simulations to permit tracking fate of all incidental returns.  Following sufficient 

run-time, the model as parameterized at baseline should equilibrate to a composition of at least 

60% irrigation returns (Table 3).  In 1994 and 1995, isotopic and geochemical tracers showed 

that water in downgradient portions of the ESPA and in spring outflows consisted of 

approximately 75% incidental returns from the Snake River (Plummer et al., 2000).  The fraction 

of incidental returns in ESPA recharge was lower in this analysis than estimated from tracers 

because a) our estimate represents a dilution of incidental returns over the entire ESPA, not local 

flow-paths sampled near the down-gradient portions of the ESPA where agriculture is 

concentrated, and b) CIE efficiency from changing irrigation technology decreased rates of 
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incidental recharge between 1994 and 2010 (Dieter et al., 2018; Maupin et al., 2014).  These 

differing assumptions of the amount of irrigation return water in the ESPA is accounted for in 

our analysis. 

The IDWR’s ESPAM2.1 apparently predicted greater net recharge from irrigated agriculture to 

the aquifer; however, direct comparisons are complicated by differing simulation time periods 

and definitions of simulated fluxes (IDWR, 2013).  The ESPAM2.1 estimates of net recharge 

accounted for all infiltration from irrigated croplands, whereas we report the infiltration 

explicitly from applied irrigation water.  Net recharge predicted by ESPAM 2.1 was 3.4 km3 y-1, 

greater than the 1.9 km3 y-1 of net incidental recharge predicted by WBM at the baseline 

parameterization.  The ESPAM2.1 simulation period was earlier than here (1980 through about 

2008), but that model did not exhibit trends in net recharge that would make it consistent with 

WBM during the later simulation period used here.  While the greater groundwater abstractions 

in the WBM baseline parameterization (2.7 km3 y-1) compared to ESPAM2.1 (2.2 km3 y-1) may 

partially explain the difference in net incidental recharge, groundwater abstractions were still 

lower than the 3.4 km3 y-1 estimated by Frans et al. (2012).  Both crop type data and 

meteorological data employed by ESPAM2.1 differ from the data used here.  Wisser et al. (2008) 

found that combined influence of climate and crop landcover data resulted in uncertainty in crop 

irrigation demand of up to 50%, consistent with differences between WBM and ESPAM2.1.  

Considering the low bias in WBM’s simulated gross irrigation compared to USGS water-use 

estimates (Figure AI.3), and lower rate of net recharge in WBM, we expect that our rates of 

incidental returns to the system and therefore irrigation reuse are likely underpredicted, at least 

with respect to the ESPAM2.1.  Furthermore, the reduction in net recharge with modernization 

could be more significant than simulated here, making our estimates of the MB metric 
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potentially low (i.e. conservative). 

Baseline simulation water budget and fates 

Major fluxes of irrigation abstractions are shown schematically in Figure 12.   Beneficial 

consumption (B) was about 3.52 km3 y-1, representing 40% of gross irrigation abstractions (G) at 

baseline irrigation.  Nearly all incidental returns percolated due to the highly permeable geology 

underlying most of the USRB.  About 10% of gross irrigation abstracted, or 0.86 km3 y-1 of water 

(ranging from 0.43 to 1.11 km3 y-1), was reused for irrigation each year under the baseline 

conditions (Figures 11 and 12).  Figure 11 shows the spatial intensity of irrigation water reuse 

(𝑅) for the baseline parameterization.  Major controls on the spatial distribution of irrigation 

reuse included a) administrative basin extent and the balance of incidental returns in reservoirs 

acting as irrigation source, b) upstream catchment area, and c) presence of the ESPA.  Reservoirs 

received incidental returns in runoff from upstream croplands.  The fraction of incidental returns 

in surface irrigation for entire administrative basins reflect the fraction of irrigation returns stored 

within the collection of source reservoirs.  Therefore, the reuse changed abruptly at 

administrative basin boundaries (Figure 11).   Source reservoirs were not defined in Wyoming at 

the eastern margin of the model domain.  Here, water was provisioned by locating the nearest 

downstream available water so 𝑅 increased as incidental returns accumulated along downstream 

flowpaths.  Irrigation reuse changed along the margins of the ESPA as the incidental recharge 

contributed by groundwater abstractions was characterized by the short-turnover shallow 

groundwater pool outside the ESPA region.  Therefore, in the extreme west of the domain, 

shallow groundwater contained a high fraction of incidental recharge relative to the ESPA.   

Beneficial (BR) and non-beneficial reuse (NR) is calculated explicitly in the model as the 

beneficial and non-beneficial fraction of gross irrigation reuse.  The fraction of beneficial reuse 
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to gross irrigation reuse (BR/R) is roughly equal to basin-wide average classical efficiency 

(B/G), with slight spatial differences accounting for differing technologies in locations where 

reuse is more prevalent.  Approximately 0.35 km3 y-1 of beneficial irrigation consumption is 

derived from irrigation reuse under our baseline parameterization (Table 3) representing about 

10% of total beneficial consumption (as BR/B), and 8% of total incidental returns (as BR/L). 

Effects of irrigation modernization 

Modernization of irrigation technology led to reduced aquifer storage and increased export of 

water from the basin. Specifically, we find that the modernization decreased plot-scale incidental 

returns from 4.6 to 0.2 km3 y-1 (Figure 13a).  As a result, the rate of loss from aquifer storage 

(drawdown) increases from about 0.7 km3 y-1 to about 1.7 km3 y-1 when simulated without EAR 

(Figure 13b), while average annual discharge leaving the basin increases from 10.8 km3 y-1 to 

12.2 km3 y-1 (Figure 13d, Table 3).  In these experiments, crop use is independent of irrigation 

process, so no changes in beneficial crop evapotranspiration are simulated (Figure 13a).  Non-

beneficial consumption decreased from 0.62 km3 y-1 in the baseline to 0.01 km3 y-1 for 

parameterization Eff.I.  The high rates of percolation exceeded evaporative demand from bare 

soils so that incidental recharge was much greater than the non-beneficial consumption from bare 

soil evaporation. 
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Figure 13:  Critical water fluxes across efficiency scenarios paired by simulations without (left) 

and with (right) enhanced aquifer recharge (a).  Component fractions of gross irrigation water for 

the USRB as 2008-2017 averages.  Average change in volume of the ESPA (b).  Enhanced 

aquifer recharge (recharge to the ESPA upstream of American Falls) required to stabilize the 

aquifer water balance (c).  Horizontal lines represent target  (0.26 km3 y-1) and feasible (0.75 km3 

y-1) bounds on existing managed aquifer recharge practice and infrastructure (IWRB, 2016).  

Discharge and exported incidental returns at the watershed outlet at King Hill, Idaho.  Horizontal 

line indicates average discharge at baseline (d). 
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Enhanced Aquifer Recharge 

Simulated EAR ranged from 1.1 km3 y-1 (baseline) to 2.4 km3 y-1 (Eff.I) to maintain aquifer 

volume within 0.11 km3 y-1 (Figure 13, Table 3).  The 120% increase in EAR from baseline to 

the most efficient parameterization offset a loss of 4.3 km3 y-1 from incidental recharge to the 

aquifer.   Incidental recharge from irrigated crops was 4.5 km3 y-1 at baseline, and net recharge 

from irrigated agriculture (incidental recharge minus groundwater abstractions) was positive at 

1.8 km3 y-1 at baseline with or without EAR.  Incidental returns represented 60% of water 

entering the ESPA under baseline conditions (Table 3).  As irrigation efficiency increased, 

incidental recharge to the aquifer decreased, declining to 0.18 km3 y-1; incidental recharge flux 

did not depend on whether EAR was simulated or not.  Groundwater abstractions also declined 

with increasing efficiency; however, for the most efficient parameterizations, abstractions 

exceeded incidental recharge and net recharge from irrigated crops (𝐼𝑟𝑐ℎ) became negative, 

declining to -0.8 km3 y-1 (Table 3).  

We hypothesized that the relative increase in EAR needed to stabilize the aquifer would be less 

than the loss of net irrigated recharge (𝐼𝑟𝑐ℎ) resulting from increasing irrigation efficiency.  

Simulated water balance supported the hypothesis (Figure 14a).  For parameterizations more 

efficient than baseline, the increase in EAR for each parameterization was less than the loss of 

net irrigated recharge from baseline, and the relationship between the two metrics appeared to be 

non-linear (Figure 14a).  Approximately 72% of the lost net irrigated recharge was required as 

EAR to stabilize the aquifer for parameterizations Eff.A through Eff.E, and then only 

approximately 17% of the lost net irrigated recharge was required as EAR for parameterizations 

Eff.F through Eff.I (Figure 14a).  The abrupt change in the effectiveness of EAR to stabilize the 

aquifer corresponds with an increasing proportion of direct (drip) irrigation for Eff.F through 
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Eff.I (Table 2), reflecting the relatively larger reduction in the distribution uniformity parameter 

between sprinkler (0.55) and direct (0.05) than from surface (1.15) to sprinkler (0.55), causing 

rapidly decreased non-beneficial consumption.  The magnitude by which the increase in required 

EAR is less than the relative loss in net irrigated recharge reflects the management benefit (MB) 

(Equation 5) that enhanced aquifer recharge, combined with efficiency, has on aquifer balance 

(Figure 14a).  MB increased to a maximum of 1.3 km3 y-1 for Eff.I, the only parameterization 

that exceeded the 1.06 km3 y-1 EAR needed at baseline to stabilize the aquifer. 

For all simulations conducted, the rate of aquifer drawdown (negative 
𝑑𝑉𝐸𝑆𝑃𝐴

𝑑𝑡
) was greater than 

the relative change in flow out of the basin from baseline (Figure 14b). Changing flow out of the 

basin represents a change in streamflow capture, or how use of water in the basin affects the flux 

leaving through the river.  Simulations with EAR exhibited lower outlet discharge compared to 

baseline (greater streamflow capture or negative Q*-Q - Figure 14b) as a fraction of Snake River 

flow was diverted to aquifer replenishment.  The rate of EAR controlled the rate of streamflow 

capture by explicitly adding water to the aquifer, and not through altering the head-dependent 

baseflow flux back to the river, since increasing EAR also increased baseflow.  Note that we 

focus on changes in streamflow capture relative to baseline, and do not make inference to the 

absolute fluxes of streamflow capture associated with use of the ESPA.  As classical irrigation 

efficiency increased both with and without EAR, the change in streamflow capture came closer 

to the rate of aquifer drawdown. 
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Figure 14: Enhanced aquifer recharge (EAR) above the EAR required at baseline (EAR*) to 

ensure aquifer stabilization plotted against the reduction in net recharge from irrigation (𝑰𝒓𝒄𝒉) 

from baseline (𝑰𝒓𝒄𝒉
∗ ) as classical irrigation efficiency (CIE) increases (a).  Dotted line represents 

equal increases in EAR and reductions in net recharge.  All scenarios show that less additional 

EAR is required than is lost from net recharge as CIE increases, the magnitude is referred to as 

the management benefit (MB).  Slopes of piecewise linear regressions (black lines) between two 

variables are shown with standard error of the estimate.  Aquifer drawdown plotted against 

change in basin streamflow capture (Q*- Q) with dotted line representing equal changes to 

discharge from baseline and drawdown (b). 

 

Discussion  

Aquifer reliance on incidental irrigation for recharge 

We found a non-linearity in the volumes of enhanced aquifer recharge (EAR) required to 

stabilize the aquifer as more efficient irrigation technologies were employed. That is, 

incrementally smaller volumes of enhanced aquifer recharge (EAR) were needed compared to 

the net irrigated recharge lost due to using more efficient technologies (Figure 14a).  This applied 

only for incremental increases in EAR volumes above requirements for aquifer stability at the 

baseline parameterization.  The volume represented by the efficiency of the combined system 

from pairing increasing CIE with EAR, the management benefit (MB - Figure 14a) demonstrates 
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that the rate of increasing EAR is less than the rate that net recharge declines.  However, the 

volumetric benefit only exceeded the baseline requirement of EAR for the most efficient (Eff.I) 

case, and the benefit was not evident for parameterization Eff.A.  The management benefit is 

predominately attributed to additional capture of Snake River discharge (Figures 13 and 14), and 

by way of increasing irrigation water reuse (Table 3) and decreasing incidental returns (Figure 

13).  This illustrates that in regions with conjunctively managed surface and groundwater sources 

like the USRB, increasing basin-wide water resource availability via combined implementation 

of managed aquifer recharge and changing irrigation efficiency can only be expected to capture 

more streamflow by transferring water to longer residence time compartments during seasons 

when water is more available. 

Our simulations suggest several important implications of a conjunctive management strategy 

promoting aquifer recharge while increasing the efficiency of irrigation technology.  The amount 

of EAR needed for a given technology parameterization always exceeded the corresponding rate 

of drawdown without EAR by 36 to 66%.  The excess EAR was needed because the aquifer 

drainage continues between peak EAR, which follows peak river flow from March to May, and 

peak irrigation demand (July), and because diverting water away from supply reservoirs shifts 

reliance to groundwater, which in turn required additional EAR for stabilization.  The shift to 

more groundwater utilization is the primary reason for greater irrigation water reuse for 

simulations with EAR compared to simulations without (Table 3).  Furthermore, the rate of 

aquifer drawdown (up to 1.7 km3 y-1 without EAR, and approximately 0 km3 y-1 with EAR) more 

closely approximated changing streamflow capture as CIE increased, meaning that the system 

converted a greater proportion of the captured streamflow to aquifer storage bringing the change 

in fluxes into greater parity.  Despite the increasing parity between the rate of drawdown and 
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capture with increasing CIE, drawdown always exceeded the magnitude of the change in 

streamflow capture (Figure 14b).  This is an expected result because surface water is the 

dominant source for irrigation and the aquifer is naturally located upgradient of the basin’s 

outlet; interventions that add water to the aquifer (decrease drawdown), will eventually lead to 

increased downstream discharge (decreased streamflow capture), but the converse is not 

generally true.  Therefore, increasing CIE without EAR will act to deplete the resource relied on 

by groundwater irrigators more than the impact that EAR would have on downstream users, at 

least in terms of volumetric shortfalls. 

The rate of change in aquifer storage (
𝑑𝑉𝐸𝑆𝑃𝐴

𝑑𝑡
) factors significantly in the preceding analysis, and 

over-estimation of the present-day rate of aquifer drawdown may shift values, but are unlikely to 

change the general conclusions.  At baseline, we estimated 
𝑑𝑉𝐸𝑆𝑃𝐴

𝑑𝑡
 to be -0.71 km3 y-1, which is a 

greater rate of drawdown than the -0.34 km3 y-1 estimated by the ESPAM2.1 (IDWR, 2013), the 

latter being likely more accurate given our underestimates of percolation losses described above.  

The rates of EAR we identified to stabilize the lumped representation of the ESPA exceeded 

both targets and feasible limits of managed aquifer recharge (IWRB, 2016, Figure 14c).  This 

potential limitation should be explored in future research focusing on evaluating specific 

management objectives. 

Our simulations assumed a constant beneficial consumption, though use and efficiency are often 

positively correlated due to the economic incentives to use more water when it is made available 

locally through efficiency measures (Contor and Taylor, 2013; Grafton et al., 2018; Pfeiffer and 

Lin, 2014; Tran et al., 2019), and because prior appropriation doctrine requires that water rights 

holders use their full water right beneficially, essentially encouraging constant levels of water 
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withdrawal regardless of CIE.  In the USRB, it is reasonable to assume negligible slippage and 

rebound effects.  Frequent droughts, the collective action of irrigation districts, and legal 

agreements between water user organizations outside of the prior appropriation system, all work 

to incentivize reduced water withdrawals when possible (Gilmore, 2019).  Moreover, a 

settlement between surface and groundwater irrigators (IDWR, 2015) details specific 

requirements for ensuring stable aquifer head for both irrigation and downgradient outflow from 

springs.  To the extent that beneficial use could increase with higher CIE, greater EAR would be 

required to meet the mandate of aquifer stabilization, or aquifer drawdown would increase 

without EAR, for any given CIE relative to that simulated here.   

The generalizable findings from these simulations have implications for similar semi-arid basins 

relying on a combination of groundwater and seasonably available surface water. Achieving 

aquifer stabilization and increasing downstream discharge from combining increased CIE with 

EAR as simulated here, would require significant investment in hydroinfrastructure of the basin.  

In some systems these investments may be a prerequisite for groundwater sufficiency (Scanlon et 

al., 2016).  In these simulations, EAR was a prerequisite for aquifer stabilization because no 

tested CIE was able to create a stable aquifer with existing agricultural production and natural 

recharge alone.  In the USRB, the current head level targeted for stabilization is greater than head 

existing in the basin prior to irrigation (Kjelstrom, 1995), and generates increased rates of 

baseflow from springs.  This is a unique issue from many other semi-arid basins relying on 

groundwater for irrigation that are managed against aquifer depletion below pre-irrigation heads 

(Bierkens and Wada, 2019).   The primary adverse externality of EAR, aside from technical 

considerations of feasibility, is decreasing watershed discharge on an annual basis, which would 

be undesirable for downstream users; however, increasing flow during the irrigation season can 
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be expected (Van Kirk et al., 2020).  We found that decreased downstream flow simulated here 

with EAR, which at 10.2 to 10.6 km3 y-1 still exceeds the observed record during the same period 

(7.35 km3 y-1) and existing requirements for instream flow (e.g. 4.1 km3 y-1) (IWRB, 1985) by 

greater than the existing model bias in outlet discharge.   

Irrigation Reuse in the Upper Snake River Basin 

Incidental returns from irrigation were a major component of the basin’s water balance, and 

therefore are key to understanding basin-scale interpretations of system efficiency.  Within the 

USRB, reuse of incidental returns generated during the model epoch currently makes up at least 

9.9% of gross irrigation and would increase to 14.6% if EAR was used to stabilize the aquifer 

(Table 3, Figure 12).  The baseline value of irrigation water reuse is likely underestimated due to 

the low bias in gross irrigation, lower rate of net agricultural recharge relative to ESPAM2.1, and 

a high fraction of relict water composing the ESPA water volume in our simulations.  As 

irrigation efficiency increased and incidental returns decreased both with and without EAR, the 

total reuse of irrigation water declined (Table 3).  However, the fraction of incidental returns that 

were ultimately used beneficially (beneficial reuse) exhibited very different behavior if EAR was 

simulated.  With no EAR, beneficial reuse remained between 7 and 8% of total incidental returns 

for all efficiency parameterizations.  With EAR, the beneficial reuse increased steadily with CIE 

to 30% of total incidental returns for parameterization Eff.I.  As a result of the increasing 

beneficial reuse, basin-scale effective irrigation efficiency either increases faster (with EAR) or 

slower (without EAR) than classical irrigation efficiency (Figure 15).   
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Figure 15: Effective irrigation efficiency plotted against the classical irrigation efficiency of each 

parameterization.  Effective irrigation efficiency is calculated three ways based on the estimates 

of irrigation reuse: near-term – simulated reuse where incidental returns in aquifer abstractions is 

represented explicitly during the model epoch (3%), equilibrium – incidental returns in the 

aquifer abstractions are assumed to be at equilibrium in the aquifer at ratio of incidental recharge 

to total recharge (Table 3), and geochemical – incidental returns in aquifer abstractions are 

assumed to be represented by an average estimated geochemically (Plummer et al., 2000) (75%). 

 

Metrics such as the effective irrigation efficiency (EIE) provide a unified metric of efficiency 

that captures the reusability of incidental returns at the watershed scale (Haie and Keller, 2008).  

Generally, EIE is calculated using assumptions of the recoverability of irrigation returns; 

however, we calculate basin-wide EIE using simulated recovered volumes and thereby 

incorporating explicit estimates of recovered returns.  Water within the ESPA was primarily 

simulated as relict water; therefore, the simulations neglect a significant volume of irrigation 

returns stored within the aquifer from incidental recharge pre-dating the model epoch.  Our 

estimates of irrigation reuse are therefore low and reflect only reuse of incidental return and 
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subsequent abstractions from the aquifer during the model epoch.  We calculate three estimates 

of EIE, 1) near-term EIE: using the explicitly tracked incidental returns during the model epoch, 

2) equilibrium EIE: assuming the equilibrium fraction of incidental returns in abstracted 

groundwater equals the ratio of incidental to natural recharge (Table 3), and 3) geochemical EIE: 

assuming that aquifer abstractions consist of a constant fraction of 75% incidental returns 

estimated geochemically by Plummer et al. (2000).  Without enhanced recharge, the actual rate 

of recovery of incidental returns via irrigation was low, so effective irrigation efficiency is only 

slightly greater than classical irrigation efficiency at any parameterization (Figure 15) and 

reflects the large proportion of fresh snowmelt used to supply irrigation most years (Figure 13).  

With enhanced recharge, the added reuse increases EIE faster than CIE for parameterizations 

Eff.A through Eff.G.  Assuming equilibrium or geochemical estimates of returns in aquifer water 

increases estimated EIE by 7 and 11% at baseline, respectively.  Moreover, improving irrigation 

efficiency from baseline through parameterization Eff.E increases the rate that EIE improves.  

The parameterizations that correspond with an increasing rate of EIE improvements are the same 

parameterizations that show a smaller increase in the management benefit, e.g. a smaller amount 

of additional EAR compensating for the loss of net agricultural recharge (Figure 14a).  Though 

the EIE captures a more complete picture of the effect of changing irrigation technology over the 

complete system, the high rate of increase in EIE for small changes in irrigation technology may 

overstate the benefits of intervention on the water balance of the entire basin as captured by the 

calculation of management benefit. 

Incidental returns as a component of discharge at the basin outlet at King Hill, ID was 0.84 km3 

y-1 (approximately 8% of streamflow) at baseline and declined as CIE increased (Table 3).  

Therefore, the recoverable incidental returns can be used beyond the USRB.  With EAR, 
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incidental returns in discharge were slightly higher than without for each technology 

parameterization and declined to 0.04 km3 y-1 at Eff.I; thereby decreasing incidental returns as a 

fraction of flow to 0.3%.  Modernization acted to increase the unabstracted fraction of discharge 

leaving the basin, therefore benefitting downstream users while increasing aquifer drawdown.  

The addition of EAR captured more unabstracted streamflow in the basin, while maintaining a 

similar flux of exported incidental returns.   

Decreasing the fraction of incidental returns in river flow would be expected to improve water 

quality in the river.  However, increasing irrigation reuse implies further recycling of agricultural 

runoff, which tends towards greater acute water quality threats such as salinization (Ghassemi et 

al., 1995; Qadir, 2016) and increasing nitrate concentration (Frans et al., 2012).  Presently, 

neither soil salinization nor waterlogging are widespread in the USRB owing to existing 

conjunctive water abstractions and good drainage, but as irrigation technology modernizes in the 

USRB and excess irrigation water for flushing is reduced, isolated instances of salinization are 

becoming increasingly common (Ellsworth, 2004; Moore et al., 2011).  While decreasing 

incidental recharge could exacerbate soil salinization if left unmanaged, irrigation reuse and 

incidental returns in USRB export both declined (Figure 14, Table 3), which could potentially 

improve water quality to the ESPA and downstream users.  Our definition of incidental returns 

included canal seepage, a major source of recharge to the ESPA.  Canal seepage only represents 

a source of contaminates if they receive poorly managed runoff, which is not evaluated here.  

Therefore, in the USRB incidental returns and reuse can only be loosely interpreted as an 

indicator of water quality, and fate and transport processes would be needed to assess the explicit 

fate of any agricultural contaminants.  Considering the growing concerns of salinization 

associated with irrigated agriculture (Cañedo-Argüelles et al., 2013; Ghassemi et al., 1995), 
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especially in semi-arid and arid regions with increasing technological efficiencies (Banin and 

Fish, 1995; Carr et al., 2010; Tal, 2016), additional attention is needed to evaluate trade-offs of 

managing soil salinization and efficiency of irrigation technology. 

Conclusions 

Our simulations of the USRB characterize the limitations of relying exclusively on technological 

adaptation to address water shortfalls in semi-arid regions.  Technological modernization does 

not by itself promote aquifer stabilization in some contexts.  Modernization without managed 

aquifer recharge (MAR) resulted in a greater loss from aquifer storage and increased downstream 

flow, undermining the groundwater resource needed for agriculture resiliency in this semi-arid 

basin.  Furthermore, we found that through combined application of MAR and increasingly 

efficient irrigation technology, the potential increase in downstream flow was always less than 

the increased drawdown in the aquifer, meaning that less streamflow capture than drawdown was 

needed for similar crop production in a conjunctively managed system.  By increasing MAR to 

values likely difficult to achieve in practice (IWRB, 2016), the system utilizes only a portion of 

the net irrigated recharge lost by modernization to stabilize the aquifer. The simulations tested 

demonstrate the trade-offs inherent in reducing non-consumptive losses through modernization 

that have been explored in other regions with high gross irrigation reuse (Simons et al., 2015) 

and illustrate how modernization exports benefits to downstream users.  The absence of clear 

evidence for significantly improved water availability with modernization that is predicted for 

global scales (e.g. Jägermeyr et al., 2015, 2016; Sauer et al., 2010) is because exported benefits 

(net increase in water availability) are absorbed by downstream users when analyzed at that scale 

(Grogan et al., 2017).  However, in a single headwater semi-arid basin, there is a fundamental 

lack of parity between local groundwater users and downstream users; any intervention that 
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improves aquifer storage necessarily also benefits downstream users eventually, while the 

converse is not necessarily true.  Also, potential policy and comprehensive water management 

initiatives which are likely to co-occur with modernization (Gleick et al., 2011) can provide 

additional benefits to basin water budgets not realized solely by modernizing irrigation 

technology (Jägermeyr et al., 2015).  The ineffectiveness of technological modernization to 

stabilize the aquifer by itself may reflect the specific setting of the USRB that naturally favors 

non-consumptive loss to non-beneficial use via high percolation rates coupled with a 

straightforward avenue for local reuse via a productive aquifer and springs.  Irrigation reuse 

declines as classical irrigation efficiency increases, but using MAR increased the reuse of 

incidental returns.  Though we expected MAR to reduce reuse of incidental returns through the 

introduction of more pristine water to the aquifer, the larger effect of shifting irrigation reliance 

towards groundwater from surface water was observed, thereby increasing reuse at the basin 

scale.  The added reuse from implementing MAR in our simulations lead to effective irrigation 

efficiency increasing faster than classical irrigation efficiency.  We would expect the nature of 

gross irrigation reuse in the USRB to be neither an isolated instance, nor a general exemplar of 

water allocation issues, but it does provide an example of the complexity and lack of 

generalizability of specific interventions needed to achieve agricultural sustainability. 
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CHAPTER III 

EXISTING WETLAND CONSERVATION PROGRAMS MISS NUTRIENT 

REDUCTION TARGETS 
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Increasing coastal hypoxia results from export of excess nutrients used for fertilization of row 

crops (Goolsby et al., 2000; Fennel and Testa, 2019; Goolsby et al., 2001; Tian et al., 2020), and 

has the potential to fundamentally change the character and habitability for marine species over 

the next millennium (Breitburg et al., 2018).  Nutrient-rich runoff from agricultural lands in the 

Mississippi/Atchafalaya River Basin (MARB) needs to decline by about half to reverse the trend 

of expanding areas of bottom-level hypoxia in the Gulf of Mexico (GoM) (Dale, 2010; Goolsby 

et al., 2000; Marshall, 2018; Scavia et al., 2017).  Nutrient mitigation measures should target hot-

spots of excess fertilizer application or manure production (Roy et al., 2021).  Subsurface drains 

(SSDs) are widely distributed throughout the mid-western  United States (Sugg, 2007), and 

leachate from corn/soy rotations grown on SSD croplands represent the largest single source of 

excess nitrogen discharged to the Gulf of Mexico (Goolsby et al., 2001).  Numerous studies 

(Marshall, 2018; Christianson et al., 2018; Liu et al., 2018; Ribaudo et al., 2001; Zimmerman et 

al., 2019; Santhi et al., 2014)  identify common mitigation measures suggesting agreement about 

appropriate measures.  Field margin interventions that intercept nitrogen-laden water between 

crop fields and streams, including in-situ bioreactors (Jaynes et al., 2008; Schipper et al., 2010),  

riparian infiltration (Jaynes and Isenhart, 2014), and constructed, treatment, or restored wetlands 

are often cited as effective nutrient reduction strategies (NRS) (Ribaudo et al., 2001; 

Christianson et al., 2013; Mitsch et al., 2001; Hansen et al., 2018; Iovanna et al., 2008; Crumpton 

et al., 2006; Cheng and Basu, 2017) as they exhibit high nutrient removal capacity, require low 

to moderate operational labor, and have numerous synergistic benefits such as flood regulation 

(Ameli and Creed, 2019) .   

Despite the level of effort afforded to studying the denitrifying capacity of wetlands, recent prior 

studies at continental scales have used simplified scaling approaches to predict restoration effects 
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with divergent estimates of export reduction ranging from 1.6% (Marshall, 2018) to 54% (Cheng 

et al., 2020).  There are numerous complexities in representing wetland dynamics such that 

differing assumption should be expected to generate a range of estimates of the potential 

conservation benefit.  Denitrification (bacteria mediated reduction of nitrate to gaseous nitrogen 

and nitrous oxide) in wetlands is understood to be dynamic over time and space scales 

(Wollheim et al., 2014; Mulholland et al., 2008; Stewart et al., 2011), but is often assumed to be 

a temporally constant percent of inputs (denitrified fraction between 40%-50%) in macroscale 

studies that include wetland restoration (Marshall, 2018; Ribaudo et al., 2001; Christianson et al., 

2013; Mitsch et al., 2001; Kovacic et al., 2000; Casey and Klaine, 2001). Hydrologic conditions 

interacting with wetland characteristics create complex distributions of transport time-scales 

affecting denitrification (Carleton and Montas, 2010; Werner and Kadlec, 2000; Lightbody et al., 

2008).  Such dynamics can create pulses of increased nitrate flux from wetlands to receiving 

waters especially during storms (Fisher and Acreman, 2004; Baker et al., 2018).  Engineering 

constraints needed for system longevity further limit both the area and amount of runoff wetlands 

can process (Christianson et al., 2013; Tanner et al., 2010; Iovanna et al., 2008).  In addition, the 

cumulative influence of wetlands affect both hydrologic (Rajib et al., 2020) and biologic 

(Johnston, 1991) response in streams, which may further increase denitrification in river 

networks (Evenson et al., 2021; Cheng et al., 2020).  Considering the above complexities, it 

remains unclear whether a subset of assumptions describing these processes is responsible for the 

wide range of potential nitrate reduction predicted in prior studies, and better understanding 

which of these dominate whole system nitrate reduction potential can guide future research or 

conservation efforts. 
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Here we provide a whole-system assessment of field-margin wetland restoration using coupled 

process-based models to understand mechanisms that cause such a wide range in the potential 

impact of using wetlands to reduce nutrient export.  Furthermore, the models provide a systems-

scale analysis of nutrient reduction outcomes for two federal programs incentivizing the 

restoration of croplands to treatment wetlands in the United States. Our analysis, using coupled 

Earth system models, evaluates the efficacy of wetland restoration across gradients of adoption 

of two federal programs in the United States (the Farmable Wetlands Program and the Wetlands 

Reserve Program, FWP and WRP, respectively).  Prior studies have not focused specifically on 

these restoration programs, nor provided as comprehensive of a representation of engineering 

constraints or limitations imposed by seasonal and storm-scale dynamics.   

We find altogether unique results to prior studies when the agroecosystem is analyzed in an 

integrated framework that reflects the process of landscape restoration, while adhering to 

engineering constraints, and when the serial connections through the river network are 

considered.  Furthermore, we account for daily time-scale dynamics of hydrologic flows and 

biologic uptake, factors rarely treated in prior analyses (Evenson et al., 2021).  We ask whether 

restoring wetlands on restorable lands could reduce nitrate export to the Gulf of Mexico 

sufficiently to meet targets (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 

2008; Scavia et al., 2017) established to protect the marine ecosystem.  We hypothesized that 

both seasonality and landscape design constraints not previously considered together at the 

whole basin-scale would be critically important when considering the effectiveness of wetland 

restoration to mitigate nitrate export. 
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Methods 

Overview of models 

We coupled macro-scale process models of agroecology (AgroIBIS - Kucharik, 2003) and 

hydro-biogeochemistry (WBM - Stewart et al., 2011; Wollheim et al., 2008a; Samal et al., 

2017), and introduced new functionality to WBM that represented flow and nitrate transport 

from local croplands through field-margin treatment wetlands.   The framework represents the 

equilibrium fluxes of nitrate through the MRB considering historic scenarios of wetland 

restoration under the two programs that focus on highly optimized treatment wetlands replacing 

subsurface-drained crops  (Farmable Wetlands Program - Conservation Reserve Program, 2015), 

and opportunistic restoration of wetland systems where replacing croplands was ecologically 

feasible (Wetland Reserve Program -Natural Resources Conservation Service, 2021).  Nitrate 

leachate from AgroIBIS was input to WBM following aggregation by crop area.  Nitrate 

leachate flux at each pixel was an average of each crop type weighted by a representative area of 

each landcover.   

Crop cover  

Crop cover fractions of each 5-minute pixel were aggregated from Ramankutty et al. (2008) and 

split between irrigated and rainfed crops following Siebert and Döll (2010), both datasets 

representative of the year 2000.  The total of irrigated and rainfed maize, soy, and wheat from 

these datasets represent 94% of all agricultural lands in the MRB.  Therefore, we defined only a 

single “other crop” category and associated other irrigated crops using fluxes calculated for 

irrigated maize, and other rainfed crops using an average of values from rainfed maize and 

wheat.   
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To define the fraction of cropland undergoing annual maize/soy rotation, we utilized the 

USDA’s Crop Data Layer (Han et al., 2012) to calculate the fraction of 30-meter pixels that 

transition from corn to soy or from soy to corn for each year of data from 2008 to 2019, as well 

as those pixels that remain maize or remain soy for those years.  We then averaged those pixels 

up to our 5-minute resolution, to capture the relative fraction of continuously planted maize, 

continuously planted soy, and annual maize/soy rotation within each 5-minute pixel.  We then 

assumed these averages are appropriate for the domain in the year 2000 and applied these 

fractions to the sum of maize and soy from Ramankutty et al. (2008).  

Subsurface drains 

Data on the spatial cover of subsurface drains (SSD) is available as county average fraction of 

cropland outfit with SSDs (fssd).  Sugg (2007) calculated the area over which SSD is possible, 

then adjusted these values to match several different incomplete inventories to arrive at a 

reasonable approximation representative of the 1990s across the conterminous United States.  

This dataset was found to predict greater spatial coverage of SSD in northern Minnesota when 

compared against a high resolution dataset that combined remote sensing data with permits for 

construction (Cho et al., 2019).  SSD area fraction (ASSD) for each US county (U.S. Census 

Bureau, 2015) was rasterized to our model resolution, and at each pixel ASSD was limited to the 

pixel intersection with total crop area (Ramankutty et al., 2008) to ensure consistency between 

our datasets.  A complete description of SSD representation in WBM is provided in Appendix 

III, which includes a table describing each of the variables used here (Table AIII.1). 

Field-margin wetlands model 

Briefly, our model of wetland denitrification assumes a well-mixed system with denitrification 

occurring along the benthic surface parameterized as a temperature-dependent process, with 
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flow and nitrogen bypassing the wetland when water storage exceeded a specified maximum 

depth (Figure 16).  The wetland pool was conceptualized as occupying the lowest areas of each 

pixel along the riparian margin nearest streams such that it can receive flow from surrounding 

uplands.  Though the pool was calculated as a single volume, in practice restored wetlands 

would be distributed over multiple locations within a pixel.  This assumption maximized the 

amount of crop runoff that can be treated, making our estimates of treatment wetland 

denitrification biased high, but is consistent with the identification of potentially restorable 

wetlands (Horvath et al., 2017).  A complete description of the representation of upland 

wetlands is provided in Appendix III. 

 

Figure 16: Field-margin wetlands and parameter definitions including catchment and buffer areas 

(a), maximum depth and wetland storage time-constant (b), and efficiency loss relationship 

between denitrification uptake velocity and concentration (c).  Parameter definitions are 

presented as Table AIII.1. 

 

Groundwater fluxes 

A fraction of all leachates percolating to groundwater (χlost) is removed from the surface flow 

system.  The term accounts for long-term net storage term in the vadose zone or deep 

a) 

b) c) 
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groundwater, or other forms of removal including nitrate assimilation, possibly along riparian 

fringes, and was introduced to reduce a high bias in watershed scale nitrate flux from the river 

system.  The parameter was the only calibrated value in the study and was used to minimize the 

bias to observed riverine nitrate flux.  We assume that this flux is independent of wetland 

processing, which is an extension of our assumption that wetlands are not interacting with deep 

groundwater flowpaths and as such does not interact with our counterfactual analyses of wetland 

restoration. 

Temporal and spatial resolution 

AgroIBIS was run at a 5-arcminute resolution across the conterminous United States.  Spinup 

was performed from 1650 to 1947 to generate equilibrium soil biogeochemistry assuming pre-

agricultural vegetation until 1850, then unfertilized wheat through 1947, while recycling climate 

input data available for 1948 to 2007.  WBM was run at a 5-arcminute resolution over a 

geographic domain from 113°55’ W (west) to 77°50’W (east), and 28°55’N (south) to 49°45’N 

(north).  The evaluated domain covered the drainage basin defined by the MERIT 5-arcminute 

drainage network (Yamazaki et al., 2019).  WBM simulations were performed at a daily time-

step.  To perform model spinup, WBM was forced with input data from 1996 through 1999 

repeated five times, then run from 1992 through 1997; a total of 26 years of model spinup.  We 

analyzed output data from 1998 through 2007. 

AgroIBIS calculates water and nutrient balance in soils and calculates nitrate leaching from the 

root zone (Kucharik et al., 2000).  Simulations used here were reported previously (Kucharik, 

2003; Donner and Kucharik, 2008) but re-run with additional outputs needed for WBM at a daily 

time-step.  AgroIBIS assumes all nitrate leaves the root zone via infiltration below the soil with 

no direct surface runoff.  AgroIBIS output pixel specific fluxes for each of 8 land-cover classes 
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over agricultural areas of the MRB: 1) irrigated maize, 2) rainfed maize, 3) irrigated soy, 4) 

rainfed soy, 5) irrigated soy/maize rotation, 6) rainfed soy/maize rotation, 7) rainfed wheat, 8) 

natural vegetation. 

Assessing model behavior 

We compared monthly mean discharge and nitrate flux at USGS gaging stations throughout the 

MRB.  USGS data were collected through the National Water Inventory System (U.S. 

Geological Survey, 2016), for all 58 gaging stations with greater than 200 nitrate samples 

collected since 1980 at co-located continuous discharge measurements.  We reference the basin 

outlet at the USGS gaging station 07374000, which has continuous discharge data only since 

2004, and backfill with chemistry data collected at St. Francisville, Louisiana (07373420) and 

daily discharge data collected by the US Army Corp of Engineers at Red River Landing (station 

01100Q).  Monthly flux data is calculated using LOADEST (Runkel et al., 2004) for each station 

using automated search for the best regression model and linear approximations for the standard 

errors.  The selected regression models for most stations were most often quadratic functions of 

the natural log of discharge and time selected by the Akaike Information Criterion (Akaike, 

1974).  From the pool of 58 stations, LOADEST succeeded in determining a best regression 

model at 15 stations and were distributed throughout the entire MRB.  We compared model 

performance to 12 of these stations, after removing station 06259000 below Boysen Reservoir on 

the Wind River because WBM is unable to recreate the active reservoir management, station 

06752280 at Cache La Poudre, Tinmath, Colorado because of data errors, and station 06877600 

on the Smoky Hill River, in Enterprise, Kansas where WBM predicts much higher discharge 

than observations likely owing to localized loss of water from stream channels to the aquifer 

(Ferrington JR., 1993), which violates WBM model assumptions.  We compared the model with 
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daily discharge and nitrate flux at each station, as well as quarterly and long-term mean values 

across the entire pool of stations using percent bias (PBIAS), model percent error (MPE), Nash-

Sutcliffe Efficiency (NSE - Nash and Sutcliffe, 1970), and Kling-Gupta Efficiency (KGE - 

Gupta et al., 2009).  Manual calibration of χlost was used to minimize bias.  However, the KGE 

was the metric maximized during calibration such that the baseline parameter set used in our 

analysis resulted in a slight negative bias in simulated monthly nitrate flux across the basin both 

across all tested stations (Figure 17) and at the basin outlet on the Mississippi River at Baton 

Rouge (Figure 18).  The model captured seasonality of nitrate discharge when comparing 

observations to the baseline system configuration with 0 km2 restored wetland area (Figure 18).  

Time-series of basin nitrate flux are presented for five levels of adoption of the Wetland Reserve 

Program (Figure 18) for reference to observed export. 

 

Figure 17: Comparison of monthly average AgroIBIS-WBM simulated nitrate flux and 

observations calculated using LOADEST from USGS concentration and flow observations at 12 

stations.  Dashed line depicts agreement between models and observations. 
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Figure 18: Monthly time-series of nitrate export from the Mississippi River at Baton Rouge for 

six scenarios of wetland restoration following the Wetland Reserve Program compared against 

observed nitrate flux with error bands in light gray estimated using LOADEST.  

 

Wetland restoration 

We selected areas for restoration from existing crops from the Potentially Restorable Wetlands 

on Agricultural lands (PRW-Ag) dataset (Horvath et al., 2017) selecting any areas identified as 

either moderate or high potential for restoration.  In both restoration programs, the largest 

limiting factor in restored area was the amount of upstream catchment area remaining in 

agricultural production.  We assumed that restored lands received drainage from only cropped 

areas; therefore, the maximum amount of crop runoff was treated for the area restored to 

wetlands.  The maximum area for restoration via the Wetland Restoration Program (WRP) was 

limited to PRW-Ag areas with upstream rainfed crop area equal to 8.4 times the restored area; 

WRP wetlands (with buffers) were assumed to consist of 12% of their catchment area, consistent 

with mean wetland/catchment area ratios in the basin (Wu and Lane, 2017; Cheng et al., 2020).  

The maximum area for restoration via the Farmable Wetlands Program (FWP) was limited to 

tile-drained PRW-Ag areas with upstream tile-drained, rainfed crop area equal to 22 times the 

restored area; FWP wetlands (with buffers) were assumed to consist of 4.5% of their catchments 

(Iovanna et al., 2008).  We assume that the limiting geographic areas (tile-drained lands, rainfed 
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crops) in our analysis are located entirely upstream of restorable wetlands within each pixel.  We 

assume that both PRW-Ag restoration practice would focus on rainfed crops, as we assume that 

irrigated crop areas are likely too dry to be appropriate sites for maintaining levels of inundation 

needed for wetland restoration.  Furthermore, because the PRW-Ag data correlates with tile-

drained lands at county and coarser scales (Horvath et al., 2017), we assume the extrapolation of 

restorable wetlands to be located on tile-drained lands at sub-pixel scales is also appropriate.  We 

created counterfactuals of adoption where each pixel was independently increased between the 

unrestored baseline land-cover and its maximum potential restored landcover at 0%, 5%, 20%, 

45%, 70%, and 100% adoption of each program. 

Affect of modeling assumptions 

By assuming that potentially restorable wetlands were located at the topographically lowest 

portions of all pixels, and that all crop leachate could be routed to flow through these wetlands, 

the maximum amount of treatable mass was assumed available to any restored or natural 

wetlands at each pixel, thereby maximizing the amount of denitrification possible via wetland 

restoration.  Assumptions underlying the upland wetland solution detailed in Appendix III do not 

uniformly assume maximum denitrification.  For instance, our formulation of wetlands as a well-

mixed system produces less denitrification than either tanks-in-series (Crumpton, 2001; Kadlec 

and Knight, 1996) or transient storage (Cheng and Basu, 2017; Wollheim et al., 2014) models 

applied to natural wetlands.  As discussed below, the fraction of mass denitrified within wetlands 

(30 – 50%) estimated by the model compares favorably with these formulations and in-situ 

measurements.  Other assumptions have potentially ambiguous effects on the total denitrification 

estimated by the model.  By assuming water temperature from soil leachate and neglecting 

radiative heating or cooling, we likely over-predict denitrification in the early spring, and under-
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predict denitrification in summer.  We also assume that wetlands do not exchange with 

groundwater, which is a reasonable assumption for treatment wetlands restored through the 

Farmable Wetland Program but is questionable as a uniform assumption over the entire domain 

of the Wetland Reserve Program implementation.  Characterizing connectivity of upland 

wetlands with groundwater will require further analysis.  Baseflow entering wetlands would 

make more mass available for wetland denitrification while potentially lowering nitrate 

concentration (increasing denitrification efficiency) following removal in groundwater, and 

elevating spring temperatures within the wetland, each could act to increase the mass denitrified.  

However, steady flow from groundwater could also decrease water temperature during summer 

which would decrease the denitrification uptake rate coefficient.  Groundwater input to wetlands 

could also increase depth of flow in the wetlands, which would decrease benthic exchange of 

dissolved nitrate.  Moreover, a flowpath of discharge from wetlands to groundwater is not 

considered, which could result in higher denitrification rates due to efficiency gains at lower 

nitrate concentrations entering groundwater, although such processing would likely be negigible. 

These complex interactions with groundwater will vary by specific local context at resolutions 

difficult to represent at the resolution of our model, have countervailing effects, and should be a 

focus of further study. 

Sensitivity analysis 

We performed a sensitivity analysis to assess the influence of six critical parameters defining 

performance of the wetland system on total denitrification and resulting change in export of 

nitrate to the Gulf of Mexico.  The Method of Morris (Campolongo et al., 2007; Morris, 1991) 

provides an estimate of global sensitivity of a computationally expensive model 𝑓(𝑿) to a suite 

of parameters or model inputs.  For a vector 𝑿 of model inputs, a suite of 𝑀 trajectories through 
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parameter space each perturb a single parameter 𝑥𝑖 by a value Δ𝑖.  Each element along sample 

trajectory 𝑗 varies each single input successively.  The Elementary Effect (EE) of input i on a 

specific model output for trajectory 𝑗 is calculated by calculating a sensitivity of the model from 

the trajectory’s base condition to the perturbance according to Equation 7. 

𝐸𝐸𝑖
𝑗

=
𝑓(𝑥1…,𝑥𝑖+Δ𝑖,…𝑥𝑛)−𝑓(𝑥1…,𝑥𝑖,…𝑥𝑛)

Δ𝑖
     Eq. 7 

The mean (𝜇𝑖), standard deviation (𝜎𝑖), and mean of absolute values of 𝐸𝐸𝑖
𝑗
 (𝜇𝑖

⋆) Equations 8-10, 

respectively, provide important indices for estimating global sensitivities, and therefore the 

relative importance of individual inputs through the sampled space. 

𝜇𝑖 =
1

𝑀
∑ 𝐸𝐸𝑖

𝑗𝑀
𝑗=1        Eq. 8 

𝜎𝑖 = √∑ (𝐸𝐸
𝑖
𝑗
−𝜇𝑖)

2
𝑀
𝑗=1

𝑀
       Eq. 9 

𝑢𝑖
⋆ =

1

𝑀
∑ |𝐸𝐸𝑖

𝑗
|𝑀

𝑗=1        Eq. 10 

The efficiency in Method of Morris is derived from developing trajectories for input perturbation 

that sample the selected input space with the fewest number of model evaluations.  We applied 

the method of Ruano et al. (2012) that selects a subset of trajectories optimized from a pool of 

many candidate trajectories.  We selected 𝑀 = 40 trajectories from 1000 candidates.  The 

Method of Morris was applied here using the Sensitivity Analysis Library (SALib v1.3) for 

Python (Usher et al., 2020).  Six parameters were varied over plausible ranges and applied 

uniformly across the basin (Table 4).  We evaluated the three sensitivity indices 𝜇, 𝜎, and 𝜇⋆ to a 

single model output representing the decline in nitrate export to the GoM at 100% adoption of 

the WRP (Figure 19).  On Figure 19, wedges describe whether a parameter had a relatively 
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independent control on the metric of interest (monotonic or almost monotonic), or if it behaved 

strongly non-linearly across parameter-space or interacts with other parameters (not monotonic).  

The constant describing uptake velocity at a nitrate concentration of 1 mg N-NO3 L
-1 was the 

most sensitive parameter of the six tested and justifies focusing on the univariate sensitivity of 

this parameter.  The second most sensitive parameter is 𝜒𝑏𝑢𝑓𝑓𝑒𝑟 which creates a linear increase in 

the area available for wetland surface area for a given amount of restoration and the value of 

0.777 selected is appropriate to protect wetland landscapes from soil infilling and storm damage 

(Christianson et al., 2013).  

 

 

 

Table 4: Description of parameters varied in sensitivity analysis.  Citations as follows: C2013 – 

Christianson et al. (2013), M2018 – Marshall et al. (2018), KK1995 – Kadlec and Knight (1995), 

I2008 – Iovanna et al. (2008), T2010 – Tanner et al. (2010), W2014 – Wollheim et al. (2014), 

M2009 – Mulholland et al. (2008), CB2017 – Cheng and Basu (2017), BK1993 – Beven and 

Kirkby 1993. 

Symbol Function A 

priori 

value 

Tested 

range 

Source 

𝜒𝑏𝑢𝑓𝑓𝑒𝑟  Fraction of restored area needed as 

buffer (m2 m-2) 

0.777 0.62,0.93 C2013,M2018 

𝜒𝑢𝑝  Maximum multiplier of treatable 

upstream area (m2 m-2) 

22 5.5,88 I2008,C2013,M2018 

𝑑𝑚𝑎𝑥 Maximum depth of flow within 

restored wetland  (m) 

0.8 0.2,2.5 KK1995,T2010 

𝛼𝑤𝑙 Hydrologic time constant within active 

wetland store (d-1) 

0.06 0.024,0.08 CB2017 

𝜙 Hydraulic geometry exponent (width 

to discharge)      (-)  

0.51 0.48,0.62 BK1993 

𝑏𝑣𝑓  Uptake velocity (m y-1) a DIN 

concentration of 1 mg L-1   (-) 

18.  4.,56. W2014  

(M2009-W2014) 
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Figure 19:  Morris Method screening results depicting standard deviation of elementary effects 

against mean of absolute elementary effects for each tested model parameter for engineering 

constraints and biophysical properties.  Elementary effects are calculated as the reduction in DIN 

export to the GoM between the baseline and 26% restored wetland conditions.   Parameters are 

described in Table 4.   

 

Findings  

We found that wetland restoration through existing federal programs that incentive the 

restoration or construction of field-margin wetlands could not reduce nitrate by the 45 to 60% 

needed to restore ecosystem health in the Gulf of Mexico even with assumptions that should 

maximize the treatment of nitrate runoff (Figure 20).  At complete adoption, FWP and WRP 

wetlands could reduce nitrate export by 6.2% and 27%, respectively.  These levels of restoration 

increased denitrification by 85% and 430% over removal by natural wetlands.  Assuming nitrate 

leachate rates would decrease to rates of naturally vegetated landscapes such as grassland or 

forest if crops were fallowed, nitrate reduction from the two programs was 3.4 (FWP) and 3.0 
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(WRP) times greater than just retiring the same cropland (Figure 20).  These high ratios of export 

reduction from wetlands relative to crop retirement illustrates why wetland restoration is an ideal 

intervention for mitigating nutrient pollution in highly agricultural basins.  Simple extrapolation 

of wetland denitrification to retirement reduction ratio suggests that by reducing crop leachate 

20% through restoration could meet target reduction of 60% and there seems to be sufficient 

restorable lands to meet this reduction (Horvath et al., 2017).  Prior studies have suggested that 

wetland restoration alone could potentially reduce nitrate to targets (Mitsch et al., 2001; Cheng et 

al., 2020), but we find that restoration following the WRP and FWP cannot.  The geospatial 

separation of restorable wetlands with croplands, reduced denitrification during storms, and 

leaching to deeper flow-paths through the surface that bypass wetlands all contributed to 

reducing the simulated nitrate removal below their potential values. 

Potentially restorable wetlands exist throughout the MRB; however, there remained sufficient 

geospatial separation between restorable areas and existing crops to limit the amount of runoff 

intercepted and treated.  Of the 0.79 Tg y-1 of nitrate runoff via surface flow-paths from 

agricultural lands, treatment wetlands restored by the FWP intercepted 0.19 Tg y-1, 29% of 

intercepted nitrate was denitrified, and 57% of nitrate runoff bypassed both natural and restored 

wetlands (Figure 21).  Bypassing flow in both programs was a consequence of insufficient 

restorable wetlands (Horvath et al., 2017) in pixels containing crops (Figure 21).  The relatively 

modest 6,000 km2 of wetlands restored through the FWP would intercept runoff from 121,000 

km2 of cropland.  Nitrate runoff intercepted via this program averaged 21 kg N-NO3 ha-1 y-1, and 

therefore, denitrification added by this program exhibited areal denitrification rates (37 g N-NO3
 

m-2 y-1) which were consistent with high observed values for treatment wetlands (Mitsch and 

Day, 2006).  Despite high areal rates of denitrification, much higher than the average 
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denitrification rate from treatment wetlands restored by the WRP (13 g N-NO3 m
-2 y-1), the mass 

fraction of nitrate denitrified by FWP wetlands was lower than typical assumptions in 

macroscale analyses.  The relative effectiveness of this program reflected the concentrated effort 

to intercept and treat subsurface drainage effluent, previously identified as being the largest 

single source of nitrate to the coast (Goolsby et al., 2001). 

  

Figure 20:  Export of nitrate from the Mississippi River Basin.  Observed and target (Scavia et 

al., 2017; Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2008) nitrate export 

(a).  Nitrate export following adoption of two wetland restoration programs (b). Color patches 

depict the reduction in export attributable to reduced leaching as croplands are retired, and 

additional denitrification within restored wetlands.  Nitrate export following complete adoption 

of the Wetland Reserve Program across a range of wetland denitrification rates (c). 
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Restoration through the WRP provided about half of the target nitrate reduction to the Gulf of 

Mexico.  Following complete adoption of the WRP, 0.47 Tg y-1 nitrate was intercepted, 48% of 

that nitrate was denitrified, and 20% of nitrate in surface runoff bypassed wetlands (Figure 20).  

The WRP removed only 4 times more nitrate than the FWP despite the WRP restoring more than 

12 times the cropland and removing about 12% more of nitrate intercepted (Figure 21).  WRP 

wetlands removed a greater fraction of intercepted nitrate because catchments were smaller 

making flows lower and exposure to denitrifying benthic surfaces greater.  Furthermore, 

intercepted leachate was derived from a greater proportion of croplands of lower intensity, which 

decreased average intercepted nitrate concentration.  Because wetlands followed an efficiency 

loss relationship with nitrate concentration, a decreasing denitrification rate with increasing 

nitrate concentration (Wollheim et al., 2014), they exhibited higher proportional denitrification at 

low leaching intensity.  In contrast, the FWP targeted restoration at intensively leaching crops 

(Figure 21b) and targets treatment of more crop area per restored area.  Given a choice in 

restoring wetlands such that a greater area could be treated, or a smaller area treated with a 

higher fraction of inputs removed, we show greater denitrification will always occur where more 

mass was treated with a decreasing fraction of removal (Appendix III).  
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Figure 21: The geospatial distribution of restorable wetlands cannot intercept all nitrate runoff.  

Distribution of nitrate yield and fate of nitrate prior to entering the river is presented as density 

plots (left column) and maps (center) for present day existing wetlands (a), treatment wetlands 

restored through the Farmable Wetlands (b), and Wetland Reserve Programs (c).  The 

distribution of treated and untreated croplands for three scenarios (right). 

 

Our analysis suggests a more modest expectation of the role of wetland restoration on reducing 

hypoxia than other analyses.  Previous scaling studies (Cheng et al., 2020; Cheng and Basu, 
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2017) have found substantially greater removal than estimated here when higher fractions of 

leachate (e.g. 30-50%) (Cheng et al., 2020) are assumed to be intercepted by restored wetlands.  

AgroIBIS-WBM was unable to achieve satisfactory correspondence with observed nitrate flux in 

rivers with parameterizations that created such high levels of connectivity between cropland 

leachate and river flows.  A large fraction of nitrate percolating towards subsurface removal or 

long-term storage was needed for consistency with observed fluxes (Figures 17 and 18), which 

precluded treatment of this mass at field-margins.  Assumptions from the FWP and WRP 

reflected in this analysis, as well as in integrated assessments (Marshall, 2018; Hansen et al., 

2021) find even more modest opportunity for field-margin wetland denitrification to mitigate 

GoM export than we report here.  Studies that assume wetland restoration cannot intercept 

subsurface-drainage intercepted only an additional 4% of catchment area to wetlands in the 

Upper Mississippi River Basin (Evenson et al., 2021).  By neglecting leachate through defined 

areas of subsurface-drainage (Sugg, 2007), 40% of MRB leachate, predominately in the corn-belt 

of the midwestern US, is left untreated thereby eliminating treatment of the most concentrated 

source of nitrate in the basin (Goolsby et al., 2001).   

Seasonality and storm-scale dynamics pose an additional constraint on whole-watershed nitrate 

removal.  The seasonal peak in the capacity of wetlands to remove nitrogen did not coincide the 

highest rates of nitrate flux into wetlands (Figure 22).  The peak of the basin-average flux to 

restored wetlands occurred in May, when denitrification removed only 26% (FWP) and 39% 

(WRP) of intercepted nitrate, and only 10% (FWP) and 31% (WRP) of nitrate in surface runoff 

during the month.  Nitrate mass bypassing wetland treatment when water depth exceeded typical 

or design depths (Tanner et al., 2010) totaled 6.9% (FWP) and 3.2% (WRP) of total annual 

runoff, and the majority of this flux bypassed wetlands during the late winter and spring (Figure 
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22).  Seasonally lower denitrification due to low water temperatures during the winter and spring 

accounted for 17% of the higher seasonal nitrate runoff.  During periods of constant high runoff 

in spring, wetland depth was consistently higher within wetlands, which increased the hydraulic 

load in the wetland and reduced contact between nitrate dissolved within the water column with 

the benthic surface thereby reducing denitrification (Figure 23). 

 

Figure 22:  Annual peak leachate flows precede seasonal wetland denitrification maximums.  

Monthly means of total basin fluxes for present-day unrestored wetlands (a), complete adoption 

of the FWP (b), and complete adoption of the WRP (c).  Sum of four fluxes represent total 

surface nitrate runoff from croplands.  Storm bypass (yellow) represents mass entering wetlands 

when water depth exceeded the specified maximum depth. 
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The importance of representing temporal dynamics in scaling estimates of treatment wetland 

effectiveness was demonstrated for croplands without tile-drains (Evenson et al., 2021).   The 

significantly greater amount of mass bypassing wetlands and lower denitrified fraction in the 

FWP program than in the WRP program reflected the greater sensitivity of denitrification of tile-

drain runoff to storm-scale dynamics, because of fast runoff from tile-drained lands.  When 

considering such storm-scale dynamics, we find that total annual wetland denitrification for the 

FWP is marginally lower than typical estimates of 40-50% denitrification of intercepted input 

mass; however, mean annual denitrified fraction of intercepted mass for WRP is very consistent 

with typical estimates. 

When considering the fraction of flow-paths intercepted by field-margin treatment wetlands, 

coastal hypoxia targets could be met by wetland restoration alone only if denitrified fraction 

approached 100% (Figure 20).  Intrinsic denitrification rates are input into WBM as estimates 

consistent with rivers (Mulholland et al., 2008) and typical natural wetlands (Racchetti et al., 

2010; Cheng and Basu, 2017); however, both natural and treatment wetlands have exhibited 

much higher rates in prior field studies (Wollheim et al., 2014; Bachand and Horne, 1999).  

Sensitivity of the model through the range of physical plausibility was tested (Figure 20c), 

following verification that the parameter was the most sensitive to export reduction (Figure 19).  

Even at values exceeding physically realistic limits of about 400 m yr-1, complete adoption of 

WRP was able to only reduce nitrate export by 48%.  A substantial fraction of nitrate mass is 

directed towards the subsurface in our conceptualization, less so in areas with subsurface-

drainage (Figure 24).  Nitrate entering the subsurface is assumed to enter a shallow groundwater 

pool experiencing denitrification at fixed rates (Green et al., 2008) or return to streams 

(bypassing wetlands), or is removed from the surface water network.  Between nitrate bypassing 



97 

 

restored wetlands and loading from baseflow, as well as inputs from natural vegetation and other 

anthropogenic sources (including domestic waste, but excluding livestock waste, which was not 

included in our analysis), export remained substantial at about 0.5 Tg y-1.  The fraction of total 

leachate removed from further surface water interactions is the dominant flux in the simulations 

equaling between 2.0 and 2.1 Tg y-1 or about 58% of all leachate (Figure 25).  The flux was 

defined by a single parameter and was the most sensitive parameter in controlling model biases 

with respect to observed riverine fluxes (Figure 17).  Potential reservoirs for storage of this mass 

include unsaturated soils below the rooting zone, potentially responsible for storing up to 1.8 Tg 

y-1 over the conterminous US (Ascott et al., 2017), or increases in groundwater storage 

associated with increasing groundwater concentrations (Puckett et al., 2011), potentially 

responsible for storing up to 2.4 Tg y-1.  Importantly, a substantial fraction of such legacy storage 

in groundwater would be expected to discharge to rivers over long timescales (Dupas et al., 

2020).  Storage of 3.5 Tg y-1 of nitrogen within the rooting zone of the MRB (Van Meter et al., 

2018; Meter et al., 2016) is another potential storage mechanism; however, a consistent rate of 

storage in the rooting zone is captured by AgroIBIS.  Characterizing the role of long-term 

storage of subsurface nitrogen, any transformation reactions occurring in the subsurface, and the 

return of this contaminant to surface water at long time-scales, may be the single most important 

consideration defining the success of current nutrient reduction strategies (Van Meter et al., 

2018; Basu et al., 2022). 
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Figure 24: Infiltrated fraction throughout the domain varies based on presence of subsurface 

(tile) drainage. 

 

Figure 25: Distribution of nitrate fluxes throughout simulations for the conditions of no 

restoration, and complete adoption of the Farmable Wetlands Program (FWP), and Wetland 

Reserve Program (WRP).  Fluxes labeled in the central image correspond to: A – denitrification 

within all wetlands, B – denitrification within shallow groundwater, C – storage or removal in 

other subsurface pools, D – flow out of wetlands to streams, E – flow bypassing wetlands to 

streams, F – baseflow nitrate from shallow groundwater to streams, G – other domestic inputs to 

streams from non-point source suburban development and waste water treatment plants, H – 

denitrification within streams, I – nitrate extraction from streams via water abstractions, and J – 

nitrate export to the Gulf of Mexico. 
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Conclusion 

Restored wetlands in our analysis are limited to crop margins, meaning that treated mass is 

generated proximal to any restored wetlands.  Complementary findings show that restored fluvial 

wetlands that treat leachate from all upstream croplands are substantially more effective than 

crop-margin wetlands (Hansen et al., 2021).  Studies that make different assumptions about 

buffer areas, position on the landscape, or focus on wetlands receiving inflows as part of 

downstream riverine transport (Hansen et al., 2018; Czuba et al., 2018; Hansen et al., 2021) 

differ in target restoration practice from the programs analyzed here, and find treatment wetlands 

far more effective when treating larger contributing areas.  The entire spectrum of connectivity 

of wetlands to upstream river flow, to subsurface-drainage effluent, and to undrained cropland 

runoff exists within the MRB, and representation of such heterogeneous connectivity in scaling 

studies of nutrient reduction demands novel approaches beyond what has been possible to date.  

However, existing policy programs investigated here assume direct connectivity to cropland 

runoff by field-margin intervention and are limited in their effect to about half of the required 

nutrient reduction to protect the GoM.  We should prioritize policies that facilitate interventions 

that make use of larger contributing areas such as fluvial wetlands (Hansen et al., 2021) or 

floodplain restoration (Kroes et al., 2015), especially because such downstream interventions 

have greater capacity to intercept and treat legacy nitrate that returns to the river network via 

groundwater discharge far from croplands where it originated (Basu et al., 2022), while 

maintaining dialogue with stakeholders to address how conservation measures benefit and 

impact local communities (Gourevitch et al., 2020).  Field-margin treatment wetlands will 

remain an important approach towards mitigating Gulf of Mexico hypoxia, because they have the 
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capacity to reduce a meaningful fraction of nitrate and have existing conservation mechanisms in 

place to facilitate adoption. 
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CHAPTER IV 

CONCLUSION 
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The three studies presented analyze a cross-section of policy interventions, and the potential 

efficacy of each reflects the constraints imposed not only by the degree or magnitude that the 

intervention can be applied, but also by the geographic distribution over which they can be 

applied.  It is not common for literature on watershed management to acknowledge such 

geographic constraints, and distributed modeling of watershed management as shown here can 

represent and explore such constraints directly.  In this conclusion, the nascent scientific 

discipline of sociohydrology, which treats human decision-making as a fully integrated part of 

the hydrologic cycle, is argued to be an appropriate framework for research characterizing the 

efficacy of watershed management and restoration.  A background on the philosophy of 

experimental design used here that applied models in sociohydrologic studies is drawn from 

futures science and the study of social ecological systems.  Finally, a framework is described that 

provides a simple lens on how interventions in watershed management complement one another 

that can be used to evaluate needs in management practice. 

Much of the most critical research foci in the geosciences occur at the intersection of Earth 

system processes and human society (Blöschl et al., 2019).  Humankind can affect but not 

altogether change natural processes, so our ability to affect sustainable positive change on the 

Earth system is largely confined to our decisions about watershed management.  Watershed 

management entails the information gathering, goal-setting, and policy-making that we use to 

facilitate the sustainable use and conservation of the ecosystems that provide the services we 

need to thrive (Gregersen et al., 2007).  Representation of water management activities through 

hydrologic modeling is both a critical aspect for understanding hydrology (Nazemi and Wheater, 

2015), as well as providing sound understanding of the hydrologic phenomena to facilitate sound 

management (Gregersen et al., 2007).   



103 

 

The discipline of sociohydrology (Sivapalan et al., 2012) acknowledges the endogenous role of 

humans in the hydrological cycle .  The discipline captures the ways in which people respond to 

hydrologic changes by altering watershed management strategies (Di Baldassarre et al., 2015, 

2013; Chang et al., 2014; van Emmerik et al., 2014).  Sociohydrological studies aim to include 

human decision-making in hydrologic functioning.  Models of human responses to date generally 

lump geographic variability in both watershed characteristics, human values, and importantly, 

management response (Di Baldassarre et al., 2013; van Emmerik et al., 2014).  Other studies 

have sought to identify the geographic distribution of human responses to hydrologic alteration 

from coarse watershed-scale interventions.  Economically appropriate changes in crop selection 

were a modeled response to reservoir management policies (Giuliani et al., 2016).  People’s 

decisions on home values appear to be partly informed by local policies and outcomes of stream 

riparian area protection (Chang et al., 2014).  Optimal selection of managed aquifer recharge and 

surface water irrigation practices reflected both economic and geologic controls in the lower 

Mississippi River basin (Tran et al., 2019, 2020).  Although the ultimate goal of sociohydrology 

is to incorporate the endogeneity of humans in the hydrologic cycle, studies focusing on one-way 

causalities such as human effects on watersheds, or human response to watershed change, are 

valid lines of inquiry and necessary to progress the discipline (Troy et al., 2015). 

Empirical or observational studies that examine hazards such as pollutants or ecosystem changes 

tell us plainly why we must change our interactions with the Earth system.  For example, excess 

nutrients applied throughout watersheds are mechanistically linked to observed changes in 

marine ecosystem structure (Breitburg et al., 2018), just as elevated chloride salts are linked to 

changing freshwater aquatic ecosystem structure (Cañedo-Argüelles et al., 2016, 2013; Hébert et 

al., 2022).  Intensification of droughts in the US southwest (Williams et al., 2022) combine with 
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overdraft of water (Tidwell et al., 2014) to present a potentially hazardous strain on watersheds’ 

potential for provisioning water.  These studies provide examples of primarily empirical research 

that identifies problems and mechanistic interpretations of their effects. 

Though empirical studies that establish how societal changes reflect watershed management are 

necessary (Sivapalan et al., 2012), so are experiments using environmental models that facilitate 

studies not possible through direct observational and empirical methods.  The use of simulation 

models throughout the natural sciences incorporates aspects of both theoretical and experimental 

scientific methods (Dowling, 1999); model structures are formulated in silico according to a 

hypothesized or theoretical concept of processes, and then applied as instruments of falsification 

to perform experiments.  The inference gained from such experiments is then extended to the 

material world (Beven, 2002).   

The management practices investigated in each of the three studies comprising this Dissertation 

each are intended to provide a net benefit to the health and happiness of near future societies, but 

tradeoffs exist and have the potential to materially harm humans.  Direct experimentation of 

these practices come with ethical concerns and need debate and dialogue with affected and 

involved communities.  Experimentation in silico comes with less direct impact on communities 

(Peck, 2004).  Both empirical and modeling-based studies are both subject to ethical concerns 

when the understanding gained informs decision-making that may ultimately harm people or an 

ecosystem.  Direct empirical evidence of intervention efficacy can suffer from ethical concerns 

but can also lack direct causal inference.  In contrast, experimentation with models has obvious 

limitations as to how well we can map reality with model representations (Beven, 2002); 

however, causality is addressed explicitly in modeling analyses, albeit hypothetically.  Decisions 

that result from hypotheses and assumptions in the model structure therefore reflect any potential 
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biases of the model creator, and therefore themselves carry important ethical considerations 

(Almada and Attux, 2018). 

Modal narratives as experiments 

Beyond ethical concerns for utilizing models for sociohydrologic investigation, empirical 

approaches are only available for current or recent phenomena.  Experiments using simulation 

models are virtually required when considering alternatives at future times (De Jouvenel, 2000) 

and deep [pre-]historic time (Perry et al., 2016).  To frame the experimentation within each study 

presented here, each hypothesis can be viewed as a modal narrative, or a description of a 

possible alternative condition targeted to evaluate effects of some management decision, or 

tradeoff between competing decisions (Booth et al., 2009).  Following the distinction of Booth et 

al. (2009), model experiments set within a historic context are described as counterfactuals and 

those set within a future time-frame as scenarios.   

Each of the presented studies developed counterfactuals or scenarios to understand consequences 

of human management of watersheds, or human management of processes with direct 

consequences on watersheds (Table 5).  The associated modal narratives span several 

classifications in the typology of Börjeson et al. (2006) which are defined by whether factors 

defining the narrative are controlled within the system or without, and whether they answer 

questions about probability, possibility, or preference (Table 6).  These studies focus on a limited 

range of potential motivating forces that exemplify specific decisions about management rather 

than the completely realized and comprehensive scenarios that were part of the larger research 

programs the presented studies were associated with (e.g. Borsuk et al., 2019; Cronan et al., 

2021; Mavrommati et al., 2017; Samal et al., 2017).  In the larger research program, 

transdisciplinary groups of scholars and stakeholders collectively built scenarios considering 
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unique sets of variables, target objectives, and using application specific methodology, while 

drawing on the work presented here.   

Table 5: Modal narratives developed in each study presented as part of this dissertation.  Clauses 

inside brackets and separated by pipes [ | ] denote alternative practices under examination.  

Chapter Description 

1 

Future managers [reduce | do not reduce] road salt application to recommended 

values.  Future zoning requirements [force infilling development | favor large 

building lot sizes | remain constant].  Climate follows from [moderate and 

declining | constant high] emissions pathways. 

2 
Irrigation used [existing | increasingly efficient] technology.  Enhanced aquifer 

recharge [was never instituted | was sufficient to stabilize aquifer head]. 

3 
Wetlands [were | were not] restored through increasing degrees of adoption of 

the [Farmable Wetlands Program | Wetland Reserve Program] 

 

Table 6: Typologies of modal narratives as classified by Börjeson et al. (2006) and examples of 

scenario building used in Dissertation research and supporting research programs. 

Category Types Descriptive Used in my work 

Predictive 

(probable) 

Forecasts 
Expected result pre-conditioned on the 

most likely future state 
 

What-if 
Expected result preconditioned as 

bifurcating along a specified dimension 
Chapter 3 

Explorative 

(possible) 

External 
Possible result influenced by changing 

external factors 

Samal et al. 2017, 

Cronan et al. 2021 

Strategic 

Possible result preconditioned on a 

specific action under the influence of 

changing factors 

Chapters 1, 2 

Normative 

(preferrable) 

Preserving 
Target result achieved by manipulating an 

existing system 
 

Transforming 

Target result achieved by fundamentally 

altering the system to facilitate goal 

meeting 

Chapter 2 

 

Summary of the Model Experiments 

The three studies presented here vary considerably in direct topic of discourse, which provides a 

cross-section of problems in watershed management.  Each study included in my research 

program uses a version of the University of New Hampshire Water Balance Model (WBM) or 
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the related Framework for Aquatic Modeling of the Earth System (FrAMES).  The core 

functionality of the model is documented elsewhere (Grogan et al., 2022).  Each chapter 

describes how the model developed for the specific topic relates to and departs from this core 

functionality. 

In Chapter 1, a simulation model of chloride within watersheds investigated the potential for 

road salt application to affect aquatic biota (Zuidema et al., 2018).  Comparison of model 

estimates and observed measures of chloride in stream water were used to solve an inverse 

problem to determine an expected rate of road salt application.  Exploratory scenarios illustrated 

the expected influence on chloride impairment of streams from changing road salt application 

rates and buildout patterns using projected urban intensities from a detailed land-cover change 

and scenario analysis (Thorn et al., 2017).  Each of these scenarios represented a narrative where 

build-out follows one of three possible paradigms, road salt application rates remain constant or 

are reduced, and climate warming follows from one of two emissions trajectories (Table 5).  The 

scenarios were used to investigate the relationship between managing build-out strategy and road 

salt application rates in mitigating harm to aquatic species. 

In Chapter 2, a model of agricultural water reuse in the Upper Snake River Basin (USRB) in 

southern Idaho investigated the interplay of changing irrigation technologies and enhanced 

aquifer recharge on surface and groundwater availability for agriculture (Zuidema et al., 2020).  

In the manuscript, strategic exploratory counterfactuals assessed changes in riverine flow and 

aquifer head as irrigation technology was progressively modernized.  Each of these individual 

counterfactuals was paired with a transforming normative counterfactual that required that 

aquifer head remain unchanged according to policy decree (IDWR, 2015).  The combined 

evaluation of the two forces dictating future water availability in the USRB, modernizing 
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irrigation technology to reduce abstraction from the river and enhanced aquifer recharge to 

minimize drawdown of the aquifer, illustrated how competing policies dictating instream flow 

(IWRB, 1985) and aquifer drawdown (IDWR, 2015) are compatible at rates of enhanced aquifer 

recharge considered feasible (IWRB, 2016).   

In Chapter 3, a model of treatment wetland processing of field-margin crop leachate throughout 

the Mississippi River Basin explored the efficacy of two federal programs (Conservation Reserve 

Program, 2015; USDA, 2021) for restoration of wetlands to reduce nitrate in riverine export to 

the Gulf of Mexico.  A suite of predictive what-if counterfactuals for each program captured 

expected system response to progressively greater levels of adoption for each program.  

Geographic and engineering constraints on wetland design limited the amount of nitrate 

reduction that was possible.  A comprehensive accounting of the entire suite of flow-paths 

through the watershed characterizes a lower estimate of the benefits of this intervention 

compared to other scaling studies (Mitsch et al., 2001; Cheng et al., 2020).   

Epistemology of the evidence presented 

The degree to which inference from simulation experiments qualifies as scientific observation is 

necessarily entangled in value judgements about how ‘good’ the model was that generated the 

results.  The problem of model validation goes beyond the semantics with which we describe the 

correspondence of our models with observational data to the epistemological underpinnings of 

what we can learn from them (Barlas and Carpenter, 1990; Beven, 2002; Kleindorfer et al., 1998; 

Konikow and Bredehoeft, 1992; Oreskes et al., 1994).  Ultimately simulation models are best 

considered a heuristic tool that facilitates experimentation where observational data are 

unavailable as is the case when developing modal narratives to assess potential effects of policy 

decisions and degrees of adoption of a specific management practice.  Regarding the semantics, 
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the term validation is widely used in the scientific literature in describing the correspondence 

between a model and comparable observations (Eker, 2018) and the studies presented in 

Chapters 1 through 3 follow this convention.  It is generally understood that terms like validation 

or verification are inconsistent with their epistemological meaning and should instead be read as 

corroboration (Oreskes et al., 1994). 

Since the middle of the 20th century, two prevailing doctrines in the philosophy of science define 

an axis of views towards the use of models for creating knowledge (Kleindorfer et al., 1998; 

Barlas and Carpenter, 1990; Reed et al., 2022).  From a foundationalist (or objectivist) 

perspective, models are heuristic tools for constructing theories that challenge the limits of 

empirical data despite absolute falsification in open environmental systems being impossible 

(Oreskes et al., 1994; Beven, 2002, 2006; Konikow and Bredehoeft, 1992).  A relativist 

perspective considers the conversational aspect of integrating theoretical components within 

models to provide meaningful insight.  Modern scientists engaged in modeling value both 

perspectives (Eker, 2018) and the strategy for model development used here reflects this 

common approach.  A variety of model calculated metrics were compared to relevant 

observations throughout the development process to corroborate the structure and behavior of the 

model; but the model was then applied as a heuristic to explore hypothesized conditions over 

which no possible corroborating data could be generated.   

The corroboration between model and observation leads directly to questions of uncertainty. The 

tapestry of uncertainties in representing open environmental systems described by Vrugt and 

Sadegh (2013) include uncertainties on parameters, input data, initial states, model structure, 

outputs, and updated states.  The Approximate Bayesian Computation framework (Sadegh and 

Vrugt, 2013; Vrugt and Sadegh, 2013) and the Generalized Likelihood Uncertainty Estimation 
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(Beven and Binley, 1992; Stedinger et al., 2008) each attempt to define and account, 

respectively, for the suite of uncertainties in hydrologic modeling.  Successful applications are 

generally limited to simple model structures in conceptual rainfall-runoff models over nearly 

pristine catchments.  The Framework for Understanding Structural Error (FUSE - Clark et al., 

2008) has similar limitations and goals; however, is more focused on comparing a structured 

formalization of possible conceptual hydrologic models.  The approach taken by these 

practitioners strives for high explanatory power with fairly limited depth to explain a diversity of 

processes or conditions (Beven, 2002).   

The studies presented here target a much deeper set of processes than have been treated 

historically with full uncertainty characterization.  A valid criticism of the research presented is 

the absence of formal and complete characterization of uncertainties on the core predictions of 

the experiments.  Arguments against formal uncertainty characterization focus on limited 

computational resources; an argument that has been losing validity with contemporary 

computing resources.  Still computation would be problematic. Typical simulation times across 

my studies ranged from 6 hours to 7 days for a single evaluation.  With spatially varying 

parameters and multiple input data sets, millions of model evaluations would be needed for 

proper characterization in each study (Reed et al., 2022) equating to decades of computation time 

(and tons of greenhouse gas emissions).  The exploratory value of these studies was instead 

supported by deductive analysis of each models’ limitations.  Full uncertainty characterization 

and quantification would be recommended for models used to answer direct questions relevant to 

decisions on any topic considered here. 

Each study developed substantial new simulation capacity targeting unique aspects of human 

interaction with the Earth system. History-matching (Konikow and Bredehoeft, 1992) to 
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corroborate model characterization with observational data was an integral part of the 

developmental process of each study.  The level of sophistication of history-matching reflected 

the needs of each individual study, from simple univariate sensitivity analyses (Chapter 3), to 

Approximate Bayesian Computation (Vrugt and Sadegh, 2013) to estimate a specific parameter 

value from joint probabilities of relevant parameters (Chapter 1).  Following manual calibration 

and sensitivity analyses of hypothetically important parameters, global optimization algorithms 

(Wales and Doye, 1997) were used parameterize the model, or to determine whether the 

selection of parameters could produce a calibrated model (Chapter 1 and 2).  More recently 

(Chapter 3), evaluation of whether specific parameters provided sufficient control of the model 

system was performed through formal sensitivity analyses (Morris, 1991; Ruano et al., 2012). 

Discussion and Conclusions 

The results from the presented modeling experiments each suggest difficulties in realizing 

success in watershed management when accounting for complex geographic tradeoffs.  Such 

difficulties are common within the practice of watershed management (Gregersen et al., 2007).  

Examining the role of tradeoffs between competing (Chapter II) or complementary (Chapter I) 

interventions is an important role for modeling.  Such what-if analysis is useful for identifying 

likely system constraints and uncertainties. The experiments contextualized the effect of 

decisions and suggest the levels of investment that must be made to approach target outcomes.  

In each case, meeting the motivating targets (reducing chloride impairment, maintaining stable 

aquifer levels, or reducing nitrate in riverine export) was achieved at the extreme adoption of 

each tested interventions when applied according to the constraints and assumptions imposed by 

the model.  Each study identified key uncertainties that will need consideration for successful 

watershed management. 
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The ability for each intervention to meet its target reflected how well the tested intervention or 

suite of interventions addressed the intensity and the extensity of the target concerns.  The 

intensity of an intervention refers to the magnitude that the problem in watershed management is 

addressed at a point in space, such as the reduction in deicer application rate, or the amount of 

increased classical irrigation efficiency associated with a new suite of irrigation technology.  The 

extensity of an intervention refers to the portion of the generative source of the problem it can be 

applied, such as limiting the construction of new impervious surfaces, or the geographic 

coverage of potentially restorable wetlands.  A graphical representation of how the two concepts 

relate to one another is presented as Figure 26.  The aspects of each presented study that dictate 

the intensity and extensity of tested interventions are summarized by Table 7.  The intensity and 

extensity of interventions tested in Chapters 1 and 2 were sufficient to meet target conditions, 

whereas they were too constrained in Chapter 3 for completely meeting target reductions in 

nutrient export. 
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Figure 26:  Relationship between the intensity of an intervention and the extensivity of the 

adoption of an intervention along hypothetical landscapes.  Each of the four panels illustrates a 

portion of the landscape with some arbitrary problem, the impact of which is indicated by the 

deepness of the blue color.  The intensity of an intervention that reduces the impact of the 

problem is depicted as the relative height of boxes making up the landscape.  The geographic 

extent or coverage of the intervention is depicted along the horizontal axis.  Interventions that are 

adopted intensively and over an extensive area (top right) virtually eliminate the problem from 

the watershed.  
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Table 7:  Interventions tested and factors or assumptions that controlled the intensity and 

extensity of mitigation effects.  Descriptors of intensity and extensity scale include weak (less 

than 20% change in problem attribute, either contaminant or inefficient water loss, or extent of 

problem coverage or flux), moderate (20% to 60% change in attribute or extent), and strong 

(greater than 60% change in attribute or extent). 

Chapter Goal Intervention Intensity control Extensity control 

1 

Successfully 

reduced 

chloride 

impaired river 

length from 

present-day 

Deicer application 

rate 

Strong intensity 

control.  Direct and 

proportional 

reduction in 

contaminant. 

Applied uniformly, 

all impervious 

surfaces are affected 

consistently with 

intensity control. 

Zoning, new 

development 

minimizes or adds 

impervious area 

(Thorn et al., 2017) 

None 

Strong extensity 

control.  Infilling 

limits new 

impervious area.  Lot 

size minimums adds 

impervious area. 

2 

Successfully 

stabilized 

aquifer level 

while 

maintaining 

river flow 

above 

regulatory 

limits 

Irrigation technology 

modernization 

Strong intensity 

control by reducing 

irrigation water 

demand, but negative 

feedback by limiting 

incidental recharge 

Applied uniformly, 

all irrigated 

croplands are 

affected consistently 

with intensity control 

Enhanced aquifer 

recharge 

Strong intensity 

control by directing 

increasing aquifer 

level, but negative 

feedback by reducing 

river flow 

Weak extensivity 

control, limited to 

extent of 

groundwater 

irrigators, negative 

feedback to 

downstream users 

3 

Unsuccessfully 

reduced nitrate 

export from 

Mississippi 

River by 45 to 

60% 

Wetland restoration 

following the 

Farmable Wetlands 

Program 

Weak intensity 

control by partially 

reducing nitrate 

runoff from only 

highest leaching 

croplands 

Weak extensivity 

control due to low 

geographic 

coherence between 

nitrate runoff and 

restorable wetlands.  

Did not intercept all 

flow-paths  

Wetland restoration 

following the 

Wetland Reserve 

Program 

Weak to moderate 

intensity control by 

partially reducing 

nitrate runoff from 

croplands across 

whole distribution of 

leaching rates 

Moderate extensivity 

control due to wide 

geographic 

coherence between 

nitrate runoff and 

restorable wetlands.  

Did not intercept all 

flow-paths 
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In Chapter 1, mitigation was achieved by pairing strong intensity and extensity controls through 

reduced road salt loading and zoning restrictions (Figure 27).  For some combinations of tested 

scenarios (e.g., under a high A1FI emissions pathway), just the strong intensity control road salt 

reduction was sufficient to meet impairment reduction goals regardless of the extensity control of 

buildout paradigm.  Reducing the input of a simple contaminant reduced its adverse impact on 

aquatic habitat, leading towards a simple evaluation.  The analysis does not provide embedded 

tradeoffs of such an intervention.  The potential for reduced travel associated with decreasing 

deicer application could manifest as a greater rate or severity of vehicular crashes (Fu and 

Usman, 2014).  Furthermore, the assumption that deicer application rates are uniform is not 

supported even by recommendations (Environment Canada, 2004; Salt Institute, 2007), which 

could decrease the uniform extensity of the intervention over different roadway and surface 

types.  

Figure 27: Intensity and extensivity of road salt and build-out strategy to maintain or decrease 

chloride impairment in future climate and land-cover change contexts.  The yellow square in the 

top right corner reflects a region where the interventions adopted could be successful.  Deicer 

application was assumed to be applied uniformly across all impervious surfaces in the basin in 

Chapter I, therefore, the reduction of deicer exhibits as much extensivity as it does intensity and 

plots along a line of equality between the two axes.  Because reducing road salt application rates 

may not be equally applicable over all surfaces, the extensivity of this intervention may be lower 

than represented in the analysis (indicated by dashed line and oval) and may require additional 

interventions such as build-out controls to achieve watershed management goals.  
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The nearly successful implementation of conjunctive management in the Upper Snake River 

Basin (Chapter II) paired enhanced aquifer recharge with an extreme adoption of modern 

irrigation technology.  Distinguishing the factors that define these interventions as intensive or 

extensive is less clear; managed aquifer recharge is limited geographically, but technological 

modernization occurred across all croplands.  Practical considerations would; however, affect the 

intensity and extensity of interventions beyond what was characterized in the study (Figure 28).  

For instance, managed aquifer recharge is considered for discrete recharge basins at specific 

locations throughout the watershed, which would increase groundwater availability locally 

(IWRB, 2009) over smaller areas than represented by the lumped aquifer parameterization of 

Chapter 2.  In addition, the intensity of enhanced aquifer recharge as an intervention is limited by  

Figure 28: Intensity and extensivity of the irrigation technology modernization and managed 

aquifer recharge interventions to achieve stabilization of aquifer and streamflow.  Modernization 

of irrigation technology is applied extensively and uniformly across all crop areas; however, as 

indicated by the dashed line and oval, is likely only applicable to a subset of existing crops.  

Therefore, the intervention would likely be applied much less extensively than assumed in the 

study.  Similarly, managed aquifer recharge was intensively applied over a geographically 

important area; however, is unlikely to be achievable at rates that appear necessary for achieving 

aquifer stability as indicated by the dashed line and oval. 
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infiltration capacity of the recharge basins (Figure 13), which would preclude enhanced aquifer 

recharge to levels below the rates required at any tested counterfactual of irrigation technology.  

Finally, the extensity of technology modernization would be strongly impacted by the crop 

choice within the basin; dominant crops grown in the region such as maize, alfalfa, potato, beets 

(Leytem et al., 2021) are poorly suited to drip irrigation (Jägermeyr et al., 2015).  Therefore, crop 

selection would need to change to accommodate more modern forms of irrigation, or the 

extensivity of this intervention would be diminished. 

Export of nitrate to the Gulf of Mexico did not meet target reductions through either program of 

wetland restoration (Chapter 3) because intensity and extensity were not complementarily 

moderate or strong (Figure 29). Weak extensity of the FWP, and weak to moderate intensity of 

the WRP resulted in interventions meeting only 14 or 60% of the goal in reduction, respectively.  

In Chapter 3, the core constraints on implementation through the lens of intensity and extensity 

were implemented.  The main finding from the study was that interventions that increase the 

extensity of intervention, likely through processing of nitrate already in the river network, will be 

needed to meet the targets for nitrate export (Mississippi River/Gulf of Mexico Watershed 

Nutrient Task Force, 2008; Scavia et al., 2017).  Denitrification in wetlands, although only a 

moderately intensive intervention (30 to 50% nitrate is typically removed), remains one of the 

most intensive interventions available for nitrate reduction (Hansen et al., 2021).  Even fallowing 

of croplands entirely would be less effective as legacy nitrogen stored in soil leaches to streams 

(Van Meter et al., 2018).  A suite of interventions will be necessary to reduce nitrate export to 

targets (Marshall, 2018), each intervention spanning unique combinations of intensive and 

extensive control. 
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Figure 29: Intensity and extensivity of two programs of wetland restoration to reduce nitrate 

export to the marine ecosystem.  Neither program provided intensive enough nitrate removal 

over a sufficient area to achieve the watershed management goal (a).  Neither program 

intercepted sufficient nitrate to achieve the goals, meaning the intervention was not applied 

extensively enough, and only the Wetland Reserve Program exhibited sufficiently high 

denitrification rates to achieve the target reduction, albeit locally.  To achieve watershed 

management goals (b), pairing the two programs with on-field interventions that reduce runoff, 

and downstream interventions that treat more runoff may be effective due to the additive 

efficiencies in denitrification biogeochemistry (Christianson et al., 2018). 

 

The concepts of intensive and extensive controls on interventions in watershed management seem 

obvious and even self-evident; however, there is little explicit discussion of these controls in 

watershed management literature.  An important factor in watershed management is that 

hydrologic systems provide a natural way by which the extensivity of an intervention can be 

increased.  Fluvial or downstream interventions provide a natural mechanism to intervene against 

inputs or contaminants discharge far upstream.  In the context of nutrient reduction, the greater 

efficacy of fluvial wetland restoration than field-margin wetland restoration is a prime example 

(Hansen et al., 2021; Czuba et al., 2018).  In such a context, there are conceptual similarities with 

the iSIDES model for understanding the impact of an environmentally degrading practice that 

generates some pollutant (Hale et al., 2014).  The framework identifies similar ideas of pollution 

intensity (in contrast to the intervention intensity discussed here), and ameliorative effects of 
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dilution and ecosystem services that accumulate a greater influence at scale.  The concept of 

extensivity presented here acknowledges the spatial heterogeneity of actions beyond those 

provided by restorative ecosystem services, and utilizes the scale accessed by an intervention on 

the river network to increase the extensivity of a management practice.   

Related ideas of intensity and extensivity are discussed in environmental economics, particularly 

agricultural economics.  For instance, Soule et al. (2001) review agricultural economics literature 

to assess whether government sponsored crop insurance has reduced the input of agricultural 

contaminants such as fertilizers and pesticides.  Their comprehensive literature review suggests 

that fertilization rates likely declined on aggregate when farmers enrolled in insurance programs. 

However, farmers enrolled in the crop insurance programs were also more likely to bring 

marginal lands into production.  In this case, it appears that crop insurance may have increased 

the intensity control while simultaneously causing a negative feedback on any potential extensity 

control, leading to an inconclusive assessment of the potential environmental impact of crop 

insurance programs (Soule et al., 2001).   

Evaluating contemporary work in socio-hydrology through the lens of intensity and extensity 

controls on management practices illustrates the potential value in formalizing the concept.  

Sociohydrology aims to integrate human decision-making as an integral part of hydrologic 

analysis (Sivapalan et al., 2012).  Socio-hydrologic modeling studies share common themes 

where policy and practice evaluations are assessed to inform resilient watershed management (Di 

Baldassarre et al., 2015; Giuliani et al., 2016; van Emmerik et al., 2014).  As the field of socio-

hydrology matures and analyses move beyond simple and coarse-scale analyses, the concept of 

intensity and extensity of interventions will become invaluable assets in evaluating the efficacy 

of proposed practices.   
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The year 2022 marks the end of hydrologic research decade called Panta Rhei (everything flows) 

by the International Association of Hydrological Sciences, which focused attention on the co-

evolution of humans and watersheds (Montanari et al., 2013).  New research directions will 

incorporate the explicit representation of humans on the landscape as agents of hydrologic 

processes, and distributed modeling of sociohydrological systems will be a critical method in 

developing new insight (Troy et al., 2015).  We have seen the beginning of such spatially explicit 

representations of sociohydrologic modeling with studies that apply hydro-economic models, 

and natural experiments that represent economic and policy constraints on human-decision 

making within the context of water availability and water resource management (Tran et al., 

2019, 2020; Penny et al., 2020; Hansen et al., 2021).   

  



121 

 

 

 

 

 

APPENDIX I 

SUPPLEMENTAL MATERIAL FOR CONTROLS OF CHLORIDE LOADING AND 

IMPAIRMENT AT THE RIVER NETWORK SCALE IN NEW ENGLAND 
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Supporting information includes additional background on the observation data used, on the 

FrAMES-NACL model, presents methodology of the Markov-Chain Monte Carlo experiment, 

provides details of the calculation of the informal likelihood function, and presents additional 

validation data. 

Sensor data used in study 

Raw time-series data and more information about the Lotic Volunteers Temperature, Electrical 

Conductance, and Stage (LoVoTECS) data used in the analysis are available at 

lovotecs.sr.unh.edu.  Chloride concentration data for synoptic sampling events in 2013 analyzed 

by the University of New Hampshire Water Quality Analysis Laboratory according to USEPA 

method 300.1 are related to hourly average station data (Figure AI.1).  Ordinary least square 

regression of the specific conductance to measured chloride concentration yields Equation 1 of 

the Chapter I and is shown on Figure AI.1.  We calculate similar relationships as shown on 

Figure AI.1 if stations were binned based on river order or impervious cover (with river order 5 

and impervious cover of 25% demarcating bins) or if all specific conductance and chloride data 

pairs were averaged by station.   

Mass balance calculations in FrAMES-NACL  

Within FrAMES, the Water Balance Model (WBM) controls vertical water transfer and 

terrestrial runoff generation (Figure AI.2a) which is routed through a 1-D simulated topological 

network (STN) river system using the Water Transport Model (WTM) (Vörösmarty et al., 1998; 

Wisser et al., 2010).  Precipitation and snowmelt are transferred either to the root zone or directly 

to the stream network from hydrologically connected impervious (ℎ𝑐𝑖) areas.  Snowpack 

accumulation and melting follow a simple temperature index method (Willmott et al., 1985).  

Evapotranspiration is drawn from the root-zone (Hamon, 1963). Saturation excess, generated 
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when rooting zone soil water exceeds field capacity, is directed to two exponential runoff 

generating pools representing surface (quickflow) and shallow groundwater (baseflow) flow-

paths.   

Two modifications were made to FrAMES model structure to accommodate NACL 

functionality.  First, the ℎ𝑐𝑖 parameter, which controls impervious connectivity to stream 

networks, was decreased during winter precipitation compared to liquid rain events to account 

for greater routing of road salt to the subsurface during winter storms (e.g. snow plowed from 

roads is piled up on sides which infiltrate soils).  Second, we added a groundwater storage pool 

to represent long-term storage in the subsurface.  Previous versions of FrAMES conceptualized a 

shallow groundwater compartment with an exponential transit time distribution (TTD) to 

generate the hydrodynamic response of catchments.  We represent longer time-scales of transport 

through the subsurface as mass exchange between the shallow groundwater compartment and an 

immobile zone (discussed below). 

Chloride concentrations are calculated within each compartment of NACL and based on 

incoming water and their associated concentrations. Fluxes between compartments are defined 

by flow between compartments assuming instantaneous mixing throughout the compartment: 

𝑑𝑀𝜒

𝑑𝑡
= ∑ 𝑚̇𝜒

𝑗

𝑚

𝑗=0

− ∑ 𝑄𝜒
𝑘

𝑛

𝑘

𝐶𝜒 
Eq. AI.1 

where 𝑀𝜒 [kg] is chloride mass within compartment 𝜒 (e.g. snowpack, rooting zone, surface 

runoff pool, or shallow groundwater (baseflow) runoff pool), 𝑚̇𝜒
𝑗

 [kg Cl d−1]  is the 𝑗th mass 

inflow to compartment 𝜒, 𝑄𝜒
𝑘 [m3d−1] is the 𝑘th water outflow from compartment 𝜒, and 

𝐶𝜒 [kg m−3] is the chloride concentration in compartment 𝜒 during the timestep given by: 
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𝐶𝜒 =
𝑀𝜒 + ∑ 𝑚̇𝜒

𝑗𝑚
𝑗=0

𝑉𝜒 + ∑ 𝑄𝜒
𝑘𝑛

𝑘=0

 
Eq. AI.2 

where 𝑉𝜒 [m3] is the water volume in compartment 𝜒.  Water and chloride compartments and 

transfers are illustrated graphically in Figure AI.2. 

FrAMES-NACL calculates a chloride mass exchange flux between the mobile (shallow 

groundwater) and immobile zone (𝑚̇𝑖𝑚𝑚 [kg Cl d−1]) following the time-step linearization 

technique of Silva et al. (2009).  Exchange is defined by concentrations within the mobile (𝐶𝑚) 

and immobile zones (𝐶𝑖𝑚𝑚), exchange coefficient (𝛼𝑖𝑚𝑚 [d−1] ), and immobile zone volume 

(𝛽𝑖𝑚𝑚 [L3]), using concentrations in each zone from the previous timestep (𝑡 − 1): 

𝑚̇𝑖𝑚𝑚 = 𝛽𝑖𝑚𝑚𝛼𝑖𝑚𝑚𝐶𝑖𝑚𝑚
𝑡−1 𝑒𝑥𝑝(−𝛼𝑖𝑚𝑚𝑑𝑡) − 𝛽𝑖𝑚𝑚𝛼𝑖𝑚𝑚𝐶𝑚

𝑡−1 𝑒𝑥𝑝(−𝛼𝑖𝑚𝑚𝑑𝑡) Eq. AI.3 

The concentration within the mobile zone (𝐶𝑚) is updated at time 𝑡 using a modified mobile 

zone storage term (𝛽∗) and outflow from the mobile zone through the baseflow flux (𝑄𝐵𝐹). 

𝐶𝑚
𝑡 =

𝐶𝑚
𝑡−1 +

𝑚̇𝑖𝑚𝑚 + ∑ 𝑚̇𝑗
𝑚
𝑗=1

𝛽∗

1 +
𝑄𝐵𝐹

𝛽∗

 Eq. AI.4 

where 𝑚̇𝑗 represents the m individual chloride fluxes to the mobile groundwater zone.  The 

modified mobile zone storage term (𝛽∗) is the sum of the mobile zone volume (𝛽𝑚) and 

immobile storage accessible over the duration of the time-step: 

𝛽∗ = 𝛽𝑚 + 𝛽𝑖𝑚𝑚[1 − 𝑒𝑥𝑝(−𝛼𝑖𝑚𝑚𝑑𝑡)] Eq. AI.5 

Finally, NACL updates the immobile zone concentration at time t (𝐶𝑖𝑚𝑚): 
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𝐶𝑖𝑚𝑚
𝑡 = 𝐶𝑖𝑚𝑚

𝑡−1 𝑒𝑥𝑝(−𝛼𝑖𝑚𝑚𝑑𝑡) − 𝐶𝑚
𝑡−1[𝑒𝑥𝑝(−𝛼𝑖𝑚𝑚𝑑𝑡)]

+
𝐶𝑚

𝑡 − 𝐶𝑚
𝑡−1

𝑑𝑡
[1 −

1

𝛼𝑖𝑚𝑚

(1 − 𝑒𝑥𝑝 (−𝛼𝑖𝑚𝑚𝑑𝑡))] 

Eq. AI.6 

We use a single immobile zone of fixed size (𝛽𝑖𝑚𝑚) with a single mass exchange coefficient 

(𝛼𝑖𝑚𝑚) at each gridcell; however, the method could be extended to multiple immobile zones to 

generate longer-tail transit time distributions. The immobile domain is fixed in size, which 

assumes deeper groundwater volumes remain constant.  As the groundwater pool drains during 

summer low-flows, mass exchange from the immobile zone dominates salt concentration in 

groundwater resulting in maintenance of high seasonal salt concentrations, even in response to 

short term storm events.   

Parameterizing FrAMES-NACL 

The simulated topological network (STN) representing the river network of the study domain 

used the HydroSHEDS digital elevation model (Lehner et al., 2008) aggregated to a geographic 

resolution of 45 arc seconds (approximately 1.5 km resolution) through network scaling (Fekete 

et al., 2001).  We used daily gridded air temperature from the Modern-Era Retrospective 

Analysis for Research and Applications (Rienecker et al., 2011) and downscaled temperature to 

match STN resolution, using an elevation lapse of -6.4°C/km (NOAA et al., 1976).  For 

precipitation forcing data, we re-interpolated (geographic inverse distance weighting with 𝑝 = 2) 

MERRA surface precipitation and NOAA Global Historical Climate Network ground station 

data with equal weighting.  We used land-cover data derived from NOAA’s Coastal Change 

Analysis Program (Vogelmann et al., 1998), imperviousness from national land cover data (Xian 

et al., 2011), and population density data derived from U.S. census data (Thorn et al., 2017) 
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NACL represents four sources of chloride (Figure AI.2b) with specific parameters defining 

loading provided on Table AI.1.  Chloride input via precipitation (𝑚̇𝑝𝑝𝑡 [kg Cl d−1] ) is 

calculated from daily precipitation [mm d−1] and weekly chloride concentration in wet 

deposition (𝐶𝐴𝑇𝑀 [kg Cl m−3]).  We interpolated (geographic inverse distance weighting with 

𝑝 = 2) weekly mean concentrations of chloride in precipitation (𝐶𝐴𝑇𝑀  [kg Cl m−3]) measured 

through the National Atmospheric Deposition National Trends Network 

(http://nadp.sws.uiuc.edu/NTN/ ) at stations within (NH02 at Hubbard Brook Experimental 

Forest), and surrounding our study domain (MA08, MA13, ME02, ME08, ME96, and VT01).  

We associated all wet precipitation with 𝐶𝐴𝑇𝑀 throughout the study domain and assume no 

loading from dry deposition.   

Chloride input via road salt application is calculated from per area application rate per unit 

snowfall and the fraction of impervious surfaces that are treated with deicer (𝑓𝐷𝐸𝐼).  Snowfall rate 

in snow water equivalents (𝑃𝑊 [mm d−1]), defined by the precipitation rate on days with daily 

mean air temperature less than −0.29°𝐶 (Stewart et al., 2013) controls road salt applied. Treated 

impervious areas receive chloride at a rate specified by the deicer loading parameter 

(𝐶𝐷𝐸𝐼 [kg Cl mm−1m−2 ]), which assumes chloride salt deicer application rate is constant per 

depth of frozen precipitation.  The mass flux of deicer (𝑚̇𝑑𝑒𝑖) applied to a grid-cell is then given 

by 

𝑚̇𝐷𝐸𝐼 = 𝑓𝐷𝐸𝐼 × 𝐴𝐼 × 𝐶𝐷𝐸𝐼 × 𝑃𝑤 Eq. AI.7 

where 𝐴𝐼  [m2] is the total impervious area of the grid cell.   
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The mass flux from domestic salt loading (𝑚̇𝑃𝑂𝑃 [kg Cl d−1]), including septic and sewer waste 

and water softeners leachate, is calculated from a per capita loading rate (𝐿𝑃𝑂𝑃 [kg Cl P−1d−1]) 

and population density (𝜌𝑃𝑂𝑃 [P km−2]):  

𝑚̇𝑃𝑂𝑃 = 𝐿𝑃𝑂𝑃 × 𝜌𝑃𝑂𝑃 × 𝐴 Eq. AI.8 

where 𝐴 [km2] is the grid-cell area. We use estimates of domestic chloride loading (𝐿𝑃𝑂𝑃) 

derived from monitored sewage effluent (Struzeski, 1971; Novotny et al., 2009), but  account for 

chloride introduced by water softeners (Godwin et al., 2003; Kelly et al., 2008; Trowbridge et 

al., 2010).   We do not distinguish direct transport of chloride to river systems through sewered 

infrastructure, and we consider chloride added during waste treatment to be negligible (Kelly et 

al., 2008).  By neglecting sewer flow, domestic chloride travels longer through municipal centers 

than is realistic; however, because domestic loading is considered constant, overestimating 

transport time doesn’t affect our simulations.  

Agricultural salt loading is represented as a constant areal loading rate (𝐿𝐴𝐺 [kg Cl m−2d−1]) for 

fractions of grid cells with agricultural land cover (𝑓𝐴𝐺): 

𝑚̇𝐴𝐺 = 𝐿𝐴𝐺 × 𝑓𝐴𝐺 × 𝐴 Eq. AI.9 

Agricultural loading (𝐿𝐴𝐺) estimates were taken from two Midwestern US studies and likely 

overestimate loading from the pastures that constitute most croplands in the study region 

(Novotny et al., 2009; Stites and Kraft, 2001).   

Markov-chain Monte Carlo calibration and experiment  

To address our first hypothesis, we use FrAMES-NACL to calibrate deicer application rate 

(𝐶𝐷𝐸𝐼), and compare to empirical estimates of deicer application rates obtained from three studies 

(Godwin et al., 2003; Sander et al., 2007; Trowbridge et al., 2010) that inventoried road salt 
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usage.  We estimated deicer application rates [𝑔 Cl 𝑚𝑚−1𝑚−2] from inventories by dividing 

total salt usage reported by the inventory studies by total received snow (typically annual),scaled 

to an estimate of treated impervious area. If total frozen precipitation was not reported in a study, 

we used data from nearby NOAA Global Historic Climate Network stations.  Where application 

rates were reported in lane length, we calculated lane area assuming a lane width of 3.66m.  In 

parameterizing road salt application in FrAMES-NACL, we assume 60% of impervious areas are 

used for pedestrian and vehicle travel (Cappiella and Brown, 2001; Southworth, 2003; Shuster et 

al., 2005) and receive deicer application (e.g. 𝑓𝐷𝐸𝐼 = 0.6) (Figure AI.3), and that the remainder 

of impervious area (e.g. roofs) receives no deicer.   

We calibrated road salt chloride loading rates to be consistent with the distributions of chloride 

observed in streams using FrAMES-NACL.  A Markov-Chain Monte Carlo (MCMC) analysis 

[Goodman and Weare 2010, Foreman-Mackey et al. 2013] informed 𝐶𝐷𝐸𝐼 estimates in the 

context of uncertain hydrologic storage and flow.  The MCMC analysis characterized posterior 

parameter distributions for 6 free hydrology and chloride-related parameters summarized on 

Table AI.1.  We used the acceptance ratio (𝑅𝐴) (𝜌 in Sadegh and Vrugt (2013 eq. 10)) on 

probabilities of non-exceedance (PONE) of target variables (𝑅𝐴) as an informal Bayesian 

likelihood to test model behavior.  Observations were defined as PONE from daily data for both 

discharge (𝑄) and specific conductance (𝑘0) at 9 discrete probabilities (0.1, 0.2, … 0.9) similar to 

methods used by Yu and Yang (2000), Westerberg et al. (2011, 2014), and Vrugt and Sadegh 

(2013).  

The MCMC was started with normally distributed ensembles about each parameter’s initial 

estimate assuming most parameters initial variability was 10% of the estimate.   For road salt 

loading, the initial value and variability of 𝐶𝐷𝐸𝐼 came from the average of the inventory 
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estimates.  The prior distribution for 𝐶𝐷𝐸𝐼 was log-uniform on bounds that encompassed 1.5 

times the range in inventory estimates. 

The affine-invariant sampler (Goodman and Weare, 2010; Foreman-Mackey et al., 2013) 

explored the posterior distribution for a total of 111 iterations equating to 13440 model runs for 

the MCMC.  The integrated autocorrelation time (𝜏𝐸) of ensemble means (Goodman and Weare, 

2010) for various metrics of the convergence process including parameter values and all fit 

summary statistics, including 𝑅𝐴, suggest that initial parameter estimates and variance were close 

to the posterior stationary estimates.  34 iterations (4080 model evaluations) were discarded as 

burn-in following the suggestion of Sokal (1997, p.8) to discard 20𝜏exp  iterations, and assuming 

that the ensemble mean autocorrelation time 𝜏𝐸 of Goodman and Weare (2010) is a reasonable 

approximation of the exponential autocorrelation time 𝜏exp  from Sokal (1997).  The final 77 

iterations (9240 model evaluations) sampled the stationary posterior distribution for the MCMC 

experiment.    

Calculation of informal likelihood  

We use the acceptance ratio (𝑅𝐴), the fraction of model predictions that fall within a band of 

acceptability defined by observation data (𝑄 or 𝑘0) (Vrugt and Sadegh, 2013).  The acceptance 

ratio [0,1] represents the proportion of simulated values within error bounds (based on 

observational and estimated model structural error) of observational data.  We selected stations 

with at least 170 days of data throughout the entire year from catchments of order 5 or less, 

retaining higher order stations for validation (𝑘0:n=5, 𝑄:n=9).  The larger pool of stations 

measuring specific conductivity weights  𝑘0 almost twice as heavily as discharge.  A priori 

heteroscedastic estimates of observational error (𝜎𝑄 or 𝜎𝑘0
) were 10% of observation value for 
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discharge (𝑄) and 6% of observation value for specific conductance (𝑘0), the latter based on 

manufacturer reported instrument error of instantaneous measurements at 95% confidence: 

𝜎𝑄 = 0.1𝑄 Eq. AI.10 

𝜎𝑘0
= 0.06𝑘0 Eq. AI.11 

A multiplicative factor 𝜅 equal to 4 accounted for additional model structural error.  We double 

the value of 𝜅 from analysis of Vrugt and Sadegh (2013) because we are incorporating 

information from numerous subcatchments of the Merrimack and Piscataqua Rivers; however, 

parameterizations are not spatially explicit and apply to both watersheds as spatially homogenous 

expected values.  

Station data from lower (1-5) orders defined model performance whereas we reserved higher 

order station data for validation.  For each 𝑗 station, time-series of the lower and upper error 

bounds are: 

𝑄𝑗
− = 𝑄𝑗 − 𝜅𝜎𝑄,𝑗 and  𝑘0𝑗

− = 𝑘0𝑗
− 𝜅𝜎𝑘0,𝑗 Eq. AI.12 

𝑄𝑗
+ = 𝑄𝑗 + 𝜅𝜎𝑄,𝑗 and 𝑘0𝑗

+ = 𝑘0𝑗
+ 𝛼𝜎𝑘0,𝑗 Eq. AI.13 

The model’s ability to recreate non-exceedance probability distributions of the two variables of 

interest (discharge and specific conductance) is the primary metric for quantifying performance.  

Here, for each 𝑗 station with a minimum of 200 daily observations of a test variable, we rank 

lower (e.g. 𝑄𝑗
− ) and upper ( 𝑄𝑗

+ ) bounds on observations using Cunane plotting positions 

(Stedinger et al., 1992).  Runoff and specific conductance are interpolated to (𝑀 = 9) specific 

non-exceedance probabilities (𝑝) ( 𝑝 = [0.1,0.2, … ,0.9]) and for each station define 𝑄𝑗
𝑝− , 𝑄𝑗

𝑝+ , 

𝑘0𝑗
𝑝− , and 𝑘0𝑗

𝑝+  used for comparison with model generated equivalents (𝑄̃𝑗
𝑝
 and 𝑘̃0𝑗

𝑝
).  𝑄̃𝑗

𝑝
 and 
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𝑘̃0𝑗

𝑝
 represent model generated equivalents of observed variables 𝑦𝑗 and 𝑘0𝑗

 ranked and 

interpolated to 𝑝 non-exceedance probabilities for the subset of days with observational data for 

each station 𝑗.  An acceptance ratio 𝑅𝐴, which is a system level model assessement equivalent to 

the distance measure used in Sadegh and Vrugt (2013), summarizes model behavior for a 

particular scenario: 

𝑅𝐴 =
1

(𝑁𝑄 + 𝑁𝑘0
)𝑀

(∑ ∑ 𝐴(𝑄̃𝑗
𝑝

, 𝑄𝑗
𝑝− , 𝑄𝑗

𝑝+ )

𝑀

𝑝=1

𝑁𝑄

𝑗=1

+ ∑ ∑ 𝐴 (𝑘̃0𝑗

𝑝
, 𝑘0𝑗

𝑝− , 𝑘0𝑗
𝑝+ )

𝑀

𝑝=1

𝑁𝑘̃0

𝑗=1

) 

Eq. AI.14 

where 𝑁𝑄 and 𝑁𝑘0
are the number of sites with sufficient data to test runoff and specific 

conductance, respectively, and the acceptance function 𝐴 counts the number of instances where a 

model generated variable at a given non-exceedance probability is bounded by the estimates of 

that value from observations:  

𝐴 = {

  𝜃𝑗
𝑝− ≤ 𝜃̃𝑗

𝑝 ≤  𝜃𝑗
𝑝+ , 1

             𝜃̃𝑗
𝑝 <  𝜃𝑗

𝑝− , 0

            𝜃̃𝑗
𝑝 > 𝜃𝑗

𝑝+ , 0

 

Eq. AI.15 

 

where 𝜃 represents either 𝑄 or 𝑘0.  Stated simply, 𝑅𝐴 is the number of sites and non-exceedance 

probabilities where model generated predictions for two variables are consistent with 

observations, expressed as a proportion total sites, probability bins and variables.  𝑅𝐴 is defined 

as a range between 0 and 1, with 1 defining a perfect simulation. 

We calculate the informal likelihood using the PONE of target variables in favor of time-series 

because our metric of chloride impairment is closely related to the PONE of specific 
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conductivity and the input data has irreducible error that contaminates parameter identification 

using simulated time-series.  We compare concentrations to a fixed threshold (§3.3) throughout 

the productive season, and not at points in any species’ life cycle, obfuscating a requirement for 

predictions at specific times.  Error in individual storm magnitudes represented by input data 

contributes significantly to total model error in hydrologic and transport simulations (Kavetski et 

al., 2006a, b; Vrugt et al., 2008; Renard et al., 2010, 2011; McMillan et al., 2012; Andino et al., 

2016).  MERRA precipitation intensities exhibit considerable error at shorter than monthly 

frequencies (Rienecker et al., 2011), and poor resolution of storms in small observational 

catchments follows from MERRA’s coarse (0.5°x0.67°) resolution.  Utilizing exceedance 

probabilities for our objectives eliminates the latent parameters typically employed when 

representing input data errors explicitly (Kavetski et al., 2006a, b; Vrugt et al., 2008; Renard et 

al., 2010).   

Definition of Impairment Threshold 

Prolonged exposure of freshwater with salinities or chloride concentrations less than 

400 [𝜇𝑆 𝑐𝑚−1] reduces richness of community structure in fish (Morgan et al., 2012), fen 

gramminoids (Richburg et al., 2001), and stream macroinvertebrates (Blasius and Merritt, 2002).  

At prolonged exposure at higher salinities (e.g. > 800 [𝜇𝑆 𝑐𝑚−1]), zooplankton richness and 

reproduction is reduced, and invertebrate mortality increases (Findlay and Kelly, 2011b; Cañedo-

Argüelles et al., 2013).  We selected a threshold that bisects these two levels 600 [𝜇𝑆 𝑐𝑚−1]. 
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Figure AI.1: Scatter-plot of hourly station specific conductance versus chloride concentration 

sampled across the LoVoTECS network on three dates in 2013.  Line of best fit and 95% 

confidence interval about the mean prediction are shown in blue. Locally weighted scatter-plot 

smoothing (LOWESS) shows OLS exceeds specific conductance estimates from chloride at the 

lowest concentrations of chloride.    
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Figure AI.2:  Conceptual diagrams of a) Water Balance Model (WBM), b) the Non-point 

Anthropogenic Chloride Loading (NACL) model, and c) simulated topological network (STN) 

defining 1-D drainage network.  Major hydrologic fluxes and stocks are labeled in a; RO – 

runoff.  The 6 parameters controlling runoff generation and chloride explored via MCMC are in 

bold italics.  Parameters with diagonal crosses are time-scale parameters with units including t^(-

1), and parameters with vertical/horizontal crosses represent divergence parameters separating 

flow paths. 
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Figure AI.3. Distribution of chloride flux loading and fates from impervious areas (𝑨𝑰). Frozen 

precipitation (𝑷𝒘) falling on road salt treated impervious areas defined by 𝒇𝑫𝑬𝑰 (shaded) either 

melt directly to stream runoff carrying roadsalt at concentration of 𝑪𝑫𝑬𝑰 (A), or accumulate in 

snowpack with chloride concentration of 𝑪𝑫𝑬𝑰 (B).  Frozen precipitation falling on untreated 

impervious surface accumulates in snowpack with chloride concentration 𝑪𝑨𝑻𝑴 (C).  The 

condition 𝒇𝒘𝑯𝑪𝑰 > 𝒇𝑫𝑬𝑰 is not encountered in this study. 

 

Table AI.1: Initial (x0) and posterior (xn) credible ranges (CR) for FrAMES-NACL parameter 

values.  Parameters with no reported posterior credible ranges were not included in the Monte 

Carlo analysis. 
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Table AI.2. Summary of fit metrics for headwater (river orders 1-5) and mainstem (river orders 

6-8) stations for non-exceedance probabilities of specific conductance (𝑲𝟎
𝒑
) and discharge (𝑸𝒑).  

Reported fit metrics include the number of observations (number of stations times 9 probabilities 

tested), acceptance ratio (𝑹𝑨 [−]) used in the MCMC, root mean square error 

(𝑹𝑴𝑺𝑬 [𝒎𝟑𝒔−𝟏, 𝝁𝑺 𝒄𝒎−𝟏]), and the median residual (𝒓̂𝟎.𝟓 [𝒎𝟑𝒔−𝟏, 𝝁𝑺 𝒄𝒎−𝟏]).  RMSE of 

model simulations are provided for windows of 1, 5, and 10 days. 

   Probability of Non-Exceedance RMSE averaging  

 Network 𝑛 𝑅𝐴 𝑁𝑆𝐸 𝑟̂0.5 𝑅𝑀𝑆𝐸 D 5D 10D 

𝐾0
𝑃 

Headwater 

(calibration) 
306 0.53 0.75 9.6 180 320 230 205 

Mainstem 

(validation) 
45 0.38 0.07 17.4 32 74 58 54 

𝑄𝑃 

Headwater 

(calibration) 
171 0.88 0.93 -0.04 0.50 3.3 2.7 2.4 

Mainstem 

(validation) 
81 0.85 0.99 -0.15 7.8 72 54 46 
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Figure AI.4: Time-series of discharge at five stations comparing FrAMES-NACL (blue) with 

observational data (black).  Values in brackets denote catchment area.  Light bands indicate the 

productive season (mid-April through October).   
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Figure AI.5:  Model predicted versus observed discharge (Q) and specific conductance (k0) at 

nine non-exceedance intervals 𝒑 = [𝟎. 𝟏, 𝟎. 𝟐, . . . , 𝟎. 𝟗] for stations with a minimum of 200 days 

of data.  Red circles and green squares represent headwater (order 1-5) and mainstem (order 6-7) 

stations, respectively.  Open (white) symbols indicate the 0.1 exceedance probability value for a 

station, the closed (black) symbols indicate the 0.9 exceedance probability value.  Lines connect 

symbols for each individual station.  Blue bands surrounding dashed 1:1 line represent the limits 

of acceptability bands.  Fit metrics including root mean square error, acceptance ratio, and Nash-

Sutcliffe efficiency are calculated using headwater stations. 
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Figure AI.6: Initial parameter value (dashed blue) and posterior (solid filled) kernel densities for 

𝑪𝑫𝑬𝑰 [𝒎𝒈 𝐂𝐥 𝑳−𝟏].  Literature loading best estimates (●) and ranges (—) are overlaid on the 

kernel densities.  Horizontal axes represent the parameter units.  Vertical axes represent the 

relative kernel density of parameter values (integrals = 1) and do not apply to empirical estimates 

or ranges.  Gray regions show areas outside the prior distribution.  The sources for empirical 

loading estimates are: G03 (Godwin et al., 2003) (Mohawk River Valley, NY), EC04 

(Environment Canada, 2004), S07 (Sander et al., 2007) (TCMA, MN), SI07 (Salt Institute, 

2007), T10 (Trowbridge et al., 2010) (Southeastern NH). 
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Figure AI.7: Profiles of mean August specific conductance along Pemigewasset-Merrimack 

River profile compared to observations in the LoVoTECS network. The red vertical line 

indicates the location of the USGS station at Lowell. Panel b) shows the model versus observed 

mean August specific conductance from LoVoTECS data along the Pemigewasset-Merrimack 

profile (shown in Panel a).  Panel c) Box-and-whisker plots of discrete grab samples of summer 

specific conductance (USGS), and modeled specific conductance between 1999 and 2004 at 

Lowell, MA. 
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APPENDIX II 

SUPPLEMENTAL MATERIAL FOR INTERPLAY OF CHANGING IRRIGATION 

TECHNOLOGIES AND WATER REUSE: EXAMPLE FROM THE UPPER SNAKE 

RIVER BASIN, IDAHO, USA 
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Additional information and data included in this Appendix supplements Chapter II.  The spatial 

distribution of infiltration fraction and dams provisioning water to each region of the Upper 

Snake River Basin are depicted in Figures AII.1 and AII.2, respectively.  Complete descriptions 

of the representation of irrigation technology and lumped aquifers is provided.  Crop input data 

and methods for calculating spring discharge are detailed.  Graphics presenting model validation 

and behavior are presented, and finally the mass balance of all irrigation returns are illustrated. 

 

Figure AII.1: Infiltration fraction defining the proportion of saturation excess that infiltrates to 

shallow and deep groundwater reservoirs; the complement runs off the soil surface.  The 

distribution of infiltration fraction qualitatively exhibits observations that runoff occurs proximal 

to moderate size rivers (greater than order 4), and tends to decrease with elevation. 
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Figure AII.2: Map showing Idaho administrative basins, dam locations, connections between 

specific dams and administrative basins used for provisioning surface water, and total irrigated 

lands as a fraction of pixel area.  Mapping specific reservoirs to each AB was done manually by 

tracing canal courses from National Hydrography Data (nhd.usgs.gov) from reservoirs through 

irrigated areas.  In addition, we derived irrigation water for AB 23 (eastern border of Idaho) from 

American Falls Reservoir because abstractions from this area of the state are taken below 

Palisades Reservoir, the next downstream reservoir is American Falls. 

 

Irrigation technology and modernization  

Irrigation technology was revised in the UNH Water Balance Model (WBM) to a process-based 

representation as an alternative to the prior conceptual formulation where non-beneficial fates 

were specified as a fraction of gross irrigation (Grogan et al., 2017; Wisser et al., 2008, 2010).  

The process-based formulation redistributes inefficient irrigation water via surface runoff flows, 

groundwater percolation, and evaporation during both delivery and application stages.  The 

system explicitly represented non-consumptive losses using technology specific parameters 
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applied to proportions of irrigated croplands operating each technology.  Losses during delivery 

were calculated from conveyance surface area (as a fraction of irrigated cropland), daily open 

water evaporation, and percolation.  Conveyance methods included pipes with no evaporation or 

percolation, and open conveyances such as canals and ditches that percolate at a fraction of local 

infiltration rates and evaporate from their surfaces.  Incidental losses during application follow 

Jägermeyr et al. (2015) and use the distribution uniformity parameter that described excess 

water needed to satisfy net irrigation demand based on the type of technology, either drip, 

sprinkler, or flood.  The distribution uniformity parameter was maintained at the values 

originally estimated for surface/flood, sprinkler, and direct/drip agriculture (Jägermeyr et al., 

2015).   

The process of calculating non-beneficial use (𝑁) and non-consumptive returns (𝐿) via 

application of irrigation water is performed throughout the WBM time-step cycle.  Following 

calculation of net crop water demand (𝐼𝑛𝑒𝑡), additional delivery and application requirements are 

calculated accounting for technology specific inefficiencies.  Then, an initial estimate of 

delivered water is based on estimated water availability and if available water is determined to be 

insufficient to meet demand (plus inefficient use and loss), all associated irrigation fluxes are 

scaled downward linearly by the provisional irrigation supply factor (𝑋𝑖𝑟𝑟).  At this stage, WBM 

performs the river routing calculation, and estimates of provided water are updated according to 

actual water availability.  Finally, excess water introduced to irrigated crop fields is partitioned 

between non-beneficial evaporation, non-consumptive runoff, and non-consumptive percolation.  

What follows is a more detailed description of each of these steps.  Unless specified otherwise, 

all calculations described in this section are distributed spatially across irrigated crop areas as 

grid operations. 
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WBM can run any number of individual technologies simultaneously using data of irrigated land 

fraction for which each of the technologies is used 

{
∑ 𝑓𝑖

𝑑,𝑖𝑟𝑟 = 1 𝑖

∑ 𝑓𝑖
𝑎,𝑖𝑟𝑟 = 1𝑖

       Eq. AII.1 

where 𝑓𝑖
𝑑,𝑖𝑟𝑟 

and 𝑓𝑖
𝑎,𝑖𝑟𝑟 

 are fraction of land served by technology 𝑖 within irrigated land, and 

superscripts 𝑑 and 𝑎 denotes delivery and application technology group, respectively. 

Irrigation Delivery 

Inefficient fluxes from conveyances rely on calculated daily open water evaporation rates 

(function of air temperature, humidity, and wind speed), and percolation rates of saturated soil.  

These rates are spatially and temporally distributed to the fraction of surface area of the irrigation 

delivery system (𝑓𝑖
𝑑,𝐴

) relative to the irrigated area (𝐴𝑖𝑟𝑟, m2) for each 𝑖 delivery technology.  

These non-beneficial fluxes are calculated at each pixel on each day crops demand irrigation 

water.  Crop water demand functionality of WBM is described by Grogan et al. (2017).  We 

assume that there is no surface runoff from any irrigation water delivery technology. 

Evaporation of delivery water (𝑁𝑒𝑣𝑎𝑝
𝑑 ) is calculated for days when irrigation demand is required 

as 

𝑁𝑒𝑣𝑎𝑝
𝑑 = 𝐴𝑓𝑤𝐸𝑓𝑤      Eq. AII.2 

where 𝐸𝑓𝑤 is evaporation rate from free water surface (m/d), and 𝐴𝑓𝑤 is a weighted calculation 

of the pixel area undergoing free water evaporation through irrigation delivery systems: 

𝐴𝑓𝑤 = 𝐴𝑖𝑟𝑟 ∑ 𝑓𝑖
𝑑,𝑖𝑟𝑟𝑓𝑖

𝑑,𝐴𝜀𝑖
𝑒𝑣𝑎𝑝𝑛

𝑖            Eq. AII.3 
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where 𝑓𝑖
𝑑,𝐴

 (-) is the fraction of area relative to irrigated area that irrigation delivery systems 

occupy on the ground, and 𝜀𝑖 (-) is a parameter that describes the fraction of an irrigation 

delivery technology that experiences free-surface evaporation.  For the 𝜀𝑖
𝑒𝑣𝑎𝑝

 parameter we 

suggest using values approaching 1.0 for ditch and canals (because both have water surface 

exposed for evaporation), and approaching 0.0 for pipe delivery technology as the only water 

exposed to air for evaporation in pipes consists of pipe leakage.  All parameters can be spatially 

explicit; however, in our representation of the USRB only 𝐴𝑖𝑟𝑟 is spatially explicit; total irrigated 

areas and the fraction of delivery technologies are described in the main text.  The fraction of 

canal areas are modified by the technology parameterizations (main text).  The fraction of area 

coverage in the presence of a specific delivery type (𝑓𝑖
𝑑,𝐴

) and is assumed to be 1.2% for canals, 

which equates to an average 8 m wide canal traversing pixels that are completely irrigated.  

Defining spatially explicit estimates of canal coverage was beyond the scope of this study; but 

may be an important consideration for refinement of the baseline model. 

Percolation is calculated from unlined irrigation conveyance (canal or ditch) benthic surface in a 

method similar to the calculation for evaporation. 

𝐿𝑝𝑒𝑟𝑐
𝑑 = 𝐴𝑝𝑒𝑟𝑐𝑃𝑝𝑒𝑟𝑐      Eq. AII.4 

where 𝑃𝑝𝑒𝑟𝑐 is percolation rate from the base of an irrigation delivery system to saturated soil, 

and 𝐴𝑝𝑒𝑟𝑐 is a weighted calculation of the pixel area undergoing saturated canal percolation 

under irrigation delivery systems: 

𝐴𝑝𝑒𝑟𝑐 = 𝐴𝑖𝑟𝑟 ∑ 𝑓𝑖
𝑑,𝑖𝑟𝑟𝑓𝑖

𝑑,𝐴𝜀𝑖
𝑝𝑒𝑟𝑐 𝑛

𝑖     Eq. AII.5 
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where 𝜀𝑖
𝑝𝑒𝑟𝑐

 fraction of canal area to which percolation is applied by technology 𝑖. For the 𝜀𝑖
𝑝𝑒𝑟𝑐

 

parameter we suggest using 1.0 for ditch (no lining at the bottom of the ditch), a value 

representing the fraction of canal bottom areas in the domain that are un-lined (e.g. ~ 1 for canals 

assuming 100 % of bottom area are exposed to percolation in the e.g. USRB), and zero for pipe 

delivery technology as its water is isolation from percolation in pipes.  The percolation factor for 

canals is adjusted in our technology parameterizations (main text).  The 𝑃𝑝𝑒𝑟𝑐 rate is a specified 

parameter described in the main text. 

Both 𝑁𝑒𝑣𝑎𝑝
𝑑   and 𝐿𝑝𝑒𝑟𝑐

𝑑  are scaled by the provisional supply factor (𝑋𝑖𝑟𝑟).  It should be noted that 

𝐿𝑝𝑒𝑟𝑐
𝑎  is introduced to the model at the location of the irrigated fields and not explicitly at the 

locations of canals.  Furthermore, water that percolates beneath canals is considered a non-

consumptive loss associated with irrigated agriculture, and is therefore a component of irrigation 

reuse (𝑅) described in the main text. 

Irrigation Application 

Process-based modelling of irrigation water losses by application technology is implemented 

following an approach similar to Jägermeyr et al. (2015).  Differences between the two 

approaches reflect additional processes introduced here, as well as accommodating unique 

structures of the two hydrologic models.   

The first stage of estimating inefficient fluxes during application of irrigation water is to estimate 

inefficient runoff from excess application, which follows calculation of crop irrigation 

requirement, and concurrent with estimation of inefficient delivery fluxes 𝑁𝑒𝑣𝑎𝑝
𝑑  and 𝐿𝑝𝑒𝑟𝑐

𝑑 .  

Excess irrigation supply (𝐼𝑎), analogous to the Application Requirements (AR) parameter of 
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Jägermeyr et al. (2015), is calculated for each crop group (𝑘, which can be either specific crop 

functional groups or pre-processed average land-cover groups described below):  

𝐼𝑎 = ∑ ∑ {
max(0.5𝑆𝐴𝑊𝐶

𝑘 𝐷𝑈𝑖 − 𝑊𝑖𝑟𝑟 − 𝐿𝑝𝑒𝑟𝑐
𝑟𝑖𝑐𝑒 , 0.0) 𝑤ℎ𝑒𝑟𝑒 𝐼𝑑𝑒𝑚𝑎𝑛𝑑,𝑘 > 0

0                                                                      𝑤ℎ𝑒𝑟𝑒 𝐼𝑑𝑒𝑚𝑎𝑛𝑑,𝑘 = 0

𝑚
𝑘

𝑛
𝑖     Eq. AII.6 

where 𝑆𝐴𝑊𝐶
𝑘   is a grid of crop (𝑘) specific available water capacity (mm) that accounts for soil 

properties, 𝐷𝑈𝑖 is the application technology specific distribution uniformity coefficient 

(Jägermeyr et al., 2015), 𝑊𝑖𝑟𝑟 is the storage in the irrigation runoff retention pool (whose balance 

is calculated like the surface retention surface runoff pool of WBM, but applies only to the 

irrigated pixel fraction), and 𝐿𝑝𝑒𝑟𝑐
𝑟𝑖𝑐𝑒  is percolation associated with rice paddies, which is calculated 

separately (Grogan et al., 2017) and only applies over pixels with identified rice paddy, and 

𝐼𝑑𝑒𝑚𝑎𝑛𝑑,𝑘 is the crop group specific irrigation demand.  Existing storage in the irrigation runoff 

retention is subtracted assuming that irrigation requirements are reduced by whatever volume 

exists in pixels above field capacity assuming that existing excess volume in the irrigation 

retention pool is shared by all crops at a given pixel. Soil porosity defining soil saturation above 

field capacity is not presently a parameter input to WBM; therefore, we estimate the volume of 

additional water above field capacity that saturates soil as 0.5𝑆𝐴𝑊𝐶
𝑘 .  The distribution uniformity 

parameter (𝐷𝑈) is a fraction of the crop field to which this soil saturation applies. 𝐷𝑈 for flood 

irrigation is close to 1 (all the soil in a crop area gets saturated) while for sprinkler irrigation 

about half of the possible saturation volume is actually applied.  In the case of drip irrigation, a 

very small amount of water goes above 𝑊𝑐𝑎𝑝 and so 𝐷𝑈 is very low.   
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A fraction (𝜀𝑚𝑖𝑠𝑡) of water delivered to irrigated crop fields can be lost non-beneficially above 

crop canopy from enhanced evaporation of, for instance, sprinkler mists.  The flux of mist 

enhanced evaporation (𝑁𝑚𝑖𝑠𝑡
𝑎 ) is calculated for each technology (𝑖): 

𝑁𝑚𝑖𝑠𝑡
𝑎 = (𝐼𝑎 + 𝐼𝑑𝑒𝑚𝑎𝑛𝑑,𝑘)𝜀𝑚𝑖𝑠𝑡      Eq. AII.7 

Parameterization of 𝜀𝑚𝑖𝑠𝑡 depends on local climate and specifics of sprinkler technology such 

that they can vary widely from 0 to 40%, with most analyses estimating losses to be less than 

about 5% (Bavi et al., 2009; McLean et al., 2000; Uddin et al., 2010).   For the present study, we 

kept 𝜀𝑚𝑖𝑠𝑡 at a constant value of 4% considered reasonable for the semi-arid region of the USRB, 

but reflects an important area to consider for either refining baseline representation, or improving 

overall water resource utilization (which we did not consider in this analysis). 

Application and delivery inefficiencies are summed to net irrigation demanded by crops to 

estimate an initial gross irrigation flux (𝐺∗): 

 𝐺∗ = 𝐼𝑑𝑒𝑚𝑎𝑛𝑑 + 𝐼𝑎 + 𝑁𝑚𝑖𝑠𝑡
𝑎 + 𝑁𝑒𝑣𝑎𝑝

𝑑 + 𝐿𝑝𝑒𝑟𝑐
𝑑    Eq. AII.8 

A variety of functions are associated with sourcing available irrigation water in WBM, which 

yield a fraction of available water (𝑋𝑖𝑟𝑟 where 𝑋𝑖𝑟𝑟 = 1 indicates complete availability) from an 

appropriate distribution of sources.  Typical irrigation source water determination is discussed in 

Grogan et al. (2017), and modified here to assign specific supply reservoirs to areas of the 

simulation (described below).  Where water supply is less than complete (𝑋𝑖𝑟𝑟 < 1), all terms 

above are reduced linearly to utilize available supply via: 

𝐼𝑑𝑒𝑚𝑎𝑛𝑑 ∗= 𝑋𝑖𝑟𝑟      Eq. AII.9 

𝐼𝑎 ∗= 𝑋𝑖𝑟𝑟       Eq. AII.10 

𝑁𝑚𝑖𝑠𝑡
𝑎 ∗= 𝑋𝑖𝑟𝑟       Eq. AII.11 
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𝑁𝑒𝑣𝑎𝑝
𝑑 ∗= 𝑋𝑖𝑟𝑟       Eq. AII.12 

𝐿𝑝𝑒𝑟𝑐
𝑑 ∗= 𝑋𝑖𝑟𝑟       Eq. AII.13 

Actual gross irrigation (𝐺) is calculated following routing later in the time-step, and small 

deviations between estimated and actual water availability are accounted for in subsequent 

timesteps.  

Following routing through the stream network, the water balance of irrigation retention pool 

(𝑊𝑖𝑟𝑟) is updated using a stable solution and follows a conceptual order of flux priorities.  The 

change in volume of 𝑊𝑖𝑟𝑟 is governed by the differential equation: 

𝑑𝑊𝑖𝑟𝑟

𝑑𝑡
= 𝐼𝑎𝑡𝑚 + 𝐼𝑎 − 𝑁𝑒𝑣𝑎𝑝

𝑎 − 𝐿𝑝𝑒𝑟𝑐
𝑎 − 𝐿𝑟𝑛𝑓𝑓

𝑎    Eq. AII.14 

where 𝐼𝑎𝑡𝑚 is water incident to irrigated crop fields from natural precipitation or melt, 𝑁𝑒𝑣𝑎𝑝
𝑎  is 

non-beneficial evaporation from saturated soil surface, 𝐿𝑝𝑒𝑟𝑐
𝑎  is percolation from saturated soils 

to groundwater, and 𝐿𝑟𝑛𝑓𝑓
𝑎  is surface runoff from saturated soil.  The stock of 𝑊𝑖𝑟𝑟 at the end of 

the timestep is calculated in four independent steps (denoted by superscripts): 

1) 𝑊𝑖𝑟𝑟
1 = 𝑊𝑖𝑟𝑟

0 + 𝐼𝑎𝑡𝑚 + 𝐼𝑎   

2) 𝑁𝑒𝑣𝑎𝑝
𝑎 = min(𝐴𝑖𝑟𝑟𝐷𝑈 × 𝐸𝑝, 𝑊𝑖𝑟𝑟

1 )  

𝑊𝑖𝑟𝑟
2 = 𝑊𝑖𝑟𝑟

1 − 𝑁𝑒𝑣𝑎𝑝
𝑎   

3) 𝐿𝑝𝑒𝑟𝑐
𝑎 = min(𝐴𝑖𝑟𝑟𝐷𝑈 × 𝑃𝑝𝑒𝑟𝑐 , 𝑊𝑖𝑟𝑟

2 )             Eq. AII.15                                                                                                         

𝑊𝑖𝑟𝑟
3 = 𝑊𝑖𝑟𝑟

2 − 𝐿𝑝𝑒𝑟𝑐
𝑎   

4) 𝐿𝑟𝑛𝑓𝑓
𝑎 = min (𝐴𝑖𝑟𝑟𝛽𝑠𝑢𝑟𝑓 × √2𝑔 ×

𝑊𝑖𝑟𝑟
3

𝐴𝑖𝑟𝑟
, 𝑊𝑖𝑟𝑟

3 )  

𝑊𝑖𝑟𝑟 = 𝑊𝑖𝑟𝑟
3 − 𝐿𝑟𝑛𝑓𝑓

𝑎   

where 𝑊𝑖𝑟𝑟
0  is the stock of the water retention pool at the end of the previous timestep, 𝐸𝑝 is the 

potential evapotranspiration (mm/d), 𝛽𝑠𝑢𝑟𝑓 is the parameter describing the rate of leakage from 
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the irrigation (and surface) retention pools, and 𝑔 is the constant of gravitational acceleration.  

The order of updating the irrigation retention pool gives first precedence to non-beneficial 

evaporation, and lowest precedence to surficial runoff, so non-consumptive losses may biased 

low.  The proportions of delivery technologies were spatially homogenous and reflected the 

average lengths of technologies in the USGS National Hydrography Dataset (nhd.usgs.gov).  The 

relative proportions of application technology varied by county following USGS surveys 

(Maupin et al., 2014; Dieter et al., 2018).   

Lumped aquifer representation 

New functionality was introduced to WBM to account for large aquifers using a lumped aquifer 

representation with unidirectional vertical movement.  Lumped aquifers can be represented over 

all or portions of the model domain.  Recharge percolating through the root zone is proportioned 

between shallow groundwater (𝛾𝑆𝐺𝑊 between 0.05 and 0.08) and the deeper (lumped) aquifer 

(𝛾 − 𝛾𝑆𝐺𝑊) at each pixel overlying an identified aquifer.  Additionally, inflows from the surface 

flow network can be specified as point-based losing reaches that infiltrate directly to the aquifer 

(bypassing the shallow groundwater pool); flows to the ESPA are parameterized as a fraction of 

daily flow.  Outflows from the aquifer occur as springs represented as points with head-

dependent conductance similar to drains in MODFLOW (Harbaugh, 2005).  Average head 

within the lumped aquifer head is calculated as: 

ℎ =
𝑆𝐴

𝐶𝐴
∗ 𝑍𝐴 + 𝑍0,      Eq. AII.16 

where ℎ is aquifer head (𝑚), 𝑆𝐴 is the volume stored within the aquifer (𝑘𝑚3), 𝐶𝐴 is the capacity 

of the aquifer (𝑘𝑚3) (so the ratio of 
𝑆𝐴

𝐶𝐴
 is the fractional storage), 𝑍𝐴 is the aquifer thickness (𝑚) 

and 𝑍0 is the base elevation (𝑚).  Drainage through individual springs (𝑄𝑠𝑝𝑟) is calculated as: 
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𝑄𝑠𝑝𝑟 = 𝐾𝑠𝑝𝑟(ℎ − 𝑍𝑠𝑝𝑟),     Eq. AII.17 

where 𝐾𝑠𝑝𝑟 is an individual spring’s conductance (𝑚2 𝑑−1), and 𝑍𝑠𝑝𝑟 is the elevation of each 

spring (𝑚).  𝑄𝑠𝑝𝑟 is then summed for all individual springs.  All recharge to and abstractions 

from the aquifer are summed through the previous day and mass balance of the aquifer is 

updated at a daily time-step using a Runge-Kutta 3(2) order (Bogacki-Shampine) scheme.  Under 

this split operator solution, water percolating to and pumped from the aquifer is assumed to 

influence aquifer volume following a one day lag.  The single-day lag is expected to 

underestimate percolation travel-times through the unsaturated zone and the far-field 

hydrodynamic response of the aquifer to changes in pumping.  The volume of water represented 

by the lumped aquifer model is assumed not to interact with shallow or root zone water (i.e. head 

is assumed to remain below the base of these zones) and fluxes from the aquifer to these zones 

are neglected.  In the USRB, this is a reasonable assumption over most of the aquifer where 

vadose zones are fairly thick and dry (Whitehead, 1992).    

The extent of the lumped aquifer was the same as that used for the ESPAM2 (IDWR, 2013).  We 

represented the aquifer as two lumped compartments (Figure 11b) to reflect the two types of 

water identified by Plummer et al. (2000), such that the ESPA was disaggregated to upgradient 

(northeast) and downgradient (southwest) sections just upgradient of Magic Valley irrigated 

croplands.  Inflows into the upgradient portion consisted of natural recharge, percolation as reach 

gains from six losing rivers of the surface flow network (Big Lost, Little Lost Rivers, Birch, 

Medicine Lodge, Camas Creeks, and the Snake River), and incidental recharge from irrigation.  

The downgradient portion received flow from upgradient portion of the ESPA, as well as natural 

and incidental recharge.  Storage parameters were established from several sources (Garabedian, 

1992; Whitehead, 1992; IDWR, 2013).  For the upgradient section (Group 1 of Plummer), we 



153 

 

selected a specific yield (0.06) and thickness of the aquifer (250 m) comparable to these studies 

resulting in an average aquifer storage of about ~330 km3, which is less than half of estimates of 

the total recoverable water volume of the aquifer (Robertson et al., 1974).  The downgradient 

portion of the ESPA was attributed with a specific yield of 0.05 and thickness of 220 m resulting 

in an average storage of about 73 km3. 

Springs draining the ESPA came from a detailed study of the Thousand Springs region between 

Twin Falls and King Hill, ID (Covington and Weaver, 1991).  Elevations of the springs 

decrease linearly along a westward head gradient, and spring elevations input to WBM 

subtracted out this average gradient such that each spring elevation only reflected deviations 

from an average head elevation of 828 m.  In other examples of spatially lumped aquifers (e.g. 

Famiglietti and Wood, 1994; van der Velde et al., 2009), statistical or functional accounting for 

spatial differences in the water table are used adding additional dynamism not simulated here.  

However, the majority of points of discharge from the ESPA are at known elevations that follow 

a longitudinal gradient.  Therefore, the linear transformation of the outlet elevation of the springs 

is simplifications appropriate to the ESPA where likely geostatistical or functional methods are 

more appropriate for spatially distributed water tables in the absence of specific known points of 

groundwater outflow. 

The ESPA is known to be hydraulically connected to the ESPA in the vicinity of the American 

Falls Reservoir (Garabedian, 1992; IDWR, 2013), which we represent with an additional 

surface flow sink from the Snake River just upstream of American Falls Reservoir to the 

upgradient ESPA aquifer, and a spring from the ESPA back to the Snake River at the reservoir.  

Parameterizing these flow paths was conducted manually primarily by matching the time-series 

of storage with the American Falls reservoir.  Managed aquifer recharge to the ESPA was 
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parameterized as an increased fraction of flow entering ESPA from the Snake River just 

upstream of American Falls.  

Crop classifications 

Crop Data Layer (CDL - Han et al., 2012) provided spatiotemporally explicit data for crop cover 

in our simulation domain; however, we utilized crop parameterizations from Monthly Irrigated 

and Rainfed Crop Atlas (MIRCA2000 - Portmann et al., 2010) to simulate crop water use 

(Grogan et al., 2017).  To utilize CDL, we remapped crops according to the groupings in Table 

AII.1.  Moreover, for simulations presented here we pre-processed these crop data to calculate 

weighted averages of each of the fundamental parameters associated with crop water use for 

rainfed and irrigated crops.  Calculations of irrigation demand, or inefficient irrigation water 

utilize either crop specific parameters or the average parameters with no fundamental change in 

calculation method, totals of all fluxes remain the same; however, attribution of water fluxes to 

specific crops is not possible when averaged inputs are used. Crop parameterization follows 

Portman et al. (2010) and Siebert and Döll (2010). 



155 

 

 

 

 

 

C
r
o

p
M

IR
C

A
 I

D
C

D
L

 I
D

L
in

i
L

d
e

v
L

m
id

L
la

te
K

c
i

K
c

m
K

c
e

R
o

o
t 

D
e
p

th
 

(m
m

)
C

D
F

1

W
h
e
at

1
2

2
-2

4
,3

0
0

.1
5

0
.2

5
0

.4
0

0
.2

0
0

.4
0

1
.1

5
0

.3
0

1
2

5
0

0
.5

5

M
ai

ze
2

1
,1

2
,1

3
0

.1
7

0
.2

8
0

.3
3

0
.2

2
0

.3
0

1
.2

0
0

.4
0

1
0

0
0

0
.5

5

B
ar

le
y

4
2

1
0

.1
5

0
.2

5
0

.4
0

0
.2

0
0

.3
0

1
.1

5
0

.2
5

1
0

0
0

0
.5

5

P
o

ta
to

e
s

1
0

4
3

0
.2

0
0

.2
5

0
.3

5
0

.2
0

1
.1

5
0

.5
0

0
.4

0
4

0
0

0
.3

5

S
u
g
ar

b
e
e
t

1
3

4
1

0
.2

0
0

.2
5

0
.3

5
0

.2
0

0
.3

5
1

.2
0

0
.8

0
7

0
0

0
.5

5

C
an

o
la

1
5

3
1

,3
4

,3
8

0
.3

0
0

.2
5

0
.3

0
0

.1
5

0
.3

5
1

.1
0

0
.3

5
1

0
0

0
0

.6
0

P
u
ls

e
s

1
7

4
2

,5
1

,5
2

,5
3

0
.1

8
0

.2
7

0
.3

5
0

.2
0

0
.4

5
1

.1
0

0
.6

0
5

5
0

0
.4

5

O
th

e
r 

P
e
re

n
n
ia

l
2

4
+

0
.0

0
0

.0
0

1
.0

0
0

.0
0

1
.0

0
1

.0
0

1
.0

0
8

0
0

0
.5

0

F
o

d
d
e
r 

G
ra

ss
e
s

2
5

3
6

,3
7

,5
8

-6
0

0
.0

0
0

.0
0

1
.0

0
0

.0
0

1
.0

0
1

.0
0

1
.0

0
1

5
0

0
0

.5
5

O
th

e
r 

A
n
n
u
al

2
6

+
+

0
.1

5
0

.2
5

0
.4

0
0

.2
0

0
.4

0
1

.0
5

0
.5

0
1

0
0

0
0

.5
5

1
C

ro
p
 d

e
p
le

ti
o

n
 f

ac
to

r

+
5

5
,5

6
,6

6
-6

8
,7

1
,7

4
-7

7
,2

0
4

,2
1

0
,2

1
1

,2
1

6
-2

1
8

,2
2

0
,2

2
1

,2
2

3
,2

4
2

,2
5

0

+
+

1
1

,1
4

,2
5

,2
8

,3
2

,3
3

,3
5

,3
9

,4
4

,4
6

-5
0

,5
4

,5
7

,2
0

5
-2

0
9

,2
1

3
,2

1
4

,2
1

9
,2

2
2

,2
2

7
,2

2
9

,2
3

1
,2

4
3

-2
4

9

T
ab

le
 A

II
.1

: 
C

ro
p
 p

ar
am

et
er

s 
u
se

d
 i

n
 s

tu
d
y
 i

n
cl

u
d

in
g
 c

ro
p
 d

at
a 

la
y

er
 (

C
D

L
) 

cr
o
p
 i

d
en

ti
fi

er
s 

as
 m

ap
p

ed
 t

o
 

M
IR

C
A

2
0
0
0
 (

M
o
n
th

ly
 I

rr
ig

at
ed

 a
n
d
 R

ai
n
fe

d
 C

ro
p

 A
tl

as
) 

cr
o
p
s 

an
d
 a

ss
o
ci

at
ed

 p
la

n
ti

n
g
 p

ar
am

et
er

s.
  

P
ar

am
et

er
s 

o
f 

se
as

o
n
 l

en
g
th

 (
𝑳

𝒊𝒏
𝒊,

 𝑳
𝒅

𝒆
𝒗
, 

𝑳
𝒎

𝒊𝒅
, 

𝑳
𝒍𝒂

𝒕𝒆
) 

an
d
 c

ro
p
 f

ac
to

rs
 (

𝑲
𝒄)

 a
t 

v
ar

io
u
s 

st
ag

es
 i

n
 t

h
e 

g
ro

w
in

g
 s

ea
so

n
, 
an

d
 c

ro
p
 

d
ep

le
ti

o
n
 f

ac
to

r 
(C

D
F

),
 a

re
 a

s 
d
ef

in
ed

 b
y
 G

ro
g

an
 e

t 
al

.(
2
0
1
7
) 

an
d
 S

ie
b

er
t 

an
d
 D

ö
ll

 (
2
0
1
0
).

 



156 

 

Spring outflow data  

Outflow of the Eastern Snake Plain Aquifer (ESPA) to the Snake River along the margins of the 

Snake River canyon consist predominately of flow out of large springs ( springQ ).  Spring out 

flows were provided by J. Sukow (pers. comm., updated from Sukow, 2012) which are 

calculated as 

𝑄𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑄4500 − 𝑄0000 − 𝑄8150 − 𝑄2500 − 𝑄𝑠𝑠 − 𝑄𝑁𝑅𝑓 + 𝑄𝐷𝑖𝑣   Eq. AII.18 

Where Q4500 is the Snake River discharge at King Hill (USGS 13154500), Q0000 is Snake River 

discharge at Kimberly (USGS 13090000), Q8150 Salmon Falls Creek discharge (13108150), Q2500 

is Malad River discharge (USGS 13152500), QSS is discharge from the South Side canal system, 

QNRf is discharge from the North Side canal return flows, and QDiv are diversions from the Snake 

River between the two reaches.  Data provided by J. Sukow contain provisional and interpolated 

estimates for some flow components. 

Validation of Water Balance Model for baseline 

County-wide gross and surface irrigation in 2010 and 2015 simulated by WBM (Figure AII.3) 

was biased low from USGS estimates (-34.9%).  The NSE of 0.267 signifies that the spatial 

variability in irrigation demand was captured despite the low bias.  USGS USCO records 

counties at which diversions were made (Dieter et al., 2018), and WBM tracks counties at which 

water was used, a discrepancy likely responsible for some of the error.  WBM predicted the long-

term mean in spring discharge from the ESPA with a percent bias (PBias) of -0.78% but under-

predicted seasonal variability (Figure AII.4), leading to a low NSE (0.112).  Seasonal storage 

within the three Snake River reservoirs (Figure AII.5) using observed discharge at the reservoir 

outflow was accurate at the headwaters of the Snake River in Wyoming (Jackson Lake), though 
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the representation departed from observations downstream (Palisades, and American Falls), 

which was attributed to cascading errors in both structure and input precipitation through the 

network.  During the simulation period, overall performance of reservoir volume was 

characterized with a negative NSE but a PBIAS of only 5.1%.  Seasonal discharge in headwaters 

of the Snake River (13010065, Snake River, Flagg Ranch, Wyoming) was accurately represented 

[NSE=0.9, PBIAS=5%]; however, simulated discharge in smaller streams in the vicinity of the 

ESPA (13137500, Trail Creek, Ketchum, ID, and 13039500, Henry’s Fork, Lake Idaho) was 

generally biased high, and exhibited stronger seasonal cycling than observations (Figure AII.5b).  

The high bias, and exaggerated seasonal cyclicity in discharge is a common observation of 

WBM’s representation of small watersheds; additional damping of discharge occurs through 

routing through the river network and especially at dams. Both Trail Creek and Henry’s Fork 

have dammed reservoirs upstream of the gaging stations, and simulations may have 

underestimated the influence of dam operations. 
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Table AII.2: Summary of observations used for assessing model performance at baseline.  

Seasonal averages are calculated over meteorological seasons (Winter: DJF, Spring: MAM, 

Summer: JJA, Autumn: SON). 

Metric 

Location and 

timestep of 

observation unit 

Number of 

observation PBIAS MPE NSE RMSE 

Discharge 

from 

springs 

Monthly sum of 

discharge from 

springs (2008-

2015), missing 15 

months m3/month 69 -0.78 -0.6 0.112 55,000 

Gross and 

surface 

irrigation 

Annual sums for 24 

USRB counties for 

total and surface 

supply (2010 and 

2015) km3/year 96 -34.9 -31.8 0.267 0.369 

Headwater 

discharge 

Seasonal means for 

3 stations          

(2008-2015) m3/s 84 30.1 354 0.396 9.54 

Reservoir       

storage 

Seasonal means for 

3 reservoirs       

(2008-2015) m3 84 5.07 13.4 -0.409 4.5E+08 

Note: PBIAS: percent bias, MPE: model percent error, NSE: Nash-Sutcliffe efficiency, RMSE: 

root mean squared error. 
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Figure AII.3:  Correlation between model and USGS estimated county-wide gross and surface 

water irrigation water use in 2010 and 2015. 

 

 

Figure AII.4: Time-series of spring discharges. 
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Figure AII.5: Time series of discharge and reservoir volume at six locations on the Snake River.  

WBM predictions as solid lines, observations as dotted lines.  Reservoir volume (blue) 

observations from the USBR HydroMet network, and discharge (black/gray) from USGS gaging 

stations.  Discharge gaging stations are located as close to immediately downstream of respective 

reservoirs.  The six site locations (all on Snake River) and their respective USGS and USBR (for 

b-e) station identifiers, Nash-Sutcliffe efficiencies, and percent bias are (a) Flagg Ranch, WY 

(13010065: 0.72, 13.5%), (b) Moran, WY and Jackson Lake (13011000: 0.63, 23%, JCK: 0.04, 

17%), (c) Irwin, ID  and Palisades Reservoir (13032500: 0.79, 5.0%, PAL: -1.0, -22%), (d) 

Neeley, ID and American Falls Reservoir (13077000: 0.42, 25%, AMF: -0.05, 17%), (e) Rupert, 

ID and Walcott Lake (13081500: -0.26, 52%, MIN: -0.4,-20%), and (f) King Hill, ID (13154500: 

-3.7, 40%). 
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Figure AII.6:  Comparison between component fraction (summed for basin) and irrigation return 

fates across the USRB under the all parameterizations.  Top row (a-j) with enhanced aquifer 

recharge, bottom row without (k-t).   Baseline technology in first column (a,k), and increasing 

modernization scenarios in subsequent columns (Eff.A:b,l, Eff.B:c,m, … , Eff.I:j,t).  

 

 

 

 

  



162 

 

 

 

 

 

APPENDIX III 

METHODOLOGICAL DETAILS AND DEMONSTRATION THAT GREATEST 

NITRATE REMOVAL OCCURS WHEN TREATMENT AREA IS MAXIMIZED 
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Representing subsurface drains 

To represent subsurface drains (SSD), WBM’s infiltration fraction (finf) was lowered according to 

the fraction of soil areas underlain by subsurface drainage.  Variables are defined in Table AIII.1.  

Surplus water leaving the rooting-zone is directed towards infiltration to shallow groundwater, 

while the complement runs off as quickflow through the rooting zone.  Infiltration fraction was 

modified by the presence of SSD from a baseline (finf
*) representing an assumed spatially 

constant infiltration fraction under natural conditions according to Equation AIII.1.  

finf = finf
* (1 – θ fssd)       Eq. AIII.1 

In Equation AIII.1, θ represents an efficiency of SSD to prevent percolation to groundwater 

which we set to a value between 80% and 90% such that the infiltration fraction never falls 

below 10% surplus soil water when a pixel is completely covered by tile-drained crops.  

Moreover, the quickflow time-constant (αqf) in WBM is increased proportionally from a baseline 

(αqf
*) by the presence of SSD assuming that percolation intercepted by subsurface-drains arrives 

at treatment wetlands (αssd) within one day Equation AIII.2. 

αqf
 = αqf

* (1 – θ fssd ) + αssd θ fssd      Eq. AIII.2 

We assumed that all SSD was emplaced in existing crop land and calculated the intersection of 

crop limited SSD (AcSSD) by Equation AIII.3: 

AcSSD = min( ASSD, Acrop )       Eq. AIII.3 

where Acrop is the pixel area fraction covered by cropland. 
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Table AIII.1: Variables used to describe fluxes and parameters in the representation of sub-

surface drains and treatment wetlands. 

Variable Units Definition 

Iwl m3 d-1 Water inflow into the wetlands 

Vavail m3 Capacity available within wetland below the maximum flow depth 

(𝑑_𝑚𝑎𝑥) 

Qro m3 d-1 Runoff from the upland portions of the pixel   

dt d Duration of timestep 

dmax m Maximum depth of flow treatment wetlands can store 

dwl m Depth of flow in treatment wetlands at time 𝑡 

χup - Multiplier dictating the maximum crop area that can drain through a 

wetland 

χbuffer - Fraction of total wetland area reserved as buffer 

χbf - Fraction of baseflow routed towards wetlands. (Complement is 

routed to streams) 

Awl - Total wetland area pixel fraction (active area plus buffer area) 

AwlA - Active wetland area pixel fraction 

AwlN - Natural wetland area pixel fraction 

AwlT - Treatment wetland area pixel fraction 

AwlR - Riparian marginal wetland area pixel fraction 

Acrop - Total crop area pixel fraction 

Qwl m3 d-1 Discharge from outlet of the wetland 

Vwl m3 Volume stored in wetland (at time 𝑡) 

αwl d-1 Wetland release time-constant 

vf m d-1 Uptake velocity describing DIN removal by denitrification 

(Wollheim et al. 2006) 

kden d-1 Denitrification rate constant 

bvf - Constant in regression between ln (𝑣_𝑓 ) and ln (𝐶_𝑑𝑖𝑛 )  

avf - Slope in regression between ln (𝑣_𝑓 ) and ln (𝐶_𝑑𝑖𝑛 ) 

Cnitr g m-3 DIN concentration in wetland pool 

Mnitr g DIN mass in wetland pool 

m ̇in g d-1 DIN mass input flux to wetland pool 

m ̇den g d-1 DIN mass removal flux via denitrification from the wetland pool 

t d Time available for reaction 𝑡 = min (𝑑𝑡, 𝑉_𝑤𝑙 ⁄ 𝑄_𝑤𝑙 )   

Twl °C Water temperature in wetland 

Tref °C Reference water temperature 

 

Representing upland wetlands 

Treatment wetlands are represented using a new pool within WBM that receives flow from 

upland portions of each pixel.  To make the model as parsimonious as possible, the treatment 
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combines riparian marginal processing, natural wetlands, and restored treatment wetlands in a 

single pool.  We acknowledge that engineering constraints imposed on wetland functionality 

presented below may be inappropriate for riparian areas and natural wetlands.  Our formulation 

should conservatively estimate the amount of natural and riparian wetland denitrification that 

occurs because our assumptions of buffer area limit available active area for denitrification from 

existing natural wetlands.  

The water and nitrate mass balance of the wetland pool are governed by Equations AIII.4 and 

AIII.5 respectively. 

 dV / dt = Iwl – Qwl                  Eq. AIII.4 

dMdin / dt = m ̇in – m ̇den – m ̇out     Eq. AIII.5 

The following paragraphs describe our solution of Equations.AIII.4 and AIII.5.   

Flow through the wetland pool is defined by both a maximum area of upstream crop area 

draining into a wetland, and a maximum flow-depth (dmax [m]). Flow from untreatable crops, and 

flow exceeding the maximum depth is routed immediately beyond the wetland to the stream (by-

passing flow).  Flow entering the wetland experiences a detention time specified by the wetland 

flow time-constant (αwl [d
-1]) defined as the inverse of the hydraulic residence time within the 

pool.  Our assumption of a well-mixed wetland system minimizes the removal calculated for a 

simple reactor (Levenspiel, 1999), but results in the proportion of mass denitrified to be 

consistent with previous studies of surface flow wetlands (Mitsch and Gosselink, 2007).  Terms 

in the daily water balance are solved sequentially to facilitate an estimation of bypassing flow 

and to ensure numerical water balance.  The three stages of the calculation include estimation of 
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bypassing flow (Equation AIII.6A), calculation of outflow assuming inflows from the mid-point 

of the time-step (Equation AIII.6B), and updating storage balance (Equation AIII.6C). 

Iwl = min ( Vavail / Qrodt ,  ( χupAwl ) /Acrop ) Qro    Eq. AIII.6A 

Qwl = (Vwl
t  + 0.5 Iwl dt) αwl          Eq. AIII.6B 

Vwl
t+1 = Vwl

t + Iwl dt – Qwl dt      Eq. AIII.6C 

The split-operator solution for wetland water balance is needed to accommodate WBM’s source 

tracking functionality (Grogan et al., 2022).  The volume available (Vavail) below the specific 

maximum depth of flow (dmax) is calculated at each time-step (Equation AIII.7) and accounts for 

short-term storage over the duration of the time-step. 

Vavail = max(0, (1 + αwl dt) Awl A dmax – Vwl )    Eq. AIII.7 

Runoff from the upland portions of the pixel arrive via quick-flow (Qqf) in WBM to be typical 

for treatment wetlands (Tanner et al., 2010).  Although WBM assumes a single common water 

surface and DIN concentration for tractability, in practice multiple separate wetlands would be 

necessary to intercept leachate prior to loading to streams.  The total wetland area is the sum of 

natural wetlands (AwlN) and treatment wetlands (AwlT) via experimental restoration scenarios.  A 

minimum pixel fraction covered by riparian marginal wetlands (AwlR) is included to capture 

riparian storage and denitrification processes in the absence of natural or restored wetlands 

(Equation AIII.8).   

Awl = min( AwlR, AwlN + AwlT )     Eq. AIII.8 

Awl represents the total wetland area, but a fraction (χbuffer) of this total represents a buffer area 

that protects the wetland system.  The complement fraction of active wetland area (AwlA) holds 
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water in storage where denitrification occurs.  The active water-holding portion of wetlands 

(AwlA) are assumed to have vertical banks (benthic area equals the active wetland area).  The 

riparian marginal wetlands are included in our model to account for riparian removal, and is 

represented as a surface process for simplicity; however, riparian processing also occurs in 

subsurface environments (Groffman et al., 2000; Lutz et al., 2020; Mayer et al., 2007), but a 

separate parameterization for such a process was beyond the purpose of this study.  We 

acknowledge that some of the large flux of subsurface nitrate removal estimated by the model 

may represent a greater amount of riparian removal along subsurface flow-paths, and should be 

investigated in future work. The riparian marginal area is parameterized as a fraction of the pixel, 

and is expressed as a buffer width (wwlR) from stream margins (Equation AIII.9) that intercepts 

runoff prior to entering streams. 

wwlR = ( Awl A ) / (2 lstream )      Eq. AIII.9 

Nitrate balance in wetlands is calculated with advective fluxes in and out of the pool, and a 

denitrification flux removal calculated using a first order rate constant (kden  [d
-1]) within the 

pool.  We assume that denitrification occurs along the benthic surface so that the first order 

process is parameterized with an uptake velocity vf that is updated daily based on wetland nitrate 

concentration and temperature according to an efficiency loss parameterization (Wollheim et al., 

2014) (Equation AIII.10).   

vf  = exp( ln( bvf ) + avf  ln( Cnitr )  ) × 2( ( Twl – Tref ) / 10 )    Eq. AIII.10 

The relationship between uptake velocity and concentration is a log-linear relationship in both 

lotic (Mulholland et al., 2008; Wollheim et al., 2008a) and lentic (Wollheim et al., 2014) 

systems, and is adjusted according to Q10 temperature reactivity following (Kadlec and Reddy, 
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2001), where water temperature is assumed to be the temperature of soil water at the percolation 

depth of 1.5 m calculated by AgroIBS.  The denitrification rate constant is then calculated from 

wetland depth (Equation AIII.11). 

kden = vf dwl        Eq. AIII.11 

Nitrate balance within the wetlands is calculated following the calculation of flow and water 

storage.  Nitrate mass balance is updated in a split operation to ensure mass balance.  Nitrate 

concentration (Cnitr [mg L-1]) within the pool is estimated assuming input from the mid-point of 

the time-step (Equation AIII.12A), removal and outflow are estimated (Equations 

AIII.12B,12C), and then total mass balance is updated Equation (AIII.12D). 

Cnitr = (Mnitr
t + 0.5 mro dt ) / Vwl

t      Eq. AIII.12A 

m ̇den = ( 1 – exp( - kden t) ) (Mnitr
t + 0.5 min dt)    Eq. AIII.12B 

m ̇out = Cnitr Qwl       Eq. AIII.12C 

Mnitr
(t+1) = Mnitrt + min dt – mden dt – mout dt     Eq. AIII.12D 

Mass flux is then routed to the stream network within the pixel.  Comparable nitrogen dynamics 

are formulated within the stream system (Samal et al., 2017; Stewart et al., 2011).  The mass flux 

from soil leachate (mro) is provided from the crop area weighted average of Agro-IBIS leachate 

described above.  WBM and Agro-IBIS do not presently have coupled soil water pools, so that 

daily differences in percolation volume can create numerical instability between water volume 

and nitrate leachate mass.  WBM exhibited flashier hydraulic response and greater retention of 

water within the soil pool between storm events.  To ensure smooth functionality we introduce a 
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holding pool for Agro-IBIS soil leachate and introduce all accumulated mass of nitrate from this 

holding pool to the wetlands when WBM introduces runoff.   

Nitrate leachate that percolates below croplands is detained to account for travel through the 

vadose zone, and to account for the differences between WBM’s hydrodynamic response of the 

shallow groundwater pool, and the solute travel-time through shallow groundwater.  Shallow 

groundwater hydrodynamic response is controlled by a first-order time-constant αsgw = 0.025 d-1 

that captures typical baseflow recession rates in temperate climates (Grogan et al., 2022).  A lag 

between nitrate percolation and nitrate recharge of shallow groundwater (mrech) is accounted for 

using an iterative exponential weighting function (Sangrey et al., 1984; Venetis, 1969; Neitsch et 

al., 2011) given by Equation AIII.13. 

mrech
t = [ 1 – exp( -αvzl ) ]  mleach + exp( -αvzl ) mrech

(t-1)    Eq. AIII.13 

We assume αvzl equal to 0.00125 d-1 to capture transit time of solutes through typical catchments 

(Benettin et al., 2015; Berghuijs and Kirchner, 2017).  DIN experiences denitrification in the 

shallow groundwater pool prior to discharge back to the surface.  A constant Dämkoholer 

number of 0.29 is assumed for the shallow groundwater (Green et al., 2008) equating to 22% 

denitrification of DIN in this pool.  

Demonstrating that greatest nitrate removal occurs when treatment area is maximized 

Assume a pixel of area (𝐴𝑝) completely covered in crop such that the area of crop (𝐴𝑐) initially 

equals the area of the pixel (𝐴𝑐 = 𝐴𝑝).  An area of the pixel (𝐴𝑤) is restored to wetland by 

replacing crops such that 𝐴𝑐 = 𝐴𝑝 − 𝐴𝑤 and the pixel fraction of wetland area is specified as 

(𝑓𝑤 = 𝐴𝑤/(𝐴𝑝 − 𝐴𝑤)).  The wetland has a catchment area proportional to its size, which is 

imposed as a design constraint of the restoration practice, such that crop leachate from within 
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this catchment area (𝐴𝑡) is treated.  The wetland is designed such that it occupies a specified 

fraction of its catchment (𝑓𝑐 = 𝐴𝑤/𝐴𝑡).  The fraction of the total crop area treated (𝑓𝑡 = 𝐴𝑡/𝐴𝑐) 

is ratio between the restored wetland pixel fraction, and the wetlands catchment fraction 

Equation AIII.14.  

𝑓𝑡 =
𝐴𝑡

𝐴𝑐
= (

𝐴𝑤

𝐴𝑐
) (

𝐴𝑤

𝐴𝑡
)

−1

=
𝑓𝑤

𝑓𝑐
      Eq. AIII.14 

The relationship between the above area fractions is presented schematically in Figure AIII.1. 

 

 

 

 

 

Figure AIII.1: Relationship between restored wetland and crop landscape area. 

The total mass denitrified (𝑚̇𝑑𝑛𝑡) is proportional to the mass treated and the removal.  The 

solution for removal (𝑟) of a solute mediated by reactions along a benthic surface is dictated by 

the uptake velocity (𝑣𝑓  [𝑚 𝑦−1]) and hydraulic load (𝐻𝑙  [𝑚 𝑦−1]) given by Equation AIII.15 

(Wollheim et al., 2006). 

𝑟 = 1 − exp (−
𝑣𝑓

𝐻𝑙
)      Eq. AIII.15 

Uptake velocity is dependent on concentration, which we assume is independent of catchment 

size (all crops in the pixel leach at a uniform rate of 𝑚̇𝑙𝑐ℎ [𝑘𝑔 𝑦−1]).  Hydraulic load is given by 

Aw 

At 

Ac=Ap-Aw  
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the flow entering the wetland (𝑄 [𝑚3 𝑦−1]) divided by its benthic surface area (𝐴𝑤  [𝑚2]) and is 

a function of the wetland catchment area (Equation AIII.16). 

𝐻𝑙 =
𝑄

𝐴𝑤
=

𝑞 𝐴𝑡

𝐴𝑤
=

𝑞

𝑓𝑐
      Eq. AIII.16 

In A3, 𝑞 is a uniform runoff rate (𝑚 𝑦−1).   Incorporating our definitions in AIII.16 into AIII.15, 

and relating to total crop leachate, we define the mass flux of denitrification in Equation AIII.17. 

𝑚̇𝑑𝑛𝑡 = 𝑚̇𝑙𝑐ℎ𝑓𝑡 (1 − exp (−
𝑣𝑓𝑓𝑐

𝑞
)) = 𝑚̇𝑙𝑐ℎ

𝑓𝑤

𝑓𝑐
(1 − exp (−

𝑣𝑓𝑓𝑐

𝑞
))  Eq. AIII.17 

We define the ratio of total leachate removed by denitrification (𝑅𝑑𝑛𝑡) in Equation AIII.18. 

𝑅𝑑𝑛𝑡 =
𝑚̇𝑑𝑛𝑡

𝑚̇𝑙𝑐ℎ
=

𝑓𝑤

𝑓𝑐
(1 − exp (−

𝑣𝑓𝑓𝑐

𝑞
))     Eq. AIII.18 

The maximum fraction of leachate denitrified occurs when 𝑓𝑤 = 𝑓𝑐, or when the wetland 

catchment area covers the entirety of the pixel.  As the area fraction of the wetland inside its 

catchment (𝑓𝑐) increases, the negative term becomes smaller, and more mass is removed.  

However, for any given increase in 𝑓𝑤 up to 𝑓𝑐 there is no mechanism by which denitrified 

fraction could increase that would make treating less mass more favorable.  Any change in 𝑓𝑐 to 

increase removal has a commensurate and necessarily larger decrease in the treated mass. 
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