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ABSTRACT 

Melanin pigments as antibacterial agents 

By Tahmineh Rahmani Eliato 

University of New Hampshire, May 2022 

  

In this dissertation I investigated the structural properties of melanin biopigment from 

different sources as an antibacterial and endotoxin bonding agent. I extracted melanin from Equus 

ferus hair with acid hydrolysis (termed EquusMel) and characterized it by microscopic and 

spectroscopic techniques. Scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) revealed that EquusMel is mainly elliptical in shape with a mesoporous and 

layered structure within the individual particles. Wide-angle (WAXS) and small-angle (SAXS) X-

ray scattering measurements demonstrated a semicrystalline multilayered structure with order 

spacing of 45.2 Å. Pore size distribution determined by the Barrett–Joyner–Halenda (BJH) method 

showed primary pores within the range of 30–50 Å. Nitrogen adsorption–desorption isotherms 

exhibited a Brunaur–Emmett–Teller (BET) surface area of 3 m2/g. Raman, X-ray photoelectron 

spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) spectra revealed similar 

chemical signature between EquusMel and synthetic melanin (SynMel). I investigated the 

antibacterial effect and its mechanism of action for EquusMel. I found that EquusMel has distinct 

antibacterial activity due to its potential to generate reactive oxygen species (ROS). ROS generated 

via oxidation of catechols is considered the main mechanism of antibacterial activity. The 

simplicity of EquusMel extraction and its antibacterial property allows this biomaterial to be 
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applicable to a variety of areas. Zinc cations (Zn2+) were loaded on melanin structure (Mel-Zn) for 

rapid and selective separation of gram-negative bacteria and lipopolysaccharide (LPS) from blood. 

Mel-Zn was characterized by XPS and Raman which revealed the successful Zn2+ loading. I 

identified that Mel-Zn rapidly captures approximately 90% of Escherichia coli in whole blood and 

100% of LPS in PBS, which can reduce bacteremia loads and mitigate the spread of these 

infectious agents to other tissues and organs. Additionally, simultaneous binding to bacteria and 

LPS could enhance the efficacy of antibiotic therapy. Adsorption of protein from individual protein 

model solutions, as well as LPS-spiked protein solutions, was found to be minimal. Hemolysis and 

coagulation assays demonstrate the blood biocompatibility of Mel-Zn, which could be adapted for 

clinical use in an extracorporeal membrane to remove pathogens and LPS in acute sepsis patients. 
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CHAPTER 1 

Background 

 

1.1 Melanin 

Among the broad variety of biopolymers found in nature, few have such unique and 

far-reaching applications as melanin. Melanin is a polyphenolic material broadly found in almost 

all types of living organisms, such as fungi, bacteria, animals, and plants [1], [2]. In animals, 

melanin can be found in the skin, hair, iris of the eye, some neurosensorial tissues, and the ink sac 

of Sepia officinalis (cuttlefish) [3]–[5].  

Melanin has many well-studied characteristic properties such as: a broad band UV-Vis 

absorption, a distinct electron paramagnetic resonance (EPR) signal, free radical scavenging, 

antioxidant, and anti-tumor activity [6]–[9].  The diversity of its functional roles across life is a 

result of different complex forms that polymerize in different ways. In pathogenic fungi, melanin 

has been demonstrated as a virulence factor, acting against host defense mechanisms [10]. 

Conversely, melanin located in human substantia nigra may play a role in brain aging and 

neurodegeneration [5]. Beyond humans, the synthesis of melanin in insects is used to encapsulate 

pathogens [11]. In recent decades, the broad range of technological opportunities offered by the 

physicochemical and biological properties of melanin has generated significant interest in studying 

this biomolecule.  

Melanin extracted from sepia ink has been used widely as one of the natural sources of 

melanin. A simple centrifuge and washing extraction steps [12] have made this source of melanin 

easy to produce and commercially available by Sigma-Aldrich. Mammalian dark hair and feather 
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are other popular melanin sources. To separate melanin pigments that are imbedded in the cortex 

layer of hair or disrupt the keratin matrix in feather, various techniques such as base dissolution & 

acid isolation, dissolution in ionic liquid, acid hydrolysis, and enzymatic extraction have been 

applied [13]. Retinal pigment epithelium (RPE) melanosomes are other natural sources of melanin 

which have been extracted and extensively studied [4]. The method of extraction and isolation 

depends on the melanin source, localization of melanin pigments, and the purpose of the extraction. 

Most of these extraction processes occur in harsh conditions which often result in alteration to the 

melanin structure. Further, melanin sourced from animals presents ethical concerns as the animal 

from which melanin is extracted may need to be killed. 

 

1.1.1 Biosynthesis pathway of melanin 

Natural melanin generally is an insoluble compound in aqueous and organic solvents, and 

its forced solubilization alters its structure. This has made studying the physicochemical structure 

of melanin difficult. Moreover, melanin can be synthesized through different pathways that use 

distinct intermediate products and enzymes, this suggests that melanin may possess a diversity of 

structures, resulting in many distinct activities [14]. 

 

1.1.1.1 Eumelanin 

Dark-brown eumelanin is obtained from tyrosinase catalyzed oxidation of tyrosine or 3,4-

dihydroxyl-L-phenylalanine (L-Dopa) to L-Dopaquinone and L-Dopachrome. L-Dopachrome 

undergoes aromatization to give 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-

carboxylic acid (DHICA) intermediates [15]. As depicted in Figure 1.1 polymerization of DHI 
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and DHICA forms eumelanin pigment. Investigating the structure of eumelanin with spectroscopic 

analysis methods is challenging due to insolubility of the final pigment. However, the DHI/DHICA 

ratio in eumelanin biopolymer impacts the number of carboxylic acids, which further alters its free 

radical scavenging property [8]. Examples of eumelanins include those extracted from sepia ink 

and dark mammalian fibers. 

 

Figure 1.1: As one of the most studied melanogenesis pathways, biosynthesis of eumelanin 

initiates with oxidation of amino acid L-Tyrosine or 3,4-dihydroxyl-L-phenylalanine (L-Dopa) to 

L-Dopaquinone. Eumelanin intermediates 5,6- dihydroxyindole (DHI), 5,6-dihydroxyindole-2-

carboxylic acid (DHICA) are polymerized to make the eumelanin pigment. Tyrosinase related 

protein 2 (Tryp 2). 

 

1.1.1.2 Pheomelanin 

Synthesis of pheomelanin, a sulfur containing pigment, is the result of a metabolic shift in 

the eumelanin pathway. The initial phase of the pathway, which is oxidation of L-Tyrosine to L-

Dopaquinone, is the same for both eumelanin and pheomelanin, however, pheomelanin is derived 

from L-dopaquinone in the presence of L-Cysteine or other thiol containing compounds such as 

glutathione [16]. As demonstrated in Figure 1.2 benzothiazine and benzothiazole intermediates 
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are formed by oxidation of 5-S-cysteinyldopa and 5-S-cysteinyldopaqunons and further 

polymerize to form the light yellow pheomelanin [17]. 

 

Figure 1.2: The initial biosynthesis pathway of pheomelanin is similar to eumelanin. L-

Dopaquinone is the key molecule in both pathways, which in the presence of L-Cysteine gives a 

place to pheomelanin intermediates benzothiazine and benzothiazole. 3,4-dihydroxyl-L-

phenylalanine (L-Dopa). 

 

1.1.1.3 Allomelanin 

In the pathway generating another form, allomelanin (or DHN-melanin), malonyl CoA or 

acetyl CoA undergo cyclization by polyketide synthase that yields 1,3,6,8-tetrahydroxy 

naphthalene (THN). This tetrahydroxy derivative is then transformed to the main melanin 

precursor, 1,8-dighydroxynaphthalene (DHN). Laccase or another phenol oxidase can catalyze 

naphthalene to naphthalene quinone, and the final pigment is formed by polymerization of DHN 

and its quinone form [18] (Figure 1.3). 
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Figure 1.3: As the result of polyketide synthase action in allomelanin biosynthesis 

pathway,1,3,6,8-Tetrahydroxy naphthalene (THN) is formed. Passing through the formation of 

Scytalone and vermelone, 1,8-dighydroxynaphthalene (DHN) is synthesized and polymerized to 

form allomelanin along with its oxidized form quinone. 

 

1.1.1.4 Pyomelanin 

The pyomelanins are known to support microorganisms during various environmental 

stress. In the pyomelanin formation pathway, L-tyrosine undergoes transamination to form p-

hydroxyphenyl pyruvate (HPP), which then generates homogentisic acid (HGA) through p-

hydroxyphenyl dioxygenase action. Accumulation of HGA induces the oxidation to benzoquinone 

acetic acid (BQA) via laccase or other phenol oxidase. Like other types of melanin, p-diphenol 

and p-quinone polymerization leads to the formation of pyomelanin [16] (Figure 1.4).  
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Figure 1.4: Pyomelanogenesis starts with amino acid L-Tyrosine transamination to p-

hydroxyphenyl pyruvate (HPP). Homogentisic acid (HGA) and benzoquinone acetic acid (BQA) 

are then formed and polymerized to Pyomelanin. 

 

1.1.2 Synthetic melanin 

Melanin can be synthesized in vitro through reactions that resemble the natural biological 

pathway of melanin synthesis [13]. Oxidation of dopamine hydrochloride is one popular method 

for preparing a dark melanin-like material known as polydopamine or dopamine melanin (DOPA) 

(Figure 1.5). This polymerization can be mediated by Tris-Hcl buffer, sodium hydroxide, sodium 

bicarbonate/sodium carbonate buffer and phosphate-buffered saline (PBS) [19]. With excellent 

adhesion and coating properties, dopamine melanin has been studied in a variety of applications 

such as bioelectronics, antimicrobial agents and, membrane and surface modifications [20]–[22]. 

Synthetic melanin often presents a heterogeneous amorphous form, while natural melanin is made 

up of homogeneous spherical/elliptical aggregated nanoparticles [23]. Different structural 

properties between synthetic and natural melanin likely results in better performance of natural 

melanin in biotechnological applications. For example, cyclic voltammetry measurement reveals 
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that natural melanin exhibits specific capacity that is 50% higher than synthetic melanin in aqueous 

sodium ion batteries [24].  

 

 

Figure 1.5: Synthesis of synthetic melanin and the chemical intermediates. Indole-5,6-quinone 

(IQ); 5,6-Dihydroxyindole (DHI). 

 

1.2 Characteristics of eumelanin 

1.2.1 Structure 

1.2.1.1 Microstructure 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are 

powerful methods for the morphological characterization and particle size analysis of melanin. 

Eumelanin extracted from S. officinalis ink consists of homogeneous spherical nanoparticle 

aggregates with characteristic dimensions of 100–300 nm confirmed by electron microscopy 

(Figure 1.6a) [24]. However, eumelanin extracted from other sources such as hair or eyes are 

generally elliptical with larger dimensions (Figure 1.6b) [25].  
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Figure 1.6: (a) Melanin extracted from S. officinalis ink [24] and (b) horsehair [25]. 

 

1.2.1.2 Meso-structure 

The development of novel methods for studying condensed-matter physics, 

electrochemistry, and chemistry of materials, including imaging techniques and theoretical 

calculations, has facilitated the study of meso-scale structure of melanin [26]. As mentioned 

previously, eumelanin pigments are composed of randomly polymerized tetramer units of DHI and 

DHICA monomers. These protomolecules use strong π–π stacking that promote self-assembly into 

spherical nanostructures with an intermolecular spacing of 3.8 Å (Figure 1.7) [4]. The study of 

broadband UV–Vis absorption spectra of eumelanin, and the associated optoelectronic properties, 

have been considered essential for elucidation of its molecular structure. The broadband featureless 

UV–Vis spectra of melanin can be explained by the chemical disorder model. This model proposes 

that natural eumelanin consists of many chemically distinct protomolecules. The broadband 

absorption is calculated as the average of the different absorptions of every species in the UV–Vis 

range [26].  

(a) (b) 
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Figure 1.7: The two-dimensional discrete Fourier transform indicates that the inter-sheet spacings 

within melanin protomolecules are between 3.7 and 4.0 Å [4]. 

 

These protomolecules are arranged with a defined interlayer distance, forming onion-like 

nanostructures. The oligomers are mainly formed by bi-indole cross-linked covalent bonds 

between units. These covalently bonded units are symmetrical, and a porphyrin-like tetramer 

structure has been proposed as the meso-structure. This arrangement of the four protomolecules 

has the potential to bind with monovalent ions in the core and create larger molecules with high 

potential energy storage properties usable in batteries [27]. 

 

1.2.2 Chemistry of major functional groups 

The monomers (DHICA) in eumelanin have catechol, carboxylic acid, and amine as main 

functional groups. A catechol is an unsaturated six-carbon ring (phenolic group) with two hydroxyl 

groups attached to adjacent carbons (dihydroxyphenol). The variety of functional groups in 

eumelanin, in particular the catechol moieties, provide affinity to metal ions. Something about pKa 

here? This property was applied for metal ion extraction from aqueous solutions, thus providing a 

beneficial environmental impact to remove heavy metal ions from water [28]. The property of 
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binding and releasing metal ions also makes eumelanin an ideal material in biodegradable batteries 

[24]. Further, the redox activities of catechol groups are a potential resource for clinical 

applications. Catechol oxidation by air generates H2O2 and O2
⋅– as reactive byproducts, which can 

potentially be used for antimicrobial and antiviral applications [29]. Finally, amines are ubiquitous 

functional groups in biological systems. Hydrogen bonding significantly influences the properties 

of primary and secondary amines. Secondary aromatic amine group in eumelanin structure 

facilitates bonding with monovalent ions [27]. 

 

1.2.3 Interaction with ions in aqueous system 

Eumelanin is associated with several metal ions and has the capability to incorporate metal 

ions within its structure. While the capacity of eumelanin to bind Ca2+ or Zn2+ is high, its affinity 

for these two metal ions is only moderate. This enables eumelanin to accumulate these two metal 

cations and then, under certain conditions release them. The relative binding affinities are in the 

order Ca2+ < Zn2+ < Fe3+ < Cu2+, which suggests that Zn2+ binds to melanin stronger than Ca2+ 

[73]. 

Multivalent cations such as Mg2+, Ca2+, Fe3+ can bind to eumelanin through Coulombic 

interactions with carboxylic acids or coordination bond formation with catechols. While the 

electrochemistry of divalent cation–catechol bonding is well characterized, the binding locations 

of monovalent cations with eumelanin is more diverse owing to the broad range of prospective 

binding sites to indole-based subunits. Monovalent cations such as Na+ associate with aromatic 

amines, in melanin structure (Figure 1.8) [27]. 
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The variety of functional groups in eumelanin, in particular the catechol moieties, provide 

differential affinities to metal ions largely influenced by differences in pKa values of the functional 

groups and the pH of the initial solution [73]. Carboxylic acid, hydroxyl, and amine groups in 

eumelanin have pKa values of ~4.5, ~9-13, and >10, respectively. At a more acidic initial solution, 

carboxylic acids are mostly deprotonated and have higher affinity to metal binding [74]. 

Conversely, in less acidic initial solutions, hydroxyl and amine groups more often bind to metal 

ions. It should also be noted that this can lead to changes in the pH of the solution as protons are 

released [73]. 

 

 

 

 

 

 

Figure 1.8: Porphyrin-like tetramers in melanin that permit sodium ion insertion [27]. 

 

1.3 Antimicrobial agents 

Bacterial adhesion, growth, and proliferation on surfaces produce sticky and thick biofilms 

with low permeability [30]. Biofilm formation on membranes, wet surfaces, medical devices, and 

within host tissues during infection are major environmental and health issues. Over the past 

century, antibiotics have been developed and preferred treatments method for bacterial infections. 
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However, extensive research has shown the development of resistance to virtually every class of 

antibiotic. Identifying and developing new and effective antimicrobial agents would be of great 

importance. 

 

1.3.1 State-of-the-art antimicrobial agents 

Recently, nanoparticles have gained a great deal of attention as an antimicrobial agent. 

Most currently used antimicrobial therapies target bacterial machinery within the cell, which has 

created strong selective pressures for variant strains to evolve to overcome or circumvent those 

therapies. Over time these variants have emerged, with some “superbugs” resistant to all or nearly 

all known drugs. Because the mechanisms by which nanoparticles act as antimicrobial agents 

usually involves only direct contact with the exterior of the cell wall, there may be a lower 

probability of resistance emerging [31], [32]. Metal nanoparticles such as copper (Cu), titanium 

(Ti), silver (Ag), zinc (Zn), Selenium (Se) and Silicone (Si) have been wildly studied for their 

antimicrobial properties [33]–[36]. A more recent approach is to create biocompatible and 

environmentally friendly antimicrobial agents such as antimicrobial peptides or melanin 

nanoparticles [37]. The antimicrobial mechanism of action of nanoparticles is generally described 

as one of three models: oxidative stress induction, metal ion release, or non-oxidative mechanisms 

(Figure 1.9) [31]. Oxidative stress occurs as certain molecules with strong positive redox potential, 

including H2O2, O2
⋅–, ⋅OH, and O2, build up and induce a highly damaging oxidative state that can 

kill cells, primarily by impacting cell membrane permeability. Metal ion release across the cellular 

membrane is another model of antimicrobial mechanism, which interact with functional groups in 

nucleic acids and proteins to alter their structure or function; however, their impact is relatively 

weak compared to other models and is generally supplemental to other mechanisms. Finally, one 
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non-oxidative mechanism using MgO nanoparticles is capable of killing bacterial cells via a 

combination of factors, including disruptive attachment to phosphate groups on the surface of the 

cell, induction of pH change, and release of Mg2+, which disrupts the cellular membrane.  Further, 

these three types of mechanisms can occur simultaneously. 

 

 

Figure 1.9: Mechanisms of antibacterial activity of nanoparticles. 

 

Ag nanoparticles are considered the most common inorganic nanoparticles used as 

antimicrobial agents. The antimicrobial application of Ag additives is widely studied in various 

plastic and biopolymer products, textiles, and coating-based materials. It has been demonstrated 

that Ag nanoparticles have antimicrobial activity against a wide range bacteria and viruses. The 

antibacterial mechanism of Ag nanoparticles results in damage of the outer membrane bacteria. 

Ag nanoparticles can induce pits and gaps in the bacterial membrane and eventually fragment the 
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cell. Additionally, Ag ions interact with and disrupt disulfide and sulfhydryl groups, which play 

important roles in protein structure and protection against DNA damage from oxidative stress. 

These disruptions are capable of leading to cell death [32]. 

 

1.3.2 Antimicrobial activity of melanin 

The catechol group is a key functional component of the melanin structure. As mentioned 

earlier, catechol group oxidations involve the electron transfer that converts the O2 into superoxide 

(O.-
2) and hydrogen peroxide (H2O2). Oxygen free radicals and any other oxygen-containing 

molecule in which an oxygen atom has a greater reactivity than molecular oxygen is considered 

reactive oxygen species (ROS). Previous publications have reported generation of these ROS 

during catechol oxidation in melanin. The release of H2O2 from catechol oxidation was found to 

facilitate both antimicrobial and antiviral activity [38]. 

Researchers have designed bioadhesives and coatings using the adhesive moiety catechol 

to mimic the strong adhesion capability of mussel adhesive proteins. To accomplish this, 3,4-

dihydroxyphenylalanine (DOPA) was incorporated into microgels, which generates millimolar 

levels of H2O2 by simply hydrating the microgels. The sustained release of H2O2 was both 

antimicrobial and antiviral, notably inactivating biocide resistant non-enveloped viruses. The 

simplicity of this design will enable this biomaterial to function as a lightweight and portable 

source of disinfectant for a wide range of applications [29]. 

The antimicrobial activity of melanins from different biological origins such as bacteria, 

fungi, and human hair has been studied in a number of settings. Studies have shown that 

commercial synthetic melanin (Sigma AldrichTM) had an antifungal activity against Candida 
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albicans and other Candida spp., such as Candida parapsilosis strain 22019, Candida glabrata 

strain 2001, Candida krusei strain 6258 [39]. Interestingly, an inhibiting activity has been observed 

in isolates of Candida spp. resistant to fluconazol. Correa et al. extracted melanin from black hair 

through an acid/base method [14]. The high-performance liquid chromatography (HPLC) patterns 

of human and fungal melanins were similar to the synthetic melanin obtained through the oxidation 

of tyrosine, which demonstrates that both human and fungal melanins contain eumelanin as their 

principal element. Human melanin showed a significantly higher antifungal activity against both 

Cryptococcus neoformans and Cryptococcosis gattii, compared to the synthetic and fungal 

melanins. In addition, this antifungal activity against clinical isolates obtained from patients was 

higher than the reference strains. 

Pigments like melanin produced across diverse fungal and bacterial taxa play an important 

role in their ecological relationships among other microbes as well as with colonized hosts by 

limiting microbial growth of competing microbes [40]. One bacterial taxon found ubiquitously 

across different environments that has been repeatedly demonstrated to produce a melanin pigment 

with antimicrobial activity is Pseudomonas. Many of the species in this genus live in complex 

relationships with eukaryotic hosts that can be symbiotic or pathogenic in how they limit microbial 

growth. Additionally, the production of melanin pigments is often regulated in response to 

environmental pressures [41]. In one example, certain Pseudomonas putida strains that colonize 

grass rhizosphere can produce a dark melanin pigment in response to the presence of 

phytopathogens, limiting growth of the pathogens and protecting the plant from damage [42]. 

Notably, the antimicrobial effects of melanin are often broad spectrum, showing growth 

inhibition of important clinical species that also inhabit a wide range of environments [43], [44], 

such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium 
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smegmatis. In one study, melanin produced by a Bacillus subtilis strain colonizing a Salicornia 

plant demonstrated strong antimicrobial effects against many plant, marine, and human pathogens. 

Due to these effects against diverse taxa, the mechanism of action likely impacts highly conserved 

bacterial structures or pathways common to both gram-negative and gram-positive bacteria 

(Figure 1.10) [45]. 

 

Figure 1.10: Antimicrobial activity of purified melanin. (A) K. pneumoniae MCC 2451, (B) A. 

macleodii MCC 2815, (C) E. coli MCC 2412, (D) M. smegmatis MTCC 6, (E) E. aerogenes MCC 

3092, and (F) X. campestris NCIM 5028; (1 = melanin, 2 = negative control, 3 = standard 

antibiotics) [45]. 

 

In Chapter 2, I extract melanin from horsehair and study its antimicrobial activity (Figure 

1.11). I show that extracted melanin biopigments have a homogeneous elliptical microstructure 

with highly ordered semicrystalline features. Raman, Fourier transform infrared (FTIR), and X-

ray photoelectron spectroscopy (XPS) suggest that extracted melanin has similar chemical 
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signatures to melanins extracted from S. officinalis and synthetic melanin. I test the antibacterial 

activity of melanin by incubating E. coli and S. aureus with melanins and investigate the 

mechanism of action via reactive oxygen species (ROS) generation. 

 

 

Figure 1.11: Melanin extracted from horsehair as antibacterial agent [25].  

 

1.4 Endotoxin removal form blood 

Endotoxin, or lipopolysaccharide (LPS), is a major component of the cell wall of gram-

negative bacteria. When endotoxins are released into the bloodstream, a strong reactive response 

is generated by the immune system, which can develop into life-threatening sepsis. Notably, 

endotoxin is one of the strongest bacterial inducers of inflammatory cytokines [46]. The massive 

systemically dysregulated cytokine response, referred to as a “cytokine storm”, is usually 

considered to be the key pathophysiological response that leads to organ dysfunctions. 

Conventional septic shock management includes antibiotics, symptomatic support for 

organ dysfunction, and surgery to contain the infection source if required. Despite recent advances 
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in intensive care of systemic infections, 28-day mortality can reach 40% in cases of septic shock. 

Therefore there is an unmet need to develop extracorporeal devices and membranes to separate 

endotoxin and bacteria as an adjuvant therapy for septic shock [46]. 

 

1.4.1 State-of-the-art technology for endotoxin removal 

1.4.1.1 Polymyxin B-immobilized fiber column  

One of the most widely used endotoxin removal therapies is polymyxin B-immobilized 

fiber column (Toraymyxin®; Toray, Tokyo, Japan). The Toraymyxin® cartridge is made of an 

island-sea type conjugated polystyrene and polypropylene polymer. In this design, polymyxin B, 

a well-known antibiotic, is fixed on the modified polystyrene to bind to endotoxin (Figure 1.12). 

The binding of polymyxin B to endotoxin is reported to be via ionic and hydrophobic interactions. 

Toraymyxin® showed promising result in in vitro studies and no serious side effects in clinical 

use of the cartridge [47]. However, the results of clinical trials remain inconclusive regarding the 

impact of Toraymyxin® on mortality. A few randomized controlled trials (RCTs) comparing 

polymyxin B adsorption to a standard treatment found conflicting results, suggesting that the 

positive effect of Toraymyxin® could be greater in particular subgroups of patients [48]. A recent 

clinical trial in the United States examining the impact of polymyxin B hemoperfusion on mortality 

in patients with septic shock and endotoxemia indicates no difference in 28-day all-cause mortality 

after using Toraymyxin®. However, in a post hoc analysis, they evaluated the impact of polymyxin 

B hemoperfusion use in patients with septic shock and high endotoxin activity measured between 

0.6-0.89 (scale from 0 to 1) [49]. 
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Figure 1.12:  Toraymyxin® is an extracorporeal hemoperfusion cartridge designed to remove 

endotoxin in blood. It is composed of polymyxin B-immobilized polystyrene derivative fibers. 

Polymyxin B is an antibiotic which is well known to bind endotoxin selectively [47]. 

 

1.4.1.2 Alteco® LPS adsorber 

The Alteco® LPS adsorber (Alteco® Medical AB; Lund, Sweden) contains discs made of 

porous polyethylene (PE), with an average pore size of 100 microns. In the pores and on the surface 

of the discs, the covalently immobilized synthetic cationic peptide captures the negatively charged 

endotoxin molecules [50]. 

A few case series in critically ill adults have reported a decrease in endotoxin levels and a 

hemodynamic improvement after using Alteco® LPS adsorber [50]. However, clinical double-

blind RCT in 2019 reached the conclusion that endotoxin removal in septic shock with Alteco® 

LPS adsorber is safe but shows no benefit compared to placebo [51]. 
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1.4.1.3 oXiris®  

The oXiris® hemofilter (Baxter, Global headquarter in USA) was developed to enhance 

the adsorption properties of the AN69 membrane. AN69 membrane is composed of acrylonitrile 

and sodium methallylsulfonate. Due to the sulfonate groups, the membrane is negatively charged 

and is able to adsorb cytokines and toxins via their cationic residues (Figure 1.13). The 

polyethyleneimine (PEI) surface treatment allows for the adsorption of endotoxins. Finally, the 

heparin graft on the membrane reduces membrane thrombogenicity. This unique design allows for 

the combination of 4 properties in 1 device: renal support, cytokine removal, endotoxin removal, 

and local anticoagulant treatment [52]. 

The oXiris® set is authorized by US Food and Drug Administration (FDA) under an 

Emergency Use Authorization (EUA) for the treatment of patients 18 years of age or older with 

confirmed COVID-19 and admittance to the ICU to reduce pro-inflammatory cytokine levels. 

Zhang et. al reported a reduced level of overexpressed cytokines, stabilization of hemodynamic 

status, and staged improvement of organ function during the treatment of five COVID-19 patients 

with the oXiris membrane [53]. A clinical study on 16 patients with septic shock showed reduction 

in circulating endotoxin and cytokine levels after using oXiris® membrane, indicating the potential 

of this biomedical device as an adjuvant therapy for sepsis [54]. 
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Figure 1.13: The oXiris® membrane set has a three-layer membrane structure. AN69 membrane, 

Polyethyleneimine (PEI) surface to capture endotoxin and the heparin grafted layer to reduces 

thrombogenicity [48]. 

 

1.4.1.4 Seraph® 100 Microbind® 

In late 2019, the European Union licensed Seraph® 100 (ExThera Medical, Martinez, CA, 

USA) for removal of bacteria from the blood. The Seraph® 100 is a hemoperfusion cartridge 

containing ultrahigh molecular weight polyethylene beads with end point-attached heparin and is 

effective in the reduction of pathogens from the bloodstream either as a single agent or as an 

adjuvant to conventional anti-infective agents. Bacteria, viruses, fungi, and toxins have been 
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shown to bind to the immobilized heparin on beads in a similar way to the interaction with heparan 

sulfate that naturally occurs on mammalian cellular surfaces (Figure 1.14). This binding is 

nonreversible and as such, the pathogens are removed from the bloodstream [55]. Notably, in vitro 

studies have demonstrated that methicillin-resistant S. aureus (MRSA), methicillin-resistant 

Staphylococcus epidermidis, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant 

E. coli, Streptococcus pneumoniae, Streptococcus pyogenes, vancomycin-resistant Enterococcus 

faecalis, Enterococcus faecium, Acinetobacter baumannii, and Serratia marcescens bind to the 

Seraph hemofilter’s adsorption media. Up to 99% pathogen reduction has been observed with a 

single Seraph® 100 treatment. Reducing the patient’s pathogen load in blood lowers the risk of 

metastatic infection and a dysfunctional host response stemming from the release of a variety of 

virulence factors, toxins, and cytokines [56]–[59]. 

 

Figure 1.14: Structural similarities between Heparan sulfate on the cell surface and heparin 

immobilized to polyethylene beads in the Seraph® 100 facilitates adhesion of microorganisms in 

the blood to the Seraph® 100 [55]. 

 

 Similar to oXiris, Seraph 100 is granted for emergency use in patients with COVID-19. 

Published studies have shown high efficacy of the Seraph 100 in clearing SARS-COV-2 from 

COVID-19 patients [60]. ExThera Medical began its first RCT in 2022 to evaluate the safety and 
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efficacy of the Seraph® 100 Microbind® Affinity Blood Filter for bacterial sepsis therapy. The 

study is expected to randomize approximately 60 patients over a 12-month timeframe, with 

preliminary results expected in early 2023 [59]. 

The main limitation of sepsis clinical studies are the small cohort sizes. Small cohort 

studies will be limited in their statistical strength, making it difficult to make conclusive decisions. 

Large double-blind studies are laborious, and the analyses are expensive and time-consuming. 

However, further clinical analyses with larger patient populations and data are necessary to make 

strong conclusions on efficacy of these hemoperfusion cartridges.  

Magnetic nanoparticle (MNP) technology has been extensively studied for bacteria and 

LPS separation, however, they are not yet available for clinical use. Lee et al. developed an 

approach to clearing bacteria from the bloodstream using MNPs modified with a synthetic ligand, 

zinc-coordinated bis(dipicolylamine) (bis-Zn-DPA). Magnetic microfluidic devices were used to 

remove MNPs bound to E. coli from whole blood at flowrates as high as 60 mL/h, resulting in 

almost 100% rapid clearance. Bis-Zn-DPA forms coordination bonds with anionic phospholipids 

which are present at high density on the outer membrane of gram-negative bacterial cells [61]. In 

another study, polydopamine (PDA) coating was used as a hemocompatible platform for the 

functionalization of Fe3O4 clusters. Further, a thiol-terminated IBIL, 1-(12-(mercaptododecyl)-3-

methylimidazolium bromide (MDMIBr) was designed to decorate the surface of the MNPs via 

Michael addition or Schiff-base reaction (Fe3O4@PDA-IL), endowing the MNPs with robust 

bacteria capture capability. The Fe3O4@PDA-IL exhibited good hemocompatibility and 

performed well in the removal of various species of clinically significant pathogens from human 

whole blood, including E. coli, P. aeruginosa and MRSA. The Fe3O4@PDA-IL removes 

pathogens and bacterial endotoxins via electrostatic and hydrophobic interactions [62]. In an 
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extracorporeal blood-cleansing device, blood flowing from an infected individual is mixed with 

MNPs coated with an engineered form of the human opsonin Mannose Binding Lectin linked to 

an Fc domain (FcMBL) that captures a broad range of pathogens and toxins without activating 

complement factors or coagulation. MBL is a blood opsonin that captures pathogens such as 

microorganisms and endotoxin to the spleen for further phagotrophy [63]. Magnets pull the 

opsonin-bound pathogens and endotoxin from the blood; the cleansed blood is then returned to the 

individual. This system efficiently removes multiple gram-negative and gram-positive bacteria, 

fungi, and endotoxin from whole human blood flowing through a single unit at up to 1.25 liters 

per h in vitro. More than 90% of bacteria from blood was cleared in rats infected with S. aureus or 

E. coli, resulting in reduced pathogen and immune cell infiltration in multiple organs and decreased 

inflammatory cytokine levels. In a model of endotoxemia shock, survival rates increased after a 5 

h treatment [64]. 

To remove the requirement for magnetic beads or microfluidics, a more robust, simple, and 

clinically relevant extracorporeal device is being developed by the same group. They have 

designed their device to use commercially available polyethersulfone (PES) hollow fibers as a 

scaffolding with FcMBL attached. This approach leverages the better utility of PES-based 

cartridges for clinical use and the broad-spectrum pathogen and endotoxin capture capabilities of 

FcMBL (Figure 1.15 a-c). When tested with human whole blood in vitro, the FcMBL 

hemoadsorption filter (FcMBL-HF) produced efficient (90–99%) removal of E. coli, S. aureus, 

Candida albicans and endotoxin. When tested in rats, extracorporeal therapy with the FcMBL-HF 

device reduced circulating pathogen and endotoxin levels by more than 99% and prevented 

pathogen engraftment and inflammatory cell recruitment in the spleen, lung, liver, and kidney 

when compared to controls (Figure 1.15 d and e). Importantly, cleansing of ‘pathogen-associated 
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molecular patterns’ (PAMPs) from the blood of antibiotic-treated animals with the FcMBL-HF 

device resulted in reduced organ pathogen and endotoxin loads, suppressed inflammatory 

responses, and resulted in more stable vital signs compared to treatment with antibiotics alone 

[65]. 

In addition to the previously described membrane-based materials for microorganism 

and/or endotoxin removal that have been successfully developed, other products are currently 

being studied. In one example, Zhao et al. have immobilized l-serine onto a PES electrospun fiber 

membrane, using PDA as intermediate layer (PES/PDA-Ser). The adsorption kinetics and 

isothermal adsorption of the PES/PDA-Ser fiber membrane demonstrated an adsorption capacity 

of 1.28 EU/mg with the equilibrium adsorption time about 1 h. PES/PDA-Ser fiber membrane 

displayed an endotoxin removal efficiency of 0.85 EU/mg. Hemolysis (0.6%), coagulation, and 

protein assays showed that the PES/PDA-Ser fiber membrane is hemocompatible and has anti-

protein adsorption performance [66]. Endotoxin bonding capacity of polymyxin B has been studied 

for more than a decade. Peng et al. used the dry-jet wet-spinning process to fabricate fibers 

containing polymyxin B. In this process, polymyxin B is loaded onto gellan–polylysine polyion 

complex to prepare the spinning solution. Prepared fibers were then knitted to make a membrane. 

The tensile strength of the fibers prepared with this method ranged from 1.49 N to −1.58 N. The 

membrane has LPS adsorption capacity of 2.452 EU/mg from plasma and causes no significant 

hemolysis or coagulation [67]. 
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Figure 1.15: (a) Schematic representation of a hollow fiber covalently functionalized with FcMBL 

which is used to capture pathogens (oval shapes) in blood flowing through the fiber lumen (arrows 

indicate flow direction). (b) Drawing of a commercially available hemofilter containing many 

internal hollow fibers that function in parallel. (c) Schematic representation of the procedure for 

functionalizing hollow fiber surfaces with FcMBL. (d) S. aureus concentration in the blood of rats 

treated with the FcMBL-HF (n = 3) or a control hollow fiber (n = 3) in vivo. In less than 3 h, 

FcMBL-HF treatment resulted in a 1 Log reduction in S. aureus concentration compared to 

treatment with the control device (mean ± s.d., n = 3, P < 0.05). (e) Concentration of S. aureus in 

the major organs of rats after treatment compared to the control rats. FcMBL-HF treatment resulted 

in over 90% reduction in S. aureus concentration in these organs compared to the controls 

(mean ± s.d., n = 3, P < 0.05). (f) White blood cell (WBC, 103/μL) counts remained in the normal 

range for both control and treated animals infected with S. aureus; however, control rats had lower 

white blood cell counts compared to the treated animals. Dashed boxes show the normal range 

(mean ± s.d., n = 3). 
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Hydrogel has attracted attention as a mediator for endotoxin and bacteria removal due to 

its biocompatibility. Genipin crosslinked chitosan-kappa-carrageenan composite hydrogels (C-K 

hydrogels) have been developed to reduce endotoxin level and bacteria burden in septic blood. 

Chitosan is widely recognized as a cationic polysaccharide that can selectively bind to negatively 

charged endotoxin by electrostatic interaction. The C-K hydrogels were competent to eliminate 

63.3% of endotoxin in septic blood with a maximum adsorption capacity of 95.0 EU/g during a 3 

h simulative hemoperfusion procedure. Bacteria cleansing experiments further demonstrated that 

the C-K hydrogels effectively decreased 46.0% of E. coli and 68.7% of S. aureus load, 

respectively. C-K hydrogels were nonhemolytic and noncytotoxic and the outer carrageenan shells 

were able to significantly attenuate non-specific plasma protein adsorption, complement 

activation, contact activation, and platelet activation of the C-K hydrogels compared to raw 

crosslinked chitosan hydrogel [68]. 

   

1.4.2 Melanin in endotoxin removal  

In a typical year in the United States, more than 1.7 million adults develop sepsis and 1 in 

3 patients who die in a hospital have sepsis [69]. Considering the high mortality rate and prevalence 

of sepsis, there is a large unmet need to study and develop materials for clearing endotoxin and 

bacteria. Due to the limitations of hemofiltration cartridges mentioned above, there are further 

approaches that could be employed to take advantage of natural biopolymers such as melanin while 

also providing effective endotoxin removal. Multivalent cations such as Zn2+, Mg2+, Cu2+ and 

Fe2+/3+ bind to catechol groups in melanin via coordination bonding. Melanin, as a biocompatible 

biopolymer, can bind to zinc ions via catechol group oxidation. Zinc is the second most abundant 

trace element (after iron) essential for all living organisms [70]. Previous studies show that zinc 
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compounds can be used as inhibitors of phosphopeptide and protein reactions as well as selective 

sensing of biologically important phosphate oxyanions [71]. In living organisms, zinc is redox-

inert and has only one valence state: Zn2+. The d-block orbital cation Zn2+ differs from s-block 

orbital cations such as Ca2+ or Mg2+ by demonstrating significantly higher affinity for ligands, 

preference for the donor atoms of ligands, and coordination dynamics [72]. Therefore, zinc loaded 

melanin can selectively bond to negatively charged phosphate groups in the endotoxin structure. 

In Chapter 3, I leverage zinc loaded melanin for endotoxin and bacteria removal (Figure 

1.16). I load zinc ions in melanin structure and confirm successful loading using XPS and Raman 

spectroscopy. I find that zinc loaded melanin can selectively bond to gram negative bacteria and 

endotoxin, facilitating their separation from blood. Additionally, I find that zinc loaded melanin 

causes minimal hemolysis and coagulation, indicating blood biocompatibility of the material.  

 

 

Figure 1.16: Melanin zinc complex as a biocompatible agent for clearing bacteremia. 
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CHAPTER 2 

Melanin pigments extracted from horsehair as antibacterial agents 
 

2.1 Introduction 

Bacterial adherence and subsequent proliferation on solid surfaces are ongoing challenges 

in a variety of areas including daily consumables, industrial processes, and biomedical devices [1]. 

The most common cause of biomedical implant failure is bacterial infection, which is exacerbated 

due to biofilm formation [2]–[4]. Between 7-8 % of hernia repair surgical procedures result in 

infection and bacteria formation [5]. Biofilm formation also leads to major challenges in 

wastewater treatment processes that use membranes [6]. Membrane filtration is one of the most 

common approaches to convert effluents into water with acceptable level of impact to the 

environment by removing the ions and microorganisms [7]. Such filtration techniques are 

affordable and cost-effective, however long-term use of a filter can promote biofilm formation 

which can consequently reduce its efficacy, and lifetime with increasing operational costs [8], [9]. 

Hence, development of effective strategies to minimize bacterial growth and prevent biofilm 

formation in these settings is critical.  

Metal nanoparticles such as copper (Cu), titanium (Ti), silver (Ag), zinc (Zn), selenium 

(Se) and silicone (Si) have been studied for their antibacterial properties [10]–[13]. Oxidative 

stress generated by reactive oxygen species (ROS) and metal ion penetration into the bacteria are 

two main mechanisms that damage bacteria cells and lead to cell death [14], [15]. However, there 

are many potential challenges associated with the depletion of metal ions from this class of metallic 

nanomaterials. Surface coating with polymers can be another approach to prevent biofouling and 
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minimize bacterial growth on surfaces. Hydrophilic polymers such as polyethylene glycol and 

polyglycerol, or zwitterionic polymers such as 2-methacryloyloxyethyl phosphorylcholine and 

poly(sulfobetaine methacrylate) have been widely used to form a hydration layer on the surface to 

prevent bacterial adhesion and biofouling [16]–[19]. This hydration layer near the surface acts as 

a physical barrier and prevents direct contact between biomolecules and the surface. However, 

disordered disruption of polymeric surfaces in the complex media can result in potential challenges 

that shortens the longevity [20]. Moreover, the disruption of biofilms using antibacterial agents 

requires concentrations that are 10-1000X higher than those that target isolated bacterial colonies 

[21], [22]. Both surface properties and surface area are two major factors that dictate biofilm 

formation [23]. The antibacterial agents that are biologically-derived, bioinert, scalable, and cost 

effective are therefore intrinsically advantageous.   

As a subset of melanins, eumelanins (hereafter called melanins) are a broad class of 

biopigments that can be found in the skin, hair, iris of the eye, and neurosensorial tissues [24]–

[26]. Melanins are largely composed of two subunits of 5,6-dihydroxyindole (DHI) and 5,6-

dihydroxyindole-2-carboxylic acid (DHICA) [27]. These subunits are randomly stacked into 

planar macromolecular structures via π-π interactions to form homogeneous microstructures [28], 

[29]. Biological functions of melanins vary depending on their location in the physiological system 

however, the major role of melanins is to protect cells from radiation damage [30]. Melanins 

contain diverse chemical functional groups such as redox-active catechols, pendant carboxylic 

acids, and aromatic amines, which allow conjugate bonding with a variety of cations including 

protons or metallic cations [31], [32]. Utility of these chemical features have allowed melanins to 

be used in many applications such as surgical meshes, biomedical imaging, cancer treating 
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materials, functional coatings for tissue engineering, and aqueous charge storage devices [33]–

[36].  

Furthermore, recent studies have shown that catechol-embedded thin film composites can 

produce ROS by electrochemical insertion of ions and inhibit bacterial growth [37]–[39]. 

Antimicrobial activities based on catechol chemistry have been reported from dopamine 

methacrylamide as well as  melanins that are naturally sourced from fungi or bacteria [40]–[43]. 

The unique structure of naturally-occurring melanins and the redox activity via catechol functional 

groups suggest that they can serve as biocompatible antibacterial agents. Herein we report the 

extraction of melanin pigments from Equus ferus (horse) hair and investigate their antibacterial 

activity. Structures in micro- and meso-scale are examined by electron microscope and x-ray 

scattering techniques and the chemical functionalities are evaluated by spectroscopic tools. These 

structural and chemical analysis will assist to understand the structure-chemistry-property 

relationship of the naturally occurring biopigment as an antibacterial agent.   
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2.2 Materials and methods 

2.2.1 Materials 

Hydrochloric acid (HCl, ACS reagent, 37 %), acetone, ethanol, Synthetic melanin 

(SynMel) in analytical grade were purchased from Sigma-Aldrich (St. Louis, MO USA). E. ferus 

hair was collected from the Equine Facilities at the University of New Hampshire (Durham, NH 

USA). Amplex™ Red hydrogen peroxide/peroxidase assay kit was obtained from Invitrogen 

(Waltham, MA USA). 

 

2.2.2 Extraction of melanin from E. ferus hair 

Melanin pigments extracted from black E. ferus hair were prepared as previously described 

using acid hydrolysis.[44] Initially, the hair was washed thoroughly by acetone and ethanol (1:2 

vol %) three times. Approximately 4 g of washed hair was vigorously stirred in a solution of 1 % 

HCl (V = 80 ml) to remove the water-soluble components. They were then mixed with 32 % HCl 

(V = 160 ml) followed by heating to 100 oC for 3 h (Figure 2.1). The solution was centrifuged at 

3500 rpm for 5 min, and the precipitates were washed with double-distilled water (ddH2O) four 

times. After discarding the supernatant, the sediment was dried in a vacuum oven overnight. 

Extracted melanin was kept in a closed container in darkness at ambient conditions until further 

processing. 
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Figure 2.1: Experimental setup for melanin extraction. 

 

2.2.3 Spectroscopic and microscopic characterization of melanins 

As-prepared EquusMel powder was fixed on Al stubs with double-sided carbon adhesive 

tape followed by Pt sputter coating. Images were taken using a scanning electron microscope 

(SEM, Lyra3 GMU FIB, Tescan, Brno, Czechia).   

Small and wide-angle X-ray scattering (SAXS/WAXS) were performed using the in situ 

SAXS/WAXS Xeuss System (Xenocs, Grenoble, France) with a CuKα X-ray source (λ = 1.5418 

Å, GeniX3D Cu ULD, Xenocs, SA, France) at 23°C.  The scattering data were collected on a 

Pilatus (DECTRIS, Switzerland) over 6 frames with a 10 minutes acquisition time for each frame. 

The sample to detector distance (SDD) for SAXS/WAXS was 2464 mm and 365 mm, respectively, 

after the calibration using silver behenate (AgBe). Melanin in ethanol solution was suspended and 

dispersed using ultrasonic bath and dried in vacuum oven followed by placing in two Mylar films 

for SAXS/WAXS performance. The data of two Mylar films in an empty cell were collected as 
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background. Six frames (600 s frame-1) were collected for each sample, then normalized by the 

number of frames and circular averaged to obtain an intensity-wave vector (q) after background 

subtraction. Scattering images were analyzed using Igor Pro software (ver. 6.37) with the Irena 

package to obtain circular averaged 1D plots of intensity vs. scattering wave vector q [45].  

Transmission Electron Microscopy was performed to analyze the shape and structure of 

EquusMel particles using JEOL JEM 2100 LaB6. The particles solution was dropped on a carbon 

coated TEM grid (Structure Probe, Inc., West Chester, PA). Once the surface of the carbon coated 

TEM grids dried, it was transferred to the TEM grid holder and examined without staining. The 

acceleration voltage was set to 200 kV. All images were collected via the CCD camera attached to 

the TEM. 

Raman spectra were collected using an AFM-Raman microscope (NTEGRA Spectra, NT-

MDT Spectrum Instruments, Moscow, Russia) with a 10x objective and 500 nm wavelength laser 

over a Raman shift range of 800–2500 cm−1. Data from five separate scans using 1 mW of laser 

power and 10 s exposure time were averaged to minimize sample degradation while maximizing 

the signal-to-noise ratio. Raman peak deconvolution was performed using automatic multiple peak 

fit methods and viogt function (Originlab, Northampton, MA., USA). 

Fourier transform infrared spectroscopy (FTIR) Spectra of melanin samples were directly 

measured with Thermo Nicolet instrument (Is10 FTIR, Thermo Nicolet, Thermo Fisher Scientific, 

USA). Spectra were recorded in wavenumber range of 400-4000 cm-1, resolution of 4 cm-1 and 30 

sample scans. 

UV-Vis spectra of EquusMel (200 µg/ml in DMSO) was measured by a spectrophotometer 

(Nanodrop 2000c, Thermo Scientific, USA) from a wavenumber range of 250-850 cm-1. 
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X-ray Photoelectron Spectroscopy was performed using the Kratos Axis Supra XPS. Survey and 

high-resolution spectra of 1s orbitals of carbon (C), oxygen (O), and nitrogen (N) were obtained 

using Al source. Elemental analysis was done by the peak areas and the relative sensitivity factors 

of the instrumentation to individual atomic species. High-resolution spectra were further analyzed 

by CasaXPS software.  

Specific surface area and pore size distribution of EquusMel was examined by nitrogen 

physisorption measurements using NOVA 2200E BET (Quantachrome Instrument) at 77.3 K. 

EquusMel was degassed at 200 °C for 12 h before BET measurements. 

Static water contact angle was measured by sessile drop method using optical tensiometer 

(Theta lite Tensiometer, Biolin Scientific, Gothenburg, Sweden). 10 µl of ddH2O droplet was 

applied on the melanin pellet (50 mg) that was hydraulic pressed with pressure, p = 4 metric tons 

at room temperature. Water contact angle was automatically calculated according to five point-

traced droplet shapes.   

 

2.2.4 Antibacterial activity 

The antibacterial activity of EquusMel and SynMel biopolymers was evaluated using 

gram-negative Escherichia coli (E. coli, ATCC®15597™) and gram-positive Staphylococcus 

aureus (S. aureus, ATCC®25923™) strains. Prior to each antibacterial test, E. coli and S. aureus 

were streaked from a frozen glycerol stock onto lysogeny broth (LB) agar and commercially 

prepared tryptic soy agar with 10% sheep red blood cells (TSA-B) agar, respectively. A single 

bacterial colony was collected from the E. coli and S. aureus plates and inoculated in 5 mL of LB 

and brain heart infusion (BHI) liquid media, respectively. The cultures were incubated for 16 h at 

37°C in a platform shaker. Bacterial growth concentrations were determined by means of optical 
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density (OD) (Spectrophotometer, Nanodrop 2000c, Thermo Scientific, USA) at a 600 nm 

wavelength. Different concentrations of melanins (2.5, 5, 20, and150 mg/ml) were inoculated with 

5 × 105 CFU/ml bacteria suspensions in a 96-well plate. The plates were incubated at 37℃ for 1, 

2, 4, and 24 h. Aliquots of the samples were serially diluted and plated on agar media for overnight 

incubation at 37°C. Visible colonies were counted and compared with the negative controls, which 

grown without melanins. Each experiment was repeated three times. The bactericidal activity rate 

(R) of the EquusMel and SynMel was calculated according to following equation: 

 

𝑅 =
𝑁𝐶 − 𝑁𝑆

𝑁𝐶
× 100 % 

 

where NC represents average concentration of bacteria in control and NS represents average 

concentration of bacteria when treated with a specific concentration of melanin.  

 

2.2.5 Pro-oxidant activity assay 

The level of H2O2 production was used as the metric for reactive oxygen species (ROS) 

generation. Melanins at different concentrations (2.5, 5, 20, and 150 mg/ml) were incubated with 

ddH2O for 4 h under ambient condition. Aliquots of the aqueous solutions were assayed for the 

generation of H2O2 using Amplex Red reagent (ThermoFisher Scientific, Waltham, MA USA) 

[46]. In brief, the assay detects the excitation and emission at wavelengths of 571 and 585 nm. The 

amount of H2O2 can be detected by the degree of oxidation from 10-acetyl-3,7-

dihydroxyphenoxazine (ADHP) to resorufin (Figure 2.2). Data were measured using a 
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fluorescence plate reader (SpectraMax M2e/EA, Molecular Devices, San Jose, CA USA).  Each 

experiment was repeated three times. 

 

 

 

Figure 2.2: ADHP is a non-fluorescent and colorless compound that upon enzymatic oxidation is 

transformed into resorufin which is a highly absorbing and fluorescing compound. Amplex™ Red 

assay is widely used for specific and quantitative analysis of extracellular H2O2. 
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2.3 Results and discussion 

2.3.1 Extraction and characterization of EquusMel 

 Melanins from the hair are synthesized by specialized dendritic cells, which are 

melanocytes derived from the neural crest [47]. Various techniques have been applied to extract 

melanins from hair, i.e., base dissolution & acid isolation, dissolution in ionic liquid, and acid 

hydrolysis. Among these techniques, acid hydrolysis was used in this study due to facile extraction 

steps, which results in high purity and yield [44]. The initial E. ferus hair and resulting melanin 

powder (EquusMel) after the acid hydrolysis extraction are shown in supporting Figure 2.3 (a and 

b). The UV-vis absorption spectrum of EquusMel shows a monotonic decrease with no noticeable 

peak throughout the visible wavelength region, which is similar to other naturally-sourced melanin 

pigments (Figure 2.3(c)) [48].  

 

 

Figure 2.3: (a) Equus ferrus hair fibers and (b) EquusMel powder after extraction. (c) UV-Vis 

absorbance spectrum is shown for the EquusMel solution (200 μg/ml). This exhibits the broad 

band monotonic absorbance without the distinct peaks. 

 

The microstructure of EquusMel is shown in Figure 2.4 (a). Broadly, it shows an elliptical 

shape in the range of 638 ± 93.7 nm in length and 266.3 ± 56 nm in width. Compared to the 

homogeneous and spherical nanoparticle form factors of the naturally occurring melanins extracted 
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from Sepia officinalis ink sac, EquusMel exhibits less homogeneous structure [49]. TEM images 

display the sub-nanometer scale textured microstructures, especially at the exterior of the 

individual particulates (Figure 2.4(b and c)). Furthermore, both wide-angle (WAXS) and small-

angle (SAXS) X-ray scattering measurements demonstrate that there is a noticeable scattering peak 

at q = 0.14 Å-1. This is indicative of an ordered structure in EquusMel with d-spacing of 45.2 Å 

(Figure 2.4(d and e)). Relatively weak and broad behavior was found from the higher order peaks 

at q > 0.2 Å-1, and the ratio of the scattering peaks did not match with other well-known structures 

such as lamellae, or hexagonally packed cylinders. This ordered structure in meso-scale is 

considered as the spacing between the layers or the aperture of the fibril structure that is originated 

from the melanogenesis [50], [51]. Melanogenesis is the biological process that takes place in 

specialized organelles called melanosomes. Melanosomes use enzymes, such as Pmel17, that 

catalyze polymerization reactions to control melanin assembly. Pmel17 assembles melanin 

protomolecules into large fibrils within melanosomes in vivo [51], [52]. This natural synthesis 

mechanism leads to the extended fibrils and porous structure of EquusMel in meso-scale. Similar 

ordered arrangement can be found from the atomic force microscopy of the melanins isolated from 

S. officinalis ink, which reveals the presence of palisade-like filaments in the order of 3-6 nm [53]. 

The semi-crystalline structure in meso-scale is largely a unique characteristic of various naturally-

derived melanin pigments [54]. Layered structure in sub-nanometer scale can be found from yak 

and human hair melanins and the melanins from S. officinalis ink sac, which exhibit ordered 

arrangement ranges from 2 to 6 Å [54], [55]. Both microscopy and X-ray scattering data suggest 

that EquusMel largely consists of a fibril mesostructure with a distance of 45.2 Å. This unique 

structural feature of EquusMel is dissimilar with the synthetic melanins (SynMel) prepared by 

autooxidation of tyrosine ,which contain amorphous topography [35].  
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Figure 2.4: (a) SEM and (b and c) TEM images of EquusMel show the elliptical microstructure 

with a mesoporous and layered structure within the individual particles. (d) both wide-angle 

(WAXS) and (e) small-angle (SAXS) X-ray scattering corroborates the presence of a 

semicrystalline structure of EquusMel in a meso scale that largely contains the ordered layers with 

a d-spacing of 45.2 Å. 

 

The ordered meso-scale structure of EquusMel can also be observed by measuring nitrogen 

physisorption. Pore size distribution of EquusMel determined by the Barret-Joyner-Halenda (BJH) 

method exhibits the presence of the primary pores within the range of 30-50 Å, which is in a good 

agreement with the d-spacing of 45.2 Å from WAXS and SAXS (Figure 2.5(a)). In addition, N2 

adsorption-desorption isotherms indicate that EquusMel contains Brunaur-Emmett-Teller (BET) 

surface area of 3 m2/g (Figure 2.5(b)) [56]. This BET surface area is slightly lower compared to 

those from the natural melanin from Sepia officinalis ink sac (19.9 m2/g), and the synthetic melanin 

(10.7 m2/g) [35]. EquusMel exhibits a type IV behavior according to the presence of a rounded 
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point at low values of p/po and an indistinct slope at intermediate values of p/po. These features 

correspond to the formation of monolayers and multilayers, respectively.  

 

 

 

Figure 2.5: (a) Pore size distribution determined by the Barrett–Joyner–Halenda method shows 

the existence of primary pores within the range of 30–50 Å. (b) Nitrogen adsorption–desorption 

isotherms exhibit the multilayered type IV structural behavior with a BET surface area of 3 m2/g. 

 

Chemical cues of EquusMel and SynMel were interrogated by Fourier transform infrared 

spectroscopy (FTIR), confocal Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) 

(Figure 2.6). FTIR spectra of both melanins exhibit no significant differences indicating similar 

chemical functionality. The broad band recorded at 3800-2800 cm-1 is assigned to O-H stretching 

from carboxylic acid or catechol groups [57]. The peak centered at 1260 cm-1 represents C-N 

stretching of pyrrole ring or O-H deformation of catechols [58], [59]. The peaks centered at 1650 

and 1720 cm-1 are attributed to conjugated C=C and vibration of aromatic C=O, which are present 

in both EquusMel and SynMel [49]. Two distinct peaks at 2950-2850 cm-1 were observed from 

EquusMel but not from SynMel. These peaks are attributed to the stretching vibration of aliphatic 
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C‒H bonds that are induced by lipid or amino acid residues during extraction [60]–[62]. Detailed 

FTIR peak assignments are summarized in Table 2.1. 

 

 

 

Figure 2.6: FTIR spectra of EquusMel and SynMel. Two distinct peaks at 2850–2950 cm-1 suggest 

the presence of the aliphatic C–H stretch in EquusMel. 
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Table 2.1: Peak assignments of FTIR spectra for EquusMel and SynMel. 

 

Absorption bands, cm-1 Vibration mode and main functional groups 

3800 – 2800 

Stretching vibration of O‒H and N‒H groups (carboxylic 

acid and phenolic OH, anime in indole, pyrrole and amino 

acids) 

2950 – 2850 Stretching vibration of C‒H  

1720 – 1706 Stretching vibration of aromatic C=O in carboxylic acid 

1650 – 1600 Stretching vibration of Conjugated C=C 

1342 – 1266 Stretching vibration of C‒N in indole 

680 – 860 Bending vibration of aromatic C‒H 

 

Raman spectra of EquusMel and SynMel exhibit the broad peak ranges between 

wavenumbers of 1000 and 2000 cm-1. (Figure 2.7) These behaviors are associated with the 

vibrational mode of indole groups [63], [64]. Raman spectra were deconvoluted into five peaks 

(α- ɛ) that are designated to the known functional groups in melanin subunits [32]. No significant 

peak shift was found between EquusMel and SynMel, indicating the similarity in chemical 

signatures between both melanins. Deconvolved peak assignments are summarized in Table 2.2.  
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Figure 2.7: Raman spectra of EquusMel and SynMel are deconvolved into five bands (α – ε). 

Black lines represent the raw spectra. Bindings are highlighted in the respective colors in the 

chemical structure of eumelanin. Functional group R1 is COOH for SynMel and COOH or H for 

EquusMel. 

 

Table 2.2: Peak positions of Raman spectra of EquusMel and SynMel are shown after the 

deconvolution using Voigt function. 

 

Peak position, cm-1 

Vibration mode and main functional groups 
EquusMel SynMel 

1224.404 1237.68445 (α) C‒O stretching in carboxylic acid and C‒OH 

1348.694 1348.01362 (β) stretching vibration of aromatic C‒N in indole 

1431.441 1437.68445 (γ) pyrrole ring stretching 

1507.377 1509.1941 
(δ) stretching vibration of C꓿N in semiquinone and 

bending vibration of N‒H 

1588.081 1575.48241 (ε) stretching vibration of aromatic C꓿C in indole 
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XPS was used to further examine the chemical contrast between EquusMel and SynMel 

(Figure 2.8). Atomic weight percentages based on XPS survey peak indicate that EquusMel 

contains more carbon and less oxygen and nitrogen compared to SynMel (Figure 2.8(b and c)). 

Considering the carbon as the main backbone of indole and the oxygen in the functional groups, 

we could speculate that a lower population of redox-active groups is present in EquusMel 

compared to SynMel.  

 

Figure 2.8: (a) XPS are shown for EquusMel and SynMel. The atomic weight percentages of 

melanins shown in (b) suggest that EquusMel largely contains higher carbon and lower oxygen 

and nitrogen contents than SynMel. (c) The weight ratio of oxygen and nitrogen is shown based 

on the weight% of carbon. 
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A similar trend can be observed from the high-resolution C1s peak analysis. Each C1s peak 

was deconvolved into two peaks with the binding energies at 284.8, and 287.2 eV that are 

associated with C-C/C=C, and C-N/C-O functionalities, respectively. Peak area comparison 

between two peaks indicates higher population of C-N/C-O from SynMel than EquusMel (Figure 

2.9(a)). High-resolution O1s peaks enable to further quantify the distinction in the amount of 

redox-active functional groups that exists between EquusMel and SynMel. Deconvolved O1s 

peaks (Figure 2.9(b)) exhibit two peaks centered at 532.39, and 533.82 eV from EquusMel and 

532.39, and 531.12 eV from SynMel. The peaks at 533.82, and 531.12 eV are attributed to COOH 

and C-O functionalities. The deviation of these two peaks could result from the vibrational energy 

difference of carboxylates that were synthesized via a different route. The major peak at 532.39 

eV is assigned to C-OH from the catechol functional group [35]. Higher presence of C-OH group 

was found in EquusMel (90.51%) compared to SynMel (81.03%). Moreover, the association of 

the high-resolution O1s peak at 532.39 eV and the atomic weight percentage from the survey peak 

can provide insightful understanding about the potential population of redox-active catechol 

groups.  EquusMel contains 14.65 % oxygen (survey peak), of which 90.51 % is present in C-OH 

chemical form, indicating the total C-OH population is 13.3 %. Similar assessment results in 19.9 

% (81.03 % x 24.55 %) of the C-OH composition present in SynMel. Taken together, XPS analysis 

indicates that the redox-active catechol group of EquusMel is approximately 1.5 times less than 

that of SynMel. It should be noted that exposure to acid during the extraction process may damage 

the structure, which could result in reducing the chemical functionalities of EquusMel [65].  
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Figure 2.9: (a) The high-resolution carbon peak indicates the higher presence of the aromatic C–

C or C=C bonding compared to the C–N or C–O stretching. High-resolution peaks of oxygen in 

(b) corroborate the higher content of catechol groups from both EquusMel and SynMel. (c) The 

peak at binding energy of 400 represents C-N stretching from the secondary amine functional 

group in indole. High-resolution peaks are deconvolved by CasaXPS and shown as color lines. 

Detailed peak positions are summarized in Table 2.3. 

 

Table 2.3: Summary of high-resolution XPS analysis of EquusMel and SynMel. 

 

Binding energy, eV 

 O 1s N 1s C 1s 

EquusMel 532.17 [C‒OH] 400.12 [C‒N] 284.8 [C‒C]/[C=C] 

533.82 [COOH]  287.19 [C‒N]/[C‒O] 

SynMel 531.12 [C‒O] 400.10 [C‒N] 284.8 [C‒C]/[C=C] 

532.62 [C‒OH]  287.26 [C‒N]/[C‒O] 
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2.3.2 Antibacterial activity and its mechanism of action 

To study the antibacterial activity of melanin across two distinct bacterial taxa, we chose 

well-known type strains of the gram-positive Staphylococcus aureus and the gram-negative 

Escherichia coli. Both species are common members of the human microflora but are also known 

to cause serious infections [66]. The antibacterial activity of both EquusMel and SynMel melanins 

against E. coli and S. aureus was quantitatively evaluated using a colony count method after 

incubating each bacterial species (c = 5 × 105 CFU/ml; CFU-colony forming units) with various 

melanin concentrations. Survival rates are depicted in Figure 2.10 (a) and (c) after 4 h incubation. 

Both melanins generally exhibit significant decline in the number of CFUs of E. coli and S. aureus 

in comparison to the negative controls. Complete bacterial inhibition (i.e., no CFUs were observed) 

was achieved when incubated in melanin concentrations of 20 mg/ml and higher. This is 

comparable with antibacterial activity of natural cationic polymers such as chitosan. Chitosan is a 

positively charged polysaccharide synthesized by deacetylation of chitin [67]. Qian et al. achieved  

35% and 50% reduction in  E. coli and S. aureus growth, respectively after co-incubation with 

chitosan nanoparticles (12 µg/ml) for 24 h [68]. SynMel appears to have a greater impact in 

inhibiting bacterial growth than EquusMel at concentrations of 2.5 and 5 mg/ml. The variation of 

antibacterial activities between EquusMel and SynMel is correlated with the different density of 

redox-active functional groups that are present in each melanin. Table 2.4 summarizes the 

bactericidal activity of EquusMel and SynMel against E. coli and S. aureus.  
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Figure 2.10: In vitro antibacterial activities are tested using (a) E. coli and (c) S. aureus. Bacteria 

colony count was performed after 4 h exposure to EquusMel and SynMel at 37 ℃ with four 

different concentrations. Bacterial growth is broadly suppressed compared to the controls. Apart 

from 2.5 mg/ml EquusMel, all concentrations of both melanins exhibit significant decreases in 

bacterial growth for both E. coli and S. aureus. X indicates zero colonies. Data are presented as 

mean ± SD (n = 3). Statistically significant differences are indicated by ***p < 0.001, **p < 0.01, 

and *p < 0.05 compared to the control. Detailed bactericidal activities are given in Table 2.4. 

Representative images of agar plates are shown after incubating (b) E. coli and (d) S. aureus in 

melanins (150 mg/ml) for 4 h at 37 ℃. 
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Table 2.4: Bactericidal activity of EquusMel and SynMel against E. coli and S. aureus after 

incubating for 4 h. 

 

Bacterial species E. coli S. aureus 
Melanin Type 

EquusMel SynMel EquusMel SynMel 
Concentration (mg/ml) 

150 100 % 100 % 100 % 100 % 

20 98.12 % 100 % 100 % 100 % 

5 69.06 % 98.12 % 76.67 % 98.54 % 

2.5 6.87 % 61.87 % 30.1 % 93.2 % 

 

In addition, the difference of antibacterial activities may be due to the dissimilar surface 

characteristics of melanins. Static water contact angle measurement suggests that SynMel has a 

superhydrophilic surface (contact angle = 0°), while the EquusMel surface is hydrophobic (contact 

angle = 104.7 ± 2.2°) (Figure 2.11). The hydrophobic surface characteristics are ubiquitous and 

can be found from the melanins that are naturally sourced [59]. The inherent hydrophobic nature 

of EquusMel would possibly lead to the aggregation of particles, hindering the full interface with 

bacteria. This contrast of surface properties could potentially lead to the lower antibacterial activity 

of EquusMel.  

 

Figure 2.11: Static water contact angle measurement exhibits (a) hydrophobic EquusMel (contact 

angle= 104.7 ± 2.2°) and (b) superhydrophilic SynMel (contact angle= 0°). Melanin pellets were 

prepared to exhibit the flat top surface before applying 10 µl of ddH2O. 
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Antibacterial activity via melanins is further examined by the time-course reduction of E. 

coli and S. aureus. We determined the growth inhibition of each bacteria by counting colonies at 

timepoints between 0 and 24 h, as shown in Figure 2.12 Both E. coli and S. aureus exhibit 

substantial reduction in the number of CFUs throughout the measurement period in comparison to 

the monotonic growth of the controls. However, the time to complete bacterial inhibition varies 

between EquusMel and SynMel. The growth of both bacterial species was completely suppressed 

after 2 h of incubation in SynMel while EquusMel exhibited a slower response until 4 h of 

incubation. The delayed response of EquusMel is associated with the inherent characteristic of 

EquusMel that contains a lower density of redox-active catechol groups than SynMel. These rates 

of bacteria growth inhibition by both melanins are comparable to the recent studies. A recent study 

shows that growth curves obtained from incubation of chitosan nanoparticles with S. aureus V329 

decreases in CFUs starting after 2 h [67]. In addition, Sarwar et al. observed complete bacterial 

growth inhibition after incubating chitosan at different molecular weights with E. coli and S. 

aureus for 8 h.[69]  
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Figure 2.12: Temporal kinetics of bacterial reduction is shown for (a) E. coli, and (b) S. aureus 

through 24 h incubation at 37 ℃. EquusMel exhibits a slight delayed response until 2 h compared 

to SynMel, however 100 % reduction is achieved for both melanins after 4 h of incubation. Bacteria 

incubation was performed at 37 ℃ with a melanin concentration of 150 mg/ml under ambient light 

(n = 3). Graphs on the right column show the enlarged view of the full measurements. Trendlines 

are generated by interpolating the measured data. 
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Generation of ROS by EquusMel and SynMel was quantitatively corroborated by the H2O2 

generation using a colorimetric assay. Oxidative stress by ROS is one of the main mechanisms that 

can damage the structure and function of proteins and other cellular components and may lead to 

cell death. Superoxide radical (O2
•‒), hydroxyl radical (HO•), hydroperoxyl radical (HO2

•), singlet 

oxygen (1O2), and hydrogen peroxide (H2O2) are representatives of ROS [13]. Among the ROS 

candidates, H2O2 is chosen in this study since it provides a quantitative result with facile 

measurement [70]. Four different concentrations of EquusMel and SynMel were incubated for 4 h 

in ddH2O under ambient light, and H2O2 concentrations were measured (Figure 2.13(a)). The 

colorimetric assay displays the increment of H2O2 generation as the concentrations of melanins 

increase. The concentrations of 2.5 mg/ml EquusMel and 150 mg/ml SynMel reacted to form the 

lowest (0.56 µM) and highest (129.8 µM) concentrations of H2O2, respectively. It should be 

mentioned that at low concentration of H2O2, E. coli and S. aureus cells die as a result of damage 

to DNA, whereas at higher concentrations of H2O2, the death of the microorganism is due to 

damage to other part(s) of the cell [71], [72]. The outer structures of the gram-positive S. aureus 

and the gram-negative E. coli may explain differences in response to ROS exposure between these 

two species. S. aureus has an external peptidoglycan cell wall that can be directly attacked by ROS 

while E. coli has an outer membrane that provides greater protection against damage [73], [74]. 

Furthermore, the amounts of H2O2 produced from SynMel are 1.5 ± 0.2 times higher than 

EquusMel. This is in close agreement with our findings of the chemical signatures of redox-active 

groups in EquusMel. Spectroscopic data indicates that SynMel contains 49.6 % more catechol 

groups than EquusMel.  

The pro-oxidant property of melanins has been also reported in other literatures [70]. 

Catechols present in melanins are reversibly oxidized into ortho(o)-quinones by two-electron two-
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proton removal process. During oxidation, oxygen will react with electrons to form hydroxyl or 

superoxide radicals as an intermediate. The superoxides can further bind to protons to reproduce 

H2O2 [75]. A proposed mechanism is shown in Figure 2.13(b). A previous electron paramagnetic 

resonance (EPR) study in melanin shows that production of semiquinone and subsequent ROS is 

light- and water-driven, supporting the proposed antibacterial mechanism [76]. Moreover, another 

EPR study on catechol-containing material demonstrates ROS generation within the hydrated 

solution [77]. Although the exact antibacterial mechanism of melanin is still unclear, we cautiously 

posit that the melanins are able to generate ROS by reversible oxidation of catechols, which can 

inhibit bacterial growth. Furthermore, the semicrystalline structure of EquusMel may adversely 

affect its ability to promote the ROS since the multi-layered structure provides a kinetically 

disadvantageous environment to interact between superoxides and electrons/protons.  
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Figure 2.13: (a) The measured concentrations of hydrogen peroxide generated by four defined 

concentrations of melanins. Measurements were performed by colorimetry assay in 4 h after the 

aqueous solution under ambient light (n = 3). Inset displays the magnified values from 2.5 and 5 

mg/ml. (b) Proposed mechanism of ROS generation by melanins is shown. Oxidation of melanins 

induces two electrons and protons leading to the production of superoxides. Superoxides and free 

protons can incorporate to reproduce H2O2. 
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2.4 Conclusion 

EquusMel extracted from E. ferus hair is examined by microscopic and spectroscopic 

approach. Electron microscopy verified the elliptical microstructure of EquusMel in nanoscale and 

the layer-by-layer stacked structure on the exterior surface. Highly organized multilayered 

structure of EquusMel was corroborated by x-ray scattering measurement, which exhibits ordered 

spacing of 45.2 Å. Spectroscopic techniques suggest that EquusMel contains similar chemical 

signatures to melanins extracted from S. officinalis and SynMel. Among various chemical 

functionalities, catechols are considered to be the main functional group that allows the reversible 

oxidation and reduction within the hydrated condition. ROS generated via oxidation of catechols 

is considered the main mechanism of antibacterial activity, reaching 100% cell death within 4 h. 

However, the lower densities of catechol groups present in EquusMel resulted in less amount of 

ROS promotion compared to SynMel.  

 The results herein indicate that EquusMel exhibits potential for naturally-derived 

biopigments to be utilized as functional antibacterial agents for a variety of applications. 

Antibacterial performance and kinetics can be further improved by molecular level modification 

of the surface of melanins to extend the redox functionalities [78]–[80]. Exfoliation of the layered 

structure of EquusMel can also assist to maximize the interface resulting in the enhanced 

generation of ROS [81]. These classes of biologically-derived melanins can be further applied in 

a variety of research and engineering areas. Fabrication of a composite membrane with EquusMel 

would be advantageous to prevent biofilm formation and therefore increase the lifespan of the 

filtration process [82]. In addition, melanins can be utilized to prepare antibacterial surfaces in 

biomedical applications including neural interface, biomedical electronics, medical consumables, 

or clinical equipment [83], [84]. 
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CHAPTER 3 

Melanin zinc complex as a biocompatible agent for clearing 

bacteremia 
 

3.1 Introduction 

Sepsis is a severe whole-body inflammation caused by an extreme immune response to 

bacterial infection of the blood, often leading to organ dysfunction and even death [1], [2]. 

Worldwide, 49 million cases of sepsis were reported each year, of which an estimated 11 million 

patients ultimately died from complications related to septic shock [3]. Due to an aging population, 

increased use of invasive procedures, and immunosuppressive therapies, including cancer 

chemotherapy and organ transplantation, sepsis has become one of the leading causes of death in 

adults and infants in the United States [4]. Current therapies rely on the use of broad-spectrum 

antibiotics before the pathogen is identified, raising concerns for the disruption of natural 

microbiome balance and antimicrobial resistance [5]. Even in the case of effective antibiotic 

therapy against gram-negative bacteria, the outer cellular membranes of dead bacteria release 

negatively charged and reactive endotoxins such as lipopolysaccharides (LPS) [6]. LPS can initiate 

the sepsis inflammatory cascade, resulting in multiorgan failure, septic shock, and death [7]. Based 

on these observations, targeted separation of LPS and the bacteria from the blood can complement 

conventional antibiotic therapy. 

Successful removal of LPS and bacteria from the patient blood can be accomplished using 

an extracorporeal blood-cleaning device that specifically targets the endotoxin and/or bacteria. [8], 

[9]. Such devices include hemoperfusion and microfluidic-magnetic apparatuses which are 
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designed to draw the patients’ blood and selectively remove bacteria/endotoxins in the filtration 

unit [10]. The filtration relies on the specific binding using antibodies, engineered proteins, or 

synthetic molecules incorporated in the membrane [11].  For example, antibodies against bacterial 

cell membrane were immobilized on the surface of magnetic micro/nanoparticles for the specific 

binding with bacteria in microfluidic devices. In another study, an innate immune protein, 

mannose-binding lectin (MBL), was used for the recognition of bacteria and endotoxin [12]. MBL 

was fused with the Fc region of antibody and immobilized on a membrane surface to capture 

bacteria and endotoxin [7]. In another example, a zinc-chelating synthetic molecule, bis-

dipicolylamine (bis-DPA), which mimics the structure of annexin V, was immobilized on 

magnetic nanoparticles for the rapid removal of bacteria and endotoxin from blood [4]. Despite 

the promising research and development, there are inherent limitations to these methods. The 

antibody-based methods have a very low separation speed as they rely on highly specific antibody-

antigen interactions. Additionally, protein-based methods including the fused MBL are associated 

with high production costs and show challenges in storage and quality control.  

In this Chapter, we demonstrate that naturally occurring melanin pigments loaded with zinc 

ions may serve as active material in separating LPS and bacteria from blood. Melanins are the 

class of multifunctional biopolymers that can be found throughout nature [13]. As the most 

ubiquitous form of melanins, eumelanins (hereafter called melanins for simplicity) is primarily 

composed of subunits of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid 

(DHICA) monomers in various ratios that are π-stacked to form homogeneous nanoparticles [14]. 

It is highly biocompatible and has many favorable physical and chemical properties [15]. Melanins 

contain diverse chemical functional groups including pendant carboxylic acids, aromatic amines, 

and catechols. Redox-active catechols are oxidized into ortho(o)-quinones by losing two electrons, 
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and two protons [16]. During the redox reaction, catechols can form coordination bonding with 

protons, and ions [17]. This electrochemical feature has enabled melanins to be used in aqueous 

charge storage devices with divalent cations [18]. Here, we show a novel approach leveraging 

melanin redox reactions to immobilize zinc ions (Zn2+) and bind to bacteria and endotoxin from 

blood. Zn2+ largely exhibits a stronger affinity toward negatively charged molecules compared to 

other divalent cations, (e.g. Mg2+ or Ca2+) due to the presence of a filled d-orbital [19]. Zn2+ plays 

an import role as an anion receptor in biological systems, particularly associated with phosphate 

derivatives [20]. This property, initially described in metalloenzymes with high phosphate 

selectivity, allows phosphates to act as substrates or inhibitors by reversible binding to Zn2+ in the 

active site [21]. The interactions between Zn2+ and phosphates have been utilized to develop 

biological assays to detect apoptotic cells and bacteria [21], [22]. Subsequently, we hypothesize 

that Zn2+-loaded melanins (Mel-Zn) would form a coordination bond with anionic phospholipid 

groups in LPS that exists as either a component of the outer membrane of gram-negative bacteria 

or a freely circulating molecule. Simple and cost-effective preparation of Mel-Zn along with rapid 

binding kinetics would make its clinical application plausible for the extracorporeal blood-

cleansing device.  
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3.2 Materials and methods 

3.2.1 Preparation of Mel-Zn  

Melanin isolated from Sepia officinalis (Sigma-Aldrich, St. Louis, MO USA) was 

suspended in ethanol (5 wt%) and sonicated using 80 W of power for 5 min using a probe sonicator 

(Digital Sonifier SFX 550, Branson, Brookfield, CT USA). Melanin suspension was filtered using 

filter paper (Grade 41, Whatman, Fisher Scientific, Pittsburgh, PA USA) and dried at 100 °C for 

2 h in a vacuum oven. Polytetrafluoroethylene (PTFE) (Good Fellow, Cambridge, England)) was 

blended with melanin in a 2:8 mass ratio using an agate mortar and pestle (Mel). Zinc ion (Zn2+) 

loaded melanin was prepared using electrochemical, and solution methods. Melanin (70 mg) were 

pressed into stainless steel mesh current collector (Type 304, McMaster-Carr, Cleveland, OH 

USA) using a hydraulic press (P = 4 metric tons). A three-electrode cell was configured with 

melanin, platinum wire and Ag/AgCl as working, counter, and reference electrodes, respectively. 

A multichannel potentiostat-galvanostat (VMP3, Biologic, Knoxville, TN USA) was used to 

measure Cyclic voltammetry (CV) profiles. CV experiments were performed in the aqueous 

electrolyte of 0.5 M Zn(NO3)2 at a scan rate of 5 mV/s . Mel-ZnCV was collected after 5 cycles of 

CV and stopped after the oxidation cycle. The sample was dried at 100 °C for 1 h in a vacuum 

oven and stored in ambient conditions. In the second method, Zn2+ loading was performed by 

immersing melanin (50 mg) into 10 ml solutions of 0.1 and 0.05 M Zn(NO3)2 at room temperature 

for 3 h. After washing twice with dd-H2O, Zn2+ loaded melanin samples (Mel-Zn0.1 and Mel-Zn0.05) 

were dried at 100 °C for 1 h in a vacuum oven and stored in ambient conditions. 
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3.2.2 Materials characterization 

X-ray photoelectron spectroscopy was performed using the Kratos Axis Supra XPS (Axis 

Supra XPS, Manchester, U.K.). Survey and high-resolution spectra of zinc (Zn) was obtained using 

aluminum (Al) source and were further analyzed by CasaXPS software. Elemental analysis was 

done by determining the peak areas and taking in to account the relative sensitivity factors of the 

instrumentation to individual atomic species.  

Raman spectra of Mel and Mel-Zn were collected using an AFM-Raman microscope 

(NTEGRA Spectra, NT-MDT Spectrum Instruments, Moscow, Russia) with a 10X objective and 

500 nm wavelength laser over a Raman shift range of 800–2500 cm-1. To minimize sample 

degradation and maximize the signal-to-noise ratio, data from five separate scans using 1 mW of 

laser power and 10 s exposure time were averaged. Raman peaks were deconvolved using 

automatic multiple peak fit methods and Voigt function (Originlab, Northampton, MA USA). 

Transmission electron microscopy was performed to analyze the shape and structure of melanin 

using JEOL JEM 2100 LaB6 (JEM 2100 LaB6, Peabody, MA USA). The particle solution was 

deposited on a carbon coated TEM grid (Structure Probe, Inc., West Chester, PA). Once the surface 

of the grid dried, it was transferred to the TEM grid holder and examined without staining. The 

acceleration voltage was set to 200 kV. All images were collected via the CCD camera attached to 

the TEM. 

 

3.2.3 LPS binding assay 

Endotoxin removal capacity of Mel-Zn was measured by chromogenic Limulus 

amoebocyte lysate (LAL) assay (ThermoFisher Scientific, Waltman, MA USA). Briefly, 2, 5 and 

10 mg/ml of Mel-Zn samples were incubated with 1 EU/ml (EU = endotoxin unit) Escherichia 
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coli LPS endotoxin standard (011: B4) at 37 ℃. After 1 h, remaining endotoxin in the solution 

was measured by addition of 50 µl LAL reagent and 100 µl chromogenic substrate solution and 

incubation for 10 and 6 min at 37 ℃, respectively. After incubation, 100 ml of the stop reagent 

(acetic acid, 25 % v/v in water) was added, and absorbance was measured at 405 nm on a 

microplate reader. LPS concentration in the sample solutions was determined using a known 

standard calibration curve [23].  

 

3.2.4 Bacteria binding efficiency 

Binding of Mel-Zn to bacteria was evaluated using a gram-negative E. coli strain 

(ATCC®15597™). Prior to each binding test, E. coli was streaked from a frozen glycerol stock 

onto lysogeny broth (LB) agar. A single colony of E. coli was collected from the LB plate and 

inoculated in 5 mL of LB liquid medium at 37°C in shaking condition. After 15-16 hours, bacterial 

density was determined by means of optical density (OD) at 600 nm and adjusted to 5 × 105 

CFU/ml (CFU = Colony forming unit).  Five mg of Mel-Zn complexes were inoculated with 

bacteria suspension in PBS and animal whole blood at 37 ℃ for 1 h in shaking condition. Aliquots 

of the samples were serially diluted and plated on LB agar for overnight incubation at 37°C. Visible 

colonies were counted and compared with the negative control which was grown without Mel-Zn 

to evaluate the bacteria removal efficiencies.  

 

3.2.5 Protein recovery 

Bovine serum albumin (BSA) was used as model protein to evaluate protein adsorption by 

Mel-Zn complexes. Mel and Mel-Zn (5 mg/ml) were incubated with 1000, 500, and 20 µg/ml BSA 

at 37 ℃. After 1h, BSA concentrations in the solutions were determined using Pierce BCA protein 
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assay kit (ThermoFisher Scientific, Waltman, MA US). BSA recovery was calculated based on 

comparing BSA concentration in solution before and after being incubated with Mel or Mel-Zn.  

 

3.2.6 Coagulation activation  

Human Thrombin-Antithrombin Complex (TAT) in vitro enzyme-linked immunosorbent 

assay (ELISA) (Abcam INC, Waltham, MA USA) was used for quantitative measurement of TAT 

complex concentrations in plasma. Blood coagulation was characterized by incubating 5 mg Mel 

and Mel-Zn in 300 µl human whole blood containing heparin as an anticoagulant. After 30 min 

incubation at 37 ℃ blood was centrifuged at 3000 g for 10 min and supernatant containing plasma 

was collected. Standards and plasma samples were added to the wells of a precoated 96-well plate 

with TAT specific antibodies and washed with wash buffer after 2 h incubation. Afterward a TAT 

specific biotinylated detection antibody is added and then followed by washing with wash buffer. 

Next streptavidin-peroxidase conjugate was added, and unbound conjugates was washed away 

with wash buffer. Chromogen substrate was then used to visualize Streptavidin-Peroxidase 

enzymatic reaction. Chromogen substrate is catalyzed by Streptavidin-Peroxidase to generate a 

blue color which changes into yellow after adding acidic stop solution. The absorbance was 

measured at a wavelength of 540 nm. TAT concentration in the sample solutions was determined 

using a known standard calibration curve.  

 

3.2.7 Hemolysis ratio  

To evaluate hemolytic potential, 5 mg of Mel and Mel-Zn were incubated with 1 ml animal 

red blood cells (2 × 108 cell/ml) for 30 min and then centrifuged at 900 rcf for 5 min to separate 

the supernatant. The absorbance of the supernatant was measured at a wavelength of 540 nm. PBS 
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solution and distilled water were used as negative (0 % lysis) and positive controls (100 % lysis), 

respectively. The hemolysis ratio will be calculated using the following equation: 

 

𝐻𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 𝑟𝑎𝑡𝑖𝑜 % =  
𝐴𝑠 − 𝐴𝑛𝑐

𝐴𝑝𝑐 −  𝐴𝑛𝑐
 × 100  

 

where As, Anc, and Apc represent absorbance of the samples, negative control and positive control, 

respectively.  

 

3.2.8 Statistical analysis 

All data were presented as mean ± standard deviation (SD). Each result is average of three 

parallel experiments. The statistical significance was analyzed using one-way ANOVA. (*p < 

0.05, *p < 0.01, ***p < 0.001). 
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3.3 Results and discussion 

3.3.1 Preparation and characterization of Mel-Zn 

As a major structural component of the outer membrane of gram-negative bacteria, LPS 

has high density of anionic phospholipids and has long been recognized as a key factor in septic 

shock in humans [24]. LPS is an amphipathic molecule with a general structure consisting of three 

defined regions: lipid A, core oligosaccharide, and O-antigen (Figure 3.1). Lipid A is most often 

composed of a dimer of glucosamine (GlcN) attached to acyl chains (fatty acids) by ester or amide 

linkages and normally contains phosphate groups on each GlcN [3], [25]. Lipid A is covalently 

attached to anionic groups, 2-keto-3-deoxyoctanic acid (Kdo) in the core region together with L-

glycero-D-manno-heptose (Hep) and hexoses [25]. The O-antigen is a repeating oligosaccharide 

unit, which determines the strain-specific serological identity of the respective bacterium [25]. 

Although both the polysaccharide regions and lipid A can induce immune responses, the latter is 

the most immunogenic and considered the endotoxin center of LPS [26]. The core oligosaccharide 

of LPS largely consists of phosphorylated or phosphate-containing groups, such as pyrophosphate 

or 2‑aminoethylphosphate. Our hypothesis was that rapid formation of coordination bonding 

between these phosphates and Zn2+ would facilitate the separation of LPS. 
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Figure 3.1: Chemical structure of Lipopolysaccharide (LPS) from E. coli O111:B4. LPS is 

characterized by three main units: Lipid A, Core oligosaccharide and O-Antigen. Lipid A is critical 

to endotoxin activity of LPS [25], [27]. High density of negatively charged phosphate groups are 

observed from oligosaccharide and Lipid A regions. 

 

Melanin extracted from Sepia officinalis exhibits homogeneous nanoparticle aggregates 

with a characteristic length of 80-120 nm in diameter (Figure 3.2(a)). Spherical microstructures 

contain layers of protomolecules that are -stacked with an intermolecular spacing of 3.8 Å. The 

presence of ordered protomolecules of melanin in mesoscale has been corroborated by 

computational simulation [13], [28]. Catechols present in melanin can reversibly bind multivalent 

ions such as Mg2+, Ca2+, Fe2+/3+ or Zn2+ by undergoing redox reaction induced by two electrons 

and two protons [18], [29]. Catechols largely exhibit a stronger affinity for multivalent ions (0.95 

eV) than oxidized o-quinones (0.23 eV). Concerted redox reactions, differential cation binding 

affinity, and nanostructure collectively promote the multivalent ion insertion and release in 

melanins [18], [30].   
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Figure 3.2: (a) Transmission electron microscopy (TEM) shows the microstructure of melanins. 

Scale bar indicates 50 nm. Zinc ions are electrochemically incorporated in melanin using cyclic 

voltammetry (CV) over five cycles as shown in (b). CV was performed in 0.5 M Zn(NO3)2 at a 

scan rate of 5 mV/s. The cathodic region corresponds to simultaneous Zn2+ removal and oxidation 

of catechols to o-quionones. Zinc ions can form coordination bonding at the anodic region during 

the electrochemical reduction from o-quinone to catechol.  

 

The electrochemical behavior of melanins in Zn-containing solution was measured by 

cyclic voltammetry (CV, Figure 3.2(b)). Due to low number of cycles (5 cycles) no significant 

peak was observed from both anodic and cathodic regions [17]. Incorporation of zinc ion with 

melanin occurs when o-quinones of melanins are reduced by the addition of two electrons and two 

protons at the anodic region, generating Zn2+-loaded melanin (Mel-ZnCV). Conversely, in the 

cathodic region, Zn2+ is removed from melanins during the oxidation reaction from catechols to o-

quinone. In this process, Zn2+ will form a coordination bond with melanin and there is no ion 

exchange; therefore, it exists as a zinc cation. Running the multiple redox cycles assists in 

increasing the amount of zinc loading in melanin by making more catechols accessible during the 
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repeated redox reaction. To compare the binding efficiency of electrochemically prepared Mel-

ZnCV, Zn2+-loaded melanin was prepared by incubating melanin in a zinc solution at 0.1 and 0.05 

M, resulting in Mel-Zn0.1, and Mel-Zn0.05. 

The successful loading of zinc ions in melanin was assessed by X-ray photoelectron 

spectroscopy (XPS) and Raman spectroscopy (Figure 3.3, 3.4, 3.5, and 3.6). The presence of zinc 

ions loaded in melanin was probed by comparing Zn 2p peaks in the XPS survey (Figure 3.3(a)). 

Mel-ZnCV contained 8 x 10-3 Zn/C, which is approximately two times higher zinc density than 

Mel-Zn0.1 and Mel-Zn0.05 (Figure 3.3(b)). In addition, high resolution Zn 2p peaks shown in 

Figure 3.4 further confirm zinc coupling in melanin with defined peaks for Mel-Zn samples, which 

are absent in pristine melanin. Detailed peak positions of high-resolution Zn 2p peaks are 

summarized in Table 3.1. 
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Figure 3.3: (a) XPS survey peaks for pristine melanin (Mel) and Zn2+-loaded melanins (Mel-ZnCV, 

Mel-Zn0.1, and Mel-Zn0.05). (b) Zn2+ incorporation was demonstrated by comparing the atomic 

weights of Zn 2p and C 1s peaks. Zn/C atomic weight ratio indicates Mel-ZnCV exhibits 

approximate 2x higher binding density of Zn than Mel-Zn0.1 and Mel-Zn0.05. 
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Figure 3.4: High-resolution XPS Zn 2p peaks show more detailed peak comparisons. Detailed 

peak positions are summarized in Table 3.1. 
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Table 3.1: Summary of high resolution XPS analysis of Zn 2p peak for Mel and Mel-Zn. 

  Binding energy, eV 

  Zn 2p 

Mel-Zn
CV

 
1021.65 [Zn 2p

3/2
] 

1044.76 [Zn 2p
1/2
] 

Mel-Zn
0.1
  

1021.87 [Zn 2p
3/2
] 

1045.01 [Zn 2p
1/2
] 

Mel-Zn
0.05

  
1021.88 [Zn 2p

3/2
] 

1045.04 [Zn 2p
1/2
] 

Mel ‒ 
‒ 

 

Pristine and Zn-loaded melanins show Raman spectra comparable to other sp2-hybridized 

carbon materials [31] (Figure 3.5). Raman spectra were deconvolved into five peaks (α-ε) 

corresponding to carbon-carbon bonds of melanin subunits, DHI or DHICA  [16], [31] (Table 

3.2). Peak shift comparison from Raman spectra has been used to evaluate the potential locations 

of ion loading in melanin subunits compared to the pristine melanin. All deconvolved peaks of Zn-

loaded melanins demonstrated peak shifts. The highest peak shift was found from α, which 

corresponds to the carboxylic acid of DHICA (Figure 3.6). This region can also be regarded as 

the location where the subunits polymerize to form a macromolecule such as the tetramer shown 

in Figure 3.6(d). Compared to the planar indole backbones, the polymer bond formed among the 

subunits can be considered to be relatively weak, which results in the highest peak shifts observed 

from the α band (Figure 3.6(d)). This suggests that Zn2+ binds to the catechol during 

electrochemical redox process by CV, promoting the structural reconfiguration in mesoscale. 

Taken together, Zn-binding was corroborated by both XPS and Raman and higher density of Zn2+ 
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occurred during electrochemical loading compared to the spontaneous loading in aqueous zinc 

solutions.  

 

 

 

Figure 3.5: Raman spectra of Mel and Mel-Zn are deconvolved into five bands (α-ε) using a Voigt 

function. Black lines represent the raw XPS spectra as recorded. Peak fitting and deconvolution 

were performed by CasaXPS and represented by different line colors. Detailed peak positions are 

summarized in Table 3.2. 
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Table 3.2: Peak positions of Raman spectra of Mel and Mel-Zn are shown after the deconvolution 

using Voigt function. 

 

Vibration mode and main 

functional groups 
Peak position [cm

-1
] 

Mel-Zn
CV

 Mel-Zn
0.1

 Mel-Zn
0.05

 Mel 

(α) C‒O stretching in carboxylic 

acid and C‒OH 1245.58758 1245.38174 1233.432 1220.38463 

(β) stretching vibration of aromatic 

C‒N in indole 1339.22241 1336.65228 1329.66047 1323.63799 

(γ) pyrrole ring stretching 1432.51518 1437.61442 1430.48443 1422.47989 

(δ) stretching vibration of C꓿N in 

semiquinone and bending 

vibration of N‒H 
1525.7027 1522.23258 1524.44646 1513.56871 

(ε) stretching vibration of aromatic 

C꓿C in indole 1600.08169 1593.85551 1596.7694 1589.42381 
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Figure 3.6: (a-c) Peak shifts of (II-IV) Mel-Zn relative to (I) Mel demonstrates that the 

macromolecular structure of melanin is reconfigured in mesoscale by Zn2+ loading (d).   
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3.3.2 LPS and bacteria binding 

Rapid initiation of appropriate antibiotic therapy is critical for patients with sepsis or septic 

shock. A microbiologically confirmed diagnosis is necessary for pathogen targeted antibiotic 

therapy. However, because culture-based diagnostics require several days to be completed, broad-

spectrum antibiotic therapy is often recommended as soon as possible after recognition of sepsis 

or septic shock [5]. In cases of antibiotic-resistant pathogens, or to reduce the risk of antibiotic 

resistance development, direct removal of pathogens from the blood via purification techniques 

could be an effective alternative strategy to treat septic patients [7], [12], [32].   

Among culture-positive septic patients, 62.2% have gram-negative bacteria, of which, 

approximately 20% are infected with Escherichia coli [33]. Thus, an infection model of sepsis in 

PBS and whole blood was established using E. coli at a concentration of 5 ×105 CFU/ml (CFU = 

Colony forming unit). Removal of E. coli from the PBS was studied by incubating Mel and Mel-

Zn in E. coli solutions for 1h and comparing the number of remaining E. coli with the negative 

control. As shown in Figure 3.7(a), Mel-ZnCV attained the highest efficiency of E. coli removal 

with 87.45±16% in PBS while Mel-Zn0.1 and Mel-Zn0.05 showed 69.41±16.3% and 28.82±7.4% E. 

coli removal efficiencies. The bacteria concentration in culture positive sepsis patients is much 

lower (1 to 10 CFU/ml) than the initial concentration used in this study [34]. However, the culture-

based methods of measuring these concentrations only account for live bacterial cells, which does 

not include the potential impact of dead bacteria or associated debris. Accordingly, the 

concentration of pathogen in our study was selected to be higher than what would be seen in natural 

blood infection. 

Next, it was tested if Mel-Zn could remove bacteria from whole blood by 1h incubation of 

Mel-Zn in the whole blood with E. coli (5 ×105 CFU/ml). Mel-ZnCV attained 90.6±4 % removal 
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of E. coli while Mel-Zn0.1 and Mel-Zn0.05 achieved 67.69±7.9 %, and 30.39±1.2 % removal, 

respectively (Figure 3.7(b)). These results demonstrate that Mel-Zn can bind to bacteria in whole 

blood as well as PBS despite more complex cellular and molecular compositions of the whole 

blood. 

 

 

Figure 3.7: E. coli (5 x 105 CFU/ml) removal efficiency are shown for Zn2+-loaded melanins (5 

mg/ml) after 1 h incubation in PBS solution (a) and animal whole blood (b) at 37 oC. (c) Digital 

images of agar plates after incubating Mel-Zn in animal whole blood with E. coli. X indicates zero 

percent. Data are presented as mean ± SD, n = 3. n.s.p > 0.05, *p < 0.05, and **p ˂ 0.01. 
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As gram-negative bacteria die under the antibiotic treatment, a large amount of LPS can be 

released into the blood. This could be highly detrimental as LPS can trigger release of 

inflammatory cytokines that drive the sepsis cascade. As such, many patients do not respond to 

antibiotics alone since they only target the microbes [7]. Mel-Zn exhibit exceptional LPS removal 

efficiencies (Figure 3.8). After 1h incubation with LPS (1 EU/mL) in PBS, Mel-ZnCV at 

concentrations of 10 mg/ml and 2 mg/ml removed 100% and 85.56±10.4% of LPS, respectively. 

Likewise, Mel-Zn0.1 and Mel-Zn0.05 at the higher concentration of 10 mg/ml achieved LPS removal 

of 95.83±8% and 78.55±7.4%, respectively, while at 2 mg/ml concentration, LPS removal was 

reduced to 57.35±8.9% and 44.99±11.3%, respectively. 

 

 

 

Figure 3.8: LPS removal efficiency after incubation of 10 and 2 mg/ml Mel and Mel-Zn with 1 

EU/ml LPS for 1h at 37 °C. X indicates zero percent. Data are presented as mean ± SD, n = 3.  
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The high selectivity of Mel-Zn toward LPS was not altered by the presence of other 

proteins such as bovine serum albumin (Figure 3.9a). After 1h incubation of 5 mg/ml Mel and 

Mel-Zn with 1 EU/ml LPS and 20 µg/ml BSA at 37 ℃, 93.99±2.2 %, 94.4±1.6 %, and 67.2±4.1 

% of LPS was removed by Mel-ZnCV, Mel-Zn0.1, and Mel-Zn0.05, respectively. Simultaneously, 

102.8 %, 98.48±3 %, and 100±1.3 % of the BSA was recovered from the model solution incubated 

with Mel-ZnCV, Mel-Zn0.1, and Mel-Zn0.05, respectively (Figure 3.9(b)).  It is notable that LPS or 

E. coli removal became more efficient as Zn2+ concentration increased, corroborating the 

hypothesis that binding is mediated through LPS and Zn2+ interaction.   

 

 

 

Figure 3.9: (a) High percentage of LPS removal and (b) BSA recovery by the Mel-Zn after 1h 

incubation of 5 mg/ml Mel and Mel-Zn with 1 EU/ml LPS and 20 µg/ml BSA at 37 °C in the same 

solution indicate the potential of the Mel-Zn to selectively bind with LPS in the presence of protein. 

X indicates zero percent. Data are presented as mean ± SD, n = 3. n.s.p > 0.05, *p < 0.05, and **p 

˂ 0.01. 

 

 



96 
 

3.3.3 Hemocompatibility 

Hemocompatibility is a basic requirement for biomaterials that interface human blood. 

Hemocompatibility of Mel-Zn was test by protein adsorption, blood coagulation and hemolysis. 

Protein adsorption on biomaterials can initiate the undesirable blood coagulation cascade, which 

can ultimately be fatal [35]. Protein adsorption on Mel-Zn was studied by incubating Mel-Zn in 

an aqueous solution of bovine serum albumin (BSA), the most prevalent protein in the human 

blood (~ 54 mg/ml). Minimal BSA adsorption on Mel-Zn was observed regardless of the amount 

of zinc loading when melanin was incubated in 1000 and 500 µg/mL BSA in PBS for 1 h (Figure 

3.10), which is consistent with the earlier reports on melanin-based biomaterials [36]. Low protein 

adsorption might be due to the hydrophilic groups in melanin such as carboxylic and hydroxyl 

groups and water molecules forming a hydration layer that prevents the protein adsorption.  

 

 

Figure 3.10: Blood compatibility is tested by BSA recovery after incubating melanins (5 mg/ml) 

within 1000 and 500 µg/ml BSA for 1h at 37 ℃. Data are presented as mean ± SD, n = 3. n.sp > 

0.05. 
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Blood coagulation on Mel-Zn was investigated by measuring thrombin-antithrombin III 

(TAT) complex levels in the blood after the incubation with Mel-Zn for 30 min at 37 °C. TAT 

complexes are rapidly formed through antithrombin III-mediated neutralization of thrombin, 

therefore can be used as a proxy for thrombin concentration [35]. No significant TAT complex 

formation was detected in all melanin groups compared to the negative control (p > 0.05) (Figure 

3.11). The TAT complex levels generated by Mel and Mel-Zn are well below the upper limit of 

4.1 ng/ml for a healthy human [37], indicating the exceptional hemocompatibility. This result is in 

accordance with plasma protein adsorption analysis that indicates no significant protein loss due 

to introduction to Mel and Mel-Zn. 

 

 

Figure 3.11: Blood coagulation is tested by measuring thrombin antithrombin (TAT) complex 

levels. TAT levels are shown in (c) after incubation of melanins in human blood for 30 min at 37 

°C, which indicates no significant coagulation. Dashed line shows normal upper limit of TAT 

complex for healthy humans [37]. Data are presented as mean ± SD, n = 3. n.s p > 0.05. 

    

  
 
  
 
 
  

  

 

 

 

 

 



98 
 

Excellent hemocompatibility of Mel-Zn was further confirmed by hemolysis tests. 

Hemolysis ratios were calculated after incubating 5 mg/ml of melanins with red blood cells (RBC, 

2 x 108 RBC/ml) for 1 h. As indicated in Figure 3.12 the hemolysis ratios for Mel, Mel-ZnCV, Mel-

Zn0.01, and Mel-Zn0.05 were 2.18%, 1.65% 1.83%, and 1.74%, respectively. Mel and Mel-Zn show 

lower hemolysis than the maximum limit permitted (5%) for biomaterials, according to ASTM 

F756-13 standards [35], [36]. This indicates that Mel-Zn can be used to remove LPS or pathogen 

from sepsis blood effectively with minimal nonspecific interaction with RBCs.  

 

 

 

Figure 3.12: Hemolysis ratios are measured and shown in (a) by incubating melanins (5 mg/ml) 

with human red blood cells (RBCs) at a concentration of 2x108 cell/ml for 30 min. No severe 

damage to RBCs by melanins was observed. Dashed line shows ASTM standard limit (5%) of 

hemolysis caused by biomaterials. PBS and double-distilled H2O were used as negative and 

positive controls, respectively. Digital images of RBC suspensions after incubation with melanin 

are shown in (b). X indicates zero percent hemolysis. Data are presented as mean ± SD, n = 3.  
n.s.p > 0.05. 
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3.4 Conclusion  

For the removal of bacteria and endotoxin from septic patients, antibody-modified surface 

has been widely used due to their high specificities for their binding targets. However, there have 

been inherent limitations regarding the poor separation speed, high production costs, and poor 

biocompatibilities/hemocompatibilities. This study demonstrated the utility of Zn2+-loaded 

melanin as an active agent to bind bacteria and endotoxin. Melanin, a naturally occurring 

biopigment is highly biocompatible and has many favorable features for the physiological systems. 

Melanin contains various chemical functional groups including pendant carboxylic acids, aromatic 

amines, and redox-active catechols. Electrochemical Zn2+ loading allowed the maximum loading 

density of Zn2+ into melanins compared to the solution method. XPS and Raman analysis 

corroborated that the loading of Zn2+ is largely associated with catechol groups. Zn2+-loaded 

melanin was found to remove approximately 90% of E. coli, and 100% of endotoxin when 

incubating in PBS buffer and whole blood for 1 h. Moreover, adsorption of protein from individual 

protein model solutions, as well as LPS-spiked protein solutions, was found to be minimal. In 

addition, while antibiotic therapies leave behind LPS as cellular debris, simultaneous binding to 

bacteria and LPS by Mel-Zn enhances the efficacy of antibiotics. Hemolysis and coagulation 

assays demonstrated the exceptional blood biocompatibility of Mel-Zn. Taken together, melanin 

would be a promising agent when implemented in an extracorporeal filtration to remove pathogens 

and endotoxins in acute sepsis patients. 
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CHAPTER 4 

Summary 

 

The work present in this dissertation demonstrate potential applications of biologically 

derived melanin in fighting bacterial infections, including severe and invasive bacteremia. 

Biomaterials, whether natural or synthetic, play an integral role in biomedical products and 

devices. Selecting and designing a well-performing biomaterial depends on its specific application 

and characteristics. Therefore, understanding the structural properties of biomaterials is of great 

importance. Design and modification of biomaterials facilitate their applications in drug delivery, 

medical devices, regenerative human tissues, and medical implants. Additionally, this will 

modulate the host–material interactions to prevent an undesirable host response. I have 

investigated the structural property of melanin from different sources and demonstrated that it has 

antibacterial and endotoxin bonding activity.  

In Chapter 2, I extracted melanin embedded in Equus ferus hair using acid hydrolysis 

(EquusMel). EquusMel is composed of homogeneous elliptical nanoparticle aggregates. When 

looking at the transmittance electron microscopy image of EquusMel, the outer surface of melanin 

granules is multilayered and has several spherical pores distributed across the surface which 

represents a mesoporous biomaterial. Strong correlation at q = 0.139 Å-1 from wide-angle (WAXS) 

and small-angle (SAXS) X-ray scattering presents the order structure of EqussMel with the d-

spacing of 45.2 Å. The pore size distribution of EquusMel determined by the Barrett–Joyner–

Halenda method exhibits the presence of the primary pores within the range of 30–50 Å. In 

addition, N2 adsorption–desorption isotherms indicate that EquusMel contains a Brunaur–
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Emmett–Teller (BET) surface area of 3 m2 /g. The UV-Vis absorption spectrum of EquusMel 

shows a featureless, monotonically decreasing curve with increasing wavelength, which is in line 

with typical melanin characteristics. Fourier transform infrared spectroscopy (FTIR) spectra show 

strong, broad band at approximately 3800–2800 cm-1 that has been assigned to stretching vibration 

of O‒H and N‒H groups, which are components of carboxylic acid and phenolic OH, and indole 

amines, respectively. Two distinct peaks observed between 2950-2850 cm-1 belongs to stretching 

vibration of aliphatic C‒H in EquusMel. The third strong absorption band, found in the 1720 cm-

1 zone, corresponds to stretching vibration of aromatic C=O group in carboxylic acid. Two bands 

at lower wavenumbers are observed at 1650 and 1260 cm-1. These features are assigned to 

conjugated C=C stretching vibration and C‒N stretching vibration in indole. The Raman spectra 

is deconvoluted in 5 peaks using a Voigt function. The peak positioned at 1590 cm-1 (ɛ) is 

corresponding to vibration of aromatic C=C in indole structure. The peak centered at 1510 cm-1 

(δ) has been assigned to stretching vibration of C=N in semiquinone and bending vibration of N‒

H. The bands recorded at 1418 cm-1 (γ) and 1341 cm-1 (β) are associated with pyrrole ring 

stretching and vibration of aromatic C‒N in indole, respectively. The smallest wavenumber 1220 

cm-1 (α) is attributed to C‒O stretching in carboxylic acid and C‒OH. X-ray photoelectron 

spectroscopy (XPS) survey peak and elemental analysis of EquusMel and synthetic melanin 

(SynMel) indicate that EquusMel contains more carbon and less oxygen and nitrogen elements 

compared to SynMel. Each high-resolution C1s and O1s peaks is deconvolved into two peaks at 

binding energies of 284.8, 287.22, 532.39, 533.82, and 531.12 eV, which were associated with the 

chemical signature of C‒C/C=C, C‒N/C‒O, C‒OH, COOH, and C‒O, respectively. About, 13.3% 

and 19.9% of the Subunits of EquusMel and SynMel contain catechol groups. 
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The antibacterial activity of EquusMel and SynMel against Escherichia coli and 

Staphylococcus aureus was quantitatively evaluated using a colony count method after exposure 

to varying concentrations of melanin for 4 h. The number of colony forming units (CFU) dropped 

dramatically at almost every concentration for both melanin types and bacteria species. Apart from 

2.5 mg/ml EquusMel, all concentrations of both melanin types had significant decreases in 

bacterial growth for both E. coli and S. aureus. The antibacterial effect of SynMel against E. coli 

and S. aureus was stronger than EquusMel at the lower melanin concentrations of 2.5 mg/ml and 

5 mg/ml after 4 h of exposure. 150 mg/ml of SynMel and EquusMel were tested against E. coli 

and S. aureus at 1, 2, 4, and 24 h. A complete reduction in bacterial growth was observed after 2 

h incubation with SynMel and 4 h incubation with EquusMel.  I measured the H2O2 content of 

SynMel and EquusMel solutions at different concentrations of 2.5, 5, 20 and 150 mg/ml at 4 h. 

Measurable levels of H2O2 were detected in all the samples, indicating the potential of EquusMel 

and SynMel to generate reactive oxygen species and eventually damage bacterial cells. The 

amounts of H2O2 produced from SynMel are 1.5 times higher than EquusMel, which is in close 

agreement with findings of the chemical signatures of redox-active groups in EquusMel. 

In Chapter 3, I loaded Zinc cations (Zn2+) in melanin either in aqueous electrolyte in a half-

cell or incubated them in zinc solution (0.1 and 0.05 M). XPS survey peak demonstrates noticeable 

Zn peaks for Mel-Zncv, Mel-Zn0.1, and Mel-Zn0.5. A quantitative comparison utilizing the weight 

percent ratio of Zn to C peak areas shows an absence of Zn in Mel samples, while positive values 

were calculated for Mel-Zn samples, indicating the successful loading of zinc on melanin. High-

resolution Zn 2p peaks, further confirm the zinc coupling on melanin structure. Raman spectra of 

Mel and Mel-Zn were deconvolved into five peaks (α-ε) that are assigned to the known prominent 

functional groups in melanin substituents.  Significant peak shifts are observed in Mel-Zn 
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compared to Mel. The presence of Zn2+ influences the vibrational modes in melanin 

protomolecules relative to the complementary Mel. The largest peak shift is observed in α, which 

suggests the mesoscale reconfiguration of melanin after zinc loading. 

 An infection model of sepsis in whole blood and PBS was established using gram-negative 

E. coli at a concentration of 5 ×105 CFU/ml. Mel-ZnCV attained the highest efficiency of E. coli 

removal in both PBS and blood sepsis model. Furthermore, E. coli removal percentage from the 

more complex composition of whole blood is approximately the same as PBS, supporting the 

rationale of using Mel-Zn for infected bloodstream purification. Mel-Zn removes 

lipopolysaccharide (LPS) equally as well as living E. coli as indicated by percentage of LPS 

removal after incubating 10 and 2 mg/ml Mel and Mel-Zn with 1 EU/ml LPS for 1 h at 37 ℃.  

Much as I observed in the pathogen removal studies, Mel-ZnCV removed 100% and 85.56% of LPS 

at 10 mg/ml and 2 mg/ml, respectively. Likewise, Mel-Zn0.1 and Mel-Zn0.05 achieved LPS removal 

of 95.83% and 78.55% at 10 mg/ml, while at 2 mg/ml concentration, LPS removal reduced to 

57.35% and 44.99%, respectively. It is notable that LPS or E. coli removal percentages increased 

with increasing the Zn2+ concentration, corroborating the rational in bonding between LPS and 

Zn2+.  

I used bovine serum albumin (BSA) to simulate human plasma protein. More than 94% 

BSA recovery at concentrations of 1000 and 500 µg/mL after 1 h contact with Mel and Mel-Zn 

suggests high blood compatibility. Mel-Zn showed high selectivity toward LPS in the presence of 

protein. After 1h incubation of 5 mg/ml Mel and Mel-Zn with 1 EU/ml LPS and 20 µg/ml BSA at 

37 ℃, 93.99%, 94.4% and 67.2% of LPS was removed by Mel-ZnCV, Mel-Zn0.1 and Mel-Zn0.05, 

respectively. Simultaneously, 100%, 98.48% and 100% of the BSA was recovered from the model 

solution incubated with Mel-ZnCV, Mel-Zn0.1 and Mel-Zn0.05, respectively. I determined 
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coagulation activation by measuring Thrombin-antithrombin complex (TAT) levels in the blood. 

Compared to the negative control, no significant TAT complex formation was detected (p > 0.05) 

after incubation of human blood with Mel and Mel-Zn for 30 minutes at 37 ℃, which suggests no 

coagulation cascade activation. The hemolysis ratios caused by Mel, Mel-ZnCV, Mel-Zn0.01 and 

Mel-Zn0.05 were 2.18%, 1.65% 1.83% and 1.74%, respectively. Mel and Mel-Zn showed no 

significant differences in the hemolysis ratios (p > 0.05). These results demonstrate that Mel-Zn 

can be used to remove LPS or pathogen from sepsis blood with minimal nonspecific interaction 

with red blood cells.  

 

4.1 Future work 

Facile extraction of EquusMel and its unique antibacterial property makes this biomolecule 

an ideal candidate to be used as a coating in biomedical devices to prevent biofilm formation and 

bacteria colonization. Also, it has potential to be used as a therapeutic against bacterial infection 

in skin or soft-tissue wounds. Beyond the medical field, EquusMel can be used in many other areas 

where biofilm-prevention and bacteria mitigation are important, such as wastewater filtration. 

Further studies into molecular level modification of melanin surfaces such as exfoliation may 

extend the redox functionalities and improve antibacterial activity.  

Mel-Zn could be adapted for clinical use in an extracorporeal membrane to remove bacteria 

and LPS in acute sepsis patients. This could provide much needed additional time to identify both 

the nidus of infection and the invading pathogen and to initiate appropriate antibiotic therapy. 

Polymers such as polyvinylidene fluoride (PVDF), polyethersulfone (PES), polyvinylpyrrolidone 

(PVP), and polyvinyl alcohol (PVA) are commonly used for fabricating membranes via techniques 
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such as phase inversion, electrospinning, and dry-jet wet-spinning. Melanin can be incorporated 

in the membrane structure during the fabrication process to take advantages of its LPS bonding 

during blood filtration (Figure 4.1). It should be mentioned that Mel-Zn could be used for other 

applications, including removing bacterial contaminants from water or LPS from pharmaceutical 

products.  

 

Figure 4.1: Porous structure of a melanin-based PES-PVP membrane prepared by phase inversion 

method. The cross section of the membrane is composed of a typical asymmetric porous structure 

with a skin layer and a parallel finger-like sublayer. 

 

In this dissertation, I show that Mel-Zn can be used for separation of LPS from septic blood. 

This provides a foundation for the future studies. Since time is a critical component of LPS 

removal, rapid binding formation (less than 1 hour) between the Mel-Zn and LPS is important and 

should be studied in the future. Here I show more than 94% BSA recovery at concentrations of 

1000, 500, and 20 µg/mL after being in contact with 5 mg/ml Mel and Mel-Zn. In the future, this 

experiment should be repeated with higher concentrations of protein to model the composition of 

human blood. 
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