
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 2022

Efficient Data-Driven Robust Policies for Reinforcement Learning Efficient Data-Driven Robust Policies for Reinforcement Learning

Bahram Behzadian
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation Recommended Citation
Behzadian, Bahram, "Efficient Data-Driven Robust Policies for Reinforcement Learning" (2022). Doctoral
Dissertations. 2661.
https://scholars.unh.edu/dissertation/2661

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New
Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/dissertation
https://scholars.unh.edu/student
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2661?utm_source=scholars.unh.edu%2Fdissertation%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

Efficient Data-Driven Robust Policies

for Reinforcement Learning

BY

Bahram Behzadian

M.Sc. in Computer Science, University of New Hampshire
NH, USA 2019

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science

May, 2022

All Rights Reserved

©2022

Bahram Behzadian

ii

This dissertation has been examined and approved in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science by:

Marek Petrik, Doctoral Advisor
Assistant Professor of Computer Science,
University of New Hampshire

Mohammad Ghavamzadeh
Senior Staff Research Scientist,
Google Research

Wheeler Ruml
Professor of Computer Science,
University of New Hampshire

Clint Chin Pang Ho
Assistant Professor of Data Science,
City University of Hong Kong

Laura Dietz
Assistant Professor of Computer Science,
University of New Hampshire

On May 12, 2022

Approval signatures are on file with the University of New Hampshire Graduate School.

iii

To my family and friends

iv

ACKNOWLEDGEMENTS

I am thankful to my advisor, Marek Petrik, for coaching and supporting me throughout this

work. His wisdom and deep understanding of mathematics have driven me on this voyage.

His advice was essential in shaping and refining many of the ideas described in this thesis.

The members of my dissertation committee played a critical role in guiding this disserta-

tion’s topic. I want to thank Clint Chin Pang Ho for our discussions that led me to deepen

my understanding of Robust MDPs. Also, I am grateful to have Mohammad Ghavamzadeh

on my committee. He carefully reviewed my work and asked critical questions. I appreciate

the detailed comments and encouragement that Wheeler Ruml and Laura Dietz provided on

my research and thesis drafts.

This work was also supported by generous funding from National Science Foundation.

Conversations with my lab-mate, Reazul Hasan Russel, made the long hours in the lab much

more pleasant. Finally, I want to thank my family. They were supportive throughout the

long years of my education.

v

Contents

DEDICATION iv

ACKNOWLEDGEMENTS v

List of Tables ix

List of Figures x

ABSTRACT xi

1 Introduction 1

1.1 Contributions . 4

1.1.1 Optimizing Percentile Criterion using Robust MDPs 5

1.1.2 Fast Algorithms for L∞-Constrained S-Rectangular Robust MDPs . . 5

1.1.3 Fast Feature Selection for Linear Value Function Approximation . . . 6

1.2 Outline . 6

2 Background and Formulations 8

2.1 Markov Decision Process . 9

2.2 Robust MDPs . 9

2.3 Percentile Criterion . 12

2.4 Linear Value Function Approximation . 13

3 Optimizing Percentile Criterion Using Robust MDPs 15

vi

3.1 RMDPs for Percentile Optimization . 17

3.1.1 Percentile Criterion Approximation Using Robust MDPs 17

3.2 Minimizing Ambiguity Spans . 22

3.3 Minimizing Ambiguity Budgets . 25

3.4 Empirical Evaluation . 26

4 Weighted Frequentist Confidence Intervals for Robust MDPs 29

4.1 Frequentist Guarantees . 29

4.2 Detailed Experimental Results For Weighted Ambiguity Sets 33

4.2.1 Experimental Setup . 33

4.2.2 Full Empirical Results . 33

5 Fast Algorithms for L∞-constrained S-rectangular Robust MDPs 36

5.1 Computing SA-Rectangular Bellman Operator in Linear Time 38

5.1.1 Properties of Nature Response Function q 39

5.1.2 Homotopy Algorithm . 41

5.2 Computing S-Rectangular Bellman Operator in Linear Time 46

5.3 Numerical Results . 47

6 Low-rank Feature Selection for Linear Value Function 51

6.1 Bellman Error Analysis . 53

6.2 FFS: A Fast Low-Rank Approximation for Feature Selection 54

6.2.1 Using Raw Features . 56

6.3 Related Feature Selection Methods . 58

6.4 Empirical Evaluation . 61

6.4.1 Synthetic Problems . 61

6.4.2 Cart-Pole . 63

7 Conclusion 70

vii

Bibliography 73

A Technical Results and Proofs 79

A.1 Optimizing Percentile Criterion Using Robust MDPs 79

A.1.1 Proofs of Results in Section 3.1 . 79

A.1.2 Proof of Results in Section 3.2 . 82

A.1.3 Proof of Results in Section 3.3 . 86

A.2 Weighted Frequentist Confidence Intervals for Robust MDPs 86

A.2.1 Proof of Results in Section 4.1 . 86

A.2.2 Bernstein Concentration Inequalities 88

A.3 Fast Algorithms for L∞-constrained S-rectangular Robust MDPs 90

A.3.1 Proofs of Results in Section 5.1 . 90

A.3.2 Detailed Homotopy Algorithm . 99

A.3.3 Proofs of Results in Section 5.2 . 99

A.3.4 Detailed Description of Domains . 103

A.3.5 Fast Algorithm for Nature Response with Fixed ξ 104

A.4 Fast Feature Selection for Reinforcement Learning 108

A.4.1 Proof of Theorem 6.2.1 . 108

A.4.2 Proof of Theorem 6.2.2 . 108

viii

List of Tables

3.1 Normalized Bayesian performance loss (ρ̄− ρ̂)/|ρ̄| for δ = 0.05. (Smaller value

is better). 27

4.1 Normalized frequentist performance loss (ρ̄ − ρ̂)/|ρ̄| for δ = 0.05. (Smaller

value is better). 33

4.2 The return with performance guarantees for the RiverSwim experiment. The

return of the nominal MDP is 63080. 34

4.3 The return with performance guarantees for the Machine Replacement exper-

iment. The return of the nominal MDP is -16.79. 34

4.4 The return with performance guarantees for the Population experiment. The

return of the nominal MDP is -4127. 34

4.5 The return with performance guarantees for the Inventory Management ex-

periment. The return of the nominal MDP is 163.1. 35

4.6 The return with performance guarantees for the Cart-Pole experiment. The

return of the nominal MDP is 11.11. 35

5.1 Composition of B for i ∈ S. 40

5.2 Possible types of basis change at a breakpoint ξt+1 described in Lemma 5.1.7. 44

5.3 Time (ms) to compute L for S- and SA-rectangular RMDPs with L∞ sets. . 49

5.4 Time (ms) to compute L for S- and SA-rectangular RMDPs with L1 sets [31]. 49

ix

List of Figures

1.1 A simple illustration of decision-making under uncertainty. 3

3.1 Posterior samples of p̃pp (blue) and ambiguity sets Pstd (green) and Popt (red)

from Example 3.1.4. 21

3.2 RiverSwim problem with six states and two actions (left-dashed arrow, right-

solid arrow). The agent starts in either states s1 or s2. 28

5.1 Function q(ξ) in Example 5.1.1. 40

5.2 Probabilities ppp?(ξ) in Example 5.1.1. 40

5.3 An illustration of Algorithm 4. 43

5.4 Relative computation time (unitless) of our algorithms and an LP solver over

nominal MDP in SA-rectangular (left) and S-rectangular (right) inventory

management RMDP. 48

6.1 Bellman error for the exact solution. The transition matrix is 100× 100 and

has a low rank with rank(P) = 40. The Input matrix is A = I an identity

matrix. 67

6.2 Bellman error for the approximate solution. The transition matrix is 100×100

and has a low rank with rank(P) = 40. The Input matrix is A = random

binary matrix. 67

6.3 The average number of balancing steps with k = 50. 68

6.4 Mean running time for estimating the Q-function with k = 50. 68

6.5 Value function in jet color-map. 69

x

ABSTRACT

Efficient Data-Driven Robust Policies

for Reinforcement Learning

by

Bahram Behzadian

University of New Hampshire, May, 2022

Applying the reinforcement learning methodology to domains that involve risky decisions

like medicine or robotics requires high confidence in the performance of a policy before its

deployment. Markov Decision Processes (MDPs) have served as a well-established model

in reinforcement learning (RL). An MDP model assumes that the exact transitional prob-

abilities and rewards are available. However, in most cases, these parameters are unknown

and are typically estimated from data, which are inherently prone to errors. Consequently,

due to such statistical errors, the resulting computed policy’s actual performance is often

different from the designer’s expectation. In this context, practitioners can either be negli-

gent and ignore parameter uncertainty during decision-making or be pessimistic by planning

to be protected against the worst-case scenario. This dissertation focuses on a moderate

mindset that strikes a balance between the two contradicting points of view. This objective

is also known as the percentile criterion and can be modeled as risk-aversion to epistemic

uncertainty. We propose several RL algorithms that efficiently compute reliable policies with

limited data that notably improve the policies’ performance and alleviate the computational

xi

complexity compared to standard risk-averse RL algorithms. Furthermore, we present a fast

and robust feature selection method for linear value function approximation, a standard ap-

proach to solving reinforcement learning problems with large state spaces. Our experiments

show that our technique is faster and more stable than alternative methods.

xii

CHAPTER 1

Introduction

Reinforcement Learning (RL) involves an automated planning problem under uncertainty.

RL’s goal is to design AI that can plan for environments where there may be incomplete or

incorrect information. In such environments, the actions or decisions may not always have

the same results, and there may be trade-offs between possible outcomes. RL is applied

in industrial applications, primarily manufacturing, inventory management, power systems,

finance, and invasive species management. This work focuses on a specific type of RL in which

the solution policies are risk-averse and robust concerning uncertain problem parameters.

The goal is to obtain policies that mitigate risk-averse and robust algorithms’ conservative

performance with a guaranteed expected return.

An agent in RL gathers information about its environment and then learns from the

collected data by repeatedly replaying its experiences. In the beginning, the agent knows

nothing but the rules, similar to a simulation of a chess game. The agent interacts with

its environment in discrete time steps. The agent chooses an available action in each step

and sends it to the environment. The environment moves to a new state, and the agent

receives a reward associated with its action. The objective is to collect as much reward as

possible. The initial strategy is to collect rewards through trial and error. Afterward, the

agent investigates the gathered information to recognize particular features or policies to act

more intelligently.

Conventional RL methods focus on maximizing some notion of cumulative reward [75].

Such approaches are considered risk-neutral decision-making. However, some decision-makers

1

are willing to give up some rewards to protect against significant losses or catastrophic out-

comes. Such unwanted outcomes are mostly correlated with errors in estimating parameters

involved in the decision-making process. Moreover, the use of simulations as environmental

models in RL is widespread. However, the simulation and the actual environment difference

can lead to unpredictable, often unwanted results. The agent strategy is sensitive to the pa-

rameters that describe the environment. In many practical problems, the estimation of these

parameters is far from accurate. Hence, estimation errors are limiting factors in applying

RL to real-world problems.

Risk-neutral methods are often too risky in mission-critical problems [56, 65, 81]. Re-

inforcement learning is applied to investigate medical treatment decisions, such as HIV,

diabetes, and liver transplants [1, 71]. However, RL solutions are prone to risky treatment

due to the unpredictable nature of point estimation techniques used to estimate the model

parameters. A vital component of every RL model is how to describe stochastic changes in

the system over time. The underlying model’s parameters profoundly influence the decisions.

One strong assumption in standard approaches is that the model is known with certainty.

However, models are generated from population-based observational data for medical treat-

ment decisions. Due to patient diversity, these observations cannot account for the natural

variation in the estimated parameters, such as the probability of allergic reaction. Conse-

quently, it is crucial to promote optimization models, such as risk-averse RL, that can also

consider this variation.

For example, medical treatment decisions have to consider the pros and cons of each

available medicine. The uncertainties in the medication’s outcomes and numerous treatment

options challenge the decision-making problem. Physicians often make these decisions ac-

cording to the results of unpredictable trials and observations. Nevertheless, it is unclear

how to control medications’ effects and avoid the threat of disease-related problems such

as death. Figure 1.1 shows a simple illustration of decision-making under uncertainty for

one single step. The decision-maker has two options for treatment. The first option will

2

100%

95%

5%?

Drug #1

Drug #2

Figure 1.1: A simple illustration of decision-making under uncertainty.

significantly improve the patient’s health level with a probability of 95%; however, there is

a 5% chance that the patient will die due to an allergic reaction. The second option will not

significantly improve, but it will guarantee that death will not happen. A risk-neutral agent

chooses option one since, on average, the patients will be at a higher health level than the

second option.

Markov decision processes (MDPs) are a helpful framework for modeling sequential

decision-making under uncertainty within dynamic environments [67]. An MDP framework

models the environment with specific parameters such as transition probabilities and re-

wards. We will discuss these parameters in detail in the following chapter. The environment

models typically are estimated from data or learned from experience, which produces some

estimation error. There is a spectrum of solutions to an MDP, from negligent to pessimistic.

Negligent methods ignore parameter uncertainty during decision-making; conversely, pes-

simistic algorithms compute policies protected against worst-case scenarios.

Most of the progress in solving MDPs with parameter uncertainty is focused on studying

robust MDPs [34, 57]. We assume that the model’s parameters are unknown in a robust

MDP setting, but they exist in a predefined region–so-called ambiguity sets. Ambiguity sets

represent plausible errors in the model’s parameters. For example, the ambiguity set for

3

the probability of allergic reaction in figure 1.1 can be defined as a range from 2% to 10%.

In order to choose a robust policy, we must consider the worst-case scenario. Given the

ambiguity set, a robust solution is computed under the worst-case outcome of a decision.

However, unfortunately, the robust policies obtain in this way are often overly conservative

and too pessimistic. In the last decades, there has been a rising interest in efficient risk-averse

(a.k.a, risk-sensitive) decision-making systems. The biggest challenge in such approaches is

making models that can identify risk accurately.

1.1 Contributions

This dissertation focuses on efficiently computing data-driven policies for reinforcement learn-

ing that maximize guaranteed returns and take parametric uncertainties into account in

decision-making. Practitioners can either be negligent and ignore parameter uncertainty

during decision-making or be pessimistic by planning to be protected from a worst-case

scenario. In this work, the idea is to find a moderate mindset that balances the two con-

tradicting points of view. This objective is also known as the percentile criterion [12] and

can be modeled as risk-aversion to epistemic uncertainty. Optimizing the percentile crite-

rion is a highly intractable problem. However, the contributions in this dissertation help

optimize this criterion approximately by adopting the Robust MDPs (RMDPs) framework.

RMDPs mitigate MDPs’ sensitivity to estimation errors by computing an optimal policy for

the worst plausible realization of the transition probabilities. This set of possible transition

probabilities is known as the ambiguity set. The ambiguity set determines the quality and

robustness of an RMDP solution while considering an underlying rectangularity assumption.

The critical question is how to construct the ambiguity sets from state transition samples to

optimize the percentile criterion.

4

1.1.1 Optimizing Percentile Criterion using Robust MDPs

Existing techniques construct ambiguity sets as confidence regions by applying concentra-

tion inequalities resulting in overly conservative solutions. We proposed a new approach for

optimizing the percentile criterion using RMDPs beyond conventional ambiguity sets. First,

we determined error bounds on the performance loss of the RMDP policy concerning the

optimal percentile solution. These bounds show that the RMDP solution’s sub-optimality

depends on the absolute size of the ambiguity set and, most notably, its span along a specific

direction. Then, we considered asymmetric ambiguity sets defined in weighted L1 and L∞

balls and proposed a linear-time algorithm that minimizes their size and span simultane-

ously. In addition, we derived new sampling guarantees to facilitate the algorithm for both

Bayesian and frequentist settings. Experimental results indicate that the suggested opti-

mized ambiguity sets improve significantly compared to prior construction methods. The

work has been published in the 24th International Conference on Artificial Intelligence and

Statistics [6].

1.1.2 Fast Algorithms for L∞-Constrained S-Rectangular Robust MDPs

In this work, we addressed the problem of the high computational complexity of comput-

ing robust policies. RMDPs with S-rectangular ambiguity sets can be solved in polynomial

time. However, calculating the worst-case realization of transition probabilities often requires

solving a linear program (LP) or another convex optimization problem. Modern solvers are

efficient, but as the problem size grows, solving an LP for every state becomes computa-

tionally prohibitive. Although recent results show that RMDPs with L1 sets can be solved

efficiently, RMDPs with S-rectangular ambiguity sets defined in the L∞ ball can currently

be computed only by using general-purpose LP solvers, which are tedious and slow. We

proposed a fast, exact algorithm for solving RMDPs with L∞-constrained ambiguity sets.

This approach combines a novel homotopy continuation method with a bisection method to

solve RMDPs in quasi-linear time, which compares favorably with the cubic time complex-

5

ity of general interior-point LP algorithms. The experimental results confirm the practical

viability of this approach and show that it outperforms a leading commercial optimization

package by several orders of magnitude. This work has recently been published in the 35th

Conference on Neural Information Processing Systems. [5].

1.1.3 Fast Feature Selection for Linear Value Function Approximation

Linear value function approximation is one of the standard approaches to solving reinforce-

ment learning problems with large state spaces. However, since designing good approxima-

tion features is difficult, automatic feature selection is still an important and ongoing research

topic. Aligned with previous contributions to compute robust solutions for RL agents, we

proposed a new feature selection method based on a low-rank factorization of the transition

matrix. This approach derives features directly from high-dimensional raw inputs, such as

image data. The technique is easy to implement using SVD, and the experiments show

that it is faster and more stable than alternative methods. This work appeared in the 29th

International Conference on Automated Planning and Scheduling [4].

Note that we focus on offline (batch) reinforcement learning [41] in this dissertation. In

batch RL, all domain samples are provided in advance as a batch, and it is impossible or

difficult to gather additional samples. This is common in many practical domains. For

example, it is usually too dangerous and expensive to run additional tests in medical ap-

plications. Another example is that it may take an entire growing season to obtain a new

batch of samples for ecological applications.

1.2 Outline

The dissertation is arranged as follows: Chapter 2 provides the mathematical foundation of

robust MDPs and percentile criterion that is required to understand the work presented in

the following chapters. Chapter 3 represents the detailed theories of weighted norm-bounded

ambiguity sets in the Bayesian setting. Chapter 4 extends the theories and concepts that

6

are developed in Chapter 3 into the frequentist setting. In Chapter 5, we present RMDPs

with S-rectangular ambiguity sets, which can be solved in polynomial time. In Chapter 6,

we present a fast feature selection algorithm for reinforcement learning, which can effectively

reduce the number of features in batch RL. We conclude this dissertation in Chapter 7 and

provide the detailed technical results and formal proofs in Appendix A.

7

CHAPTER 2

Background and Formulations

Standard Markov Decision Processes (MDPs) are suitable models for sequential decision-

making in which the decision’s outcomes are uncertain. An MDP model contains decision

time-stamps, states, actions, rewards, and transition probabilities. Any action at each state

results in a reward and determines the state at the next time-stamp with respect to the tran-

sition probability function. Policies are instructions for which action to choose under any

circumstances. A rational decision-maker seeks policies that are optimal in some predefined

measures [8, 67]. Although the standard MDP frameworks consider uncertainty in every

decision outcome using the transition probability function, we might treat uncertainty at a

higher level. Generally, the transition probabilities need to be estimated from data. Such

estimations are prone to errors and could considerably influence the optimal policy [51].

In this work, we are interested in Robust MDPs (RMDP) and risk-averse MDPs that are

a conservative extension of the general MDPs. The following sections describe the general

MDP components and expand the formulation to the RMDP and Chance-constrained MDPs.

Notation : We reserve lower case bold characters for vectors and upper case characters

for matrices. For example, bold letters, like xxxs, indicate an s-th vector, while ys would

indicate the s-th element of a vector yyy. The symbol ∆x denotes the probability simplex in

Rx
+ (non-negative vectors that sum to 1). We also use AB to denote the set of all functions

A → B. Finally, we use I, 1, 0 to denote an identity matrix, a vector of ones, and a vector

of zeros, respectively.

8

2.1 Markov Decision Process

We consider the standard infinite-horizon MDP setting with finite states S = {1, . . . , S} and

actions A = {1, . . . , A}. The agent can take any action a ∈ A in every state s ∈ S and

transitions to the next state s′ according to the true transition function P ? : S × A → ∆S,

where ∆S is a probability simplex. For any transition function P : S ×A → ∆S, we use the

shorthand ppps,a = P (s, a) to denote the vector of transition probabilities from a state s ∈ S

and an action a ∈ A. The agent also receives a reward rs,a,s′ ∈ R; we use rrrs,a = (rs,a,s′)s′∈S ∈

RS to denote the vector of rewards. The goal is to compute a deterministic policy π : S → A

that maximizes the γ-discounted return [67]:

max
π∈Π

ρ(π, P) = max
π∈Π

E

[
∞∑
t=0

γt · rSt,π(St),St+1

]
,

where S0 ∼ ppp0, St+1 ∼ P ?(St, π(St)), ppp0 ∈ ∆S is the initial state probability distribution,

and Π is the set of all deterministic policies. The return function ρ is parameterized by P ,

because we assume them to be uncertain or unknown.

We consider the batch RL setting in which the transition function must be estimated

from a fixed dataset D = (st, at, s
′
t)t=1,...,T generated by a behavior policy. We describe the

Bayesian setup first and outline the frequentist extension in Section 4.1. Bayesian techniques

start with a prior distribution over the transition function P ? and then derive a posterior

distribution f over P ? [12, 18, 83]. We use the concise notation P̃ = P ? |D to represent the

posterior over the transition function conditioned on the data D. In other words, E[P̃] =

E[P ? |D].

2.2 Robust MDPs

This section surveys the basic properties of RMDPs; please see [31, 34, 81] for example for

more details. We consider a finite RMDP model with states S = {1, . . . , S} and actions

9

A = {1, . . . , A}. The agent takes an action a ∈ A in state s ∈ S, it receives a reward

rs,a ∈ R and transitions to the next state s′ ∈ S with a probability of Ps,a,s′ . The transition

probabilities P are unknown but are restricted to be in an ambiguity set P ⊆ (∆S)S×A. The

initial state is distributed according to ppp0 ∈ ∆S.

We aim to compute a policy π : S → ∆A from the set of stationary randomized policies Π

that maximizes the expected γ-discounted return ρ : Π×P → R for the worst-case transition

probabilities:

max
π∈Π

min
P∈P

ρ(π, P) . (2.1)

Here, ρ(π, P) is the standard discounted infinite-horizon return for a policy π defined as

ρ(π, P) = E

[
∞∑
t=0

γt · r(St, At) | At ∼ π(St), St+1 ∼ PSt,At , S0 ∼ ppp0

]
.

The optimization problem in (2.1) can be seen as a zero-sum game, where adversarial

nature chooses transition probabilities from the ambiguity set in order to minimize the agent’s

return. Since solving the general optimization problem in (2.1) is NP-hard (e.g., [81]), most

research has focused on RMDPs with S-rectangular and SA-rectangular ambiguity sets,

which can be solved in polynomial time [34, 44, 81].

SA-rectangular ambiguity sets P are defined as Cartesian products of sets Ps,a ⊆ ∆S for

each state s and action a as P =
{
P ∈ (∆S)S×A | ppps,a ∈ Ps,a, s ∈ S, a ∈ A

}
. The intuitive

interpretation of SA-rectangularity is that nature can choose the worst transition probabili-

ties from sets Ps,a for each state s and action a independently. We focus on ambiguity sets

bounded by L∞-norm distance from nominal transition probabilities p̄pps,a ∈ ∆S defined as

Ps,a =
{
ppps,a ∈ ∆S |

∥∥p̄pps,a − ppps,a∥∥∞ ≤ κs,a
}
, (2.2)

where κs,a ≥ 0 is the robustness budget, and the nominal transition probability p̄pps,a is

typically estimated from samples of state transitions.

10

To streamline the definition of the robust Bellman operator, we follow the notation of

[30] and define a nature response function q : R+×RS → R that represents nature’s response

for a particular state s and action a as

qs,a(ξ,vvv) = min
ppp∈∆S

{
rs,a + γ · pppTvvv |

∥∥p̄pps,a − ppp∥∥∞ ≤ ξ
}
. (2.3)

Then, the SA-rectangular robust Bellman operator L : RS → RS for a value function vvv ∈ RS

is

(Lvvv)s = max
a∈A

min
ξ≤κs,a

qs,a(ξ,vvv) . (2.4)

The optimal value function vvv? ∈ RS must satisfy the robust Bellman optimality equation vvv? =

Lvvv? and can be computed either using value iteration, policy iteration, or other methods [24,

31, 34, 37].

S-rectangular ambiguity sets relax the assumptions of SA-rectangular sets and compute

less conservative policies but with a higher computational complexity [81]. They are defined

as Cartesian products of sets Ps ⊆ (∆S)A for each state s as:

P =
{
P ∈ (∆S)S×A | (ppps,a)a ∈ Ps, ∀s ∈ S

}
.

As with SA-rectangular sets, we also consider marginal ambiguity sets Ps defined in terms

of the L∞ norm as

Ps =

{
(ppps,a)a∈A ∈ (∆S)A |

∑
a∈A

∥∥p̄pps,a − ppps,a∥∥∞ ≤ κs

}
,

where κs ≥ 0 is the robustness budget, and p̄pps,a is the nominal transition probability. The

important distinction from the SA-rectangular setting is that κs depends only on the state

and not the action. The S-rectangular Bellman operator is then defined as:

(Lvvv)s = max
ddd∈∆A

min
ξ≤κs

∑
a∈A

da · qs,a(ξ,vvv) . (2.5)

11

Notice that the S-rectangular Bellman operator allows for randomizing actions through the

probability distribution ddd, improving robustness but introducing additional significant com-

putational complexity [31, 81].

The majority of RMDP methods employ value iteration and policy iteration principles

and require computing the robust Bellman operator many times during their run [31, 34, 81].

Therefore, it is crucial to compute it more efficiently than polynomial algorithms. In the

following chapters, we develop new quasi-linear time algorithms for computing the robust

Bellman operator.

2.3 Percentile Criterion

The Bayesian percentile criterion optimization simultaneously optimizes for the policy π and

a high-confidence lower bound on its performance y:

max
π∈Π

max
y∈R

{
y |PP̃∼f

[
ρ(π, P̃) ≥ y

]
≥ 1− δ

}
, (2.6)

where f is the probability density function of the random variable P̃ . The confidence param-

eter δ ∈ [0, 1/2) bounds the probability that the optimized policy π fails to achieve a return of

at least y when deployed. For example, δ = 0 maximizes the worst-case return, and δ = 0.5

maximizes the median return. It is common in practice to choose a small positive value, such

as δ = 0.05, in order to achieve meaningful guarantees without being overly conservative.

Also, the constraint δ < 1/2 is important as our results (Theorem 3.1.3) do not hold for the

risk-seeking setting with δ ≥ 1/2.

There are several important practical advantages to optimizing the percentile criterion

instead of the average return [12]. First, the output policy is more robust and less likely

to fail catastrophically due to model errors. Second, the objective value y in (2.6) provides

a high-confidence lower bound on the true return. Having such a guarantee on its return

helps avoid an unpleasant surprise when the policy π is deployed. When the confidence over

12

the lower bound y is insufficiently low, the stakeholder may decide to collect more data or

choose a different methodology for guiding their decisions.

We emphasize that we develop algorithms independent of how the posterior distribution

f is computed. Bayesian priors can be as simple as independent Dirichlet distributions over

ppp?s,a for each state s and action a. However, hierarchical Bayesian models are more practical

since they generalize among states even when |D| � S [12, 63]. Many tools, such as Stan [19]

or JAGS, now exist to conveniently and efficiently compute the posterior distribution f using

MCMC.

2.4 Linear Value Function Approximation

In this section, we summarize the background on linear value function approximation and

feature construction. We consider a reinforcement learning problem formulated as a Markov

decision process (MDP) with states S, actions A, transition probabilities P : S × A× S →

[0, 1], and rewards r : S × A → R [67]. The value of P (s, a, s′) denotes the probability of

transitioning to state s′ after taking an action a in a state s. The objective is to compute

a stationary policy π that maximizes the expected γ-discounted infinite-horizon return. It

is well-known that the value function vπ for a policy π must satisfy the Bellman optimality

condition (e.g., Puterman [67]):

vπ = rπ + γP πvπ , (2.7)

where P π and rπ are the matrix of transition probabilities and the vector of rewards, respec-

tively, for the policy π.

Value function approximation becomes necessary in MDPs with large state spaces. The

value function vπ can then be approximated by a linear combination of features φ1, . . . , φk ∈

R|S|, which are vectors over states. Using the vector notation, an approximate value function

ṽπ can be expressed as:

ṽπ = Φw ,

13

for some vector w = {w1, . . . , wk} of scalar weights that quantify the importance of features.

Here, Φ is the feature matrix of dimensions |S| × k; the columns of this matrix are the

features φi.

Numerous algorithms for computing linear value approximation have been proposed [40,

75, 76]. We focus on fixed-point methods that compute the unique vector of weights wπ
Φ

that satisfy the projected Bellman equation (2.7):

wπ
Φ = Φ+(rπ + γP πΦwπ

Φ) , (2.8)

where Φ+ is the Moore-Penrose pseudo-inverse of Φ and Φ+ = (ΦTΦ)−1ΦT when columns

of Φ are linearly independent (e.g., Golub and Van Loan [22]). This equation follows by

applying the orthogonal projection operator Φ(ΦTΦ)−1ΦT to both sides of (2.7).

The following insight will be important when describing the FFS method. The fixed-

point solution to (2.8) can be interpreted as a value function of an MDP with a linearly

compressed transition matrix P π
Φ and a reward vector rπΦ [59, 76]:

P π
Φ = (ΦTΦ)−1ΦTP πΦ = Φ+P πΦ,

rπΦ = (ΦTΦ)−1ΦTrπ = Φ+rπ .

(2.9)

The weights wπ
Φ in (2.8) are equal to the value function for this compressed MDP. That is,

wπ
Φ satisfies the Bellman equation for the compressed MDP:

wπ
Φ = rπΦ + γP π

Φw
π
Φ . (2.10)

To construct good features, it is essential to determine their quality in terms of whether they

can express an excellent approximate value function.

14

CHAPTER 3

Optimizing Percentile Criterion Using Robust MDPs

In this chapter, we address the problem of computing reliable policies in reinforcement learn-

ing problems with limited data. In particular, we compute policies that achieve good returns

with high confidence when deployed. This objective, known as the percentile criterion, can be

optimized using Robust MDPs (RMDPs). RMDPs generalize MDPs to allow for uncertain

transition probabilities chosen adversarially from given ambiguity sets. We show that the

RMDP solution’s sub-optimality depends on the spans of the ambiguity sets along with the

value function. We then propose new algorithms that minimize the span of ambiguity sets

defined by weighted L1 and L∞ norms. In this chapter, our focus is on Bayesian guarantees,

however, in the next chapter, we describe how our methods apply to frequentist guarantees

and derive new concentration inequalities for weighted L1 and L∞ norms.

Applying reinforcement learning to problem domains that involve high-stakes decisions,

such as medicine or robotics, demands that we have high confidence in the quality of a

policy before deploying it. Markov Decision Processes (MDPs) represent a well-established

model in reinforcement learning [67, 75], but their sequential nature makes them particularly

sensitive to parameter errors, which can quickly accumulate [52, 79, 83]. Parameter errors

are unavoidable when estimating MDPs from data [42]. We focus on computing policies that

maximize high-confidence return guarantees in the batch setting. Such guarantees reduce the

chance of disappointing the stakeholders after deploying the policy and give them a choice

to gather more data or switch to an alternative strategy [62].

We propose a new method for computing reliable policies that achieve, with high con-

15

fidence, good returns once deployed. This objective is also known as the percentile cri-

terion [12] and can be modeled as risk-aversion to epistemic uncertainty [63]. Because

optimizing the percentile criterion is NP-hard [12], we use Robust MDPs (RMDPs) [34] to

optimize it approximately. We establish new error bounds on the performance loss of the

RMDPs’ policy compared to the optimal percentile solution. Using these new bounds when

constructing the RMDPs leads to policies with significantly better return guarantees than

reported in prior work [12, 63].

RMDPs generalize MDPs to allow for uncertain, or unknown, transition probabilities [34,

57, 81]. Transition probabilities are hard to estimate from data, and even small errors sig-

nificantly impact the returns and policies. RMDPs consider transition probabilities to be

chosen adversarially from a so-called ambiguity set (or an uncertainty set). The optimal

policy is computed by solving a specific zero-sum game in which the agent chooses the best

policy, and an adversarial nature chooses the worst transition probabilities from the ambi-

guity sets. RMDPs are tractable when their ambiguity sets satisfy so-called rectangularity

assumptions [23, 50, 81].

Given the goal is to optimize the percentile criterion, the critical question is how to con-

struct the ambiguity sets from state transition samples to optimize the percentile criterion.

Prior work constructs ambiguity sets as confidence regions bounded by a distance from a

nominal (expected) transition probability [2, 25, 34, 62, 63, 73]. In most cases, the ambiguity

sets are represented as L1-norm (also referred to as total variation) balls around the nominal

probability. In comparison with other probability distance measures, like KL-divergence, the

polyhedral nature of the L1-norm allows more efficient computation [30].

The main contribution of this chapter and the following one is a new technique for opti-

mizing the shape of ambiguity sets in RMDPs. Prior work simply constructs ambiguity sets

with the smallest size, or volume, that are sufficient to provide the desired high-confidence

guarantees. Our new bounds show that the span of the ambiguity set along a specific

direction is much more important than its volume. To minimize their span, we consider

16

asymmetric ambiguity sets defined in terms of weighted L1 and L∞ balls.

In Sections 2.3 and 3.1.1, we provide the core concept of percentile criterion and its

relationship with robust MDPs. The remainder of this chapter is organized as follows.

First, we explain the general framework in Section 3.1. Section 3.2 describes algorithms

that minimize the span of ambiguity sets by optimizing the weights of the norms used in

their definition. Then, Section 3.3 describes methods for choosing the size of the weighted-

norm ambiguity sets. Finally, the experimental results in Section 3.4 show that minimizing

ambiguity sets’ span greatly improves the RMDPs’ solution quality.

3.1 RMDPs for Percentile Optimization

This section describes the general algorithm for constructing RMDP ambiguity sets for op-

timizing the percentile criterion. We derive new bounds on the safety and optimality of

the RMDP solution and propose a new algorithm that optimizes them. The bounds and

algorithms in this section are general and are not restricted to norm-based ambiguity sets.

3.1.1 Percentile Criterion Approximation Using Robust MDPs

Because the optimization in (2.6) is NP-hard [12], we seek new algorithms that can approx-

imate it efficiently. Robust MDPs (RMDPs), which extend regular MDPs, are a convenient

and powerful framework that can be used to optimize the percentile criterion. In particular,

RMDPs allow for a generic ambiguity set P̂ ⊆
{
P : S ×A → ∆S

}
of possible transition

functions instead of a single value P . The solution to an RMDP is the best policy for the

worst-case plausible transition function:

max
π∈Π

min
P∈P̂

ρ(π, P) . (3.1)

The optimization problem in (3.1) is NP-hard [57, 81] but is tractable for rectangular

ambiguity sets which are defined independently for each state and action [34, 45]. We,

17

therefore, restrict our attention to SA-rectangular ambiguity sets defined as p-norm balls

around nominal probability distributions for some w : S ×A → RS
++ and ψ : S ×A → R+:

P(w,ψ) = {P ∈ F | P (s, a) ∈ Ps,a(w(s, a), ψ(s, a))} ,

where F = (∆S)S×A. In the remainder of this section, we resort to the shorter notation

wwws,a = w(s, a) and ψs,a = ψ(s, a) when the meaning is obvious from the context. Note that

P̂ refers to a generic ambiguity set, while P(w,ψ) refers to the specific norm-based one. The

ambiguity set Ps,a(www,ψ) for s ∈ S, a ∈ A, positive weights www ∈ RS
++, and budget ψ ∈ R+ is

defined as:

Ps,a(www,ψ) =
{
ppp ∈ ∆S :

∥∥ppp− p̄pps,a∥∥www ≤ ψ
}
, (3.2)

where p̄pps,a = EP̃
[
P̃ (s, a)

]
is the mean posterior transition probability. The weighted

polynomial norms are defined as ‖yyy‖1,www =
∑S

i=1wi · |yi| and ‖yyy‖∞,www = max {wi · |yi|ßi ∈ S}.

We use the generic notation ‖·‖www in statements that hold for both ‖·‖1,www and ‖·‖∞,www. The

weights www in (3.2) determine the shape of the ambiguity set, and the budget ψ determines

its size.

Note that the parameter ψ in the definition of Ps,a(www,ψ) is redundant. It can be set

to 1 without loss of generality: Ps,a(www,ψ) = Ps,a(1/ψ · www, 1) when ψ > 0. In other words,

it is possible to change the size of the ambiguity set solely by scaling the weights www. To

eliminate this redundancy, we assume without loss of generality that the weights of the set

are normalized such that ‖www‖2 = 1.

In rectangular RMDPs, a unique optimal value function v̂vv ∈ RS exists and is a fixed

point of the robust Bellman operator L : RS → RS defined for each s ∈ S and vvv ∈ RS as [34]

(Lvvv)s = max
a∈A

min
ppp∈P̂s,a

(
rrrs,a + γ · pppTvvv

)
. (3.3)

The optimal robust value function can be computed using value iteration, policy iteration,

and other methods [31, 34, 37]. The optimal robust policy π̂ : S → A is greedy with respect

18

to the optimal robust value function v̂vv, and the robust return can be computed from the

value function as [31]:

ρ̂ = max
π∈Π

min
P∈P̂

ρ(π, P) = pppT0v̂vv .

We will find it convenient to use ẑzzs,a ∈ RS, s ∈ S, a ∈ A to denote the vector of values

associated with the transitions from the state s and action a:

ẑzzs,a = rrrs,a + γ · v̂vv . (3.4)

We use P̂ to denote a generic RMDP ambiguity set and use P(w,ψ) to denote an ambi-

guity set defined in terms of a weighted norm ball.

An important assumption, which is used throughout this chapter, is that the ambigu-

ity set in the RMDP is constructed to guarantee that it contains the unknown transition

probabilities P̃ with a high probability as formalized next.

Assumption 3.1.1. The RMDP ambiguity set P̂ ⊆
{
P : S ×A → ∆S

}
satisfies that:

PP̃
[
P̃ ∈ P̂

]
≥ 1− δ .

Assumption 3.1.1 is common when constructing RMDPs for optimizing the percentile

criterion [12, 63]. The following theorem shows that Assumption 3.1.1 is a sufficient condition

for ρ̂ to be a lower bound on the true return of the robust policy π̂. We state the result in

terms of a generic ambiguity set P̂ .

Theorem 3.1.2. If Assumption 3.1.1 holds, then the following inequality is satisfied with

probability 1− δ:

ρ̂ ≤ ρ(π̂, P̃) .

Please see Appendix A.1.1 for the proof. Theorem 3.1.2 generalizes Theorem 4.2 in

[63] by relaxing its assumptions. In particular, Assumption 3.1.1 allows for non-rectangular

19

ambiguity sets P̂ and does not require the use of a union bound in its construction. We

discuss this issue in greater depth in Section 3.3 when we describe algorithms for constructing

ambiguity sets that satisfy Assumption 3.1.1.

Next, we bound the performance loss of the RMDP policy π̂ with respect to the optimal

percentile criterion guarantee in (2.6). As we show, the quality of the RMDP policy depends

not simply on the absolute size of the ambiguity set ψ, but on its span along a specific

direction. The span βs,azzz (www,ψ) of an ambiguity set Ps,a(www,ψ) along a vector zzz ∈ RS for

s ∈ S and a ∈ A is defined as:

βs,azzz (www,ψ) = max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ppp1, ppp2 ∈ Ps,a(www,ψ)

}
.

The following theorem bounds the performance loss of the RMDP solution when using norm-

bounded ambiguity sets. Note that Theorem 3.1.2 implies that, under Assumption 3.1.1, the

RMDP return ρ̂ bounds the true return with high confidence and therefore must be a lower

bound on the optimal y? in (2.6).

Theorem 3.1.3. When Assumption 3.1.1 holds for P̂ = P(w,ψ), w : S × A → RS
++, ψ :

S ×A → R+, then the performance loss with respect to y? optimal in (2.6) is:

0 ≤ y? − ρ̂ ≤ 1

1− γ
·max
s∈S

max
a∈A

βs,aẑzzs,a(www,ψ) ,

where ρ̂ is a function of w and ψ.

The proof can be found in Appendix A.1.1. The following illustrates how the span along

ẑzz impacts the performance loss of the RMDP policy.

Example 3.1.4. Consider an MDP with states {0, 1, 2, 3} and a single action {1}. The

state 0 is initial, and the states 1, 2, 3 are terminal with P (i, 1, i) = 1, i = 1, 2, 3 with zero

rewards. To keep the notation simple, we assume that it is only possible to transition from

state 0 to states 1, 2, 3. The transition probability p̃pp0,1 is uncertain and distributed as p̃pp0,1 ∼

20

s1 s2

s3

●

●
●

●●
●●●

●
●

● ●
●

●
●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●
●●

●

● ●

●

●● ●
● ●● ●

●●
● ●

●
●

●●● ●

●

●
● ●

●
●

●
●

●
●

●●

●
●

●●
●●

●
●

●

●

●

●

●

●

●
● ●● ●

●
●

●

●
●

●
●

●
●

●●
●

●

●

●
●

●
●●●

●●
●

●
●

●
●

●●

●

●● ●

●

●
●●

●

●
●

●
●

●

●
●●

●

●

● ●●● ●
●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●
●

●
●

●●

●

●
●

●

●

●
●

●
●●

●

●●
●

● ●
●

● ●● ●● ●
●

●
●

●

●

●

●

●
●

● ● ●●

●

●

● ●● ●●
●

●

●
●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●
●

●●
●
●

●

●

●● ●●

●
●

●

●

●

●

●
● ● ●●

●

●
●

● ●●●●

●
●

●

●

●● ●

●●
● ●●

●

●

●
●●

●
●

●

●

●●● ●
●

●

●
●

●●
●

●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●● ● ●

●

●●
●

●

● ● ●
● ●

●

●

● ●●
●

●

●

●

●

● ●●● ●●

●

●

●

●
●

●

●

●
●●●

●
●

●
●

●

●
●●

● ●

●

● ●

●

●●

●

●
● ●

● ●
●

●

●

●

●

●● ●
●

●

●

●

●
●

●
●

●
●
●●

●●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●●

●
●

●● ●

●
●

●●
●● ●

●

●

●

●

●
● ●

●
●

●●
●●

●

● ●●
●

●

●
●

●
●●

●

●

● ●
●● ●

●●

●

●

● ●
● ●

● ●

●
●

●

●●

●
●

●
●

●● ●
●

●
●●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Figure 3.1: Posterior samples of p̃pp (blue) and ambiguity sets Pstd (green) and Popt (red)
from Example 3.1.4.

Dirichlet(10, 10, 1) with E[p̃pp0,1] = [0.48, 0.48, 0.04]. The rewards are rrr0,1 = [0.25, 0.25,−1].

The goal is to maximize the percentile criterion with δ = 0.2.

Take the MDP from Example 3.1.4 and construct RMDPs with the following two ambi-

guity sets depicted in Figure 3.1. Let Pstd = P1,1(1/
√

3 · 1, 0.1) be the standard ambiguity

set with uniform weights, and let Popt = P1,1(1/
√

1.12 · [0.25, 0.25, 1], 0.1) be an ambiguity set

with optimized weights www = 1/
√

1.12 · [0.25, 0.25, 1]. The budgets for both ambiguity sets are

minimally sufficient to satisfy Assumption 3.1.1. Intuitively, this means that at least 80% of

the posterior samples of p̃pp0,1 (blue dots in Figure 3.1) must be contained inside of each am-

biguity set. Now, with 80% confidence, the RMDP with Popt guarantees return ρ̂opt = 0.16,

while the RMDP with Pstd guarantees only ρ̂std = −0.06. Although the volumes of Pstd and

Popt are approximately equal, the span along the dimension zzz = [0.25, 0.25,−1] of Popt is

half of the span of Pstd.

Armed with the safety and performance loss guarantees in Theorems 3.1.2 and 3.1.3, we

propose a new heuristic algorithm in Algorithm 1 which iteratively optimizes the shape of

21

Algorithm 1: Ambiguity shape optimization scheme.

Input: Confidence 1− δ, posterior distribution f over P̃
Output: Ambiguity set P(www,ψ)

1 Compute vvv′ ∈ RS by solving maxπ ρ
(
π,E

[
P̃
])

and let
zzz′s,a ← rrrs,a + γ · vvv′, s ∈ S, a ∈ A;

2 Compute minimal ψ′ : S ×A → R+ such that Assumption 3.1.1 holds for
P(1/

√
S · 1, ψ′); // Algorithm 3

3 Compute wwws,a ← minwww∈RS+ {β
s,a
zzz′ (www,ψ′) | ‖www‖2 = 1} for each s ∈ S, a ∈ A;

// Algorithm 2

4 Compute minimal ψ : S ×A → R+ such that Assumption 3.1.1 holds for P(www,ψ);
// Algorithm 3

5 return Ambiguity set P(www,ψ)

the ambiguity set in order to improve the guaranteed percentile. It constructs ambiguity sets

that minimize the span of the ambiguity set. The algorithm may not construct the optimal

ambiguity set because it first uses the nominal value function vvv′. However, the algorithm

provides guarantees on the quality of the policy that it computes from Assumption 3.1.1 and

Theorems 3.1.2 and 3.1.3.

3.2 Minimizing Ambiguity Spans

This section describes tractable algorithms that optimize the weights www to minimize that

span βs,azzz for some fixed state s ∈ S, action a ∈ A, a vector zzz ∈ RS, and a budget ψ ∈ R+.

We describe an analytical solution and a conic formulation that minimize an upper bound

on the span for weighted L1 and L∞ sets. The budget ψ is fixed throughout this section;

Section 3.3 describes how to optimize it.

The goal of computing the weights www that minimize the span of the ambiguity set for a

fixed budget ψ can be formalized as the following optimization problem:

min
www∈RS+

{
βs,azzz (www,ψ) | ‖www‖2 = 1

}
. (3.5)

The optimization in (3.5) is not obviously convex, but we propose methods that minimize

22

an upper bound on βs,azzz (www,ψ). Note that minimizing this upper bound also minimizes an

upper bound on Theorem 3.1.3.

We first describe two analytical solutions and then describe a more precise but also a

more computationally intensive method based on second-order conic approximation. The

following lemma provides a bound that enables efficient optimization.

Lemma 3.2.1. The span βs,azzz of the ambiguity set Ps,a(www,ψ) is bounded for any λ ∈ R as:

βs,azzz (www,ψ) ≤ 2 · ψ · ‖zzz − λ · 111‖? , (3.6)

where ‖·‖? is the norm dual to ‖·‖www.

Recall that the dual norm is defined as ‖ccc‖? = maxxxx∈RS
{
cccTxxx | ‖xxx‖ ≤ 1

}
. In order to

use the bound in Lemma 3.2.1, we need to derive the dual norms to the weighted L1 and

weighted L∞ norms. For unweighted p-norms, it is well known that L1 and L∞ norms are

dual of each other, but we are not aware of a similar result for their weighted variants. The

following lemma establishes that weighted L1 and L∞ norms are dual as long as their weights

are inverse elementwise.

Lemma 3.2.2. Suppose that www ∈ RS and www′ ∈ RS are positive wi > 0, w′i > 0 and satisfy

that w′i = 1/wi for all i ∈ S. Then:

‖zzz‖∞,www′ = max
xxx∈RS

{
zzzTxxx | ‖xxx‖1,www = 1

}
.

Based on the results above, Algorithm 2 summarizes our algorithms for computing

weights www that minimize the upper bound on the performance loss in Theorem 3.1.3. The

algorithm runs in linear time. Note that the algorithm assumes that a value of λ is given.

Although it would be possible to optimize for the best value of λ, our preliminary experi-

mental results suggest that this is not worthwhile because it does not lead to a significant

improvement. Instead, we use λ = (maxi zi + mini zi)/2 and λ = median(zzz) for L∞ and L1

23

norms respectively. These are the optimal values (values for which the upper bound is small-

est) for the uniform weight version of (3.6). The following proposition states the correctness

of this algorithm.

Proposition 3.2.3. Fix an arbitrary λ ∈ R and let www? ∈ RS
+ be the return from Algorithm 2.

Then www? is an optimal solution to (3.6) weighted L1 and L∞ norms.

Please see Appendix A.1.2 for the proof. It is important to recognize that even though

Algorithm 2 effectively minimizes the value βs,azzz , it may, in the process, violate Assump-

tion 3.1.1. This is because scaling weights may reduce the probability that P̃ ∈ P . We are

not aware of a tractable algorithm that can optimize the weights www directly while enforcing

the constraint of Assumption 3.1.1. Instead, the constraint ‖www‖2 = ψ serves as a proxy to

prevent the ambiguity from shrinking. This is why it is necessary to re-optimize the budget

ψ in Algorithm 1 after the weights are optimized.

Algorithm 2: Weight optimization.

Input: Norm q ∈ {1,∞}, parameter λ ∈ R
Output: Weights www? ∈ RS

+ that minimize (3.6)
1 if q = 1 then

2 w?i ←
|zi−λ|1/3√∑S
j=1 |zj−λ|2/3

, ∀i ∈ S ;

3 else if q =∞ then

4 w?i ←
|zi−λ|√∑S
j=1|zj−λ|2

, ∀i ∈ S ;

5 end
6 return www? ;

As an alternative to the analytical algorithms in Algorithm 2, we also examine a Second-

Order Conic Program (SOCP) formulation. This formulation optimizes a tighter upper

bound on βs,azzz but is more computationally intensive. For any fixed state s and action a, the

following SOCP minimizes the bound (3.6) on βs,azzz (www,ψ) for the L1 norm:

min
ggg,c,λ

ψ · c

s. t. ggg ≥ max{zzz − λ · 1,−zzz + λ · 1}

gggTggg ≤ c2, ggg ≥ 0 .

(3.7)

24

The SOCP formulation follows from Lemma 3.2.2 and variable substitution ggg = www · c.

Remark 3.2.4 (Unreachable states). We assume that the prior can specify some transitions

as impossible, or unreachable: that is P (s, a, s′) = 0. This information is used as an ad-

ditional pre-processing step in optimizing the weights. In particular, if the transition from

state s after taking action a to state s′ is not possible, then we set (wwws,a)s′ =∞. Or, in other

words, each ppp ∈ Ps,a(www,ψ) satisfies ps′ = 0.

Algorithm 3: Budget optimization.

Input: Posterior samples P1, . . . , Pn from P̃ , weights wwws,a, norm q ∈ {1,∞}
Output: Nominal p̄pps,a and budget ψs,a

1 Compute nominal p̄pps,a ← (1/n)
∑n

i=1 Pi(s, a) ;

2 Compute distance di ←
∥∥Pi(s, a)− p̄pps,a

∥∥
q,wwws,a

;

3 Ascending sort: d(j) ≤ d(j+1), j = 1, . . . , n;
4 Compute the quantile ψs,a ← d(d(1−δ/(S·A))·ne) ;
5 return p̄pps,a and ψs,a

3.3 Minimizing Ambiguity Budgets

This section describes how to determine the size of the ambiguity set in the Bayesian setting

in order to minimize the performance loss in Theorem 3.1.3 of the RMDP policy while

satisfying Assumption 3.1.1. We assume that the weights wwws,a, s ∈ S, a ∈ A are arbitrary

but fixed and aim to construct ψs,a, s ∈ S, a ∈ A to minimize the performance loss.

Before describing the algorithm, we state a simple observation that motivates its con-

struction. The following lemma implies that the smaller the ambiguity budget is, the better

ρ̂ approximates the percentile criterion. Of course, this is only true as long as the budget is

sufficiently large for Assumption 3.1.1 to hold. The following proposition follows from the

definition of βs,azzz by algebraic manipulation.

Lemma 3.3.1. The function ψ 7→ βs,azzz (wwws,a, ψ) is non-decreasing.

25

We are now ready to describe our method as outlined in Algorithm 3. The algorithm

follows the well-known sample average approximation (SAA) approach common in stochastic

programming [70]. It constructs ambiguity sets as credible regions for the posterior distri-

bution over P̃ similarly to prior work [63]. The next proposition states the correctness of

Algorithm 3.

Proposition 3.3.2. Suppose that ψs,a are computed by Algorithm 3 for some wwws,a for each

s ∈ S and a ∈ A. Also let w : (s, a) 7→ wwws,a and ψ : (s, a) 7→ ψs,a. Then P(w,ψ) satisfies

Assumption 3.1.1 with high probability when a sufficient number of samples from P̃ are used.

Please see Appendix A.1.3 for the proof. Algorithm 3 constructs credible regions for each

state and action separately [54]. A notable limitation of Algorithm 3 is that it constructs

the credible regions independently for each state and action. Although this is convenient

computationally, it also means that the confidence region needs to rely on the union bound

which makes it impractical when the number of states and actions is large. Although,

Assumption 3.1.1 allows for construction that avoids union-bound-based construction.

While Proposition 3.3.2 provides asymptotic convergence guarantees, it is possible to ob-

tain finite-sample guarantees by using more careful analysis [46] or by adapting Algorithm 3

as suggested in [32]. We leave this finite-sample analysis for future work.

3.4 Empirical Evaluation

In this section, we evaluate Algorithm 1 empirically using five standard reinforcement do-

mains that have been previously used to evaluate robustness.

Table 3.1 summarize the results for the Bayesian setups. The results compare our algo-

rithms (rows) against baselines (rows) for fixed datasets D for all domains (column). The

method names indicate how the weights are computed and which norm is used to define the

ambiguity set. Methods denoted as “Uniform” represent www = 1 and “Optimized” represent

www computed using Algorithms 1 and 2.

26

RS MR PG IM CP

Uniform L1 0.60 1.56 5.24 0.97 0.77
Uniform L∞ 0.60 1.56 5.50 0.98 0.76
Optimized L1 0.25 0.41 1.84 0.90 0.12
Optimized L∞ 0.31 0.39 3.10 0.87 0.19

Table 3.1: Normalized Bayesian performance loss (ρ̄− ρ̂)/|ρ̄| for δ = 0.05. (Smaller value is
better).

As the main metric, we compare the computed return guarantees ρ̂ (the return of the

RMDP). Because all methods use ambiguity sets that satisfy Assumptions 3.1.1, ρ̂ lower

bounds ρ(π̂, P̃) with probability 1 − δ. In order to enable the comparison of the results

among different domains, we normalize the guarantee by the maximal nominal return ρ̄ =

maxπ∈Π ρ(π,E[P̃]). We use ρ̄ instead of the unknown y?.

As a baseline, we compare our results with the standard RMDPs construction [12, 63],

which uses uniformly-weighted L1 and L∞ norms. We do not compare to policy-gradient-

style methods [12] because they cannot be used with general posterior distributions over P̃ in

our domains. We note that various modifications to probability norms have been proposed

in the RL context (e.g., [49, 77]), but it is unclear how to use them in the context of the

percentile criterion.

The results in Table 3.1 show that optimizing the weights in RMDP ambiguity sets

decreases the guaranteed performance loss dramatically in Bayesian settings (geometric mean

2.8×). The guarantees improve because the RMDPs with optimized sets simultaneously

compute a better policy and a tighter bound on its return. Note that zero losses in the

tables may be unachievable (ρ̄ > y?), and losses greater than one are possible (when ρ̄ < 0).

We now briefly summarize the domains used. RiverSwim (RS) is a simple and standard

benchmark [74], which is an MDP consisting of six states and two actions (see Figure 3.2).

The process follows by sampling synthetic datasets from the true model and then comput-

ing the guaranteed robust returns for different methods. The prior is a uniform Dirichlet

distribution over reachable states.

27

s0 s1 · · · s4 s5

(1, r = 5)

0.7 0.6

0.3

0.1

1

0.6

0.3

0.1

1

0.6

0.3

0.1

1

(0.3, r = 10000)

0.3

0.7

1

Figure 3.2: RiverSwim problem with six states and two actions (left-dashed arrow, right-solid
arrow). The agent starts in either states s1 or s2.

Machine Replacement (MR) is a small benchmark MDP problem with S = 10 states that

models progressive deterioration of a mechanical device [12]. Two repair actions A = 2 are

available and restore the machine’s state. Uses a Dirichlet prior.

Population Growth Model (PG) is an exponential population growth model [38], which

constitutes a simple state-space 0, . . . , S = 50 with exponential dynamics. At each time step,

the land manager has to decide whether to apply a control measure to reduce the species’

growth rate. We refer to [79] for more details of the model.

Inventory Management (IM) is a classic inventory management problem [84], with dis-

crete inventory levels 0, . . . , S = 30. The purchase cost, sale price, and holding cost are

2.49, 3.99, and 0.03, respectively. The demand is sampled from a normal distribution with a

mean S/4 and a standard deviation of S/6. It also uses a Dirichlet prior.

Cart-Pole (CP) is the standard RL benchmark problem [10, 75]. We collect samples of

100 episodes from the true dynamics. We fit a linear model with that dataset to generate

synthetic samples and aggregate close states to a 200-cell grid (S = 200) using the k-nearest

neighbor strategy and assume a uniform Dirichlet prior.

This chapter proposed a new approach for optimizing the percentile criterion using

RMDPs in the Bayesian setup that goes beyond the conventional ambiguity sets. In the

next chapter, we extend this method to the frequentist setting.

28

CHAPTER 4

Weighted Frequentist Confidence Intervals for Robust MDPs

In Chapter 3, we described new methods for optimizing the shape of ambiguity sets beyond

the L1-norm, in the form of credible intervals, in Bayesian statistics. In this chapter, our focus

is on frequentist guarantees. We present two new finite-sample bounds that can be used to

construct frequentist ambiguity sets with weighted Lp norms. These bounds are necessary to

guarantee high-confidence return guarantees. These results significantly extend the existing

bounds, limited to the L1 deviation [3, 16, 63, 80]. In Section 4.1, we outline the approach

in the frequentist setup and present new concentration inequalities for weighted L1 and L∞

ambiguity sets. The experimental results in Section 4.2 show significant improvement in the

RMDPs’ performance.

4.1 Frequentist Guarantees

This section extends the analysis of Bayesian ambiguity sets to outline how our results

apply to frequentist guarantees. The advantage of the frequentist setup is that it guarantees

even without needing access to a prior distribution. The disadvantage is that, without

reasonable priors, frequentist settings may need an excessive amount of data to provide

credible guarantees. The main contribution in this section is new sampling bounds for

weighted L1 and L∞ ambiguity sets.

The frequentist perspective on the percentile criterion [12] represents a viable alternative

to the Bayesian perspective when it is challenging to construct an excellent prior distribution.

The frequentist view assumes that the true model P ? is known. The analysis considers the

29

uncertainty over datasets. To define the criterion, let D represent the set of all possible

datasets D. Then the pair of algorithms F : D → Π, which computes the policy for a

dataset, and G : D → R, which estimates the return of the policy, solves the percentile

criterion if:

PD∼P ? [ρ(F (D), P ?) ≥ G(D)] ≥ 1− δ . (4.1)

A frequentist modeler assumes that P ?
s,a is fixed and the probability statements are qualified

over sampled data sets (st, at, s
′
t)t=1,...,T generated from the true transition probabilities s′t ∼

ppp?st,at .

We make very similar assumptions to the Bayesian setting to construct an RMDP

that solves the frequentist percentile criterion. The following assumption restates Assump-

tion 3.1.1 in the frequentist setting; note the change in random variables.

Assumption 4.1.1. The data-dependent ambiguity set P̂ satisfies:

PD∼P ?
[
P ? ∈ P̂

]
≥ 1− δ ,

where P̂ is a function of D.

Recall that Theorem 3.1.2 establishes that an RMDP that satisfies Assumption 3.1.1 com-

putes a high-confidence lower bound on the return. The proof of Theorem 3.1.2 easily extends

to the frequentist setup. Therefore, Assumption 4.1.1 implies that PD [ρ̂ ≤ ρ(π̂, P)] ≥ 1− δ

where ρ̂ and π̂ are the return and policy to the RMDP. In other words, the RMDP algorithm

(joint policy and return estimate computation) solves the frequentist percentile criterion in

(4.1) when Assumption 4.1.1 holds.

Because the optimization methods described in Section 3.2 make no probabilistic assump-

tions, they can be applied to the frequentist setup with no change. The optimization of ψ

described in Section 3.3 assumes that samples from the posterior over transition functions

are available and cannot be readily used to satisfy Assumption 4.1.1. Instead, we present

two new finite-sample bounds that can be used to construct frequentist ambiguity sets. Since

30

prior work has been limited to the ambiguity sets defined in terms L1 ambiguity sets with

uniform weights [3, 16, 63, 80], we derive new high-confidence bounds for ambiguity sets

defined using weighted L1 and L∞ norms. To state our new results, let the nominal point

p̄pps,a ∈ ∆S in (3.2) be the empirical estimate of the transition probability computed from

ns,a ∈ N transition samples for each state s ∈ S and action a ∈ A.

Theorem 4.1.2 (L∞ norm). Suppose that P(www,ψ) is defined in terms of the wwws,a-weighted

L∞ norm. Then Assumption 4.1.1 is satisfied if ψs,a ∈ R+ for each s ∈ S and a ∈ A satisfies

the following inequality:

δ ≤ 2 · SA ·
S∑
i=1

exp

(
−2

ψ2
s,a · ns,a
(wwwsa)2

i

)
. (4.2)

Theorem 4.1.3 (L1 norm). Suppose that P(www,ψ) is defined in terms of the wwws,a-weighted

L1 norm. Then Assumption 4.1.1 is satisfied if ψs,a ∈ R+ for each s ∈ S and a ∈ A satisfies

the following inequality:

δ ≤ 2 · SA ·
S−1∑
i=1

2S−i · exp

(
−
ψ2
s,a · ns,a

2 · (wwwsa)2
i

)
, (4.3)

where positive weights wwws,a ∈ RS
++, s ∈ S, a ∈ A are assumed to be sorted in a non-increasing

order (wwws,a)i ≥ (wwws,a)i+1 for i = 1, . . . , S − 1.

The proofs of the theorems are in Appendix A.2.1. They follow standard techniques

combining the Hoeffding and union bounds.

A natural question is how to construct ψs,a that satisfies Theorems 4.1.2 and 4.1.3.

Although the theorems do not provide us with an analytical solution, the value of ψs,a can

be computed efficiently using the standard bisection method [9]. This is because right-

hand side functions in (4.2) and (4.3) are monotonically decreasing in ψs,a, s ∈ S, a ∈ A.

Theorem 4.1.4 further tightens the error bounds using Bernstein’s inequality.

31

Theorem 4.1.4 (Weighted L1 error bound (Bernstein’s style)). Suppose that p̄pps,a is the

empirical estimate of the transition probability obtained from ns,a samples for some s ∈ S

and a ∈ A. If the weights www ∈ RS
++ are sorted in non-increasing order wi ≥ wi+1, then the

following holds when using Bernstein’s inequality:

P
[∥∥p̄pps,a − ppp?s,a∥∥1,www

≥ ψs,a

]
≤ 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)

where www ∈ RS
++ is the vector of weights. The weights are sorted in non-increasing order.

The proof is available in Appendix A.2.2. Theorems 4.1.2 and 4.1.3 also provide new

insights into which ambiguity set may be a better fit for a particular problem. Simple

algebraic manipulation and (3.6) show that the L1 norm is preferable to the L∞ norm when

‖vvv − v̄ · 1‖1 >
√
S · ‖vvv − ṽ · 1‖∞. Here, vvv ∈ RS is the optimal value function, v̄ = 1Tvvv/S is

the mean value, and ṽ is the median value of vvv.

In terms of their tightness, Theorems 4.1.2 and 4.1.3 are similar to the most well-known

bounds on the uniformly-weighted norms. Theorem 4.1.3 recovers the equivalent best-known

(Hoeffding-based) result for uniformly-weighted norm within a factor of 2. We are unaware

of comparable prior results for ambiguity sets defined in terms of L∞ norms. Unfortunately,

frequentist bounds on probability distributions are generally useful only when the number

of samples ns,a is quite large. We also investigated Bernstein-based versions of the bounds,

but they show little difference in our experimental results.

Finally, it is important to note that Theorems 4.1.2 and 4.1.3 require that the weights

www are independent of data. Therefore, the weights www should be optimized using a dataset

different from the one used to estimate ψ. However, in our experiment, we found that reusing

the same dataset to optimize both www and ψ empirically does not compromise the percentile

guarantees.

32

RS MR PG IM CP

Uniform L1 0.80 5.83 5.66 1.05 0.78
Uniform L∞ 0.76 3.45 5.65 1.05 0.78
Optimized L1 0.53 1.05 5.55 0.99 0.77
Optimized L∞ 0.43 0.94 5.56 0.96 0.69

Table 4.1: Normalized frequentist performance loss (ρ̄ − ρ̂)/|ρ̄| for δ = 0.05. (Smaller value
is better).

4.2 Detailed Experimental Results For Weighted Ambiguity Sets

Table 4.1 summarize the results for the frequentist setup. The results compare our algorithms

(rows) against baselines (rows) for fixed datasets D for all domains (column). The method

names indicate how the weights are computed and which norm is used to define the ambiguity

set. Methods denoted as “Uniform” representwww = 1 and “Optimized” representwww computed

using Algorithms 1 and 2. The following section provides the complete report of the statistics

and methods (including the SOCP formulation).

4.2.1 Experimental Setup

We assess L1− and L∞-bounded ambiguity sets, both with weights and without weights. We

compare Bayesian credible regions with frequentist Hoeffding. We assume a true underlying

model that produces simulated datasets containing 20 samples for each state and action. The

frequentist methods construct ambiguity sets directly from the datasets. Bayesian methods

combine the data with a prior to compute a posterior distribution and then draw 20 samples

from the posterior distribution to construct a Bayesian ambiguity set.

4.2.2 Full Empirical Results

Tables 4.2 to 4.5 report the high-confidence lower bound on the return for the domains that

we investigate. The column denotes the confidence 1− δ and the algorithm used to compute

the weightswww for the ambiguity set: “Unif.w” corresponds towww = 1, “Analyt.w” corresponds

33

to weights computed by Algorithm 2, and “SOCP.w” corresponds to weights computed by

solving (3.7). The rows indicate which norm was used to define the ambiguity set (L1 or L∞)

and whether Bayesian (B) or frequentist (H) guarantees were used. Note that the SOCP

formulation is limited to the L1 ambiguity sets.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 33887 51470 48620 25252 47284 43504
L∞B 33887 48258 - 25252 43247 -

L1 H 16354 33116 30268 12555 29472 26398
L∞ H 20055 40166 - 15184 35955 -

Table 4.2: The return with performance guarantees for the RiverSwim experiment. The
return of the nominal MDP is 63080.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B -38.1 -22.7 -26.8 -42.0 -23.7 -28.4
L∞B -38.1 -22.6 - -42.0 -23.5 -

L1 H -86.8 -33.2 -47.9 -115.0 -34.5 -53.1
L∞ H -62.9 -29.5 - -74.8 -32.6 -

Table 4.3: The return with performance guarantees for the Machine Replacement experi-
ment. The return of the nominal MDP is -16.79.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B -25706 -12151 -12668 -25741 -12200 -12704
L∞B -26782 -15468 - -26795 -15623 -

L1 H -27499 -27034 -27409 -27501 -27047 -27421
L∞ H -27465 -27143 - -27473 -27184 -

Table 4.4: The return with performance guarantees for the Population experiment. The
return of the nominal MDP is -4127.

34

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 3.75 15.7 10.9 3.64 15.0 10.6
L∞B 3.04 20.2 - 2.87 19.8 -

L1 H -8.91 1.58 -6.18 -8.94 0.89 -7.74
L∞ H -8.37 5.83 - -8.63 4.90 -

Table 4.5: The return with performance guarantees for the Inventory Management experi-
ment. The return of the nominal MDP is 163.1.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 3.83 8.28 4.21 3.82 8.25 4.20
L∞B 3.81 7.78 - 3.78 7.71 -

L1 H 2.81 3.44 2.87 2.80 3.42 2.85
L∞ H 3.18 3.94 - 3.15 3.92 -

Table 4.6: The return with performance guarantees for the Cart-Pole experiment. The return
of the nominal MDP is 11.11.

In this chapter and the previous one, we proposed a new approach for optimizing the

percentile criterion using RMDPs that goes beyond the conventional ambiguity sets. At the

heart of our method are new bounds on the performance loss of the RMDPs with respect

to the optimal percentile criterion. These bounds show that the quality of the RMDP is

driven by the span of its ambiguity sets along a specific direction. We proposed a linear-time

algorithm that minimizes the span of the ambiguity sets and also derived new sampling

guarantees. Our experimental results show that this simple RMDP improvement can lead

to much better return guarantees. Future work needs to focus on scaling the method to a

large state-space using value function approximation or other techniques.

35

CHAPTER 5

Fast Algorithms for L∞-constrained S-rectangular Robust MDPs

Markov decision processes (MDPs) are a powerful framework for dynamic decision-making

problems and reinforcement learning [8, 67, 75]. The MDP model assumes that the exact

transition probabilities and rewards are available. However, these transition probabilities

are typically unknown and must be estimated from sampled data. Such estimations are

error-prone, and the MDP’s solution is sensitive to the introduced statistical errors. In

particular, the quality of the optimal policy degrades significantly even with minor errors in

the transition probabilities [44].

Robust MDPs (RMDPs) mitigate MDPs’ sensitivity to estimation errors by computing

an optimal policy for the worst plausible realization of the transition probabilities. This

set of plausible transition probabilities is known as the ambiguity set. In this chapter,

we study RMDPs with S-rectangular ambiguity sets, which can be solved in polynomial

time [27]. However, computing the worst-case realization of transition probabilities often

requires solving a linear program (LP) or another convex optimization problem. Modern

solvers are powerful and efficient, but as the problem size grows, solving an LP for every

state becomes computationally prohibitive [30].

Most prior work has focused on RMDPs with L1-constrained ambiguity sets because

convenient concentration inequalities [62, 69, 80] and fast algorithms [31, 34, 64] exist for this

scenario. The concentration inequalities play an essential role in the data-driven construction

of high-confidence RMDPs. However, ambiguity sets defined by the L∞ norm are more

natural and interpretable by human modelers[14, 21], and can significantly outperform L1-

36

based ambiguity sets in many circumstances [6]. Unfortunately, RMDPs with S-rectangular

ambiguity sets defined in terms of the L∞ ball can currently be solved only using general-

purpose LP solvers, which are complex and slow.

As our main contribution, we propose a new, fast algorithm for solving RMDPs with L∞-

constrained ambiguity sets. Our algorithm combines a new homotopy continuation method

with a bisection method to achieve quasi-linear O(SA logS) time complexity concerning the

number of states S and actions A. This computational complexity compares favorably with

the cubic O((SA)3.5) time complexity of general interior-point LP algorithms. To develop

our algorithms, we identify new simplifying properties of the robust optimization problem

defined over L∞ balls.

Although bisection and homotopy methods have been used previously in robust MDPs,

their use and assumptions differ significantly from this work. A bisection method was

used to solve SA-rectangular RMDPs [55], but their approach does not generalize to S-

rectangular RMDP that we target. Homotopy and bisection methods have been used to

solve L1-constrained ambiguity sets [30, 31], but these methods are based on sparsity prop-

erties of the L1 norm, which do not hold for the L∞ norm. We elaborate on this crucial

difference after we introduce our algorithm. The existing efficient algorithms developed for

the SA-rectangular RMDPs with L∞ balls [21] do not generalize to S-rectangular RMDPs.

Developing fast optimization algorithms for S-rectangular RMDPs is challenging because

optimal policies may need to be randomized.

Several fast new methods have been proposed recently for solving RMDPs more efficiently.

They suggest replacing the standard value and policy iteration methods with more efficient

algorithms, such as forms of modified policy iteration [31, 37] or gradient descent [24]. Most

of these accelerated methods can further benefit from the fast Bellman operator algorithms

that we propose in this work.

In Section 2.2, we described the basic Robust MDP framework. The remainder of this

chapter is organized as follows. Section 5.1 proposes a new homotopy method for solving

37

SA-rectangular ambiguity sets, which serves as a building block for our main contribution.

In Section 5.2, we propose a bisection method that can solve, in combination with the

homotopy method, RMDPs with S-rectangular ambiguity sets. Finally, Section 5.3 presents

experimental results that show that our method is over 1, 000 times faster than using Gurobi,

a leading commercial linear solver when solving RMDPs with hundreds of states.

5.1 Computing SA-Rectangular Bellman Operator in Linear Time

This section develops a new quasi-linear time algorithm for computing the SA-rectangular

robust Bellman operator defined by the L∞ norm. This entails solving the following opti-

mization problem

(Lvvv)s = max
a∈A

min
ξ≤κs,a

qs,a(ξ,vvv) . (5.1)

The algorithm developed in this section also serves as the primary building block of the

S-rectangular algorithm described in Section 5.2. The remainder of the section is organized

as follows. Section 5.1.1 first analyzed the LP formulation of the function q and, then,

Section 5.1.2 uses these properties to develop a new, fast homotopy continuation algorithm.

Computing the SA-rectangular robust Bellman operator for a fixed state s, action a, and

a value function vvv requires one to evaluate the nature response function qs,a(ξ,vvv) in (2.3).

Because the symbols s, a,vvv are fixed throughout this section, we omit them in the notation.

For example, we use q(ξ) instead of qs,a(ξ,vvv), and p̄pp in place of p̄pps,a. To further eliminate

clutter, let zzz = rs,a · 111 + γ · vvv. Then, the following optimization problem

qs,a(ξ,vvv) = min
ppp∈∆S

{
rs,a + γ · pppTvvv |

∥∥p̄pps,a − ppp∥∥∞ ≤ ξ
}
. (5.2)

can be formulated as the following parametric LP:

q(ξ) = min
ppp∈∆S

{
pppTzzz | ‖p̄pp− ppp‖∞ ≤ ξ

}
= min

ppp∈RS

{
zzzTppp | 1Tppp = 1, −ξ ≤ pi − p̄i ≤ ξ, pi ≥ 0, i = 1, . . . , S

}
.

(5.3)

38

The remainder of this section develops fast algorithms for solving (5.3) for all values ξ ≥ 0.

5.1.1 Properties of Nature Response Function q

The LP in (5.3) can be solved using generic solvers, like Gurobi or Mosek, but these are

impractically slow for solving RMDPs. The optimization in (5.3) can also be solved in

quasi-linear time for any fixed ξ ≥ 0, as we summarize in Appendix A.3.5. The known quasi-

linear algorithm is, unfortunately, insufficient for solving the S-rectangular robust Bellman

operator in Section 5.2. In this section, we prove results that pave the way for solving (5.3)

for all ξ ≥ 0 simultaneously in quasi-linear time, which enables efficient algorithms for both

S- and SA-rectangular RMDPs.

It will be convenient to use ppp?(ξ) to refer to an optimal solution in (5.3). To avoid

unnecessary technicalities, we assume that all elements of zzz are distinct, which guarantees

that the optimal solution ppp?(ξ) is unique. In practice, one may add an arbitrarily small value

to the elements of zzz to ensure that they are all distinct. To get some intuition into the form

of the nature response function q(ξ) and its optimal solution ppp?(ξ), consider the following

simple example.

Example 5.1.1. Consider an RMDP with six states, one action, zzz = (−1, 0, 1, 2, 3, 4)T, and

nominal transition probabilities p̄pp = (0.0, 0.1, 0.3, 0.1, 0.2, 0.3)T. The functions q(ξ) and ppp?(ξ)

are depicted in Figures 5.1 and 5.2, where Figure 5.2 shows the evolution of each pi(ξ) using

a different color for each i.

The following property of the function q is indispensable for our analysis and shows that

q(ξ) is always of the form depicted in Figure 5.1. It follows from standard LP properties and

is proved in Appendix A.3.1.

Lemma 5.1.2. The function q(ξ) is continuous, piecewise linear, non-increasing, and convex

in ξ.

To develop an efficient algorithm, we now analyze the structure of the bases of the

39

−1

0

1

2

0.0 0.3 0.6 0.9

Size of ambiguity set: ξ

R
ob

us
t Q

−
fu

nc
tio

n:
 q

(ξ
)

Figure 5.1: Function q(ξ) in Exam-
ple 5.1.1.

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9

Size of ambiguity set: ξ

Tr
an

si
tio

n
pr

ob
ab

ili
ty

: p
i∗ Index

● 0

1

2

3

4

5

Figure 5.2: Probabilities ppp?(ξ) in Exam-
ple 5.1.1.

LP (5.3). Recall that a basis is a subset of S linearly independent constraints in the LP,

which must hold with equality. There are S constraints included in each basis because S

is the number of optimization variables. Note that constraints may be active (or violated)

without being included in the basis.

To represent a basis in (5.3), we use sets RB,DB,NB, TB ⊆ {1, . . . , S} to indicate which

constraints are included in the basis with their meanings summarized in Table 5.2. If i ∈ DB

we call it a donor, if i ∈ RB, we call it a receiver, and if i ∈ NB, we call it a none. The

set TB = {1, . . . , S} \ RB \ DB \ NB represents the remaining indexes and i ∈ TB is called a

trader. Lemma 5.1.4 below justifies the names for these sets.

Our homotopy algorithm will leverage the specific behavior of the optimal solution ppp?(ξ)

as a function of ξ. Because each basis B represents a set of S linearly independent inequalities

with S variables, a unique solution pppB(ξ) exists for any value ξ. Note that pppB(ξ) need not

be optimal or feasible.

The following lemma establishes the properties of the bases in (5.3) that we need to

Index i ∈ Constraints in B

RB (receiver) pi − p̄i ≤ ξ in B
DB (donor) p̄i − pi ≤ ξ in B
NB (none) pi ≥ 0 in B

Table 5.1: Composition of B for i ∈ S.

40

consider in our optimization; the proof can be found in Appendix A.3.1.

Lemma 5.1.3. Suppose that ppp? is optimal in (5.3) for some ξ ≥ 0. Then, there exists a basis

B such that (i) ppp? = pppB(ξ), (ii) sets RB,DB,NB, TB do not intersect, (iii) |RB| + |DB| +

|NB|+ |TB| = S, (iv) |TB| = 1, and (v) zi < zj < zk for each i ∈ RB, j ∈ TB, k ∈ DB ∪NB.

Lemma 5.1.3 is important because it limits the bases relevant to the optimization, which

is crucial for building fast algorithms. In particular, it shows that the sets R,D,N , T

partition the set S, and there is always exactly one trader. The lemma also shows that z

coefficients for receivers are smaller than the coefficient for the trader, which is smaller than

the coefficients for donors and nones.

The following lemma establishes the rate of change of the linear function pppB(ξ), which

is the last necessary component for our homotopy algorithm. The lemma’s proof is in Ap-

pendix A.3.1.

Lemma 5.1.4. The derivatives ṗpp = ∇ξ pppB(ξ) for any basis B that satisfies the properties in

Lemma 5.1.3 are equal for each i ∈ S to

ṗi = 1 if i ∈ RB, ṗi = −1 if i ∈ DB, ṗi = 0 if i ∈ NB, ṗi = |DB| − |RB| if i ∈ TB .

Moreover, the slope is q̇ = d/dξ qB(ξ) =
∑

i∈RB zi −
∑

j∈DB zj +
∑

τ∈TB ṗτzτ .

Note that Lemma 5.1.3 shows that each i ∈ S is either a receiver, a donor, a trader, or

none. Lemma 5.1.4 then shows that with an increasing ξ, a donor donates its probability

mass, a receiver receives probability mass, a trader either donates or receives at a variable

rate, and a none remains unchanged.

5.1.2 Homotopy Algorithm

We are now ready to describe the proposed homotopy method and prove its correctness and

complexity. Algorithm 4 summarizes a conceptual version of the homotopy algorithm. As

41

discussed below, one needs to avoid computing the full gradient ∇ξ pppB(ξ) to achieve quasi-

linear time complexity. The complete algorithm with quasi-linear runtime is described in

Algorithm 9 in the appendix.

The main idea of Algorithm 4 is simple: it iteratively computes the linear segments of

q(ξ) for all ξ ≥ 0. The algorithm starts with ξ = 0, where the optimal solution is ppp0 = p̄pp

with objective value q0 = pppT0zzz. Then, the algorithm tracks the optimal bases in q(ξ) as ξ

increases. When the pppBt(ξ) becomes infeasible with the increasing ξ, the algorithm finds

a new optimal basis Bt+1 and continues until it arrives at a basis with d/dξ q(ξ′) = 0; the

function q is constant for all ξ ≥ ξ′. Since q(ξ) is piecewise linear in ξ (see Lemma 5.1.2),

we obtain its full description from all optimal bases.

Algorithm 4: Homotopy method to compute q(ξ)

Input: Objective zzz, and nominal probabilities p̄pp
Output: Breakpoints (ξt)t=0,...,T+1 and (qt)t=0,...,T+1 such that qt = q(ξt)

1 Initialize ξ0 ← 0, t← 0, ppp0 ← p̄pp and q0 ← q(ξ0) = pppT0zzz, τ0 = dS/2e and basis B0

such that: ;
2 TB0 = {τ0}, RB0 = {i | i < τ0}, DB0 = {j | j > τ0}, NB0 = {} ;
3 while q̇t < 0 do
4 Compute maximum step size for Bt to remain feasible (TBt = {τt}): ;
5

∆ξt ← max {ξ ≥ 0 | pppt + ξ ·∇ξ pppBt(ξt) ≥ 000, |(pppt + ξ ·∇ξ pppBt(ξt)− p̄pp)τt | ≤ ξt + ξ}
;

6 Update breakpoints: ;
7 pppt+1 ← pppt + ∆ξt · ∇ξ pppBt(ξt) ;
8 qt+1 ← pppTt+1zzz ;
9 ξt+1 ← ξt + ∆ξt ;

10 Let Bt+1 ← next basis with the steepest slope (see Lemma 5.1.7 and
Table 5.2); ;

11 Let t← t+ 1 ;

12 end
13 Let ξT+1 ← 1 and qT+1 ← qT ;
14 return (ξt)t=0,...,T+1, and (qt)t=0,...,T+1

The following theorem proves the correctness of Algorithm 4. Informally, the theorem

shows that the function q is piecewise linear with breakpoints (points of non-linearity) only

at ξt, t = 1, . . . , T + 1. Note that ξT+1 = 1 because this is the upper bound on the L∞ norm

42

ξ2ξ2ξ2ξ1ξ1ξ1
B0B0B0

B1B1B1

B2B2B2

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5

Size of ambiquity set: ξ

R
ob

us
t Q

−
fu

nc
tio

n:
 q

(ξ
)

Figure 5.3: An illustration of Algorithm 4.

of a difference of two discrete probability distributions, and, as a result, the function q(ξ) is

constant for ξ > 1. The proof can be found in Appendix A.3.1.

Theorem 5.1.5. Suppose that Algorithm 4 returns (ξt)t=0,...,T+1 and (qt)t=0,...,T+1. Then

q(α · ξt + (1− α) · ξt+1) = α · q(ξt) + (1− α) · q(ξt+1) for α ∈ [0, 1] and t = 0, . . . , T + 1.

We will refer to Figure 5.3 in order to provide the intuition that underlies the construction

of Algorithm 4 and its correctness. The figure depicts an example state of Algorithm 4 at

t = 2 and Line 10. The solid lines show the values qB1 and qB2 when they are feasible

and optimal. The dashed lines indicate when the bases are infeasible or suboptimal at each

breakpoint ξ1, ξ2. The colored lines at ξ2 indicate the slopes for the possible candidates for

B2. The algorithm chooses a basis with a minimal slope.

The correctness of Algorithm 4 follows from the following three lemmas. The first lemma

shows that the algorithm chooses the initial basis with the minimum possible slope.

Lemma 5.1.6. The basis B0 constructed in Line 4 of Algorithm 4 is feasible at ξ = 0 and has

43

Type Bt+1 DBt+1 RBt+1 TBt+1 NBt+1

1: D → N B̂1 DBt \ {l} RBt TBt NBt ∪ {l}
2: T → N B̂2 DBt RBt \ {m} {m} NBt ∪ TBt
3: T → D B̂3 DBt ∪ TBt RBt \ {m} {m} NBt

Table 5.2: Possible types of basis change at a breakpoint ξt+1 described in Lemma 5.1.7.

the steepest slope among other feasible basis B that satisfies the conditions of Lemma 5.1.3:

d/dξ qB0(0) ≤ d/dξ qB(0) .

The second lemma shows that the following basis will be selected according to one of the

rules in Table 5.2.

Lemma 5.1.7. Let a basis Bt be optimal for ξt+1 in Algorithm 4, such that ppp?(ξt+1) =

pppBt(ξt+1) and q(ξt+1) = qBt(ξt+1). Assume that pppBt(ξ) is infeasible for ξ > ξt+1. If B are all

bases feasible for some ξ > ξt then one with the steepest slope can be constructed as

argmin
B∈B

d

dξ
q(ξt+1) 3

B̂1 if (pppBt(ξt+1))l = 0, for some l ∈ DBt

B̂2 if (pppBt(ξt+1))τ = 0, and TBt = {τ}

B̂3 if (p̄pp− pppBt(ξt+1))τ = ξt+1, and TBt = {τ}

,

where B̂1, B̂2, B̂3 are defined in Table 5.2 and m ∈ argmaxi∈RBt zi.

Lemma 5.1.7 shows that there are three possible types of basis change; any other possible

choice of the basis would contradict the continuity of q(ξ) (Lemma 5.1.2). Recall also that

Lemma 5.1.3 shows that there is always exactly one trader. The first type of basis change

occurs when pl for a donor l ∈ D reaches zero; the donor turns into a none in the new

basis. The second type of basis change occurs when the trader probability mass becomes

zero; the trader then turns into a none and the receiver with the largest z value becomes

the new trader. The third type of basis change happens when the trader’s gradient satisfies

44

d/dξ pτ (ξ) < −1 and its probability mass reaches to its lower bound for a given ξ making the

basis infeasible for greater values of ξ. The trader then becomes a donor, and, again, the

receiver with the largest z value becomes the new trader.

Finally, the third lemma shows that the optimal basis Bt identified at ξt remains feasible

until ξt+1. Note that the convexity of q(ξ) implies that the feasible basis remains optimal.

Lemma 5.1.8. If Bt is feasible and optimal at ξt in Algorithm 4, then it is also optimal on

the interval [ξt, ξt + ∆ξt] computed in Line 4 of Algorithm 4.

We now turn to the computational complexity of Algorithm 9. As the following theorem

shows, the number of iterations T in Algorithm 4 is at most O(S). Unfortunately, keeping

track of pppt in each iteration of Algorithm 4 requires also O(S) time leading to the overall

time complexity of O(S2). To adapt Algorithm 4 to run in quasi-linear time, Algorithm 9, in

the appendix, generates the necessary values ξt, qt without tracking the complete pppt values.

Its runtime is quasi-linear because it needs to sort the values of zzz to perform the optimizaton

in Line 10 in constant time.

Theorem 5.1.9. Algorithm 4 terminates in at most O(S) iterations and can be adapted to

run in O(S logS) time (see Algorithm 9 in Appendix A.3.2).

We conclude by discussing the relationship with the homotopy method proposed for solv-

ing RMDPs with the L1 ambiguity sets [30]. Although our algorithm is also a homotopy

method, it is based on analysis that departs significantly from earlier work. The simplifying

properties for the L∞ ambiguity sets differ considerably from the L1 norm. When the ambi-

guity sets are defined as L1 balls, only two components of ppp change at the time. Figure 5.2

illustrates that when the ambiguity sets are L∞ balls, all components of ppp may change with

the increasing ξ. The fast algorithm for the L∞-constrained RMDP relies on the more sub-

tle structure of the optimal bases described in Lemma 5.1.3 which leads to a more complex

algorithm.

45

5.2 Computing S-Rectangular Bellman Operator in Linear Time

In this section, we propose a fast algorithm for compute the robust Bellman operator (2.5) for

S-rectangular RMDPs. We assume a fixed state s ∈ S and omit the subscripts throughout

the section. For instance, the nominal probabilities for state s and action a are denoted by

p̄ppa ∈ ∆A. We also assume a fixed value function vvv ∈ RS and let zzza = rs,a ·111 + γ ·vvv for a ∈ A.

The fast algorithm for computing the S-rectangular robust Bellman operator builds on

Algorithm 4. As Theorem 5.1.9 shows, the function qa defined in (2.3) is piecewise linear

with O(S) linear segments that can be computed efficiently by Algorithm 9. Since qa is

piecewise linear, it is easy to construct its inverse just by swapping ξt and qt to get the

following function:

q−1
a (u) = min

ppp∈∆S

{
‖ppp− p̄ppa‖∞ | ppp

Tzzza ≤ u
}
, ∀a ∈ A. (5.4)

The function q−1
a returns the budget that nature needs to achieve a response u. Using the

function q−1
a , we can reformulate the S-rectangular robust Bellman operator as:

(Lvvv)s = max
ddd∈∆A

min
ξξξ∈RA+

{∑
a∈A

da · qa(ξa) |
∑
a∈A

ξa ≤ κ

}
= min

u∈R

{
u |
∑
a∈A

q−1
a (u) ≤ κ

}
(5.5)

The correctness of this formulation follows by standard duality arguments and is proved in

Lemma A.3.3 in Appendix A.3.3.

The optimization in (5.5) is remarkable because its objective is one-dimensional function

with one constraint. A natural algorithm to use with such an optimization problem is the

bisection method outlined in Algorithm 5 (see Algorithm 11 in the appendix for a more

detailed algorithm). Algorithm 5 keeps an interval [umin, umax] such that the optimal u? sat-

isfies that u? ∈ [umin, umax]. In every time step, the algorithm bisects the interval [umin, umax]

in half and updates umin, umax in order to preserve that u? ∈ [umin, umax]. One may think of

umin as the maximal known infeasible u in (5.5) and of umax as the minimal known feasible

46

u in (5.5).

Algorithm 5: Bisection method for solving (5.4).

Input: Desired precision ε, functions q−1
a ,∀a ∈ A

Output: û such that |u? − û| ≤ ε, where u? is optimal in Equation (5.4)
1 Initialize bounds: ;
2 umin ← mina∈A,s∈S(zzza)s ;
3 umax ← maxa∈A,s∈S(zzza)s ;
4 while umax − umin > 2 ε do
5 Let u← (umin + umax)/2 ;
6 if

∑
a∈A q

−1
a (u) ≤ κ then

7 umax ← u
8 else
9 umin ← u

10 end

11 end
12 return (umin + umax)/2

The time complexity of Algorithm 5 depends on the desired precision ε. To remove

this dependence on ε, it is sufficient to replace the bisection by binary search over the

breakpoints; we give the details of this method in Algorithm 11 in the appendix. The

following theorem proved in Appendix A.3.3, summarizes the correctness and complexity of

the proposed algorithms.

Theorem 5.2.1. The combined Algorithms 4 and 5 compute the S-rectangular robust Bell-

man operator for any state s ∈ S and can be adapted (see Algorithms 9 and 11) to run in

time O(SA log(SA)).

5.3 Numerical Results

This section compares the empirical runtime of Algorithms 4 and 5 with the runtime of

Gurobi 9.1, a leading LP solver. The results were generated on a computer with an Intel

i7-9700 CPU with 32 GB RAM; the algorithms are implemented in C++.

As the main benchmark problem, we use the classic inventory management (IM) prob-

lem [84]. In this problem, the decision-maker must decide at every time step how much

47

10

100

1,000

100 200 300 400
Number of states

R
el

at
iv

e
R

un
tim

e

Algorithm Gurobi Homotopy

10

100

1,000

100 200 300 400
Number of states

R
el

at
iv

e
R

un
tim

e

Algorithm Gurobi Bisection

Figure 5.4: Relative computation time (unitless) of our algorithms and an LP solver over
nominal MDP in SA-rectangular (left) and S-rectangular (right) inventory management
RMDP.

inventory to order. The number of states and actions in this problem corresponds to the

holding capacity and order size respectively. This makes it easy to scale the number of

states and actions and evaluate how the algorithms scale with problem size. To evaluate

the performance of our methods on small problems, we also consider the RiverSwim (RS)

domain [74], and the Machine Replacement (MR) domain [13]. Please see Appendix A.3.4

for the detailed description of these domains.

Figure 5.4 shows the time to compute the robust Bellman operator for a single state in

the inventory management domain. The x-axis represents the number of states (maximum

holding capacity) in the domain. The number of actions is the same as the number of states.

The y-axis represents the time to compute the robust Bellman operator divided by the time

to calculate the standard (non-robust) Bellman operator. The results show that even in

MDPs with a few hundred states, our proposed algorithms are about 100-times faster than

the leading LP solver. Interestingly, our algorithm is an order of magnitude faster, even

for minor problems. We use a robustness budget κ = 1.2, but the computation time is

insensitive to the particular choice of κ.

Table 5.3 compares the time to compute the robust Bellman operator on machine re-

placement (MR), river swim (RS), and inventory management (IM) with 30 state problems.

It is worth emphasizing that MR and RS are tiny problems with less than 30 states, yet

our algorithms are up to 800 times faster than using an LP solver. This indicates that our

48

Rect. Algorithm MR RS IM

SA Algorithm 4 < 1 3 10
SA Gurobi LP 2960 2240 9770

S Algorithm 5 40 52 67
S Gurobi LP 129 217 2740

Table 5.3: Time (ms) to compute L for S- and SA-rectangular RMDPs with L∞ sets.

Rect. Algorithm MR RS IM

SA [Ho]-Alg.1 < 1 2 1
SA Gurobi LP 92 363 1140

S [Ho]-Alg.2 1 2 5
S Gurobi LP 79 317 2260

Table 5.4: Time (ms) to compute L for S- and SA-rectangular RMDPs with L1 sets [31].

methods scale well with the number of states and that the constant overhead is relatively

small. For the sake of completeness, we include in Table 5.4 the timing results obtained

for the RMDP with L1 ambiguity sets. These results show that solving the L∞-constrained

RMDP is more complex than the L1-constrained RMDP, but also that we can achieve similar

dramatic speedups in L∞ constrained RMDPs as [31].

In this chapter, we introduced a new homotopy method for calculating robust Bellman

operators for S- and SA-rectangular ambiguity sets constructed with L∞-norm ball. The-

oretically, we show that the worst-case time complexity of our algorithms is quasi-linear:

O(SA log(S)). The algorithms also perform well in practice, outperforming a leading LP

solver by several orders of magnitude.

In addition to being faster than a general-purpose LP solver, our algorithms are also

much simpler. They make it possible to solve L∞-constrained RMDPs without the cost and

complexity of involving a general LP solver. Although free and open-source LP solvers are

available, their performance falls significantly short of commercial ones. The algorithms we

propose are also easy to combine with value function approximation methods in RMDPs [78].

It is important to understand whether similar algorithms can be developed for RMDPs

49

with more complex ambiguity sets, such as ones defined using Wasserstein distance, L2-norm,

or KL-divergence.

50

CHAPTER 6

Low-rank Feature Selection for Linear Value Function

Reinforcement learning (RL) methods typically use value function approximation to solve

problems with large state spaces [75, 76]. The approximation makes it possible to generalize

from a small number of samples to the entire state space. Perhaps the most common methods

for value function approximation are neural networks and linear methods. Neural networks

offer unparalleled expressibility in complex problems, but linear methods remain popular

due to their simplicity, interpretability, ease of use, and low sample and computational

complexity.

This chapter, aligned with previous chapters, focuses on batch reinforcement learning [41].

In batch RL, all domain samples are provided in advance as a batch, and it is impossible or

difficult to gather additional samples. This is common in many functional areas. In medical

applications, for example, it is usually too risky and expensive to run additional tests. In

environmental applications, it may take a whole growing season to obtain a new batch of

samples.

Overfitting is a particularly difficult challenge in practical deployments of batch RL.

Detecting that the solution overfits the available data can be complex. Using a regular test

set does not work in RL because of the difference between the sampling policy and the

optimized policy. Also, off-policy policy evaluation remains difficult in large problems [35].

As a result, a solution that overfits the training batch is often discovered only after it has

been deployed and real damage has been done.

With linear approximation, overfitting occurs more easily when too many features are

51

used. In this chapter, we present Fast Feature Selection (FFS), a new method that can

effectively reduce the number of features in batch RL. To avoid confusion, we use the term

raw features to refer to the natural features of a given problem. They could, for example, be

the individual pixel values in video games or particular geographic observations in geospatial

applications. Raw features are usually numerous, but each feature alone has a low predictive

value. FFS constructs (rather than selects) a small set of useful features that are a linear

combination of the provided raw features. The constructed features are designed to be used

in concert with LSTD, LSPI, and other related batch RL methods.

FFS reduces the number of features by computing a low-rank approximation of the

transition matrix after it is compressed using the available raw features. Low-rank matrix

approximation and completion gained popularity from their use in collaborative filtering [54],

but they have been also applied to reinforcement learning and other machine learning do-

mains [11, 58, 68]. None of this prior work, however, computes a low-rank approximation of

the compressed transition matrix.

Several feature selection methods for reducing overfitting in RL have been proposed

previously, but none of them explicitly target problems with low-rank (compressed) transition

probabilities. L1 regularization, popularized by the LASSO, has been used successfully in

reinforcement learning [39, 43, 66]. L1 regularization assumes that only a few of the features

are sufficient to obtain a good approximation. This is not a reasonable assumption when

individual raw features are of a low quality.

Proto-value functions [48] use the spectral decomposition of the transition probability

matrix or of a related random walk. Although the spectrum of a matrix is closely related to

its rank, eigenvector-based methods provide weak approximation guarantees even when the

majority of the eigenvalues are zero [61]. BEBFs and Krylov are other techniques that work

well when the characteristic polynomial of the transition probability matrix is of a small

degree [60, 61]; this property is unrelated to the matrix rank.

The closest prior method to FFS is LFD [72]. LFD works by computing 1) a linear

52

encoder that maps the raw features of a state to a small-dimensional space and 2) a linear

decoder that maps the small-dimensional representation back to the raw features. While

LFD was not introduced as a low-rank approximation technique, we show that similarly to

FFS, it introduces no additional error when the matrix of transition probabilities is low-rank.

LFD, unfortunately, has several limitations. It involves solving a non-convex optimization

problem, is difficult to analyze, and provides no guidance for deciding on the right number

of features to use.

As the main contribution, this chapter proposes and analyzes FFS both theoretically

and empirically. We derive new bounds that relate the singular values of the transition

probability matrix to the approximation error. As a secondary contribution, we provide a

new interpretation of LFD as a type of low-rank approximation method. We argue that

FFS improves on LFD in terms of providing fast and predictable solutions, similar or better

practical performance, and guidance on how many features should be selected.

We summarize the relevant properties of linear value function approximation in Markov

decision processes in Chapter 2. The remainder of this chapter is organized as follows. We

present the preliminary Bellman error analysis in Section 6.1. Section 6.2 describes FFS and

new bounds that relate singular values of the compressed transition probability matrix to

the approximation error. Section 6.3 then compares FFS with other feature construction

algorithms, and, finally, the empirical evaluation in Section 6.4 indicates that FFS is a

promising feature selection method.

6.1 Bellman Error Analysis

The standard bound on the performance loss of a policy computed using, for example, ap-

proximate policy iteration can be bounded as a function of the Bellman error (e.g., Williams

and Baird [82]). To motivate FFS, we use the following result that shows that the Bell-

man error can be decomposed into the error in 1) the compressed rewards and in 2) the

compressed transition probabilities.

53

Theorem 6.1.1 ([72]). Given a policy π and features Φ, the Bellman error of a value

function v = Φwπ
Φ satisfies:

BEΦ = (rπ − ΦrπΦ)︸ ︷︷ ︸
∆π
r

+γ (P πΦ− ΦP π
Φ)︸ ︷︷ ︸

∆π
P

wπ
Φ .

We seek to construct a basis that minimizes both ‖∆π
r ‖2 and ‖∆π

P‖2. These terms can

be used to bound the L2 norm of Bellman error as:

‖BEΦ ‖2 ≤ ‖∆π
r ‖2 + γ‖∆π

P‖2‖wπ
Φ‖2 ≤

≤ ‖∆π
r ‖2 + γ‖∆π

P‖F‖wπ
Φ‖2 ,

(6.1)

where the second inequality follows from ‖X‖2 ≤ ‖X‖F .

The Bellman error (BE) decomposition in (6.1) has two main limitations. The first

limitation is that it is expressed in the L2 norm rather than the L∞ norm, which is needed

for standard Bellman residual bounds [82]. This can be addressed, in part, by using the

weighted L2 norm bounds [53]. The second limitation of (6.1) is that it depends on ‖wπ
Φ‖2

besides the terms ‖∆π
r ‖2, ‖∆π

P‖2 that we focus on. Since ‖wπ
Φ‖2 can be problem-dependent,

the theoretical analysis of its impact on the approximation error is beyond the scope of this

work.

6.2 FFS: A Fast Low-Rank Approximation for Feature Selection

In this section, we describe the proposed method for selecting features from a low-rank

approximation of the transition probabilities. To simplify the exposition, we first introduce

the method for the tabular case and then extend it to the batch RL setting with many raw

features in Section 6.2.1.

The Tabular Fast Feature Selection algorithm is summarized in Algorithm 6. Informally,

the algorithm selects the top k left-singular vectors and the reward function for the features.

Our error bounds show that including the reward function as one of the features is critical.

54

Algorithm 6: TFFS: Tabular Fast low-rank Feature Selection

Input: Transition matrix P , rewards r, and number of features k + 1
1 Compute SVD decomposition of P : P = UΣV T ;
2 Assuming decreasing singular values in Σ, select the first k columns of U :

U1 ← [u1, . . . , uk] ;
3 return Approximation features: Φ = [U1, r].

It is not surprising that when the matrix P is of a rank at most k then using the first k

left-singular vectors will result in no approximation error. However, such low-rank matrices

are rare in practice. We now show that it is sufficient that the transition matrix P is close

to a low-rank matrix for TFFS to achieve small approximation errors. In order to bound the

error, let the SVD decomposition of P be SVD(P) = UΣV T, where

U =

[
U1 U2

]
, Σ =

Σ1 0

0 Σ2

 , V =

[
V1 V2

]
.

That implies that the transition probability matrix can be expressed as:

P = U1Σ1V
T
1 + U2Σ2V

T
2 .

Let matrix U1 have k columns and let the singular values be ordered decreasingly. Then,

Algorithm 6 generates Φ = [U1, r]. The following theorem bounds the error regarding the

largest singular value for a vector not included in the features.

Theorem 6.2.1. Assuming k features Φ computed by Algorithm 6, the error terms in The-

orem 6.1.1 are upper bounded as:

‖∆P‖2 ≤ ‖Σ2‖2,

‖∆r‖2 = 0 .

The proof of the theorem is deferred to Appendix A.4.1. Theorem 6.2.1 implies that if we

55

choose Φ in a way that the singular values in Σ2 are zero (when the transition matrix is low

rank), ∆P would be zero. That means that for a matrix of rank k there is no approximation

error because ‖∆P‖2 = 0. More broadly, when the rank of the matrix is greater than k, the

error is minimized by choosing the singular vectors with the greatest singular values. That

means that TFFS chooses features Φ that minimize the error bound in Theorem 6.2.1.

6.2.1 Using Raw Features

Using TFFS in batch RL is impractical since the transition matrix and reward vector are

usually too large and are not available directly. The values must instead be estimated from

samples and the raw features.

Algorithm 7: FFS: Fast low-rank Feature Selection from raw features

Input: Sampled raw features A, next state of raw feature A′ , rewards r, and
number of features k + 1

1 Estimate compressed transition probabilities PA = A+A′ as in LSTD ;
2 Compute SVD decomposition of PA: PA = UΣV T ;
3 Compute compressed reward vector: rA = A+r ;
4 Assuming decreasing singular values in Σ, select the first k columns of U :

U1 ← [u1, . . . , uk] ;

5 return Approximation features: Φ̂ = [U1, rA].

As described in the introduction, we assume that the domain samples include a potentially

large number of low-information raw features. We use A to denote the n × l matrix of raw

features. As with Φ, each row corresponds to one state, and each column corresponds to one

raw feature. The compressed transition matrix is denoted as PA = A+PA and compressed

rewards are denoted as rA = A+r and are computed as in (2.9). To emphasize that the

matrix P is not available, we use A′ = PA to denote the expected value of features after

one step. Using this notation, the compressed transition probabilities can be expressed as

PA = A+A′.

Algorithm 7 describes the FFS method that uses raw features. Similar to TFFS, the

algorithm computes an SVD of the transition matrix. Note that the features Φ̂ are linear

56

combinations of the raw features. To get the actual state features, it is sufficient to compute

AΦ̂ where Φ̂ is the output of Algorithm 7. The matrix Φ̂ represents features for PA and is of

a dimension l × k where l is the number of raw features in A. We omit the details for how

the values are estimated from samples, as this is well known, and refer the interested reader

to Johns, Petrik, and Mahadevan [36], Lagoudakis and Parr [40].

Using raw features to compress transition probabilities and rewards is simple and practi-

cal, but it is also essential to understand the consequences of relying on these raw features.

Because FFS computes features that are a linear combination of the raw features, they can-

not express more complex value functions. FFS thus introduces additional error—akin to

bias—but reduces sampling error—akin to variance. The following theorem shows that the

errors due to our approximation and using raw features merely add up with no additional

interactions.

Theorem 6.2.2. Assume that the raw features A for P and computed features Φ̂ for PA are

normalized, such that ‖A‖2 = ||Φ̂||2 = 1. Then:

‖∆AΦ̂
P ‖2 ≤ ‖∆A

P‖2 + ‖∆Φ̂
PA
‖2 ,

‖∆AΦ̂
r ‖2 ≤ ‖∆A

r ‖2 + ‖∆Φ̂
rA
‖2 ,

where the superscript of ∆ indicates the feature matrix for which the error is computed; for

example ∆Φ̂
PA

= PAΦ̂− Φ̂(PA)Φ̂ .

Note that the normalization of features required in Theorem 6.2.2 can be achieved by

multiplying all features by an appropriate constant, which is an operation that does not

affect the approximate value function. Scaling features does, however, affect the magnitude

of wΦ, which, as we discuss above, is problem-specific and largely independent of the feature

selection method used.

Perhaps one of the most attractive attributes of FFS is its simplicity and low computa-

tional complexity. Selecting the essential features only requires computing the singular value

57

decomposition—for which many efficient methods exist—and augmenting the result with

the reward function. As we show next, this simple approach is well-motivated by bounds on

approximation errors.

We described FFS in terms of singular value decomposition and showed that when the

(compressed) transition probability matrix has a low rank, the approximation error is likely

to be small. Next, we describe the relationship between FFS and other feature selection

methods in more detail.

6.3 Related Feature Selection Methods

In this section, we describe similarities and differences between FFS and related feature

construction or selection methods.

Perhaps the best-known method for feature construction is the technique of proto-value

functions [47, 48]. Proto-value functions are closely related to spectral approximations [61].

This approximation uses the eigenvector decomposition of the transition matrix P = SΛS−1,

where S is a matrix with eigenvectors as its columns and Λ is a diagonal matrix with

eigenvalues that are sorted from the largest to the smallest. The first k columns of S

are then used as the approximation features. As with our FFS method, it is beneficial to

augment these features with the reward vector. We will refer to this method as EIG+R in

the numerical results. Surprisingly, unlike with FFS, which uses top k left-singular vectors,

using the top k eigenvectors does not guarantee zero Bellman residual even if the rank of P

is less than k.

Using the Krylov subspace is another feature selection approach [61] which has also been

referred to as BEBF [59, 60]. The Krylov subspace K is spanned by the images of r under

the first k powers of P (starting from P 0 = I):

Kk(P, r) = span{r, Pr, . . . , P k−1r} .

58

Petrik [61] shows that when k is equal to the degree of the minimal polynomial, the approx-

imation error is zero. Krylov methods are more likely to work in different problem settings

than either EIG+R or FFS and can be easily combined with them.

Algorithm 8: LFD: Linear Feature Discovery for a fixed policy π (Song et al.
2016).

1 D0 ← random(k, l);
2 i← 1;
3 while Not Converged do
4 Ei ← A+A′Di−1 ;
5 Di ← (AEi)

+A′;
6 i← i+ 1 ;

7 end

8 return Ek // Same role as Φ̂ in FFS.

Finally, Linear Feature Discovery (LFD) [72] is a recent feature selection method that

is closely related to FFS. Algorithm 8 depicts a simplified version of the LFD algorithm,

which does not consider the reward vector and approximates the value function instead of

the Q-function for a fixed policy π. Recall that A is the matrix of raw features and A′ = P π.

LFD is motivated by the theory of predictive optimal feature encoding. A low-rank en-

coder Eπ is predictively optimal if there exist decoders Dπ
s and Dπ

r such that:

AEπDπ
s = P πA , AEπDπ

r = rπ .

When an encoder and decoder are predictively optimal, then the Bellman error is 0 [72].

Unfortunately, it is almost impossible to find problems in practice in which a predictively

optimal controller exists. No bounds on the Bellman error are known when a controller is

merely close to predictively optimal. This is in contrast with the bounds in Theorems 6.2.1

and 6.2.2 that hold for FFS.

Although LFD appears to be quite different from FFS, our numerical experiments show

that it computes solutions that are similar to the solutions of FFS. We argue that LFD

can be interpreted as a coordinate descent method for computing the following low-rank

59

approximation problem:

min
E∈Rl×k,D∈Rk×l

‖AED − A′‖2
F . (6.2)

This is because the iterative updates of Ei and Di in Algorithm 8 are identical to solving

the following optimization problems:

Ei ← arg min
E∈Rl×k

‖AEDi−1 − A′‖2
F

Di ← arg min
D∈Rk×l

‖AEiD − A′‖2
F

The equivalence follows directly from the orthogonal projection representation of linear re-

gression. This kind of coordinate descent is a very common heuristic for computing low-rank

matrix completions [28]. Unfortunately, the optimization problem in (6.2) is non-convex

and coordinate descent, like LFD, may only converge to a local optimum, if at all. Simple

algebraic manipulation reveals that any set of k singular vectors represents a local minimum

of LFD. Finally, we are not aware of any method that can solve (6.2) optimally.

Similarly to LFD, FFS solves the following optimization problem:

min
E∈Rl×k,D∈Rk×l

‖ED − A+A′‖2
F . (6.3)

This fact follows readily from the SVD decomposition of A+A′ and the fact that the Frobenius

norm is equal to the L2 norm of the singular values [22, 29].

Note that when using tabular features (A = I) the optimization problems (6.2) and (6.3)

are identical. For any other raw features, there are two reasons for preferring (6.3) over (6.2).

First, FFS is much easier to solve both in theory and in practice. Second, as Theorem 6.2.2

shows, the approximation error of FFS is simply additive to the error inherent to the raw

features. No such property is known for LFD. In the next section, we compare the two

methods numerically.

60

6.4 Empirical Evaluation

In this section, we empirically evaluate the quality of features generated by FFS both with

and without using raw features. We focus on a comparison with LFD which was empirically

shown to outperform radial basis functions (RBFs) [40], random projections [20], and other

methods [72].

We first compare the quality of solutions on a range of synthetic randomly generated

problems. The goal is to ensure that the methods behave similarly regardless of the number

of samples, or the type of raw features that are used. Then, we use an image-based version of

the cart-pole benchmark, used previously by Song et al. [72], to evaluate FFS in more complex

settings. This problem is used to evaluate both the solution quality and the computational

complexity of the methods.

6.4.1 Synthetic Problems

To compare FFS to other common approaches in feature selection, we start with small

policy evaluation problems. Since the policy is fixed throughout these experiments, we omit

all references to it. The data matrix A ∈ Rn×l only contains the states where n denotes the

number of states and l the length of each raw feature, with Φ ∈ Rn×k using k features.

The synthetic problems that we use throughout this section have 100 states. The rewards

r ∈ R100 are generated uniformly randomly from the interval of [−500, 500). The stochastic

transition probabilities P ∈ [0, 1)100×100 are generated from the uniform Dirichlet distribu-

tion. To ensure that the rank of P is at most 40, we compute P as a product P = XY ,

where X and Y are small dimensional. The discount factor we use is γ = 0.95.

We now proceed by evaluating FFS for both tabular and image-based features. For the

sake of consistency, we use FFS to refer to both TFFS in a tabular case and FFS when

raw features are available. To evaluate the quality of the value function approximation, we

compute the Bellman residual of the fixed-point value function, which is a standard metric

61

used for this purpose. Recall that the Bellman error can be expressed as

BE = ∆r + γ∆PwΦ,

where wΦ is the value-function given in (2.10). All results we report in this section are

an average of 100 repetitions of the experiments. All error plots show the L2 norm of the

Bellman error in a logarithmic scale.

Case 1: Tabular raw features. In this case, the true transition probabilities P and the

reward function r are known, and the raw features are an identity matrix: A = I. Therefore

all computations are made concerning the precise representations of the underlying MDP.

This is the simplest setting, under which SVD simply reduces to a direct low-rank ap-

proximation of the transition probabilities. That is, the SVD optimization problem reduces

to:

min
U1∈Rn×k

min
Σ1VT

1 ∈Rk×n
‖U1Σ1V

T
1 − P‖2

F .

Similarly, the constructed features will be Φ = U1. In case of FFS, we can simply add the

reward vector to feature’s set Φ = [U1, r]. EIG+R and KRY are implemented as described

in Parr et al. [59], Petrik [61]. In case of EIG+R approach, we use the eigenvectors of P as

basis functions, and then r is included. For Krylov basis we calculate Φ = Kk(P, r).

Figure 6.1 depicts the Bellman error for the exact solution when the number of features

used for the value function varies from 0 to 100. Note that the Bellman error of FFS is zero

for k ≥ 40. This is because the rank of P is 40, and according to Theorem 6.2.1 the first

40 features obtained by FFS are sufficient to get ‖BE‖2 = 0. This experiment shows FFS is

robust and generally outperforms other methods. The only exception is the Krylov method

which is more effective when few features are used but is not numerically stable with more

features. The Krylov method could be combined relatively easily with FFS to get the best

of both bases.

62

Case 2: Image-based raw features. In this case, the raw features A are not tabular but

instead simulate an image representation of states. So the Markov dynamics are experienced

only via samples and the functions are represented using an approximation scheme. The

matrix A is created by randomly allocated zeros and ones similar to the structure of a

binary image. We use LSTD to compute the approximate value function, as described in

Section 2.4.

The SVD optimization problem now changes as described in Section 6.2.1. The con-

structed features will be Φ = AΦ̂ and for FFS we include the reward predictor vector [PA, rA]

in the optimization problem. In the case of the EIG+R method, we multiply the eigenvectors

of PA and rA with the raw features. The Krylov basis is constructed as: Φ = AKk(PA, rA)

where Kk is the k-th order Krylov operator.

Figure 6.2 compares the Bellman error for the approximate solution. FFS again outper-

forms other methods. LFD is unstable when the number of features exceeds the rank of P ,

and sometimes it is not possible to obtain the pseudo-inverse of matrix AE.

It is worth noting that this section deals with very small MDPs with only about 100 states.

It is expected to see a more significant gap in Bellman error of these methods when dealing

with large MDPs with enormous and high-dimensional state spaces. In the next section, we

compare LFD and FFS with the random projection approach using a more significant and

more challenging benchmark problem.

6.4.2 Cart-Pole

These experiments evaluate the similarity between the linear feature encoding (LFD) ap-

proach and the fast feature selection (FFS) method on a modified version of cart-pole, which

is a standard reinforcement learning benchmark problem. We use random projections [20]

as the baseline. The controller must learn a good policy by merely observing the image of

the cart-pole without direct observations of the angle and angular velocity of the pole. This

problem is large enough that the computational time plays an important role, so we also

63

compare the computational complexity of the three methods.

Note that this is a control benchmark, rather than a value approximation for a fixed

policy. Since the goal of RL is to optimize a policy, results on policy optimization are often

more meaningful than just obtaining a small Bellman residual which is not sufficient to

guarantee that a good policy will be computed [36].

To obtain training data, we collect the specified number of trajectories with the starting

angle and angular velocity sampled uniformly on [−0.1, 0.1]. The cart position and velocity

are set to zero at each episode.

The algorithm was given three consecutive, rendered, gray-scale images of the cart-

pole. Each image is downsampled to 39 × 50 pixels, so the raw state is a 39 × 50 × 3 =

5850−dimensional vector. We chose three frames to preserve the Markov property of states

without manipulating the cart-pole simulator in OpenAI Gym. We used k = 50 features for

all methods.

We follow a setup analogous to Song et al. [72] by implementing least-squares policy

iteration [40] to obtain the policy. The training data sets are produced by running the cart

for [50, 100, 200, 400, 600] episodes with a random policy. We then run policy iteration to

iterate up to 50 times or until there is no change in the A′ = P πA matrix.

The state of the pole in the classic cart-pole problem is described by its angle and angular

velocity. However, in the image-based implementation, the agent does not observe this

information. Song et al. [72] chose two successive frames to show the state of the pole. To

preserve the Markovian property of the state, they had to modify the simulator and force

the angular velocity to match the change in angle per time step θ̇ = (θ′−θ)/δt. We, instead,

use the standard simulator from OpenAI Gym and choose the last three consecutive frames

rather than two. Three consecutive frames are sufficient to infer θ and θ̇ and construct a

proper Markov state. Intriguingly, no linear feature construction methods work well in the

original problem definition when using only the last two frames.

The performance of the learned policy is reported for 100 repetitions to obtain the average

64

number of balancing steps. Figure 6.3 displays the average number of steps during which

the pole kept its balance using the same training data sets. For each episode, a maximum of

200 steps was allowed to run. This result shows that on the larger training sets the policies

obtained from FFS and LFD are quite similar, but with small training sets, FFS shows a

better performance. Both methods outperform random projection (RPr) significantly.

Figure 6.4 depicts the average running time of LFD and FFS for obtaining the value

function with k = 50. The computation time of FFS grow very slowly as the number

of training episodes increases; at 600 training episodes, the maximum number of episodes

tested, FFS is 10 times faster than LFD. Therefore, LFD would likely be impractical in large

problems with many training episodes.

Both FFS and LFD implementations use randomized SVD in all computations including

the computation of pseudo-inverses. The result is usually very close to truncated singular

value decomposition. Randomized SVD is fast on large matrices on which we need to extract

only a small number of singular vectors. It reduces the time to compute k top singular values

for an m× n matrix from O(mnk) to O(mn log(k)) [26].

In comparison to black-box methods such as neural networks, linear value functions are

more interpretable: their behavior is more transparent from an analysis standpoint and fea-

ture engineering standpoint. It is comparatively simple to gain some insight into the reasons

for which a particular choice of features succeeds or fails. When the features are normalized,

the magnitude of each parameter is related to the importance of the corresponding feature

in the approximation [40].

Figure 6.5 shows the learned coefficients of Q-function for three actions (left, right and

no-op) using color codes. The q-values are obtained by the inner product of raw features

(3-frames of cart-pole) and these coefficients. They are computed by the FFS method from

400 training episodes with a random policy. In this experiment, the raw images, taken from

the cart-pole environment in the OpenAI Gym toolkit, are preprocessed, converted to gray-

scale, and normalized. Therefore, the pole in the raw images is in black, and the value of

65

black pixels is close to zero. Other areas in the raw features are in white, so these pixel

values are closer to one. It is interesting to see how the linear value function captures the

dynamics of the pole (the cart is stationary). If the pole is imbalanced, the value function

is smaller since the blue area in Figure 6.5 represents negative scalars.

This chapter proposed a new feature construction technique that computes a low-rank

approximation of the transition probabilities. We believe that this approach is a promising

method for feature selection in batch reinforcement learning. A particular strength of our

proposed method is that it is easy to judge its effectiveness by singular values of features

not included in the approximation. After all, it would be interesting to study the impact of

FFS on finite-sample bounds and robustness in RL.

66

0 20 40 60 80

Number of Features used for VFA

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

BE
=
Δ R

+
γΔ

Pw
ϕ

EIG+R
FFS
LFD
KRY

Figure 6.1: Bellman error for the exact solution. The transition
matrix is 100× 100 and has a low rank with rank(P) = 40. The
Input matrix is A = I an identity matrix.

0 20 40 60 80

Number of Features used for VFA

10
−7

10
−5

10
−3

10
−1

10
1

10
3

BE
=
Δ R

+
γΔ

Pw
ϕ

EIG+R
FFS
LFD
KRY

Figure 6.2: Bellman error for the approximate solution. The
transition matrix is 100×100 and has a low rank with rank(P) =
40. The Input matrix is A = random binary matrix.

67

100 200 300 400 500 600

Number of episodes in the training batch

50

100

150

200

St
ep

s

FFS
LFD
RPr

Figure 6.3: The average number of balancing steps with k = 50.

50 100 200 400 600

Number of episodes in the training batch

0

250

500

750

1000

1250

1500

1750

2000

Se
co

nd
s

FFS
LFD
RPr

Figure 6.4: Mean running time for estimating the Q-function
with k = 50.

68

Le
ft

Frame 1 Frame 2 Frame 3
N

O
-O

P
R

ig
ht

−0.02

−0.01

0.00

0.01

Figure 6.5: Value function in jet color-map.

69

CHAPTER 7

Conclusion

Robust MDPs (RMDPs) relax the assumption for known transition probabilities by con-

sidering a set of transition probabilities, better known as an ambiguity set, containing true

values with high confidence. Empirical evidence verifies that RMDP offers benefits over

methods that ignore uncertainty in the transition parameters. The combination of tractabil-

ity and effectiveness has fueled the increasing popularity of RMDP in the RL community.

However, RMDPs lack suitable methods of constructing ambiguity sets that lead to robust

solutions without being excessively conservative. Many domain-specific techniques have been

suggested, but most do not offer finite-sample guarantees or are hard to use.

These realizations give rise to numerous questions. For example, is there any perfect

ambiguity set P , and what is the characteristic of a perfect P? If P is not perfect ambiguity

set for tractability, what would be the performance loss? The critical idea to construct P

in the current literature is to identify the smallest ambiguity set that satisfies a Bayesian or

frequentist robustness guarantee.

This dissertation aims to answer some of these questions. We illustrate several RL algo-

rithms that efficiently calculate robust policies with limited data that improve the policies’

performance and ease the computational complexity compared to standard risk-averse RL

algorithms.

First, we proposed a new approach for optimizing the percentile criterion using RMDPs

beyond the conventional ambiguity sets. We derived new bounds on the performance loss

of the RMDPs concerning the optimal percentile criterion. These bounds show that the

70

quality of the RMDP is driven by the span of its ambiguity sets along a specific direction.

We proposed a linear-time algorithm that minimizes the span of the ambiguity sets and

derived new sampling guarantees. Our experimental results show that this simple RMDP

improvement can lead to better return guarantees. Future work should focus on scaling the

method to a large state-space using value function approximation or other techniques.

Second, we introduced a new homotopy method for calculating robust Bellman operator

for S- and SA-rectangular ambiguity sets constructed with L∞-norm ball. Theoretically, we

show that the worst-case time complexity of our algorithms is quasi-linear: O(SA log(S)).

The algorithms also perform well in practice, outperforming a leading LP solver by several

orders of magnitude.

In addition to being faster than a general-purpose LP solver, our algorithms are also

much more straightforward. They make it possible to solve L∞-constrained RMDPs without

the cost and complexity of involving a general LP solver. Although free and open-source

LP solvers are available, their performance falls significantly short of commercial ones. The

algorithms we propose are also easy to combine with value function approximation methods

in RMDPs.

Furthermore, we present a fast and robust feature selection method, FFS, for linear value

function approximation, a common approach to solving reinforcement learning problems with

large state spaces. We show that our technique is faster and more stable than alternative

methods. FFS computes a low-rank approximation of the transition probabilities. We believe

that FFS is a promising method for feature selection in batch reinforcement learning. It is

effortless to implement, fast to run, and relatively easy to analyze. A particular strength of

FFS is that it is easy to judge its effectiveness by singular values of features not included in

the approximation.

There remain some interesting open questions. Because most existing RL algorithms

are based on the dynamic programming principle, it is not easy to use them in percentile

criterion settings. It is worth studying how to compute safe policies without relying on

71

common standard RL algorithms. A further question is whether rectangularity assumptions

can be relaxed by designing a robust dynamic program that calculates the safe returns

directly without constructing an ambiguity set. We will study these questions in future

work.

72

Bibliography

[1] Alagoz, O.; Maillart, L. M.; Schaefer, A. J.; and Roberts, M. S. 2007. Choosing among
living-donor and cadaveric livers. Management Science, 53(11): 1702–1715.

[2] Auer, P.; Jaksch, T.; and Ortner, R. 2009. Near-optimal Regret Bounds for Reinforce-
ment Learning. Advances in Neural Information Processing Systems.

[3] Auer, P.; Jaksch, T.; and Ortner, R. 2010. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(1): 1563–1600.

[4] Behzadian, B.; Gharatappeh, S.; and Petrik, M. 2019. Fast Feature Selection for Linear
Value Function Approximation. The International Conference on Automated Planning
and Scheduling (ICAPS).

[5] Behzadian, B.; Petrik, M.; and Ho, C. P. 2021. Fast Algorithms for L∞-constrained
S-rectangular Robust MDPs. Advances in Neural Information Processing Systems, 34.

[6] Behzadian, B.; Russel, R. H.; Petrik, M.; and Ho, C. P. 2021. Optimizing Percentile
Criterion using Robust MDPs. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 1009–1017.

[7] Bertsekas, D. P. 2003. Nonlinear programming. Athena Scientific.

[8] Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-Dynamic Programming. Athena
Scientific, 1st edition. ISBN 1886529108.

[9] Boyd, S.; and Vandenberghe, L. 2004. Convex Optimization. Cambridge: Cambridge
University Press. ISBN 9780511804441.

[10] Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; and
Zaremba, W. 2016. Openai gym. arXiv preprint arXiv:1606.01540.

[11] Cheng, B.; Asamov, T.; and Powell, W. B. 2017. Low-Rank Value Function Approx-
imation for Co-optimization of Battery Storage. IEEE Transactions on Smart Grid,
3053.

[12] Delage, E.; and Mannor, S. 2010. Percentile Optimization for Markov Decision Processes
with Parameter Uncertainty. Operations Research, 58(1): 203–213.

[13] Delage, E.; and Ye, Y. 2010. Distributionally robust optimization under moment uncer-
tainty with application to data driven problems. Operations Research, 58(3): 595–612.

73

[14] Delgado, K. V.; De Barros, L. N.; Dias, D. B.; and Sanner, S. 2016. Real-time dynamic
programming for Markov decision processes with imprecise probabilities. Artificial In-
telligence, 230: 192–223.

[15] Devroye, L.; Györfi, L.; and Lugosi, G. 2013. A probabilistic theory of pattern recogni-
tion, volume 31. Springer Science & Business Media.

[16] Dietterich, T.; Taleghan, M.; and Crowley, M. 2013. PAC optimal planning for invasive
species management: Improved exploration for reinforcement learning from simulator-
defined MDPs. National Conference on Artificial Intelligence (AAAI).

[17] Fáısca, N. P.; Dua, V.; and Pistikopoulos, E. N. 2007. Multiparametric Linear and
Quadratic Programming, chapter 1, 1–23. John Wiley & Sons, Ltd.

[18] Gelman, A.; Carlin, J. B.; Stern, H. S.; and Rubin, D. B. 2014. Bayesian Data Analysis.
Chapman and Hall/CRC, 3rd edition.

[19] Gelman, A.; Lee, D.; and Guo, J. 2015. Stan: A probabilistic programming language for
Bayesian inference and optimization. Journal of Educational and Behavioral Statistics,
40(5): 530–543.

[20] Ghavamzadeh, M.; Lazaric, A.; Maillard, O.; and Munos, R. 2010. LSTD with Random
Projections. In Advances in Neural Information Processing Systems (NIPS), 721–729.

[21] Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-parameter Markov decision processes.
Artificial Intelligence, 122(1): 71–109.

[22] Golub, G. H.; and Van Loan, C. F. 2013. Matrix computations. JHU press.

[23] Goyal, V.; and Grand-Clement, J. 2018. Robust Markov Decision Process: Beyond
Rectangularity. arXiv:1811.00215.

[24] Grand-Clément, J.; and Kroer, C. 2021. First-Order Methods for Wasserstein Distribu-
tionally Robust MDP. arXiv:2009.06790.

[25] Gupta, V. 2019. Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust
Optimization. Management Science, 65(9).

[26] Halko, N.; Martinsson, P.-G.; and Tropp, J. A. 2011. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2): 217–288.

[27] Hansen, T. D.; Miltersen, P. B.; and Zwick, U. 2013. Strategy iteration is strongly
polynomial for 2-player turn-based stochastic games with a constant discount factor.
Journal of the ACM (JACM), 60(1): 1–16.

[28] Hastie, T.; Mazumder, R.; Lee, J.; and Zadeh, R. 2015. Matrix Completion and Low-
Rank SVD via Fast Alternating Least Squares. Journal of Machine Learning Research,
16: 3367–3402.

74

[29] Hastie, T.; Tibshirani, R.; Friedman, J. H.; and Friedman, J. H. 2009. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer.

[30] Ho, C. P.; Petrik, M.; and Wiesemann, W. 2018. Fast Bellman Updates for Robust
MDPs. In International Conference on Machine Learning (ICML), volume 80, 1979–
1988.

[31] Ho, C. P.; Petrik, M.; and Wiesemann, W. 2020. Partial Policy Iteration for L1-Robust
Markov Decision Processes. arXiv:2006.09484.

[32] Hong, L. J.; Huang, Z.; and Lam, H. 2020. Learning-Based Robust Optimization:
Procedures and Statistical Guarantees. Management Science.

[33] Ibaraki, T.; and Katoh, N. 1988. Resource Allocation Problems: Algorithmic Ap-
proaches. The MIT Press.

[34] Iyengar, G. N. 2005. Robust dynamic programming. Mathematics of Operations Re-
search, 30(2): 257–280.

[35] Jiang, N.; and Li, L. 2015. Doubly robust Off-policy value evaluation for reinforce-
ment learning. In International Conference on Machine Learning (ICML). ISBN
9781510829008.

[36] Johns, J.; Petrik, M.; and Mahadevan, S. 2009. Hybrid least-squares algorithms for
approximate policy evaluation. Machine Learning, 76(2): 243–256.

[37] Kaufman, D. L.; and Schaefer, A. J. 2013. Robust modified policy iteration. INFORMS
Journal on Computing, 25(3): 396–410.

[38] Kéry, M.; and Schaub, M. 2011. Bayesian population analysis using WinBUGS: a
hierarchical perspective. Academic Press.

[39] Kolter, J. Z.; and Ng, A. Y. 2009. Regularization and feature selection in least-squares
temporal difference learning. In International Conference on Machine Learning (ICML),
521–528. ACM.

[40] Lagoudakis, M. G.; and Parr, R. 2003. Least-squares policy iteration. Journal of
Machine Learning Research, 4: 1107–1149.

[41] Lange, S.; Gabel, T.; and Riedmiller, M. 2012. Batch reinforcement learning. In Rein-
forcement learning, 45–73. Springer.

[42] Laroche, R.; Trichelair, P.; des Combes, R. T.; and Tachet, R. 2019. Safe Policy
Improvement with Baseline Bootstrapping. In International Conference of Machine
Learning (ICML).

[43] Le, L.; Kumaraswamy, R.; and White, M. 2017. Learning sparse representations in re-
inforcement learning with sparse coding. In International Joint Conference on Artificial
Intelligence (IJCAI), 2067–2073.

75

[44] Le Tallec, Y. 2007. Robust, Risk-Sensitive, and Data-driven Control of Markov Decision
Processes. Ph.D. thesis, MIT.

[45] Le Tallec, Y. 2007. Robust, risk-sensitive, and data-driven control of Markov decision
processes. Ph.D. thesis, Massachusetts Institute of Technology.

[46] Luedtke, J.; and Ahmed, S. 2008. A Sample Approximation Approach for Optimization
with Probabilistic Constraints. SIAM Journal on Optimization, 19(2): 674–699.

[47] Mahadevan, S.; and Maggioni, M. 2006. Value function approximation with diffusion
wavelets and Laplacian eigenfunctions. In Advances in Neural Information Processing
Systems (NIPS), 843–850.

[48] Mahadevan, S.; and Maggioni, M. 2007. Proto-value functions: A Laplacian framework
for learning representation and control in Markov decision processes. Journal of Machine
Learning Research, 8: 2169–2231.

[49] Maillard, O. A.; Mann, T. A.; and Mannor, S. 2014. ”How hard is my MDP?” The
distribution-norm to the rescue. In Advances in Neural Information Processing Systems,
1835–1843.

[50] Mannor, S.; Mebel, O.; and Xu, H. 2016. Robust MDPs with k-rectangular uncertainty.
Mathematics of Operations Research, 41(4): 1484–1509.

[51] Mannor, S.; Simester, D.; Sun, P.; and Tsitsiklis, J. N. 2007. Bias and variance approx-
imation in value function estimates. Management Science, 53(2): 308–322.

[52] Mannor, S.; Simester, D.; Sun, P.; and Tsitsiklis, J. N. 2007. Bias and Variance Ap-
proximation in Value Function Estimates. Management Science, 53(2): 308–322.

[53] Munos, R. 2007. Performance Bounds in Lp-norm for Approximate Value Iteration.
SIAM journal on control and optimization, 46(2): 541–561.

[54] Murphy, K. P. 2012. Machine learning: a probabilistic perspective. MIT press.

[55] Nilim, A.; and El Ghaoui, L. 2005. Robust Control of Markov Decision Processes with
Uncertain Transition Matrices. Operations Research, 53(5): 780–798.

[56] Nilim, A.; and Ghaoui, L. E. 2004. Robust solutions to Markov decision problems with
uncertain transition matrices. Operations Research, 53(5): 780.

[57] Nilim, A.; and Ghaoui, L. E. 2005. Robust control of Markov decision processes with
uncertain transition matrices. Operations Research, 53(5): 780–798.

[58] Ong, H. Y. 2015. Value Function Approximation via Low Rank Models.
arXiv:1509.00061v1.

[59] Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and Littman, M. L. 2008. An
analysis of linear models, linear value-function approximation, and feature selection
for reinforcement learning. In International Joint Conference on Artificial Intelligence
(IJCAI), 752–759.

76

[60] Parr, R.; Painter-Wakefield, C.; Li, L.; and Littman, M. 2007. Analyzing Feature
Generation for Value-function Approximation. In International Conference on Machine
Learning (ICML), 737–744. ISBN 978-1-59593-793-3.

[61] Petrik, M. 2007. An analysis of Laplacian methods for value function approximation in
MDPs. In International Joint Conference on Artificial Intelligence (IJCAI), volume 35,
2574–2579.

[62] Petrik, M.; Mohammad Ghavamzadeh; and Chow, Y. 2016. Safe Policy Improvement
by Minimizing Robust Baseline Regret. In Advances in Neural Information Processing
Systems (NIPS).

[63] Petrik, M.; and Russel, R. H. 2019. Beyond Confidence Regions: Tight Bayesian Am-
biguity Sets for Robust MDPs. Advances in Neural Information Processing Systems.

[64] Petrik, M.; and Subramanian, D. 2014. RAAM : The benefits of robustness in approx-
imating aggregated MDPs in reinforcement learning. In Neural Information Processing
Systems (NIPS).

[65] Petrik, M.; and Subramanian, D. 2014. RAAM: The benefits of robustness in approxi-
mating aggregated MDPs in reinforcement learning. In Advances in Neural Information
Processing Systems, 1979–1987.

[66] Petrik, M.; Taylor, G.; Parr, R.; and Zilberstein, S. 2010. Feature selection using regular-
ization in approximate linear programs for Markov decision processes. In International
Conference on Machine Learning (ICML).

[67] Puterman, M. L. 2005. Markov decision processes: Discrete stochastic dynamic pro-
gramming. John Wiley & Sons, Inc.

[68] Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L. 2010. Factorizing personalized
Markov chains for next-basket recommendation. In International Conference on World
Wide Web (WWW), 811–820. ISBN 9781605587998.

[69] Russel, R. H.; Gu, T.; and Petrik, M. 2019. Robust Exploration with Tight Bayesian
Plausibility Sets. Multi-disciplinary conference on Reinforcement Learning and Decision
Making (RLDM).

[70] Shapiro, A.; Dentcheva, D.; and Ruszczynski, A. 2021. Lectures on stochastic program-
ming: modeling and theory. SIAM.

[71] Shechter, S. M.; Bailey, M. D.; Schaefer, A. J.; and Roberts, M. S. 2008. The optimal
time to initiate HIV therapy under ordered health states. Operations Research, 56(1):
20–33.

[72] Song, Z.; Parr, R. E.; Liao, X.; and Carin, L. 2016. Linear Feature Encoding for Re-
inforcement Learning. In Advances in Neural Information Processing Systems (NIPS),
4224–4232.

77

[73] Strehl, A. L.; and Littman, M. L. 2004. An empirical evaluation of interval estimation
for markov decision processes. In 16th IEEE International Conference on Tools with
Artificial Intelligence, 128–135. IEEE.

[74] Strehl, A. L.; and Littman, M. L. 2008. An analysis of model-based interval estimation
for Markov decision processes. Journal of Computer and System Sciences, 74(8): 1309–
1331.

[75] Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: An introduction. MIT
press.

[76] Szepesvári, C. 2010. Algorithms for Reinforcement Learning. Morgan & Claypool Pub-
lishers.

[77] Taleghan, M. A.; Dietterich, T. G.; Crowley, M.; Hall, K.; and Albers, H. J. 2015. Pac
optimal MDP planning with application to invasive species management. Journal of
Machine Learning Research, 16.

[78] Tamar, A.; Mannor, S.; and Xu, H. 2014. Scaling Up Robust MDPs using Function
Approximation. In International Conference of Machine Learning (ICML).

[79] Tirinzoni, A.; Petrik, M.; Chen, X.; and Ziebart, B. 2018. Policy-Conditioned Uncer-
tainty Sets for Robust Markov Decision Processes. In Advances in Neural Information
Processing Systems, 8939–8949. Curran Associates, Inc.

[80] Weissman, T.; Ordentlich, E.; Seroussi, G.; Verdu, S.; and Weinberger, M. J. 2003.
Inequalities for the L 1 deviation of the empirical distribution. Hewlett-Packard Labs,
Tech. Rep.

[81] Wiesemann, W.; Kuhn, D.; and Rustem, B. 2013. Robust Markov decision processes.
Mathematics of Operations Research, 38(1): 153–183.

[82] Williams, R. J.; and Baird, L. C. 1993. Tight performance bounds on greedy policies
based on imperfect value functions. Technical report, College of Computer Science,
Northeastern University.

[83] Xu, H.; and Mannor, S. 2009. Parametric regret in uncertain Markov decision processes.
Proceedings of the IEEE Conference on Decision and Control, 3606–3613.

[84] Zipkin, P. H. 2000. Foundations of inventory management. McGraw-Hill Companies.

78

APPENDIX A

Technical Results and Proofs

A.1 Optimizing Percentile Criterion Using Robust MDPs

A.1.1 Proofs of Results in Section 3.1

Proof of Theorem 3.1.2. The result can be derived as:

PP̃∼f
[
ρ̂ ≤ ρ(π̂, P̃)

]
(a)
= PP̃∼f

[
ρ(π̂, P̃) ≥ max

π∈Π
min
P∈P̂

ρ(π, P)

]
(b)
= PP̃∼f

[
ρ(π̂, P̃) ≥ min

P∈P̂
ρ(π̂, P)

]
(c)

≥ PP̃∼f
[
P̃ ∈ P̂

] (d)

≥ 1− δ .

The equality (a) follows from the definition of ρ̂, the inequality (b) follows from π̂ ∈ Π and

is optimal, (c) follows because ρ(π̂, P̃) ≥ minP∈P̂ ρ(π̂, P) whenever P̃ ∈ P̂ , and (d) follows

from the theorem’s hypothesis.

Proof of Theorem 3.1.3. Let P̂ = P(www,ψ) and let ρ̂ and π̂ be the optimal return and policy

for P̂ respectively. We start by establishing the following bound:

ρ̂ ≥ max
π∈Π

ρ(π, P̃)− βẑzz(www,ψ)

1− γ
,

where

βẑzz(www,ψ) = max
s∈S

max
a∈A

βs,aẑzz (www,ψ) .

Let v̂vv ∈ RS be the optimal robust value function that satisfied v̂vv = Lv̂vv for the ambiguity

79

set P̂ = P(www,ψ). We use P̂ as a shorthand for P(www,ψ) throughout the proof. Recall that

ρ̂ = pppT0v̂vv. We also use TPπ to represent the Bellman evaluation operator for a policy π ∈ Π

and a transition function P defined for each s ∈ S as:

(TPπ v)s = P (s, π(s))T(rrrs,a + γ · vvv) .

It is well known that TPπ v is a contraction, is monotone, and has a unique fixed point. Let

ṽ be the unique fixed point of TP̃π̃ :

ṽvv = TP̃π̃ ṽvv ,

where π̃ ∈ arg maxπ∈Π ρ(π, P̃). Note that it is well known that:

pppT0ṽvv = ρ(π̃, P̃) .

Now suppose that P̃ ∈ P̂ , which holds with probability 1− δ according to Assumption 3.1.1.

Then it is easy to see that:

pppT0v̂vv = min
P∈P̂

ρ(π, P) ≤ ρ(π, P̃) ≤ pppT0ṽvv .

Therefore:

0 ≤ pppT0ṽvv − pppT0v̂vv ≤ ‖ṽvv − v̂vv‖∞ .

We are now ready to establish the probabilistic bound which is based on bounding the

Bellman residual as follows:

(TP̃π̃ v̂vv − v̂vv)s
(a)
= (TP̃π̃ v̂vv − Lv̂vv)s

(def)
= P̃ (s, π̃(a))Tẑzzs,π̃(s) −min

P∈P̂
P (s, π̂(a))Tẑzzs,π̂(a)

(b)

≤ P̃ (s, π̃(a))Tẑzzs,π̃(s) −min
P∈P̂

P (s, π̃(a))Tẑzzs,π̃(a)

≤ max
a∈A

(
P̃ (s, a)Tẑzzs,a −min

P∈P̂
P (s, a)Tẑzzs,a

)

80

(c)

≤ max
a∈A

(
max
P∈P̂

P (s, a)Tẑzzs,a −min
P∈P̂

P (s, a)Tẑzzs,a

)
≤ max

a∈A
βs,aẑzz (www,ψ) .

(a) follows from v̂vv being the fixed point of L, (b) follows from the optimality of π̂: π̂(s) ∈

arg maxa∈Aminppp∈P̂s,a ppp
Tzzzs,a, and (c) follows from P̃ ∈ P̂ . The rest follows by algebraic

manipulation. Applying the inequality above to all states, we get:

TP̃π̃ v̂vv − v̂vv ≤ βẑzz(www,ψ) · 1 . (A.1)

We can now use the standard dynamic programming bounding technique to bound ‖ṽvv − v̂vv‖∞

as follows:

0
(a)

≤ ṽvv − v̂vv (b)
= ṽvv − TP̃π̃ v̂vv + TP̃π̃ v̂vv − v̂vv

(A.1)

≤ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1
(c)

≤ TP̃π̃ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1 .

We have (a) because v̂vv ≤ ṽvv because Lṽvv ≤ ṽvv and thus ṽvv ≥ LLṽvv ≥ . . . ≥ L . . .Lṽvv ≥ v̂vv because

v̂vv is the fixed point of L and L is monotone. (b) we add 0, (c) ṽvv is the fixed point of TP̃π̃ .

Next, apply L∞ norm to all sides, which is possible because the values are non-negative:

‖ṽvv − v̂vv‖∞ ≤
∥∥∥TP̃π̃ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1

∥∥∥
∞

‖ṽvv − v̂vv‖∞ ≤ γ · ‖ṽvv − v̂vv‖∞ + βẑzz(www,ψ)

‖ṽvv − v̂vv‖∞ ≤ βẑzz(www,ψ)/(1− γ) .

The first step follows by triangle inequality, and the second step follows from TP̃π̃ being a γ

contraction in the L∞ norm.

To prove the bound on y? and v̂, we show that y? ≤ ζ where ζ = ρ̂ + βẑzz(www,ψ)/(1 − γ).

81

Suppose to the contrary that y? > ζ. Realize that y? optimal in (2.6) must satisfy:

PP̃∼f

[
max
π∈Π

ρ(π, P̃) ≥ y?
]
≥ 1− δ , (A.2)

because maxπ∈Π ρ(π, P̃) ≥ ρ(π?, P̃) for π? optimal in (2.6). Recall also that from the first

part of the theorem:

PP̃∼f

[
max
π∈Π

ρ(π, P̃) ≥ ζ

]
≤ δ . (A.3)

We now derive a contradiction as follows:

δ
(A.3)

≥ PP̃∼f

[
max
π∈Π

ρ(π, P̃) ≥ ζ

]
(a)

≥ PP̃∼f

[
max
π∈Π

ρ(π, P̃) ≥ y?
]

(A.2)

≥ 1− δ .

Here (a) follows from the assumption y? > ζ. Then δ ≥ 1−δ is a contradiction with δ < 0.5.

Finally, 0 ≤ y?− ρ̂ follows directly from the optimality of y? and Theorem 3.1.2, which proves

the theorem.

A.1.2 Proof of Results in Section 3.2

Proof of Lemma 3.2.1. We omit the s, a subscripts to simplify the notation. By relaxing the

non-negativity constraints on ppp and using substitution qqq1 = ppp1 − p̄pp and qqq2 = ppp2 − p̄pp, we get

the following upper bound:

βs,azzz (www,ψ) = max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ppp1, ppp2 ∈ Ps,a(www,ψ)

}
= max

ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ‖ppp1 − p̄pp‖www ≤ ψ, ‖ppp2 − p̄pp‖www ≤ ψ, ppp1 ∈ ∆S, ppp2 ∈ ∆S

}
≤ max

ppp1,ppp2∈RS

{
(ppp1 − ppp2)Tzzz | ‖ppp1 − p̄pp‖www ≤ ψ, ‖ppp2 − p̄pp‖www ≤ ψ, 1Tppp1 = 1, 1Tppp2 = 1

}
= max

qqq1,qqq2∈RS

{
(qqq1 − qqq2)Tzzz | ‖qqq1‖www ≤ ψ, ‖qqq2‖www ≤ ψ, 1Tqqq1 = 0, 1Tqqq2 = 0

}
= max

qqq1∈RS

{
qqqT1zzz | ‖qqq1‖www ≤ ψ, 1Tqqq1 = 0

}
+ max

qqq2∈RS

{
qqqT2(−zzz) | ‖qqq2‖www ≤ ψ, 1Tqqq2 = 0

}
.

82

The last equality follows because the the optimization problems over qqq1 and qqq2 are indepen-

dent. From the absolute homogeneity of the ‖·‖www we have that:

max
qqq2∈RS

{
qqqT2(−zzz) | ‖qqq2‖www ≤ ψ, 1Tqqq2 = 0

}
= max

qqq2∈RS

{
qqqT2zzz | ‖qqq2‖www ≤ ψ, 1Tqqq2 = 0

}
,

and therefore:

βs,azzz (www,ψ) ≤ 2 ·max
qqq∈RS

{
qqqTzzz | ‖qqq‖www ≤ ψ, 1Tqqq = 0

}
.

Substituting qqq = ppp− p̄pp we get:

βs,azzz (www,ψ) ≤ 2 ·max
ppp∈RS

{
pppTzzz | ‖ppp− p̄pp‖www ≤ ψ, 1Tppp = 1

}
− 2 · zzzTp̄pp . (A.4)

We can reformulate the optimization problem on the right-hand side of (A.4), again using

variable substitution qqq = ppp− p̄pp:

max
qqq∈RS

2 · (qqq + p̄pp)Tzzz − 2 · zzzTp̄pp

s.t. ‖qqq‖www ≤ ψ

111T(qqq + p̄pp) = 1 =⇒ 111Tqqq = 0 .

Canceling out p̄ppTzzz, we continue with:

2 ·max
qqq∈RS

qqqTzzz

s.t. ‖qqq‖www ≤ ψ

111Tqqq = 0 .

By applying the method of Lagrange multipliers, we obtain:

min
λ∈R

max
qqq∈RS

qqqTzzz − λ · (qqqT111) = qqqT(zzz − λ · 111)

s.t. ‖qqq‖www ≤ ψ .

83

Letting xxx = qqq
ψ

, we get:

min
λ∈R

max
xxx∈RS

ψ · xxxT(zzz − λ · 111)

s.t. ‖xxx‖www ≤ 1 .

Given the definition of the dual norm, ‖zzz‖? = sup{zzzᵀxxx | ‖xxx‖ ≤ 1}, we have:

βs,azzz (www,ψ) ≤ 2 ·min
λ∈R

ψ · ‖zzz − λ · 111‖?

≤ 2 · ψ · ‖zzz − λ · 111‖? .

Proof of Lemma 3.2.2. Assume we are given a set of positive weights www ∈ Rn
++ for the

following weighted L1 optimization problem:

max
xxx∈RS

zzzTxxx

s.t. ‖xxx‖1,www ≤ 1 .

(A.5)

We have:

xxxTzzz =
n∑
i=1

xi · zi ≤
n∑
i=1

|xi · zi|

(a)

≤
n∑
i=1

|xi| · |zi| =
n∑
i=1

wi · |xi| ·
1

wi
· |zi|

≤ max
i=1,...,n

{
1

wi
· |zi|

}
·

n∑
i=1

wi|xi| = max
i=1,...,n

{
1

wi
· |zi|

}
· ‖xxx‖1,www

(b)

≤ max
i=1,...,n

{
1

wi
|zi|
}

= ‖zzz‖∞, 1
www
.

Here, (a) follows from the Cauchy-Schwarz inequality, and (b) follows from the constraint

‖xxx‖1,www ≤ 1 of (A.5).

Proof of Proposition 3.2.3. We use the notation 1/www to denote an elementwise inverse of www

such that (1/www)i = 1/wi, i ∈ S. Note that for weighted L1-constrained sets q = ∞, and for

84

the L∞-constrained sets q = 1. The value λ̄ in (3.6) is fixed ahead of time and does not

change with www. Recall that the constraint
∑S

i=1w
2
i = 1 serves to normalize www in order to

preserve the desired robustness guarantees with the same ψ. This is because scaling both www

and ψ simultaneously by an identical factor leaves the ambiguity set unchanged. We adopt

the constraint from an approximation of the guarantee by linearization of the upper bound

using Jensen’s inequality. Next, omitting terms that are constant with respect towww simplifies

the optimization to:

www? ∈ argmin
www∈RS++

{∥∥zzz − λ̄111
∥∥
q, 1
www

:
S∑
i=1

w2
i = 1

}
. (A.6)

For q =∞, the nonlinear optimization problem in (A.6) is convex and can be solved analyt-

ically. Let bi =
∣∣zi − λ̄∣∣ for i = 1, . . . , S, then (A.6) turns to:

min
t,www∈RS++

{
t : t ≥ bi/wi,

S∑
i=1

w2
i = 1

}
. (A.7)

The constraints www > 0 cannot be active since otherwise 1/wi results in undefined division by

zero and can be safely ignored. Then, the convex optimization problem in Equation (A.7)

has a linear objective, S + 1 variables (www’s and t), and S + 1 constraints. All constraints are

active, therefore, in the optimal solution www? [7] which must satisfy:

w?i = bi/
√∑S

j=1 b
2
j . (A.8)

Since
∑

iw
2
i = 1 implies

∑
i b

2
i /t

2 = 1, we conclude that t =
√∑

i b
2
i . For q = 1, the

equivalent optimization of (A.7) becomes:

min
www>0

{
S∑
i=1

bi/wi :
S∑
i=1

w2
i = 1

}
. (A.9)

Again, the inequality constraints on weights www > 0 can be relaxed. Using the necessary

85

optimality conditions (and a Lagrange multiplier), one solution for the optimal weights www

are:

w?i = b
1/3
i /

√∑S
j=1 b

2/3
j . (A.10)

A.1.3 Proof of Results in Section 3.3

Proof of Proposition 3.3.2. The algorithm is an instance of the Sample Average Approxima-

tion (SAA) scheme. The result, therefore, is a direct consequence of Theorem 4.2 in [63] and

Theorem 5.3 in [70].

A.2 Weighted Frequentist Confidence Intervals for Robust MDPs

A.2.1 Proof of Results in Section 4.1

We need several auxiliary results before proving the results.

Theorem A.2.1 (Weighted L∞ error bound (Hoeffding)). Suppose that p̄pps,a is the empirical

estimate of the transition probability obtained from ns,a samples for some s ∈ S and a ∈ A.

Then:

Pp̄pps,a
[∥∥p̄pps,a − ppp?s,a∥∥∞,www ≥ ψs,a

]
≤ 2

S∑
i=1

exp

(
−2

ψ2
s,ans,a

w2
i

)
. (A.11)

Proof. First, we will express the weighted L∞ distance between two distributions p̄pp and ppp? in

terms of an optimization problem. Let 111i ∈ RS be the indicator vector for an index i ∈ S:

∥∥p̄pps,a − ppp?s,a∥∥∞,www = max
zzz

{
zzzTW (p̄pps,a − ppp?s,a) : ‖zzz‖1 ≤ 1

}
= max

i∈S

{
111iW (p̄pps,a − ppp?s,a),−111iW (p̄pps,a − ppp?s,a)

}
.

Here, weights are on the diagonal entries of W . Using the expression above, we can bound

86

the probability in the lemma as follows:

P
[∥∥p̄pps,a − ppp?s,a∥∥∞,www ≥ ψ] = P

[
max
i∈S

{
111iW (p̄pps,a − ppp?s,a),−111iW (p̄pps,a − ppp?s,a)

}
≥ ψs,a

]
(a)

≤ Smax
i∈S

P
[
111iW (p̄pps,a − ppp?s,a) ≥ ψs,a

]
+ Smax

i∈S
P
[
−111iW (p̄pps,a − ppp?s,a) ≥ ψs,a

]
(b)

≤ 2
S∑
i=1

exp

(
−2

ψ2
s,an

w2
i

)
.

Here, (a) follows from union bound, and (b) follows from Hoeffding’s inequality since

111Ti p̄pp ∈ [0, 1] for any i ∈ S and its mean is 111Ti ppp
?.

Now we describe a proof of error bound in (A.12) on the weighted L1 distance between the

estimated transition probabilities p̄pp and the true one ppp? over each state s ∈ S = {1, . . . , S}

and action a ∈ A = {1, . . . , A}. The proof is an extension to Lemma C.1 (L1 error bound)

in [63].

Theorem A.2.2 (Weighted L1 error bound (Hoeffding)). Suppose that p̄pps,a is the empirical

estimate of the transition probability obtained from ns,a samples for some s ∈ S and a ∈ A.

If the weights www ∈ RS
++ are sorted in a non-increasing order wi ≥ wi+1, then:

Pp̄pps,a
[∥∥p̄pps,a − ppp?s,a∥∥1,www

≥ ψs,a

]
≤ 2

S−1∑
i=1

2S−i exp

(
−
ψ2
s,ans,a

2w2
i

)
. (A.12)

Proof. Let qqqs,a = p̄pps,a−ppp?s,a. To shorten notation in the proof, we omit the s, a indexes when

there is no ambiguity. We assume that all weights are non-negative. First, we will express

the L1,www norm of qqq in terms of an optimization problem. It is worth noting that 111Tqqq = 0.

Let 111Q1 ,111Q2 ∈ RS be the indicator vectors for some subsets Q1,Q2 ⊂ S where Q2 = S \Q1.

According to Lemma 3.2.2 we have:

‖qqq‖1,w = max
zzz

{
zzzTqqq : ‖zzz‖∞, 1

w
≤ 1
}

87

= max
Q1,Q2∈2S

{
111TQ1

Wqqq + 111TQ2
W (−qqq) : Q2 = S \ Q1

}
.

Here weights are on the diagonal entries of W . Using the expression above, we can bound

the probability as follows:

P
[

max
Q1,Q2∈2S

{
111TQ1

Wqqq + 111TQ2
W (−qqq)

}
≥ ψ

]
(a)

≤ P
[

max
Q1∈2S

{
111TQ1

Wqqq
}
≥ ψ

2

]
+ P

[
max
Q2∈2S

{
111TQ2

W (−qqq)
}
≥ ψ

2

]
≤

∑
Q1∈2S

P
[
111TQ1

Wqqq ≥ ψ

2

]
+
∑
Q2∈2S

P
[
111TQ2

W (−qqq) ≥ ψ

2

]

=
∑
Q1∈2S

P
[
111TQ1

W (p̄pp− ppp?) ≥ ψ

2

]
+
∑
Q2∈2S

P
[
111TQ2

W (−p̄pp+ ppp?) ≥ ψ

2

]
(b)

≤
∑
Q1∈2S

exp

(
− ψ2n

2
∥∥111TQ1

W
∥∥2
∞

)
+
∑
Q2∈2S

exp

(
− ψ2n

2
∥∥111TQ2

W
∥∥2
∞

)

(c)
= 2

S−1∑
i=1

2S−i exp

(
−ψ

2n

2w2
i

)
.

(a) follows from union bound, and (b) follows from Hoeffding’s inequality. (c) follows by

Qc1 = Q2 and sorting weights www = {w1, . . . , wn} in non-increasing order.

Proof of Theorem 4.1.2. The result follows from Lemma A.1 in [63] and Theorem A.2.1 by

algebraic manipulation.

Proof of Theorem 4.1.3. The result follows from Lemma A.1 in [63] and Theorem A.2.2 by

algebraic manipulation.

A.2.2 Bernstein Concentration Inequalities

Proof of Theorem 4.1.4. The proof is similar to the proof of Theorem A.2.2 until section b.

The proof continues from section (b) as follows:

(b)

≤
∑
Q1∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
+
∑
Q2∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
(c)

≤
∑
Q1∈2S

exp

(
− 3ψ2n

6
∥∥111TQ1

W
∥∥2

∞ + 4ψ
∥∥111TQ1

W
∥∥
∞

)
+
∑
Q2∈2S

exp

(
− 3ψ2n

6
∥∥111TQ2

W
∥∥2

∞ + 4ψ
∥∥111TQ2

W
∥∥
∞

)

88

(d)
= 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)
.

Here (b) follows from Bernstein’s inequality where σ2 is the mean of variance of random

variables, and c is their upper bound [15]. In the weighted case, with conservative estimate

of variance σ2 =
∥∥111TQ1

W
∥∥2

∞/4, and c =
∥∥111TQ1

W
∥∥
∞, because the random variables are drawn

from Bernoulli distribution with the maximum possible variance of 1/4. (d) follows by

sorting weights www in non-increasing order.

89

A.3 Fast Algorithms for L∞-constrained S-rectangular Robust MDPs

A.3.1 Proofs of Results in Section 5.1

Proof of Lemma 5.1.2. The functions q(ξ) is convex due to the LP formulation of Equa-

tion (5.3); see [17].

Proof of Lemma 5.1.3. (i) The statement follows from the results in sections (ii)-(v) of this

lemma.

(ii) If the intersection of any pair of RB, DB, and NB is not an empty set, there exist

a component i that satisfies two or more constraints in Table 5.2. In such a scenario,

the basis B contains linearly dependent constraints that violate the definition of a basis.

TB = {1, . . . , S} \ RB \ DB \ NB by definition does not intersect with other sets.

(iii) and (iv) By definition, B in B implies that the constraint 1Tppp = 1 is in B; thus,

one needs S − 1 additional constraints selected from Table 5.1 to form a basis. However, for

every i ∈ [S], at most one of the three constraints in Table 5.1 should be selected, otherwise

the constraints would not be linearly independent. Therefore, it implies that there exists

exactly one j ∈ [S] such that none of the three constraints in Table 5.1 is selected in B, and

so j ∈ TB. For every i ∈ [S]\{j}, i ∈ RB ∪ DB ∪NB.

(v) We prove this results via contradiction with the following cases. Firstly, suppose

there exist a basis B′, in which l < τ ∈ TB′ where l ∈ DB′ , then we construct another basis

B, where RB = RB′ ∪ {l}, DB = DB′\{l}, NB = NB′ , and TB = TB′ . By Lemma 5.1.4, we

have:

q̇B′ =
∑
i∈RB′

zi −
∑
j∈DB′

zj + (|DB′| − |RB′ |) zτ ,

q̇B =
∑
i∈RB′

zi −
∑
j∈DB′

zj + 2zl + (|DB′| − |RB′ | − 2) zτ

and thus q̇B − q̇B′ = 2(zl − zτ) ≤ 0 as zl ≤ zτ . The above construction of B also ensure that

pB(ξ) is feasible in a neighborhood of ξ, as long as pB′(ξ) is feasible in a neighborhood of ξ.

90

Furthermore, suppose there exist a basis B′, in which l < τ ∈ TB′ where l ∈ NB′ , then we

construct another basis B, where RB = RB′ ∪{l}, DB = DB′ , NB = NB′\{l}, and TB = TB′ .

By Lemma 5.1.4, we have:

q̇B′ =
∑
i∈RB′

zi −
∑
j∈DB′

zj + (|DB′ | − |RB′|) zτ ,

q̇B =
∑
i∈RB′

zi −
∑
j∈DB′

zj + zl + (|DB′ | − |RB′| − 1) zτ

and thus q̇B − q̇B′ = zl − zτ ≤ 0 as zl ≤ zτ . The above construction of B also ensure that

pB(ξ) is feasible in a neighborhood of ξ, as long as pB′(ξ) is feasible in a neighborhood of ξ.

Now we prove the second part of this result.

Suppose there exist a basis B′, in which m > τ ∈ TB′ where m ∈ RB′ , then we construct

another basis B, where RB = RB′\{m}, DB = DB′ ∪ {m}, NB = NB′ , and TB = TB′ . By

Lemma 5.1.4, we have:

q̇B′ =
∑
i∈RB′

zi −
∑
j∈DB′

zj + (|DB′ | − |RB′|) zτ ,

q̇B =
∑
i∈RB′

zi −
∑
j∈DB′

zj − 2zm + (|DB′| − |RB′ |+ 2) zτ

and thus q̇B − q̇B′ = 2(zτ − zm) ≤ 0 as zm ≥ zτ . The above construction of B also ensure

that pB(ξ) is feasible in a neighborhood of ξ, as long as pB′(ξ) is feasible in a neighborhood

of ξ.

Proof of Lemma 5.1.4. Note that if k ∈ NB implies (pppB(ξ))k = 0 for every ξ therefore ṗk = 0.

For all components i ∈ RB we have pi − p̄i = ξ. By taking the derivative with respect to ξ

we have ṗi = 1. Similarly, for all j ∈ DB we have p̄j − pj = ξ. Taking the derivative leads

to ṗj = −1. We denote by xxxG the subvector of xxx ∈ RS formed by the elements xi, i ∈ G,

where indices are contained in the set G ⊆ S. We consider a fixed basis B and thus drop

the subscript B for the rest of this proof.

91

Table 5.1 implies the following useful equality that any ppp must satisfy.

1 = 1Tppp = 1TpppR + 1TpppD + 1TpppN + 1TpppT

= 1TpppR + 1TpppD + 1TpppT

= 1TpppR + 1TpppD + pτ

where the second identity follows from the fact that ∀k ∈ N implies pk = 0. By taking the

derivative d
dξ

from both sides we have:

0 = 1TṗppR + 1TṗppD + ṗτ

= |R| − |D|+ ṗτ .

And finally we have:

q̇ = zzzTṗpp

= zzzTṗppR + zzzTṗppD + zzzTṗppN + zzzTṗppT

=
∑
i∈R

zi −
∑
j∈D

zj + ṗτzτ .

Proof of Theorem 5.1.5. The statement is true due to linearity of q(ξ) on the interval [ξt, ξt+1]

shown in Lemma 5.1.2, as well as the results in Lemma 5.1.6, Lemma 5.1.7, and Lemma 5.1.8.

Proof of Lemma 5.1.6. At ξ = 0, we can assume the none set is empty NB = ∅ because

one can replace all non-negativity constraints pi ≥ 0 with pi − p̄i ≤ ξ or p̄i − pi ≤ ξ. In

Lemma 5.1.3, Section (v), we show for every B ∈ B, ∀ i ∈ RB, ∀ j ∈ DB, and τ ∈ TB we

have i < τ < j. So q̇B can be written as:

92

q̇B =
∑
i∈RB

zi −
∑
j∈DB

zj + (|DB| − |RB|) zτ

=
τ−1∑
i=1

zi −
S∑

j=τ+1

zj + ((S − τ)− (τ − 1))zτ

=
τ−1∑
i=1

zi −
S∑

j=τ+1

zj + (S − 2τ + 1)zτ

=
S∑
k=1

sign(k − τ)zk + (S − 2τ + 1)zτ

(A.13)

Equation (A.13) shows at ξ = 0, the trader’s rate ṗτ = S − 2τ + 1. We can also show

that at ξ = 0, for all component i ∈ {1, . . . , S} we have −1 ≤ ṗi ≤ 1 because the constraints

pi − p̄i ≤ ξ and p̄i − pi ≤ ξ are both active in equality. Thus we have

min
B∈B

d

dξ
qB(ξo) = zzzTṗpp

s. t. 1Tṗpp = 0 ,

−1 ≤ ṗpp ≤ 1 .

(A.14)

Since we previously showed the trader’s exchange rate follows from ṗτ = |DB| − |RB|

we can conclude ṗτ is an integer. Given the constraints in (A.14) at ξ = 0, we conclude

ṗτ ∈ {−1, 0, 1}. The index of the trader is obtained from one of the following scenarios:

S − 2τ + 1 = 0 =⇒ τ =
S + 1

2
, (A.15)

S − 2τ + 1 = 1 =⇒ τ =
S

2
, (A.16)

S − 2τ + 1 = −1 =⇒ τ =
S + 2

2
, (A.17)

When S is an odd number, τ can be only S+1
2

because S is also an integer and τ cannot

be fractional. And when S is an even number, τ can be either S
2

or S+2
2

. Algorithm 9 returns

the exact solution in both cases.

Given the index of trader for B0, the index of all donors and receivers can be achieved

93

form Lemma 5.1.2 section (v). We initialize the sets: TB0 = {dS/2e}, RB0 = {i | i <

τ}, DB0 = {j | j > τ}, NB0 = {};

Proof of Lemma 5.1.7. Suppose z1 ≤ z2 ≤ · · · ≤ zS. Consider a base B that is feasible in

the neighborhood of ξt > 0, and satisfies B = argminB∈B
d
dξ
q(ξt). In Lemma 5.1.4, we show

∀ i ∈ RB and ∀ j ∈ DB ∪NB and τ ∈ TB we have i < τ < j, and q̇B can be written as:

d

dξ
q(ξt) = q̇B =

∑
i∈RB

zi −
∑
k∈DB

zk + (|DB| − |RB|) zτ (A.18)

The adjacent basis B′ ∈ B can be chosen from one of the following cases:

B′ =

1 DB′ = DB\{l}, NB′ = NB ∪ {l}, TB′ = TB, RB′ = RB

2 NB′ = NB ∪ {τ}, RB′ = RB\{m}, TB′ = {m}, DB′ = DB

3 DB′ = DB ∪ {τ}, RB′ = RB\{n} TB′ = {n}, NB′ = NB

4 RB′ = RB ∪ {τ}, DB′ = DB\{o}, TB′ = {o}, NB′ = NB

5 RB′ = RB ∪ {τ}, NB′ = NB\{p}, TB′ = {p}, DB′ = DB

6 NB′ = NB\{q}, DB′ = DB ∪ {q}, TB′ = TB, RB′ = RB

(A.19)

Case 1 occurs when a donor becomes a none by donating all of its probability mass to a

receiver. In this basis change, the index of the trader remains unchanged. B′ is an adjacent

basis for B since we only remove one active constraint (p̄l − pl ≤ ξ), and add another one

(pl ≥ 0). In case 2, the trader becomes a none by losing all of its probability mass. The

trader’s index shifts from τ to m, one of the receivers in B. Note that in case 2 also, B′ is

an adjacent basis to B. We removed one active constraint (pm − p̄m ≤ ξ), and add another

one (pτ ≥ 0). Case 3 is similar to case 2, however in this case the trader reaches its lower

bound, and as a result the new active constraint in B′ is (p̄τ − pτ ≤ ξ). Case 4 occurs when

a trader becomes a receiver. In this scenario, the trader’s index shifts from τ to o, which

was a member of DB. Case 5 and case 4 are similar. However, the trader in B′ belongs to

94

NB. In the last case, one of the components in NB gain probability mass and moves to the

donor’s set. In the following, we show that cases 4-6 are not a feasible choice for B′.

Any other case violates Lemma 5.1.3, Section (v). The corresponding q̇B′ obtain as

follows:

q̇B′ =

1
∑

i∈RB zi −
∑

k∈DB zk + zl + (|DB| − |RB| − 1) zτ

2
∑

i∈RB zi −
∑

k∈DB zk − zm + (|DB| − |RB|+ 1) zm

3
∑

i∈RB zi −
∑

k∈DB zk − zτ − zn + (|DB| − |RB|+ 2) zn

4
∑

i∈RB zi −
∑

k∈DB zk + zτ + zo + (|DB| − |RB| − 2) zo

5
∑

i∈RB zi −
∑

k∈DB zk + zτ + (|DB| − |RB| − 1) zp

6
∑

i∈RB zi −
∑

k∈DB zk − zq + (|DB| − |RB|+ 1) zτ

(A.20)

And hence we have:

q̇B′ =

1 q̇B + (zl − zτ)

2 q̇B + (zm − zτ)(|DB| − |RB|)

3 q̇B + (zn − zτ)(|DB| − |RB|+ 1)

4 q̇B + (zo − zτ)(|DB| − |RB| − 1)

5 q̇B + (zp − zτ)(|DB| − |RB| − 1)

6 q̇B − (zq − zτ)

(A.21)

Given Lemmas A.3.1 and A.3.2, B′4, B′5, and B′6 are not a suitable choice for B′ since

q̇B′4 ≤ q̇B, q̇B′5 ≤ q̇B and q̇B′6 ≤ q̇B.

The choice over B′1, B′2, and B′3 depend on the probability mass of the components at

each breakpoint.

95

In order to minimize the decent rate in the case of B′ = B′2, we can show that:

q̇B′ = min
m∈RB

q̇B + (zm − zτ)(|DB| − |RB|) (A.22)

We know zm − zτ ≤ 0. And 0 ≤ (zm − zτ)(|DB| − |RB|) otherwise Lemma A.3.2 will be

violated. As a result we conclude in this particular case (|DB| − |RB|) ≤ 0.

In order to minimize Equation (A.22) the term zm − zτ should be minimized. Since

z1 ≤ · · · ≤ zm ≤ · · · ≤ zτ , therefore m? = τ − 1. With the same reasoning we can show in

the case of B′ = B′3 we have n? = τ − 1.

Our results follows the continuity assumption of the solution ppp? = pppB(ξ) for all ξ > 0, in

which a receiver can only become a trader, not a donor nor empty, at each breakpoints. Also,

a donor cannot become a receiver unless it becomes a trader first. Otherwise, the continuity

assumption will be violated.

Lemma A.3.1. For all B ∈ B we have |DB| − |RB| ≤ 1.

Proof. Consider the problem with fixed ξ,

q(ξ) = min
ppp∈∆S

{
pppTzzz : ‖p̄pp− ppp‖∞ ≤ ξ

}
, (A.23)

For any fix B ∈ B, we know:

if i ∈ RB =⇒ pi = p̄i + ξ,

if j ∈ DB =⇒ pj = p̄j − ξ,

if k ∈ NB =⇒ pk = 0,

if τ ∈ TB, ∃∆ ∈ R that pτ = p̄τ + ∆.

96

We also know

1Tppp = 1 ⇐⇒
∑
i∈RB

(p̄i + ξ) +
∑
j∈DB

(p̄j − ξ) + p̄τ + ∆ = 1

⇐⇒ (1−
∑
k∈NB

p̄k) + (|RB| − |DB|)ξ + ∆ = 1

⇐⇒ ∆ =
∑
k∈NB

p̄k + (|DB| − |RB|)ξ

We know for feasibility, ∆ ≤ ξ so we have:

∑
k∈NB

p̄k + (|DB| − |RB|)ξ ≤ ξ

∑
k∈NB

p̄k ≤ (|RB| − |DB|+ 1)ξ

Since
∑

k∈NB p̄k ≥ 0, and ξ > 0, we conclude (|RB| − |DB|+ 1) ≥ 0. As a result:

|DB| − |RB| ≤ 1 .

Lemma A.3.2. let (ξt)t=0,...,T+1, and q(ξ) is a piecewise-affine convex function with break-

points ξl. Then, q̇0 ≤ q̇1 ≤ . . . ≤ q̇T+1.

Proof. The result follows convexity property of function q(ξ) : R+ → R. Let ξ′ ∈ (ξl, ξl+1)

and ξ′′ ∈ (ξl+1, ξl+2). By Jensen’s inequality, we have for ξ′, ξ′′, and t ∈ [0, 1]:

q(ξ′ + t(ξ′′ − ξ′)) ≤ q(ξ′) + t(q(ξ′′)− q(ξ′))

and hence

q(ξ′ + t(ξ′′ − ξ′))− q(ξ′)
t

+ q(ξ′) ≤ q(ξ′′)

97

Let the affine function q̇l · ξ + bl represent q(ξ) for ξ ∈ (ξl, ξl+1). Take t sufficiently small

enough so that ξ′ + t(ξ′′ − ξ′) ∈ (ξl, ξl+1). The above inequality reduces to

q̇l · (ξ′ + t(ξ′′ − ξ′)) + bl − q̇l · ξ′ − bl
t

+ q̇l · ξ′ + bl ≤ q̇l+1 · ξ′′ + bl+1

q̇l · ξ′′ + bl ≤ q̇l+1 · ξ′′ + bl+1

Proof of Lemma 5.1.8. The optimization problem in (2.3) can be formulated as the following

parametric LP:

q(ξ) = min
ppp∈RS

{
zzzTppp | 1Tppp = 1, −ξ ≤ pi − p̄i ≤ ξ, pi ≥ 0, i = 1, . . . , S

}
. (A.24)

At each basis Bt, there are S constraints that are active and satisfied in equity. In order

to maintain the feasibility the basis Bt on the interval [ξt, ξt + ∆ξt], one needs to keep track

of constrains that will be violated first by increasing ξ ∈ [ξt, ξt + ∆ξt], and relax all other

constraint. Since the donation rate is equal among all donors ṗi = −1 ∀i ∈ DBt , the non-

negativity constraints could be watched by following the donors with minimal probability

mass ∆ξt ← max {ξ ≥ 0 | pppt+ξ ·∇ξ pppBt(ξt) ≥ 000}. The rate of exchange for the trader varies at

each basis, as a result, the trader could violate its lower and upper bound −ξ ≤ pτ − p̄τ ≤ ξ.

The algorithm trace the trader’s rate so one can check the constrain via ∆ξt ← max {ξ ≥

0 | |(pppt + ξ · ∇ξ pppBt(ξt) − p̄pp)τt | ≤ ξt + ξ}. Line 4 of Algorithm 4 combines these constraints

and relaxes others.

Proof of Theorem 5.1.9. A naive implementation of the homotopy method in Algorithm 4

has a computational complexity of O(S2). The algorithm obtains the ppp? at each breakpoint.

The number of iteration depends on the number of breakpoints in q(ξ), which is at most 3
2
S.

98

We observed numerically that the naive implementation performs on par with LP solvers

and sometimes even slower. In Algorithm 9, we take advantage of the structural property of

the slope of the q-function presented in Lemma 5.1.4, and only trace the optimal probability

mass of the trader to speed up the method dramatically. Algorithm 9 compute q-function

for each state-action pair in O(S logS) for sorting the values of zzz.

A.3.2 Detailed Homotopy Algorithm

This section provides the detailed procedure of our homotopy algorithm for computing the ex-

act solution for robust Bellman operator with L∞ constrained ambiguity sets. The algorithm

starts with the initialization of the doner, receiver, and trader sets according to Lemma 5.1.6,

and then iterates through all breakpoints. Each breakpoint has been obtained concerning the

conditions that are described in Lemma 5.1.7. The type of each basis is change is indicated

according to Table 5.2. We use a priority queue to keep track of the donor with the smallest

probability mass. The algorithm follows the value of q-function at each iteration, however

ignores the probability mass values for all components except the trader. The iteration stops

as soon as ξ exceeds the budget κ, which is given as an input.

A.3.3 Proofs of Results in Section 5.2

Proof of Theorem 5.2.1. The result follows from the complexity analysis of the bisection

algorithm with quasi-linear time complexity in [31], appendix B.

Lemma A.3.3. The optimal objective values of Equations (5.4) and (5.5) are equivalent.

Proof of Lemma A.3.3. Since the functions qa, for all a ∈ A in Equation (5.5) are convex

due to the LP formulation of Equation (5.3). We can exchange the maximization and

minimization operators in Equation (5.5) to obtain

min
ξξξ∈RA+

{
max
πππ∈∆A

(∑
a∈A

πa · qa(ξa)

)
|
∑
a∈A

ξa ≤ κ

}
, (A.25)

99

Algorithm 9: Homotopy method for q(κ) with L∞ constrained ambiguity set.

Input: LP parameters zzz, κ and p̄pp
Output: Breakpoints (ξt)t=0,...,T+1 and values (qt)t=0,...,T+1

1 Initialize ξ0 ← 0, t← 0, ppp0 ← p̄pp and q0 ← q(ξ0) = pppT0zzz ;
2 Sort zzz in ascending order and rearrange p̄pp accordingly ;
3 Initialize the sets: ;
4 T = {dS/2e}, R = {i | i < τ}, D = {j | j > τ}, N = {} ;
5 zR =

∑
i∈R zi; zD =

∑
j∈D zj ;

6 Push all elements of D into a min-heap H according to their probability mass ;
7 ξ ← ξ0 ;
8 while ξ < κ do
9 ṗτ ← |D| − |R|; # The trader’s rate of exchange ;

10 j ← H.top ;
11 ∆ξD ← pj − ξ ;
12 ∆ξτ ← Calculate largest feasible ∆pτ given ṗτ ;
13 Find basis change type (Algorithm 10) ;
14 ∆ξ ← max{∆ξ, κ− ξ} ;
15 pτ ← pτ + ṗτ ·∆ξ ;
16 qt = qt−1 + (zR − zD + ṗτzτ) ·∆ξ ;
17 ξ ← ξ + ∆ξ; ξt ← ξ; t← t+ 1 ;
18 if Basis Change is D to N then
19 zD ← zD − zj ;
20 D = D\{j} ;
21 N = N ∪ {j} ;
22 H.pop ;

23 else
24 if Basis Change is T to D then
25 H.push(τ) # p = pτ + ξ ;
26 D = D ∪ {τ} ;
27 zD ← zD + zτ ;

28 else if Basis Change is T to N then
29 N = N ∪ {τ} ;
30 τ ← τ − 1 ;
31 T = {τ} ;
32 R = R\{τ} ;
33 pτ ← p̄τ + ξ ;
34 zR ← zR − zτ ;

35 end

36 end
37 The remainder of the function q(ξ) will be constant: qT+1 ← qt ;
38 ξT+1 ←∞ ;
39 return (ξt)t=0,...,T+1, and (qt)t=0,...,T+1

100

Algorithm 10: Identifies the type of basis change at each breakpoints.

Input: ∆ξτ ,∆ξD
Output: Type of basis change, and ∆ξ

1 if ∆ξτ > ∆ξD then
2 Basis Change ← D to N ;
3 ∆ξ ← ∆ξD ;

4 else
5 ∆ξ ← ∆ξτ ; p′τ ← pτ + ṗτ ·∆ξ ;
6 if p′τ = 0 then
7 Basis Change ← T to N ;
8 else
9 Basis Change ← T to D ;

10 end

11 end
12 return Basis Change, and ∆ξ

Since the inner maximization is linear in πππ, it is optimized at an extreme point of ∆A.

This allows us to re-express the optimization problem as

min
ξξξ∈RA+

{
max
a∈A

qa(ξa) |
∑
a∈A

ξa ≤ κ

}
. (A.26)

We can linearize the objective function in this problem by introducing the epigraphical

variable u ∈ R

min
u∈R

min
ξξξ∈RA+

{
u |
∑
a∈A

ξa ≤ κ, u ≥ max
a∈A

[qa(ξa)]

}
(A.27)

It can be readily seen that for a fixed u in the outer minimization, there is an optimal ξξξ

in the inner minimization that minimizes each ξa a individually while satisfying qa(ξa) ≤ u

for all a ∈ A. Define gq as the a-th component of this optimal ξξξ:

ga(u) = min
ξa∈RA+

{ξa | qa(ξa) ≤ u}. (A.28)

We show that ga(u) = q−1
a . To see this, we substitude qa in Equation (A.28) to get:

ga(u) = min
ξa∈RA+

min
pppa∈∆S

{
ξa | pppTazzza ≤ u, ‖pppa − p̄ppa‖∞ ≤ ξa

}
. (A.29)

101

The identity ga = q−1
a then follows by realizing that the optimal ξ?a in the equation above

must satisfy ξ?a = ‖pppa − p̄ppa‖∞. Finally, substituiting the definition of ga in Equation (A.28)

into the problem (A.27) show that the optimization problem (5.5) is equivalent to Equa-

tion (5.4).

Algorithm 11: Bisection method for the robust Bellman optimality opera-
tor [31].

Input: Precision ε, functions q−1
a ,∀a ∈ A

1 umin: maximum known u for which Equation (5.4) is infeasible ;
2 umax: minimum known u for which Equation (5.4) is feasible ;

Output: û such that |u? − û| ≤ ε, where u? is optimal in Equation (5.4)
3 while umax − umin > 2 ε do
4 Split interval [umin, umax] in half: u← (umin + umax)/2 ;
5 Calculate the budget required to achieve the mid-point u: s←

∑
a∈A q

−1
a (u) ;

6 if s ≤ κ then
7 u is feasible: update the feasible upper bound: umax ← u ;
8 else
9 u is infeasible: update the infeasible lower bound: umin ← u ;

10 end

11 end
12 return (umin + umax)/2

102

A.3.4 Detailed Description of Domains

In this section, we provide a detailed description of five standard reinforcement domains that

have been previously used to evaluate robustness.

As the primary metric, we compare the running time of our homotopy and bisection

algorithm with Gurobi 9.1.2—a standard LP solver. In order to enable the comparison of

the results among different domains, we also compare our results with the homotopy and

bisection algorithm for L1-constrained ambiguity sets in [31].

As the first benchmark, we employ Inventory Management (IM), a classic inventory

management problem [84], with discrete inventory levels 0, . . . , S = 30. The purchase cost,

sale price, and holding cost are 2.49, 3.99, and 0.03, respectively. The demand is sampled

from a normal distribution with a mean S/4 and a standard deviation of S/6. The initial

state is 0 (empty stock). It also uses a Dirichlet prior. Table 5.3 summarizes the run-time

for computed guaranteed returns of different methods at 0.95 confidence levels.

The second domain is RiverSwim (RS) which is a standard benchmark [74], which is an

MDP consisting of six states and two actions. The process follows by sampling synthetic

datasets from the true model and then computing the guaranteed robust returns for different

methods. The prior is a uniform Dirichlet distribution over reachable states.

Moreover, Machine Replacement (MR) is a small benchmark MDP problem with S = 10

states that models progressive deterioration of a mechanical device [12]. Two repair actions

A = 2 are available and restore the machine’s state.

103

A.3.5 Fast Algorithm for Nature Response with Fixed ξ

Let us consider the optimization problem (2.3):

min
ppp∈∆S
{pppTzzz : ‖p̄pp− ppp‖∞ ≤ ξ}, (A.30)

As expressed earlier, the problem can be formulated as the following LP problem:

q(ξ) = min
ppp∈RS

zzzTppp

s. t. ppp− p̄pp ≤ ξξξ

p̄pp− ppp ≤ ξξξ

ppp ≥ 000

111Tppp = 1 .

(A.31)

The problem is analogous to minimizing a linear function over a rectangle.

min
ppp∈RS

zzzTppp

s. t. − ξξξ ≤ ppp− p̄pp ≤ ξξξ

ppp ≥ 000

111Tppp = 1 ,

(A.32)

where the objective and the constrains are separable. The objective is a sum of terms

zipi that each term depends only on one variable. We can therefore solve the problem by

minimizing over each component of ppp independently.

min
ppp∈RS

zzzTppp

s. t. − ξξξ + p̄pp ≤ ppp ≤ ξξξ + p̄pp

ppp ≥ 000

111Tppp = 1 .

(A.33)

104

let −ξξξ + p̄pp = lll and ξξξ + p̄pp = uuu.

min
ppp∈RS

zzzTppp

s. t. lll ≤ ppp ≤ uuu

ppp ≥ 000

111Tppp = 1 .

(A.34)

The constraint lll ≤ ppp and 0 ≤ ppp can be combined as lll′ ≤ ppp where l′i = max{0, li}. We also

know that pi ≤ 1,∀i ∈ S. So ppp ≤ uuu also can be replaced by ppp ≤ uuu′ where u′i = min{1, ui}.

Now we have

min
ppp∈RS

zzzTppp

s. t. lll′ ≤ ppp ≤ uuu′

111Tppp = 1 .

(A.35)

The problem (A.35) is a bounded resource allocation problem with continuous variables,

where the objective function is convex and continuously differentiable. Without loss of gen-

erality we add the following restrictions:

First, lll′ < uuu′, since if l′j = u′j for any j ∈ {1, . . . , S} implies that pj is fixed and can be

dropped from (A.35). Second, 1Tlll′ < 1 < 1Tuuu′. Otherwise the problems is either infeasible or

trivially solvable. We consider the following equivalent problem, which obtained by change

in variables xxx = ppp− lll′, and the modified upper bound uuu = uuu′ − lll′. Let α = 1− 1Tlll′:

min
xxx∈RS

zzzTxxx

s. t. 0 ≤ xxx ≤ uuu

111Txxx = α .

(A.36)

For problem (A.36), the Kuhn-Tucker conditions are as follows:

zj − µj + νj − λ = 0, j = 1, . . . , S,

105

µjxj = 0, j = 1, . . . , S,

νj(xj − uj) = 0, j = 1, . . . , S,

µj, νj ≥ 0, j = 1, . . . , S,

S∑
j=1

xj = α,

0 ≤ xj ≤ uj, j = 1, . . . , S,

where λ, µj, νj are Lagrange multipliers associated with constraints 111Txxx = α, 0 ≤ xxx, and

xxx− uuu ≤ 0, respectively. These conditions are equivalent to:

0 < xj < uj =⇒ zj = λ,

xj = 0 =⇒ zj ≥ λ,

xj = uj =⇒ zj ≤ λ,

S∑
j=1

xj = α,

0 ≤ xj ≤ uj, j = 1, . . . , S,

Next, we show the relationship between the optimal solution to A.37, and the following

relaxed problem:

min
xxx∈RS

zzzTxxx

s. t. 0 ≤ xxx

111Txxx = α .

(A.37)

Lemma A.3.4. Let x̂xx = (x̂1, . . . , x̂n) be the optimal solution of A.37. Then x̂j ≥ uj implies

that x?j = uj holds in an optimal solution xxx? of (A.36).

106

The proof is provided by Ibaraki and Katoh [33]. The lemma makes it possible to have

the following algorithm for (A.37):

Another approach for solving (A.36) is to suppose the component of zzz are sorted in

increasing order with

z1 ≤ z2 ≤ . . . ≤ zS

The problem is now similar to budget allocation. First we set ppp = lll to satisfy the lower

bound constraint. Note that if 1Tlll > 1 the problem is infeasible. The reaming budget

α = 1 − 1Tlll which needs to be allocated to satisfy 1Tppp = 1 constraint. Each component pi

has the capacity of allocating ui − li of the budget α, so we have 0 ≤ αi ≤ ui − li. The

optimal p?i minimizes zipi, so we can now allocate α to the smallest elements of zzz until we

run out of budget.

107

A.4 Fast Feature Selection for Reinforcement Learning

A.4.1 Proof of Theorem 6.2.1

Proof of Theorem 6.2.1. From the definition of ∆P and PΦ we get the following equality:

∆P = UΣV TU1 − U1(UT
1 U1)−1UT

1 UΣV TU1 .

Recall that singular vectors are orthonormal which implies that (UT
1 U1)−1 = I and UT

1 U =[
I1 0

]
. Substituting these terms into the equality above, we get:

‖∆P‖2 =
∥∥(UΣV T − U1Σ1V

T
1)U1

∥∥
2

≤
∥∥UΣV T − U1Σ1V

T
1

∥∥
2
‖U1‖2 .

Simple algebraic manipulation shows that
∥∥UΣV T − U1Σ1V

T
1

∥∥
2

= ‖Σ2‖2 and ‖U1‖2 = 1

because U is an unitary matrix. This establishes the inequality for ∆P ; the result for ∆r

follows directly from the properties of orthogonal projection since r itself is included in the

features.

A.4.2 Proof of Theorem 6.2.2

Proof of Theorem 6.2.2. We show the result only for ∆P ; the result for ∆r follows similarly.

From the definition of ∆, ∥∥∥∆AΦ̂
P

∥∥∥
2

=
∥∥∥PAΦ̂− AΦ̂PAΦ̂

∥∥∥
2
.

Now, by adding a zero (APAΦ̂− APAΦ̂) and applying the triangle inequality, we get:

∥∥∥∆AΦ̂
P

∥∥∥
2

=
∥∥∥PAΦ̂− APAΦ̂ + APAΦ̂− AΦ̂PAΦ̂

∥∥∥
2
≤

≤
∥∥∥PAΦ̂− APAΦ̂

∥∥∥
2

+
∥∥∥APAΦ̂− AΦ̂PAΦ̂

∥∥∥
2
.

108

Given (AΦ̂)+ = Φ̂+A+ and the property of the compressed transition matrix in Equa-

tion (2.9) we can show:

(PA)Φ̂ − PAΦ̂ = Φ̂+PAΦ̂− (AΦ̂)+PAΦ̂

= Φ̂+(PA − A+PA)Φ̂ = 0

∥∥∥∆AΦ̂
P

∥∥∥
2
≤ ‖PA− APA‖2

∥∥∥Φ̂
∥∥∥

2
+

+
∥∥∥PAΦ̂− Φ̂(PA)Φ̂

∥∥∥
2
‖A‖2 .

The theorem then follows directly from algebraic manipulation and the fact that the features

are normalized.

109

	Efficient Data-Driven Robust Policies for Reinforcement Learning
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	List of Tables
	List of Figures
	ABSTRACT
	Introduction
	Contributions
	Optimizing Percentile Criterion using Robust MDPs
	Fast Algorithms for L-Constrained S-Rectangular Robust MDPs
	Fast Feature Selection for Linear Value Function Approximation

	Outline

	Background and Formulations
	Markov Decision Process
	Robust MDPs
	Percentile Criterion
	Linear Value Function Approximation

	Optimizing Percentile Criterion Using Robust MDPs
	RMDPs for Percentile Optimization
	Percentile Criterion Approximation Using Robust MDPs

	Minimizing Ambiguity Spans
	Minimizing Ambiguity Budgets
	Empirical Evaluation

	Weighted Frequentist Confidence Intervals for Robust MDPs
	Frequentist Guarantees
	Detailed Experimental Results For Weighted Ambiguity Sets
	Experimental Setup
	Full Empirical Results

	Fast Algorithms for L-constrained S-rectangular Robust MDPs
	Computing SA-Rectangular Bellman Operator in Linear Time
	Properties of Nature Response Function q
	Homotopy Algorithm

	Computing S-Rectangular Bellman Operator in Linear Time
	Numerical Results

	Low-rank Feature Selection for Linear Value Function
	Bellman Error Analysis
	FFS: A Fast Low-Rank Approximation for Feature Selection
	Using Raw Features

	Related Feature Selection Methods
	Empirical Evaluation
	Synthetic Problems
	Cart-Pole

	Conclusion
	Bibliography
	Technical Results and Proofs
	Optimizing Percentile Criterion Using Robust MDPs
	Proofs of Results in sec:overallframework
	Proof of Results in sec:shape
	Proof of Results in sec:size

	Weighted Frequentist Confidence Intervals for Robust MDPs
	Proof of Results in sec:frequentist
	Bernstein Concentration Inequalities

	Fast Algorithms for L-constrained S-rectangular Robust MDPs
	Proofs of Results in sec:homotopy
	Detailed Homotopy Algorithm
	Proofs of Results in sec:bisection
	Detailed Description of Domains
	Fast Algorithm for Nature Response with Fixed

	Fast Feature Selection for Reinforcement Learning
	Proof of th:svderrorbound
	Proof of thm:sumbound

