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Abstract— In this paper, we propose a detumbling strategy
that stabilizes the motion of a tumbling client satellite using
an orbital servicing manipulator, which is the goal of the
post-grasp phase. One of the critical aspects in this phase is
ensuring that excessive contact forces are not generated at the
grasp interface. In addition, space mission requirements might
demand a nominal manipulator configuration that is suitable
for further manipulation/servicing activities.

The proposed strategy allows the detumbling of the client
motion while ensuring that the contact forces developed at
the grasp interface do not violate a safety threshold. Fur-
ther, it allows the reconfiguration of the manipulator arm
by exploiting the full actuation capability of the manipulator-
equipped servicing spacecraft. The controller guarantees joint
task convergence in the nullspace of the manipulator’s end-
effector, and is also valid for kinematically singular configu-
rations of the manipulator. It is further augmented using a
quadratic programming based approach to optimally constrain
the contact forces. Finally, simulation results for a post-grasp
detumbling scenario are shown to validate the effectiveness of
the proposed method.

I. INTRODUCTION

In an on-orbit servicing mission, a spacecraft equipped

with a manipulator arm on its base (servicer) approaches

and grasps a second satellite, the client (see Fig. 1). After

the capture, the so-called post-grasp phase occurs, where

the goal of the servicer is to detumble the system, i.e. to

stabilize the combined motion. Later, servicing tasks such

as refuelling and maintenance can be executed using the

manipulator arm [1]. In recent on-orbit servicing mission

studies (see e.g. the DEOS mission [2], the COMRADE or

the e.Deorbit project [3], [4]), the client is considered to be

a free-tumbling and non-cooperative satellite, which means

that the support from the attitude and orbit control of the

client satellite is not available. This factor poses a challenge

for the control design, which further needs to respect the

force limits of the grasping interface to avoid damage, and

consequently, loss of the client [5].

The coordinated control of the manipulator and spacecraft

provides great flexibility to orbital servicing [6], [7]. In [8],

control for a multi-arm orbital manipulator is developed for

the approach and capture phases. A momentum dumping

strategy is presented in [9] using external actuation to re-

move the accumulated momentum from contacts occurring

during the capture phase. In [10], a shared control strategy

between teleoperation and autonomous control was proposed,

to achieve a primary task on the end-effector, and a secondary
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Fig. 1: Left: servicer satellite equipped with a manipulator arm
(CAESAR arm [18]). Right: captured client satellite.

task on the base. The problem of actuating the base and

manipulator at different frequencies is addressed in [11].

The capture strategies for the grasping phase have been ap-

proached from different perspectives. The concept of virtual-

mass for impedance matching control was introduced in [12]

to determine that, the contact between the end-effector and

client is maintained, if the impedance at the end-effector is

equal to (or smaller) than the client’s mass. The center of

percussion of a space robot is analyzed in [13] to formulate

guidelines for impact minimization while capturing a client.

A disturbance observer is implemented in [14] to estimate

the contact forces during impact, which is then compensated

in an impedance controller to achieve compliant capture.

Post-grasp momentum stabilization approaches that lead

to minimum disturbance in the attitude of the base, have

been proposed in the past. In [15], a strategy to transfer

the impact momentum from the base to the manipulator is

proposed, while simultaneously damping the joint velocities

through the reaction null space [16]. In [17], the distribution

of angular momentum of the client between the base, reaction

wheels and manipulator, while utilizing the reaction null

space, was demonstrated.

A common approach for stabilizing the motion of a spin-

ning satellite is to design a suitable detumbling trajectory.

In [19], a time-optimal detumbling trajectory that limits

the interaction torque during the grasping, is tracked by a

feedback linearized control, while the base’s attitude control

system compensates the transferred angular momentum. This

approach is further extended in [20] to energy-optimal tra-

jectories. Similarly, a time-optimal maneuver is presented in

[5] to detumble along an arbitrary motion of the manipulator

while constraining the measurable contact forces. An energy-

optimal approach for joint tracking control, to rigidize the

arm in the post-grasp stabilization, was proposed in [21]. A



direct force controller to respect the contact force limits while

detumbling the target is presented in [22]. A hybrid motion

and force control is developed in [23] while detumbling the

target along polynomial trajectories. An impedance controller

was designed in [24] to damp the motion of a tumbling

target by assuming the internal contact forces at the grasp as

external forces acting on the end-effector.

In this paper, we focus on post-grasp motion stabilization,

i.e. detumbling, while satisfying constraints on grasping con-

tact forces and requirements on manipulator configuration. In

contrast with [15], [16], [17], we relax the restriction on the

attitude of the base in the post-grasp phase, and prioritize

the manipulator reconfiguration (which may be required for

a detumbling strategy, see e.g. [21]). This is achieved by

exploiting the motion of the base. Further, in contrast with

[5], [20], [21], we do not consider an optimal detumbling

trajectory for the client, and unlike [5], [12], [22], we also

does not rely on force/torque measurements. The proposed

controller detumbles the system using a fully-actuated ser-

vicer, while respecting contact force limits imposed by space

mission requirements in the post-grasp phase.

The contributions of this paper are twofold. First, a novel

control strategy for the post-grasp motion stabilization of

a free-tumbling client is developed. The controller achieves

the detumbling of the client satellite and the reconfiguration

of the manipulator arm to a desired joint pose. To this

end, we exploit the nullspace of the servicer’s end-effector

using the full actuation of the servicer. The proposed con-

troller is shown to be valid also for kinematically singular

configurations of the manipulator. Second, the controller is

extended using a quadratic programming (QP) approach to

constrain the contact forces developed in the post-grasp phase

in an optimal manner and it does not require force feedback.

Simulation results validate the proposed method.

The structure of the paper is as follows. Sec. II describes

the dynamic model of the system in the post-grasp phase.

Sec. III introduces the controller design for the proposed

detumbling strategy. Sec. IV presents the QP approach to

limit the contact forces. Sec. V illustrates the results from a

dynamic simulation, and Sec. VI concludes the work.

II. POST-GRASP DYNAMIC MODELING

In this section, preliminaries on the modeling of the whole

system are described. The system is composed of a fully-

actuated orbital manipulator called the servicer, i.e. a base

spacecraft equipped with a manipulator arm, and the client,

i.e. the non-cooperative satellite that has been captured. The

post-grasp dynamics is modeled with the standard approach

used in robotic grasp dynamics [25]. The dynamics of the

servicer and client are as follows,

MMMsssv̇vvsss +CCCsssvvvsss = ΓΓΓ+ JJJT FFFccc, (1)

MMMcccv̇vvccc +CCCcccvvvccc =−JJJT
ccc FFFccc, (2)

where MMMsss,CCCsss ∈R
6+n×6+n and MMMccc,CCCccc ∈R

6×6, are the inertia

and Coriolis matrices of the servicer and client dynamics

respectively and n represents the number of Degrees of Free-

dom (DoF) of the manipulator. The servicer’s state is given

by vvvsss =
[
vvvT

bbb
q̇qqT

]T
∈ R

6+n where vvvbbb ∈ R
6, is the Cartesian

velocity (linear and angular) of the base in body frame and

q̇qq ∈R
n, are the joint rates. The state vvvccc ∈R

6, is the Cartesian

velocity of the client in body frame. The actuation on the

servicer, ΓΓΓ =
[
FFFT

bbb τττT
]T

∈ R
6+n, includes FFFbbb ∈ R

6, the

wrench input to the base in body frame, and τττ ∈R
n, the joint

torques applied on the manipulator. The servicer’s Jacobian

matrix, JJJ =
[
JJJbbb JJJmmm

]
∈ R

6×6+n, maps vvvsss to vvveee ∈ R
6, the

end-effector Cartesian velocity. JJJbbb ∈ R
6×6,JJJmmm ∈ R

6×n, are

the base and manipulator Jacobians respectively. Note that JJJbbb

is an adjoint transformation and thus invertible. Therefore,

JJJ always has full row rank independent of the kinematic

singularities of the manipulator. JJJccc ∈ R
6×6 is the client’s

Jacobian matrix mapping vvvccc to the Cartesian velocity at

the grasping point. Lastly, FFFccc ∈ R
6 is the contact wrench

acting between the manipulator’s end-effector and the client’s

grasping point expressed in the end-effector frame.

Further, considering a rigid grasp, the combined system is

subjected to the velocity constraint at the grasping point,

vvveee = JJJvvvsss = JJJcccvvvccc. (3)

Here, JJJccc is an invertible adjoint transformation. Hence, using

the constraint in (3), vvvccc and it’s time-derivative can be

substituted in (2). In the post-grasp phase, the contact forces,

FFFccc, are considered as internal forces acting on the system at

the grasping point. Therefore (1) and (2) can be combined

to obtain the post-grasp dynamics as follows [19],

MMMv̇vvsss +CCCvvvsss = ΓΓΓ, (4)

where,

MMM = MMMsss + JJJT JJJ−T
ccc MMMcccJJJ−1

ccc JJJ, (5)

CCC =CCCsss + JJJT JJJ−T
ccc CCCcccJJJ−1

ccc JJJ+ JJJT JJJ−T
ccc MMMccc

d

dt
(JJJ−1

ccc JJJ).

The post-grasp model in (4) will be used for the controller

design, where we assume that the inertia parameters of the

client are known (as considered in e.g. [19]).

III. CONTROLLER DESIGN

The goal of the controller is to stabilize the motion of the

servicer-client system while reconfiguring the manipulator

arm. The strategy adopted considers a Cartesian damping

control acting on the end-effector, while nullspace control is

used to reconfigure the joints and damp the motion of the

base. To this end, the end-effector velocity, vvveee, is augmented

by the nullspace velocity, vvvnnn ∈ R
n, such that the extended

Jacobian, JJJNNN , is invertible (see [26] for details),
[

vvveee

vvvnnn

]

= JJJNNNvvvsss, JJJNNN =

[
JJJ

NNN

]

, (6)

where,

NNN = (ZZZMMMZZZT )−1ZZZMMM, ZZZ =
[
−JJJT

mmmadj(JJJbbb)
T det(JJJbbb)III

]
. (7)

ZZZ ∈R
n×6+n is a basis matrix for the nullspace of JJJ such that

the property ZZZJJJT = 000 is satisfied [27], and III ∈ R
n×n is an

identity matrix. Hence the nullspace is n-dimensional since

det(JJJbbb) = 1 as JJJbbb is an invertible adjoint transformation.



Notice that, substituting MMM from (5) into NNN in (7) implies,

ZZZMMM = ZZZMMMsss +ZZZJJJT JJJ−T
ccc MMMcccJJJ−1

ccc JJJ,

⇒ NNN = (ZZZMMMsssZZZ
T )−1ZZZMMMsss, (8)

where the relation between the servicer’s Jacobian and its

nullspace, ZZZJJJT = 000 is used. Therefore, the inertia parameters

of the client do not affect the nullspace velocities.

To facilitate the design of the controller, (4) is transformed

to the augmented task velocity coordinates as,
[

ΛΛΛeee 000

000 ΛΛΛnnn

]

︸ ︷︷ ︸

ΛΛΛ

[
v̇vveee

v̇vvnnn

]

+

[
µµµeeeeee µµµeeennn

µµµnnneee µµµnnnnnn

]

︸ ︷︷ ︸

µµµ

[
vvveee

vvvnnn

]

=

[
FFFeee

FFFnnn

]

︸ ︷︷ ︸

FFF

, (9)

where,

ΛΛΛ = JJJ−T
NNN MMMJJJ−1

NNN , µµµ = JJJ−T
NNN MMM

d

dt
(JJJ−1

NNN )+ JJJ−T
NNN CCCJJJ−1

NNN ,

JJJ−1
NNN =

[
JJJMMM+ ZZZT

]
, FFF = JJJ−T

NNN ΓΓΓ, (10)

and JJJMMM+ = MMM−1JJJT (JJJMMM−1JJJT )−1 is the dynamically con-

sistent generalized inverse of JJJ [28]. Since NNN in (8) was

shown to be independent of the client’s inertia parameters,

consequently JJJ−1
NNN will also be independent of MMMccc.

The controller is designed such that the Cartesian space

control, FFFeee, damps the end-effector velocity, thus stabilizing

the client. Whereas, the null space control, FFFnnn, reconfigures

the arm while stabilizing the base. Therefore, the control

wrenches are chosen as follows,

FFFeee =−KKKDDDeeevvveee +µµµeeennnvvvnnn, (11)

FFFnnn = ZZZ

[
000

KKKPPPqqq∆∆∆qqq,

]

−ZZZ

[
KKKDDDbbbvvvbbb

KKKDDDqqqq̇qq,

]

, (12)

where KKKDDDeee,KKKDDDbbb ∈ R
6×6 and KKKDDDqqq ∈ R

n×n are positive-

definite damping gain matrices of the end-effector, servicer

base and manipulator joints, respectively. KKKPPPqqq ∈ R
n×n is

the positive-definite joint stiffness matrix. ∆∆∆qqq = qqqddd −−− qqq is

the error between the desired joint angles qqqddd and measured

angles qqq. Note that the last term in (11) compensates the

Coriolis coupling in order to decouple the end-effector task

from the nullspace dynamics.

The control input to the servicer in (4) is obtained using

(10) that relates the control wrenches designed in (11)-(12)

to Γ using the extended Jacobian-transpose JJJT
NNN , resulting in,

ΓΓΓ = JJJT FFFDDDeee
︸ ︷︷ ︸

ΓΓΓ111

+NNNT ZZZΓΓΓ000
︸ ︷︷ ︸

ΓΓΓ222

+JJJT µµµeeennnvvvnnn
︸ ︷︷ ︸

ΓΓΓ333

(13)

where,

FFFDDDeee =−KKKDDDeeevvveee ΓΓΓ000 =
[
FFFT

DDDbbb τττT
PPPDDD

]T

FFFDDDbbb =−KKKDDDbbbvvvbbb τττPPPDDD = KKKPPPqqq∆∆∆qqq−KKKDDDqqqq̇qq.

Note that ΓΓΓ000 is projected onto the nullspace of JJJT through1

NNNT ZZZ. To summarize, the controller in (13) is composed

of three terms, namely ΓΓΓ111, which damps the end-effector

1It is worth mentioning that NNNT ZZZ = III − JJJT JJJMMM+T
, which is a common

form of the nullspace projection matrix [28].
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Fig. 2: Block diagram of the designed controller in closed-loop with
the dynamics, used for the post-grasp phase.

velocity, ΓΓΓ222 for the reconfiguration of the manipulator in

the nullspace, and ΓΓΓ333 to decouple the end-effector from

nullspace dynamics. We note that the terms ΓΓΓ111 and ΓΓΓ222

are completely independent of the client inertia parameters,

whereas ΓΓΓ333 has a dependency through the Coriolis coupling

between the end-effector task and nullspace. The depen-

dency on servicer’s inertia parameters are seen only via

the nullspace matrix2 NNN. A block diagram of the designed

controller is shown in Fig. 2.

1) Convergence of augmented task velocities: The con-

troller designed in (13) can be analyzed similar to [26].

First, considering Ve =
1
2
vvvT

eee ΛΛΛeeevvveee as the positive semi-definite

Lyapunov function, and choosing FFFeee in (11), leads to

V̇e = vvvT
eee FFFDDDeee =−vvvT

eee KKKDDDeeevvveee ≤ 0. (14)

Second, considering Vn = 1
2
vvvT

nnn ΛΛΛnnnvvvnnn + 1
2
∆∆∆qqqT KKKPPPqqq∆∆∆qqq, and

choosing FFFnnn in (12), leads to

V̇n =−vvvT
nnn ZZZ

[
KKKDDDbbb 000

000 KKKDDDqqq

]

ZZZT vvvnnn ≤ 0 (15)

in the set where end-effector velocity, vvveee, goes to zero. The

convergence of the augmented task velocities is seen from

(14) and (15). A more detailed analysis on the stability of

similar task space and nullspace control can be found in [30].

2) Convergence of joint task in the nullspace: It can be

shown that, the joint errors converge to zero in the nullspace

of the manipulator’s end-effector for a fully-actuated base.

This is unlike the nullspace control of an unactuated base

with a redundant manipulator. The convergence in the case

of the fully-actuated base is evident from the contribution of

the stiffness term in (12), which vanishes only when,

[
−JJJT

mmmadj(JJJbbb)
T det(JJJbbb)III

]

︸ ︷︷ ︸

ZZZ

[
0

KKKPPPqqq∆∆∆qqq

]

= 000,

i.e. when ∆∆∆qqq = 000. This is due to det(JJJbbb)III having rank n,

leading to convergence of the joint task, as the nullspace

and joint space have equal dimensions.

Alternatively, if in addition to the joint task, the base

configuration is controlled in the nullspace, an additional

stiffness would be added to the base (e.g. KKKPPPbbb). However, this

2The uncertainties in inertia parameters of the servicer can be expected
to have minimal influence for a similar controller (see [29]).



could conflict with the joint task, which implicitly controls

the base configuration relative to the client, and result in the

controller converging to a local minimum of the potential,

Vxxxbbb,qqq =
1
2
∆∆∆xxxT

bbb
KKKPPPbbb∆∆∆xxxbbb+

1
2
∆∆∆qqqT KKKPPPqqq∆∆∆qqq, where ∆∆∆xxxbbb is the error

in position and orientation of the base. This occurs when,

ZZZ

[
KKKPPPbbb∆∆∆xxxbbb

KKKPPPqqq∆∆∆qqq

]

= 000,

[
∆∆∆xxxbbb

∆∆∆qqq

]

6= 000

⇒ JJJT
mmmadj(JJJbbb)

T KKKPPPbbb∆∆∆xxxbbb = det(JJJbbb)KKKPPPqqq∆∆∆qqq.

In this scenario, the base and joint tasks cancel each other,

reaching a displaced equilibrium, and reconfiguration of the

arm in the nullspace is not guaranteed. However, since the

controller designed in (13) does not include a task on the

base, joint task convergence in the nullspace is achieved.

3) Validity of controller under kinematic singularities of

the manipulator: The fully-actuated servicer is inherently

redundant with respect to the end-effector Cartesian task due

to 6-DoF actuation of the base in addition to joint actuation

of the manipulator. Hence the degree of redundancy of the

system is n in the presence of an n-DoF manipulator. This

implies, the controller designed in (13) can also operate in

kinematically singular configurations of the manipulator arm.

This is seen from the nullspace matrix, NNN, which exists for

all configurations of the arm. As seen in (7), for NNN to exist,

the rank of ZZZ must be equal to n, which is true independent

of the configuration of the arm. A physical intuition to this

lies in the observation that the restriction on the directions

of motion, imposed by the arm in a singular configuration,

can be overcome by an appropriate motion of the base.

IV. OPTIMAL QP-BASED CONTROL

The controller designed in Sec. III achieves the task of

reconfiguring the arm while stabilizing the motion of the

servicer and client, however, the contact forces of the grasp

are not guaranteed to remain within a tolerable threshold.

Respecting the contact force limits is a requirement in a

space mission so as to avoid mechanical damage of the grasp

interface and loss of client from the servicer’s grasp [19].

A. Computation of the contact wrench

The contact wrench is the force and torque, which acts

during the post-grasp phase between the servicer’s end-

effector and the client’s grasping point. This is computed as

a function of the control applied to the base and joints (see

[25]) by using the velocity constraint in (3). In particular, by

reformulating the velocity constraint as AAA
[
vvvT

sss vvvT
ccc

]T
= 000,

where AAA =
[
−JJJ JJJccc

]
, and taking its time-derivative com-

bined with
[
v̇vvT

sss v̇vvT
ccc

]T
from (1) and (2), the contact wrench

is obtained as follows,

FFFccc =
(
AAAMMM−1

sssccc AAAT
)−1

[

AAAMMM−1
sssccc

([
ΓΓΓ

000

]

−CCCsssccc

[
vvvsss

vvvccc

])

+ ȦAA

[
vvvsss

vvvccc

]]

,

(16)

where,

MMMsssccc =

[
MMMsss 000

000 MMMccc

]

CCCsssccc =

[
CCCsss 000

000 CCCccc

]

.

Note here the term AAAMMM−1
sssccc AAAT is invertible since AAA has full

rank as both JJJ and JJJccc have full rank, and the client velocity

is computed from (3) as vvvccc = JJJ−1
ccc JJJvvvsss.

B. QP Optimization for the controller effort

In this section, we elaborate on a QP-based optimization of

the controller presented in Sec. III. The main goal is to limit

the contact wrench in (16) through the control effort in an

optimal way, while preserving the structure of the controller

designed in (13). In order to do this, we analyze the control

variables in (13) to determine which variables to optimize.

First, to maintain the decoupling of the nullspace and the

end-effector, the control effort, ΓΓΓ333, shall be retained without

modification. Next, the variable ΓΓΓ222 in (13) could be modified

by optimizing the variable ΓΓΓ000 and projecting it into the

nullspace. However, we first determine the contribution of

the nullspace term ΓΓΓ222 to the contact force by taking a closer

look at (16). Analyzing the part of the expression in (16)

that multiplies with ΓΓΓ222 as follows,

AAAMMM−1
sssccc

[
ΓΓΓ222

000

]

=−JJJMMM−1
sss NNNT ZZZΓΓΓ000

and substituting for NNN from (8), we obtain

JJJZZZT (ZZZMMMsssZZZ
T )−1ZZZΓΓΓ000 = 000,

where the relation between the servicer’s Jacobian and its

nullspace, JJJZZZT = 000 is used. Hence, the nullspace control has

no influence on the contact force FFFccc. This is consistent with

the knowledge that, the dynamically consistent nullspace

projection does not directly produce a wrench at the end-

effector. Therefore, we retain the control effort ΓΓΓ222, which

reconfigures the arm in the nullspace, without modification.

Lastly, the control effort ΓΓΓ111, is primarily seen to be re-

sponsible for the contact wrench. In particular, FFFccc is largely a

function of FFFDDDeee. This implies that FFFDDDeee is the ideal candidate

for optimization. In addition, optimizing FFFDDDeee instead of ΓΓΓ111

directly, maintains the Jacobian-transposed structure of the

controller designed in (13). Although one could reduce FFFDDDeee,

and thereby FFFccc, by lowering the gain KKKDDDeee, this approach

does not guarantee the contact forces limits as compared to

a rigorous constrained-optimization of FFFDDDeee.

Therefore, the optimization of the proposed controller is

formulated as the following QP problem,

min
FFFooopppttt

1

2
(FFFooopppttt −FFFDDDeee)

T QQQ(FFFooopppttt −FFFDDDeee) (17)

s.t. |FFFccc|i ≤ FFFmmmaaaxxxi
(18)

vvvT
eee FFFooopppttt ≤ 0. (19)

QQQ ∈R
6×6 is a positive definite weighting matrix and FFFooopppttt is

the optimized control wrench, which will modify ΓΓΓ111 in (13)

with ΓΓΓ∗
111 = JJJT FFFooopppttt . The chosen cost function minimizes the

distance of the optimal wrench to the desired wrench FFFDDDeee.

In order to respect the contact force limits, dictated by

space mission requirements, the constraint in (18) is added.

This constraint ensures that the contact force FFFccc, developed

at the grasp point, does not exceed the component-wise, i,
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Fig. 3: Block diagram of the controller augmented with QP. The
main differences compared to Fig. 2 are highlighted in blue. An
open source solver like qpOASES [31] may be used for real-
time implementation, which has already proven successful in robot
control methods focusing on contact force limitations [32].

threshold of the allowable maximum contact wrench FFFmmmaaaxxx,

for the optimized control effort FFFooopppttt .

The second constraint in (19) is considered in order to

ensure the convergence of the controller as required in (14).

Physically, this implies that the optimized controller will

guarantee that the rate of change in energy of the end-effector

motion does not increase due to the optimization. Therefore,

the structure of the controller can be augmented with the QP

optimization and is show in Fig. 3.

V. VALIDATION RESULTS

The validation of the proposed control strategy is per-

formed for a post-grasp scenario in MATLAB/Simulink with

an integration time step of 1 ms. A servicer spacecraft

with mass m = 700 kg and inertia parameters Ix = 400, Iy =
450, Iz = 400, Ixy = Ixz = Iyz = 0 kgm2, equipped with the 7-

DoF DLR CAESAR manipulator arm (see [18] for details

about the arm), is considered. The mass and inertia parame-

ters of the client are m = 200 kg and Ix = 120, Iy = 100, Iz =
90, Ixy = −0.5, Ixz = −0.8, Iyz = −0.4 kgm2, and its initial

tumbling velocity is set to
[
7.071 −7.071 0

]T
deg/s. The

lever arm from the center of mass of the client to its grasping

point is 0.5 m. The initial state of the servicer is assumed

to be that of the final state at the time of grasping with

velocity-matching at the grasp point.

The initial configuration of the manipulator arm is chosen

as qqq =
[
−14 22 21 62 140 −24 −35

]T
deg. The

desired final configuration of the arm is an elbow-up configu-

ration, qqqddd =
[
0 20 0 −45 0 −45 0

]T
deg, suitable

for further manipulation/servicing tasks. In order to show the

effectiveness of the control, a smooth interpolated trajectory

from initial to final joint configuration is provided such

that the manipulator approaches a kinematic singularity.

The gains KKKDDDeee = 100III6×6, KKKDDDbbb = 500III6×6, KKKDDDqqq = 100III7×7,

KKKPPPqqq = 500III7×7 are used for the controller. The allowable

maximum contact force, FFFmmmaaaxxx, is a settable parameter dic-

tated by mission requirements, which for this simulation has

been set to be 2 N for the forces and 2 Nm for the torques to

test an extreme case with very small values. The weighting

matrix for the optimization is QQQ = diag(1/FFF2
mmmaaaxxxi

).
The results of the simulation for the nominal controller, i.e.

the controller without the QP solver in the loop, designed in

(13), are shown in Fig. 4 and Fig. 5. Although the simulation

runs for 70 s, Fig. 4 shows the data for the first 20s to better

visualize the results. The client’s tumbling motion is seen

to be entirely damped within 10 s in Fig. 4(a), while the

contact wrench in Fig. 4(b) clearly violates the maximum

force FFFmmmaaaxxx.

The base velocity, on the other hand, is seen to increase

before getting damped in Fig. 5(a), while the joint errors

converge to zero in Fig. 5(b). This shows how the base is

activated by the nullspace in order to reconfigure the arm.

Notice that, after the client motion has been damped, the

nullspace control is still active, yet the contact forces stay

close to zero (see time interval 10-20 s in Fig. 4 and Fig. 5).

The measure of kinematic singularity of the arm is com-

puted as det(JJJmmmJJJT
mmm), where a value equal to zero indicates

a singular configuration. As can be seen in Fig. 5 (c), the

manipulator arm approaches a singular configuration at 12 s.

This does not affect the convergence of the joint task in the

nullspace, consistent with the discussion in Sec. III-.3.

The same scenario is considered for the QP-optimized

controller constraining the contact forces, and the results are

shown in Fig. 6 (data for the first 20 s is shown for better

visualization). The client’s tumbling motion is seen to be

damped within 20 s in Fig. 6(a), while the contact wrench

in Fig. 6(b) is strictly maintained below FFFmmmaaaxxx, as imposed by

the constraint given in (18). The slower rate of detumbling

in Fig. 6(a) compared to Fig. 4(a) is a consequence of the

optimization that limits the maximum contact force.

Fig. 7(a) shows the rate of change of energy of the

end-effector motion vvvT
eee FFFooopppttt , which maintains the strictly

decreasing behaviour required by the convergence constraint

in (19). For completeness, the convergence of the joint angle

errors is shown in Fig. 7(b). As can be seen, these evolve

similarly to those in Fig. 5 (b) since the joint task is achieved

in the nullspace of the end-effector.

Fig. 8 shows the different stages of configuration of the

servicer-client system, for the simulated detumbling strat-

egy, starting from the initial pose to the final pose, while

approaching a singular arm configuration at t = 12 s.

Further, a robustness analysis for the same detumbling

scenario is performed. This considers uncertainties in the

client parameters sampled from a uniform distribution with

bounds set to, ±20% for mass, ±20% for inertia parameters,

and a sphere of radius 0-5 cm for the center of mass. The

maximum error between allowable wrench FFFmmmaaaxxx and the

developed contact wrench, FFFccc, has been calculated. The

corresponding results are shown in a scatter plot in Fig. 9

for 30 simulation runs. It is seen that the maximum error

along any component of force and torque are ∆ f = 0.02 N

and ∆τ = 0.01 Nm, which is below 1% and 0.5% of the

maximum threshold. The results confirm the robustness of

the controller to uncertainties in the client parameters.

VI. CONCLUSION

In this paper, we presented a control strategy for the post-

grasp motion stabilization of a tumbling non-cooperative

client satellite, while considering space mission require-

ments such as the maximum allowable contact force and

reconfiguration of the manipulator. The constraint on contact
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of kinematic singularity of the manipulator arm.

forces was achieved by augmenting the designed controller

with a QP algorithm. The reconfiguration of the orbital

manipulator was performed entirely in the nullspace of the

end-effector using a fully-actuated servicer spacecraft. The

effectiveness of the proposed controller was presented for

a post-grasp scenario considering a client spinning with

an initial velocity of 10 deg/s using a servicer equipped

with a 7-DoF manipulator. The convergence of the joints

was demonstrated while also approaching a kinematically

singular configuration of the manipulator arm. In addition,

the proposed controller was shown to be robust to large client

parameter uncertainties with the violation of constraints not

exceeding 1% and 0.5% of the allowable maximum force and

torque. Future work shall consider on-ground experimental

validation with discrete actuation of the base.
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