
 

 

 

 
Remote Sens. 2022, 14, 4596. https://doi.org/10.3390/rs14184596 www.mdpi.com/journal/remotesensing 

Article 

Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and 

Comparison to Sentinel-2 

Milad Niroumand-Jadidi 1,2,*, Francesca Bovolo 1, Mariano Bresciani 3, Peter Gege 2 and Claudia Giardino 3 

1 Digital Society Center, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy 
2 German Aerospace Center (DLR), Remote Sensing Technology Institute, Münchner Str. 20,  

Oberpfaffenhofen, D-82234 Weßling, Germany 
3 Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 

Via Corti 12, 20133 Milan, Italy 

* Correspondence: mniroumand@fbk.eu 

Abstract: The Landsat series has marked the history of Earth observation by performing the longest 

continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager 

2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs. 

12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential 

stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water 

bodies that are usually low-reflective. This study performs an initial assessment on retrieving water 

quality parameters from Landsat-9 imagery based on both physics-based and machine learning 

modeling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are re-

trieved based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic con-

ditions. A neural network-based regression model is also employed to derive Chl-a concentration 

in San Francisco Bay. We perform a consistency analysis between the constituents derived from 

Landsat-9 and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated 

using in situ matchups. The results indicate relatively high consistency among the water quality 

products derived from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show 

less grainy noise, and the matchup validation indicates relatively higher accuracies obtained from 

Landsat-9 (e.g., TSM R2 of 0.89) compared to Sentinel-2 (R2= 0.71). The improved constituent re-

trieval from Landsat-9 can be attributed to the higher signal-to-noise (SNR) enabled by the wider 

dynamic range of OLI-2. We performed an image-based SNR estimation that confirms this assump-

tion. 

Keywords: Landsat-9; OLI-2; water quality; lakes; chlorophyll-a; total suspended matter;  

physics-based modeling; machine learning; Sentinel-2; San Francisco Bay 

 

1. Introduction 

The launch of the first Landsat satellite dates back 50 years, which is followed by a 

series of satellites representing the longest continuous mission for Earth observation. Alt-

hough the sensors aboard the Landsat series were not developed specifically for aquatic 

applications, water quality retrieval has been a key interest since the launch of the first 

Landsat satellites [1,2]. With the launch of Landsat-8 in 2013 carrying Operational Land 

Imager (OLI), remote sensing of biophysical parameters in optically-complex inland and 

near-shore coastal waters has become more widespread. Apart from other improvements 

of OLI compared to the previous Landsat sensors, its enhanced radiometric resolution 

(i.e., 12-bit dynamic range vs. 6-8 bit of previous sensors) paved the way to capture more 

subtle changes in water-leaving radiance [3,4]. The high radiometric resolution of satellite 

sensors is crucial for retrieving constituents, given that water bodies act as dark objects 

and absorb a major fraction of the downwelling irradiance leading to a low signal-to-noise 
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ratio (SNR) [5]. With the launch of Sentinel-2 in 2015 carrying Multispectral Imager (MSI) 

that provides comparable characteristics with Landsat-8 (e.g., 12-bit dynamic range), re-

mote sensing of inland waters has been further explored [6,7]. The newly launched Land-

sat-9 (in orbit since September 2021), with its onboard OLI-2 capturing 14-bit radiometric 

data, might resolve even smaller differences in water-leaving radiance relative to OLI and 

MSI that can potentially contribute to the studies on water quality retrieval. Satellite re-

mote sensing provides an efficient means of retrieving spatially and temporally explicit 

information about the water quality indicators [8]. Remote mapping of chlorophyll-a (Chl-

a) concentration, as an indicator of phytoplankton biomass, is of particular importance 

due to the ever-increasing eutrophication and algal bloom problems that pose a severe 

threat to inland and coastal waters [9,10]. Total suspended matter (TSM) mapping pro-

vides a measure of organic and mineral suspended solids, which is strongly related to 

water turbidity and might reveal information about mass transport and sediment re-sus-

pension [11]. High loads of TSM can degrade primary production due to reduced light 

penetration in the water column and thus severely limits the aquatic habitat, fisheries, and 

drinking water supplies [12,13].  

Various methods are developed for water quality retrieval from optical imagery, 

which are mainly empirical (regression-based) or physics-based models [14,15]. The em-

pirical techniques require in situ measurements of constituents to form a relation between 

image-derived features (e.g., band ratios) and the water quality parameter of interest [16]. 

Various regressors can be employed for such empirically-based modeling, e.g., machine 

learning methods including neural networks and support vector machines [17,18]. Regres-

sion-based models are straightforward to apply as there is no need for a profound under-

standing of the underlying physics. However, these methods are mainly applicable when 

in situ samples concurrent with the image acquisition are available for training the regres-

sor. Thus, in most cases, image-specific in situ data are needed as the transformation of 

the trained models is challenging either in space or time. Besides field measurements be-

ing timely and costly, they are very limited, if not available, particularly when analyzing 

imagery from a new satellite sensor. On the other hand, physics-based approaches invert 

a radiative transfer model that accounts for the absorption and backscattering properties 

of water and its optically active components, including Chl-a, TSM, and colored dissolved 

organic matter (CDOM) [19,20]. The inversion is mainly applied to the remote sensing 

reflectance (Rrs) derived after atmospheric correction [21,22]. There are mainly two ap-

proaches for physics-based inversion: (i) training a neural network using a large number 

of radiative transfer simulations and then using the trained model to estimate water qual-

ity parameters. As the constituent retrieval is based on pre-trained networks, there is no 

flexibility in adapting the retrieval to site-specific bio-optical conditions. Moreover, this 

approach is sensor-dependent and thus requires training an individual network for each 

sensor, such as those available in the Case 2 Regional CoastColour (C2RCC) processor 

[23]; (ii) analytical spectrum matching, which seeks an optimal match between the ob-

served (image) spectrum and radiative transfer simulations by iterating a set of parame-

ters in a given range, including the concentration of constituents. This inversion approach 

is sensor independent and highly flexible in parametrization. However, site-specific in-

herent optical properties (IOPs) such as the absorption spectrum of the phytoplankton are 

needed to optimize the inversion. Water Color Simulator (WASI) and Bio-Optical Model 

Based tool for Estimating water quality and bottom properties from Remote sensing im-

ages (BOMBER) are the main publically available processors based on the spectrum 

matching approach [22,24,25]. 

This study builds upon both physics-based and machine learning modeling to exam-

ine the water quality retrieval from newly released Landsat-9 imagery and compares the 

results with Sentinel-2. We examine the potential of OLI-2 data in retrieving Chl-a and 

TSM concentrations in the lake and near-shore coastal environments. We adapt the phys-

ics-based inversion implemented in BOMBER for the case studies with available site-spe-

cific IOPs (four Italian lakes). Moreover, a neural network (NN) empirical model is 
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applied for a study site (San Francisco Bay) with a sufficient number of in situ data for 

training the model. In addition, we perform an inter-sensor comparison to quantify the 

consistency of Chl-a and TSM retrievals from Landsat-9 relative to Sentinel-2, a widely-

used satellite sensor in water quality mapping, particularly in inland waters. Thus, we 

pursue the following objectives: (i) examine the potential of Landsat-9 imagery in retriev-

ing Chl-a and TSM concentrations in lakes and near-shore coastal waters based on a fully 

physics-based approach as well as an empirical approach based on machine learning; (ii) 

perform a consistency analysis among the water quality products derived from Landsat-

9 and Sentinel-2 and validate the results based on in situ matchups; (iii) compare the SNR 

from images acquired over different case studies as an indication for the radiometric qual-

ity of Landsat-9 data relative to Sentinel-2. Sensor noise is a limiting factor for detecting 

water constituents at low concentrations and resolving small concentration differences. 

Thus, this comparison indicates if sensor noise may explain some of the observed differ-

ences in the derived concentration maps.  

2. Case Studies and Datasets 

Four Italian lakes named Trasimeno, Maggiore, Varese, and Mantova are considered 

for water quality retrieval from Landsat-9 and Sentinel-2 imagery (Figure 1a). The selected 

lakes represent a diverse bio-optical status (Table 1) involving oligo- to eutrophic condi-

tions that allow for a relatively broad assessment of the constituent retrieval from satellite 

imagery. Moreover, the site-specific IOPs were available for these sites; thus, we consider 

them for physics-based inversion to retrieve Chl-a and TSM concentrations. We also in-

vestigated Chl-a retrieval in San Francisco Bay (Figure 1b), for which a sufficient number 

of in situ data (34 samples) was available to train an NN-based model. Samples of Land-

sat-9 and Sentinel-2 images, along with the location of in situ measurement stations, are 

shown in Figures 2 and 3. 

 

 

(a) (b) 

Figure 1. The location of studied (a) lakes in Italy and (b) San Francisco Bay in the United States. 
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Figure 2. True color composite Landsat-9 and near-simultaneous Sentinel-2 images over four Italian 

lakes. The locations of in situ stations are shown on Landsat-9 images by yellow symbols. 
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Landsat-9 Sentinel-2 

  
10 December 2021 10 December 2021 

Figure 3. True color composite Landsat-9 and near-simultaneous Sentinel-2 images over San Fran-

cisco Bay. The locations of in situ stations are shown on Landsat-9 images by yellow symbols. 

Table 1 reports the morphological characteristics and trophic status of case studies, 

along with the image acquisition dates. Moreover, the number of available in situ water 

quality matchups are provided for each water body during the studied period. 

Table 1. Site descriptions, image acquisition dates, and the number of in situ samples for each case 

study. 

Water Body Site Descriptions 
Landsat-9 Imagery 

(Sentinel-2 Overpass) 

Number of In Situ 

Matchups 

Trasimeno Lake 

Surface area: 120.5 km2 

Shallow (max depth ~6.3 m), turbid (Secchi 

depth ~1.1 m), and mesotrophic–eutrophic lake 

[26,27] 

16 December 2021 (same 

day) 

08 January 2022 (same day) 

24 January 2022 (+1 day) 

02 February 2022 (same 

day) 

30 April 2022 (same day) 

4 Chl-a 

2 TSM 

Maggiore Lake 

Surface area ~212.5 km2, represents deep water 

up to 370 m, oligotrophic lake [28], Secchi 

depth ~10 m [29]   

29 January 2022 (same day) 
1 Chl-a 

1 TSM 

Varese Lake 

Surface area ~14.8 km2, mean depth ~11 m; Sec-

chi depth ~3 m [30]. A dimictic lake with a 

summer stratification from May to November 

and an inverse stratification in winter [31] 

05 December 2021 (same 

day) 
1 Chl-a 

Mantova Lake 

Surface area: 6.2 km2; mean depth ~3.5 m; a hy-

pertrophic system composed of three fluvial 

lakes with low transparency (Secchi depth < 1 

m in summer and high Chl-a concentration) 

[31,32]  

09 February 2022 (-2 days) 
3 Chl-a 

3 TSM 

San Francisco Bay 

Surface area: ~1400 km2; most extensive estuary 

system on the west coast of North America, 

overall a shallow water body (<3 m in most 

parts) but also representing deep waters up to 

10 December 2021 (same 

day) 
34 Chl-a 
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~113 m, turbid with an average TSM of ~30 

g/m3 for the past year [33,34] 

In situ data were collected by regional environmental protection agencies (i.e., ARPA 

Lombardia and ARPA Umbria) for Varese, Mantova, and Trasimeno lakes; integrated wa-

ter samples between the surface and the Secchi Disk depth were collected using a Van 

Dorn water sampler. Chl-a concentrations extracted with acetone were determined via the 

spectrophotometric method [35]. TSM concentrations were determined gravimetrically 

[36]. Additional samples were collected with the WISPstation for Lake Trasimeno [37]. 

The water quality measurements of Lake Maggiore were provided by CNR-IRSA; the data 

are collected by fluorometer cyclops-7 installed on a fixed buoy [38]. The in situ Chl-a data 

at San Francisco Bay are based on fluorescence measurements calibrated with discrete 

Chl-a values according to U.S. Geological Survey (USGS) standards [34]. 

The relative spectral responses of Landsat-9 (OLI-2) and Sentinel-2 (MSI) are shown 

in Figure 4. The bands are presented for wavelengths � < 1000 nm, which are the informa-

tive bands for retrieving water quality parameters. However, both sensors have three ad-

ditional bands that are very similar, including one band at ~1370 nm for detection of 

clouds, particularly thin cirrus clouds, and two SWIR bands. Landsat-9 also provides a 

panchromatic band at 15 m spatial resolution. Moreover, carrying the thermal infrared 

sensor (TIR-2) allows the surface temperatures to be measured at 100 m spatial resolution. 

Instead, Sentinel-2 captures most of the useful bands for water quality retrieval at 10-20 

m though the coastal blue band (443 nm) has a 60 m spatial resolution. Landsat-9 provides 

a revisit frequency of 16 days that enhances to eight days when coupled with Landsat-8. 

The constellation of Sentinel-2A and Sentinel-2B provides a temporal resolution of five 

days.  

 

Figure 4. Relative spectral response of OLI-2 and MSI onboard Landsat-9 and Sentinel-2, respec-

tively. The band numbers are provided for each sensor, and the gray dashed line shows Landsat-9 

panchromatic band. 

We downloaded level-1 top-of-atmosphere products of Landsat-9 and Sentinel-2. 

Then, dark spectrum fitting (DSF) atmospheric correction is performed using the ACO-

LITE processor [39,40] to derive Rrs data from both Landsat-9 and Sentinel-2 imagery. We 

use the same atmospheric correction for both sensors to maintain consistency in the anal-

yses. To our knowledge, DSF is currently the only aquatic-specific atmospheric correction 

method available for processing the new Landsat-9 imagery. DSF has provided high-
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quality Rrs data in previous studies with various sensors, including Landsat-8 and Senti-

nel-2 [41–43]. The ancillary data (pressure, ozone, and water vapor) available through AC-

OLITE processor are used. However, a previous study demonstrated that the differences 

between using and not using ancillary data are very small [40]. Note that the Sentinel-2 

images are resampled to 20 m through the ACOLITE atmospheric correction. 

3. Methods 

This study employs well-established physics-based and machine learning models to 

retrieve in-water constituents from Landsat-9 and Sentinel-2 imagery. Here, the methods 

are described briefly, and relevant references are provided for detailed information. 

3.1. Physics-Based Model and Parametrization 

We leverage BOMBER (Bio-Optical Model Based tool for Estimating water quality 

and bottom properties from Remote sensing images) as a physics-based inversion model 

to derive water quality parameters [24]. BOMBER is a publicly available processor 

(https://zenodo.org/record/5418571) that retrieves information about the water constitu-

ents and, in optically-shallow waters, bathymetry and substrate types/compositions. We 

apply BOMBER to Italian lakes (Section 2), for which the site-specific IOPs are available. 

For collecting the IOPs, the absorption spectra of particles retained on the filters were ob-

tained using the filter pad technique, separately for phytoplankton and non-algal particles 

[36]. The spectrophotometric determination and processing were used to measure the ab-

sorption spectra of CDOM [44]. The backscattering coefficients of the particles were de-

rived from HydroScat-6 measurements [45]. The lakes represent optically-deep condi-

tions; thus, only water column properties are considered through the inversion process 

leading to the retrieval of TSM and Chl-a concentrations. The IOPs [26] of different lakes 

are reported in Table 2, which are used to parametrize BOMBER. Figure 5 shows the spe-

cific absorption spectra of phytoplankton ����
∗ (�) fed to the inversion model. 

Table 2. Site-specific inherent optical properties (IOPs) of Italian lakes used for parametrizing 

BOMBER. 

 Trasimeno Maggiore Varese and Mantova 

Spectral slope coefficient of CDOM ab-

sorption [1/nm] 
0.016 0.019 0.015 

Specific absorption of non-algal particles 

(NAP) at 440 nm [m2/g] 
0.2 0.05 0.3 

Spectral slope coefficient of NAP absorp-

tion [1/nm] 
0.013 0.011 0.009 

Backscattering exponent of TSM [-] 0.65 0.76 0.8 

Specific backscattering coefficient of TSM 

at 555 nm [m2/g] 
0.0119 0.0071 0.0111 
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Figure 5. The specific absorption spectrum of phytoplankton ����
∗ (�) in Italian lakes. 

3.2. Neural Network-Based Regression Model 

Empirical (regression-based) retrieval of constituents can be performed without 

knowing the site-specific IOPs and the underlying physics. However, in situ measure-

ments of the parameters of interest are required to train the models. Polynomial regression 

models based on either single bands or band ratios have long been used for retrieving 

water quality parameters [7,46,47]. More recently, machine learning-based models, par-

ticularly neural networks (NNs), have received growing attention as they can handle the 

complex and non-linear relations between the spectral data and the target parameters (in 

water constituents). Here, we employ an NN-based regression model building upon feed-

forward fully connected layers similar to [18,48]. The network input data, i.e., spectral 

data of training samples, are connected to the first fully connected layer. Each fully con-

nected layer performs a multiplication of input by a weight matrix and then adds a bias 

vector. The first fully connected layer is followed by an activation layer, and the last one 

produces the related water quality parameter (Figure 6). Bayesian optimization is applied 

to tune the network's hyperparameters, including the number of layers, the number of 

neurons in each layer, and the type of the activation function. We apply the NN-based 

model to the imagery from San Francisco Bay, for which spatially-distributed Chl-a sam-

ples are available for training. Given the limited number of samples, we consider leave-

one-out cross-validation to assess the Chl-a retrieval results. Thus, each sample is succes-

sively left out of the training data and used for validation [49]. 

 

Figure 6. Schematic representation of training NN model for Chl-a retrieval in San Francisco Bay. 

3.3. Validation and Consistency Analysis 

We employ several metrics, including coefficient of determination (R2), root mean 

square error/difference (RMSE/RMSD), bias, and mean absolute error (MAE), to perform 

in situ matchup validation and Landsat-9 vs. Sentinel-2 consistency analysis. Bias and 

MAE are both unitless and calculated in a log-transformed space to account for the pro-

portionality of the errors with the water quality parameters according to the definition 

provided by [50]. Bias values tending to one are ideal, whereas bias > 1 indicates overes-

timation, and bias < 1 is an indication of underestimation. MAE is a multiplicative metric 

that always exceeds one and quantifies the relative error of water quality estimates. For 

instance, a MAE of 1.4 indicates a relative measurement error of 40%. In the case of error-

free estimation, the MAE equals one. To relatively compare the RMSE/RMSD values 

among different case studies, we normalize them (NRMSE/NRMSD) with the average val-

ues of constituents. Note that, for the consistency analysis, water quality maps derived 

from Sentinel-2 at 20 m resolution are downsampled to 30 m to perform a pixel-by-pixel 

comparison with the maps derived from Landsat-9. We assume Sentinel-2 maps as the 

reference. Thus, for instance, a bias of 1.2 indicates that Landsat-9 retrievals are, on aver-

age, 20% higher than Sentinel-2.  

3.4. Image-Based SNR Estimation 

We employ a well-established approach for the estimation of SNR from satellite im-

agery. The local means and standard deviations of small homogeneous areas on a given 

image are calculated as an indication of the signal and noise, respectively [51]. Thus, the 
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SNR of every band in a given image window is calculated by dividing the average of Rrs 

values by their standard deviation. We selected ten homogenous 5×5 windows for every 

case study and computed the average SNR. 

4. Results and Discussion 

Figure 7 illustrates the average Rrs spectra of different case studies derived from the 

DSF atmospheric correction using Landsat-9 and Sentinel-2 imagery. The spectra repre-

sent the average Rrs of each water body, excluding the boundary pixels. An additional Rrs 

spectrum is shown for the Varese Lake, representing a spot of the lake surface affected by 

a cyanobacterial bloom (see Figure 2: the greenish pattern crossing the middle of the lake). 

 
(a) (b) 

Figure 7. Remote sensing reflectance (Rrs) spectra derived from DSF atmospheric correction over 

different case studies using (a) Landsat-9 and (b) Sentinel-2 imagery. 

4.1. Physics-Based Inversion in Italian lakes 

The TSM and Chl-a maps derived from multitemporal Landsat-9 and Sentinel-2 im-

agery of Lake Trasimeno are presented in Figures 8 and 9. The visual inspection conveys 

a high correspondence between the Landsat-9 and Sentinel-2 retrievals though some dif-

ferences are evident. Overall, the maps derived from Landsat-9 images, particularly Chl-

a retrievals, are more homogenous and represent lower salt-and-pepper noises than those 

of Sentinel-2. The temporal analyses reveal that the concentration and pattern of constit-

uents change significantly over time. The average TSM concentration ranges from ~5.8 

g/m3 (2 Feb 2022) to ~16.1 g/m3 (8 Jan 2022). Similarly, a range of 3.8 mg/m3 to 10.5 mg/m3 

is detected for Chl-a concentration. Note that the southeast corner of the lake is affected 

by the presence of macrophytes, and the water quality parameter estimation could be af-

fected by the presence of shallow water. We have excluded this region from all analyses. 

Figure 10 compares the Landsat-9 derived maps of TSM and Chl-a with those of Sen-

tinel-2 in Lake Maggiore. Despite generic agreement in the spatial pattern of constituents, 

Sentinel-2 retrievals of TSM and Chl-a are lower than Landsat-9. The TSM maps derived 

from Landsat-9 and Sentinel-2 images of Lake Mantova are shown in Figure 11. Chl-a 

maps are not shown due to the noise caused by the poor signal in low light conditions and 

due to the dominant effect of TSM that prevails the upwelling radiance in this case study. 

Figure 12 shows the Chl-a maps retrieved from Landsat-9 and Sentinel-2 imagery in Lake 

Varese. As evident in the satellite images (Figure 2), there is a very contrasting pattern 

crossing from northwest to northeast of the lake. For the region dominated by this pattern 

(cyanobacterial bloom), the physics-based inversion infers a very high concentration of 

Chl-a from both Landsat-9 and Sentinel-2 imagery. TSM retrieval was not feasible due to 

the surface accumulation of cyanobacteria. This is because the signal recorded by the sen-

sor is dominated by the surface component of radiance, and the contribution of the water 

column becomes negligible. In the lack of information from the water column, TSM re-

trieval would not be feasible regardless of the methods applied. 
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Figure 8. TSM maps derived from Landsat-9 and Sentinel-2 imagery in Lake Trasimeno using 

BOMBER. 
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Figure 9. Chl-a maps derived from Landsat-9 and Sentinel-2 imagery in Lake Trasimeno using 

BOMBER. 
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Figure 10. TSM and Chl-a maps derived from Landsat-9 and Sentinel-2 imagery in Lake Maggiore. 

Landsat-9 Sentinel-2  

   

Figure 11. TSM maps derived from Landsat-9 and Sentinel-2 imagery in Lake Mantova. 

Landsat-9 Sentinel-2  

   

Figure 12. Chl-a map derived from Landsat-9 and Sentinel-2 imagery in Lake Varese. 

Example scatterplots analyzing the pixel-by-pixel TSM and Chl-a consistency be-

tween Landsat-9 and Sentinel-2 retrievals are shown in Figure 13 for Lake Trasimeno (16 

Dec 2021). The consistency statistics for all multitemporal imagery of Lake Trasimeno and 

other case studies are reported in Table 3. For Lake Trasimeno, TSM maps show stronger 

agreement than Chl-a (average TSM R2 of 0.89 vs. 0.74 for Chl-a excluding 24 Jan data that 

the images have one day gap). However, Chl-a retrievals are slightly less biased (on aver-

age ~10%) than TSM when comparing Landsat-9 to Sentinel-2. In other lakes, the 
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agreements of retrievals are not strong with relatively low R2 values. In Lake Maggiore, 

the bias values reported in Table 3 indicate that TSM and Chl-a values are, on average, 

23% and 17% lower on Sentinel-2 maps compared to Landsat-9. In Lake Mantova, the 

Sentinel-2 map shows higher TSM (14% on average) with respect to Landsat-9. Despite 

the generic correspondence of the spatial patterns of maps derived from the two sensors 

in Lake Varese (Figure 12), the Sentinel-2-based retrievals of Chl-a are higher (60% on 

average) than those of Landsat-9 (Table 3). The NRMSD values are comparable in different 

case studies, particularly for TSM. 

  
(a) (b) 

Figure 13. Pixel-by-pixel comparison of (a) TSM and (b) Chl-a maps derived from Landsat-9 vs. 

Sentinel-2 in Lake Trasimeno (16 December 2021). 

Table 3. Consistency analysis of TSM and Chl-a concentrations derived from Landsat-9 and Senti-

nel-2 via BOMBER in Italian lakes. 

  R2 RMSD NRMSD% Bias MAE 

Trasimeno 

16 December 

2021 

TSM 0.87 1.78 g/m3 22 1.24 1.24 

Chl-a 0.77 0.94 mg/m3 21 1.05 1.25 

Trasimeno 

8 January 2022 

TSM 0.90 4.56 g/m3 20 0.92 1.18 

Chl-a 0.92 5.63 mg/m3 38 0.79 1.36 

Trasimeno 

24 January 2022 

TSM 0.31 1.03 g/m3 14 0.93 1.14 

Chl-a 0.30 1.19 mg/m3 26 1.21 1.32 

Trasimeno 

2 February 2022 

TSM 0.82 1.50 g/m3 25 1.40 1.41 

Chl-a 0.59 0.93 mg/m3 24 1.27 1.31 

Trasimeno 

30 April 2022 

TSM 0.97 0.66 g/m3 9 0.90 1.10 

Chl-a 0.69 0.44 mg/m3 28 0.88 1.54 

Maggiore 
TSM 0.33 0.16 g/m3 20 1.23 1.24 

Chl-a 0.06 0.49 mg/m3 19 1.17 1.18 

Mantova TSM 0.17 0.99 g/m3 19 0.86 1.18 

Varese Chl-a 0.13 61.7 mg/m3 55 0.40 2.52 

The in situ matchup analyses for TSM and Chl-a retrievals from Landsat-9 and Sen-

tinel-2 imagery are presented in Table 4 for the studied lakes. Landsat-9 retrievals are 

more accurate than Sentinel-2 for both TSM and Chl-a, i.e., 0.18 improvement in R2 for 

TSM and 11.65 mg/m3 lower RMSE for Chl-a. As the Chl-a matchup analysis is strongly 

affected by the high concentration in Lake Varese, we performed an additional analysis 

excluding this sample that again confirms the outperformance of retrievals based on 

Landsat-9 imagery (R2= 0.89 and RMSE= 0.75 mg/m3 for Landsat-9; R2= 0.66 and RMSE= 

1.86 mg/m3 for Sentinel-2). 
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Table 4. In situ matchup validation of TSM (6 samples) and Chl-a (9 samples) retrievals via 

BOMBER from Landsat-9 and Sentinel-2 imagery in the studied lakes. 

  R2 RMSE NRMSE% Bias MAE 

TSM 
Landsat-9 0.89 0.77 g/m3 18 1.01 1.17 

Sentinel-2 0.71 1.20 g/m3 27 1.04 1.27 

Chl-a 
Landsat-9 0.99 1.05 mg/m3 5 1.03 1.16 

Sentinel-2 0.97 12.7 mg/m3 55 1.01 1.27 

4.2. NN-Based Chl-a Retrieval in San Francisco Bay 

The Chl-a maps of San Francisco Bay derived from Landsat-9 and Sentinel-2 images 

based on the NN regression model are presented in Figure 14. The pixel-by-pixel compar-

ison implies a strong agreement between maps derived from Landsat-9 and Sentinel-2: 

R2= 0.94, RMSD= 0.83 mg/m3, NRMSD= 16%, bias= 0.97, MAE= 1.13. 

The in situ matchup validation is illustrated in Figure 15. The accuracies of Chl-a 

retrievals from Landsat-9 and Sentinel-2 are comparable though the former is slightly 

more accurate (Landsat-9 R2 of 0.85 vs. 0.8 for Sentinel-2). 

Landsat-9 Sentinel-2 

 

Figure 14. Chl-a maps derived from Landsat-9 and Sentinel-2 imagery in San Francisco Bay based 

on NN regression model. 

  

Figure 15. In situ matchup validation of Chl-a retrieval from Landsat-9 and Sentinel-2 imagery in 

San Francisco Bay. 
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4.3. Image-Based SNR Estimation 

The image-based SNR estimations (Section 3.4) over five similar bands of Landsat-9 

and Sentinel-2 are shown in Figure 16. All case studies imply significantly higher SNR of 

Landsat-9 images relative to Sentinel-2 over all spectral channels except the coastal-blue 

band (443 nm). Although the magnitude of SNR depends on the case study, there are 

strong correspondences in the SNR trend over the spectrum for both sensors. Figure 16f 

illustrates the SNR averaged for all the case studies. The average SNR of Landsat-9 is 

higher than Sentinel-2 by a factor of 2.25 (red band) to 2.9 (blue band). However, the 

coastal-blue band of Sentinel-2 represents two times higher SNR than that of Landsat-9 on 

average. 

  
(a) Trasimeno (b) Maggiore 

  
(c) Varese (d) Mantova 

  
(e) San Francisco Bay (f) Average 

Figure 16. Image-based SNR estimates of Landsat-9 and Sentinel-2 for each case study. 

Because sensor noise determines the thresholds for the absolute and relative concen-

trations of water constituents, concentration maps show a characteristic salt and pepper 

pattern close to these thresholds. Such a pattern is obvious in all Chl-a maps from lake 

Trasimeno (Figure 9) and the TSM map from 24 Jan 2022 (Figure 8) from Sentinel-2, while 

the Landsat-9 maps appear noise-free. This demonstrates that Landsat-9 has lower detec-

tion limits than Sentinel-2, particularly for Chl-a. 

5. Conclusions 
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The recently launched Landsat-9 appeals to the aquatic remote sensing community 

as its onboard OLI-2 captures 16,384 brightness levels (14-bit data), notably higher than 

4096 levels for Sentinel-2 (12-bit data). This enhanced radiometric resolution can provide 

more sensitivity to the water-leaving radiance than previous missions such as Landsat-8 

and Sentinel-2 (12-bit dynamic range). This study examined the potential of Landsat-9 

imagery in mapping lake and coastal water quality parameters. Landsat-9 provided im-

proved retrievals of Chl-a and TSM compared to Sentinel-2 based on either the physics-

based inversion or the NN regression model. This finding is consistent with a recent study 

on the bathymetric application of Landsat-9 imagery, demonstrating improved depth re-

trieval in fluvial systems compared to Sentinel-2 imagery [52]. The image-based SNR anal-

ysis supports the improved water quality results from Landsat-9. The Landsat-9 SNRs for 

four out of five common bands are remarkably (up to ~ three times) higher than Sentinel-

2, which contributes to the accurate retrieval of constituents. 

Although our analyses span several case studies, more investigation is needed to 

consider different water types and perform comprehensive validation with more in situ 

data. Our study compared the water quality products derived from Landsat-9 and Senti-

nel-2 imagery that indirectly provides insights into the quality of Rrs data that are the input 

for the inversion models. However, the assessment of Rrs products based on in situ reflec-

tance measurements remains an area of investigation for future studies. The atmospheric 

correction methods also need further development and assessment for Landsat-9 imagery. 
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