Improving phytoplankton classification from hyperspectral measurements taking the SNR into account

Peter Gege DLR, Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 Wessling, Germany

Ocean Optics XXV Conference, Quy Nhon, Vietnam, 2-7 October 2022

Knowledge for Tomorrow

Maximum noise allowed for distinguishing phytoplankton groups Simulations

- Software WASI^{1,2} with Albert's bio-optical model³ simulates remote sensing reflectance, $R_{rs}(\lambda)$
- Phytoplankton community composition is represented by 4 absorption spectra

- Exchanging phytoplankton group: $|\Delta R_{rs,i,j}(\lambda)| = |R_{rs}(\lambda, a_i^N(\lambda)) R_{rs}(\lambda, a_j^N(\lambda))|$
- Signal-to-noise ratio: $SNR^{PG}(\lambda) = \frac{R_{rs}(\lambda)}{|\Delta R_{rs}(\lambda)|}$

¹ Gege, P. The water colour simulator WASI: An integrating software tool for analysis and simulation of optical in-situ spectra. Computers & Geosciences 2004, 30, 523–532. ² WASI can be downloaded from <u>https://ioccg.org/resources</u>

³ Albert, A.; Mobley, C.D. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Opt. Express 2003, 11, 2873–2890.

Maximum noise allowed for distinguishing phytoplankton groups

- Covered ranges: Chl-a 0.05-100 mg m⁻³, TSM 0.2-30 g m⁻³, aCDOM(440) 0.01-5 m⁻¹
- Concentration combinations are oriented on well-studied waters ("scenarios")
- 1000 concentration combinations per phytoplankton group per scenario

Scenario	C–	C+	Х-	Х+	Y –	Y+
Represents	Low chl-a	High chl-a	Low TSM	High TSM	Low CDOM	High CDOM
Example	Reef water	Finnish lakes	Lake Constance	Netherlands	Lake Garda	Lake Peipsi
<i>C</i> , mg m ⁻³	0.05-0.2	10-100	0.5–10	10-50	0.2-10	1-20
X , g m⁻³	1-2	5-15	0.5-5	10-30	0.2-20	1-10
<i>Y</i> , m ⁻¹	0.01-0.1	1.5-4	0.1-1	0.5-1.5	0.04-1	1-5

X YI 28.6.2021

Maximum noise allowed for distinguishing phytoplankton groups Result of simulations

- Maxima of $|\Delta R_{rs}|$ / Minima of SNR at
 - 525 585 nm
 - 650 682 nm
- These ranges provide most information about phytoplankton group
- Average $|\Delta R_{rs}|$ / SNR in these ranges:
 - 6.7 · 10⁻⁴ sr⁻¹ / 18:1
 - 2.1 · 10⁻⁴ sr⁻¹/22:1

Maximum noise allowed for distinguishing phytoplankton groups

Comparison with real data

Note: The shown EnMAP spectra are preliminary results from the still ongoing commissioning phase.

- R_{rs} is comparable to the median of the simulations
- Image noise is below the required $|\Delta R_{rs}|$ / SNR approximately at the wavelengths from the previous slide
 - 525 585 nm
 - 650 682 nm

Spectral weighting

Application during inversion

Software WASI-2D¹ for inverse modelling.

Inversion minimizes Residuum Res = weighted sum of squared differences between measured and simulated R_{rs} values of each band *i*:

$$Res = \frac{1}{N} \sqrt{\sum_{i=1}^{N} w(\lambda_i) \left(R_{rs}^{measured}(\lambda_i) - R_{rs}^{simulated}(\lambda_i) \right)^2}.$$

Spectral weighting function w accounts for sensor noise and R_{rs} changes:

Red: from image Blue: from simulation

WEIGHT DESIS | 25.9.2022

¹ P. Gege. WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters. Computers & Geosciences 2014, 62, 208-215.

Example DESIS 2021-08-14 Lake Constance

4

Chlorophyll-a [mg m⁻³]

0

Equal weights

Example DESIS 2021-08-14 Lake Constance

Noise-induced uncertainty

100 %

Summary

- Spectral range bearing most information about phytoplankton groups: 525-585 nm
- Required noise-equivalent $|\Delta R_{rs}|$ for phytoplankton classification (50 % of scenarios): 6.7 · 10⁻⁴ sr⁻¹
- Required SNR for phytoplankton classification (50 % of scenarios): 18:1
- Spectral weighting decreases noise-induced uncertainty. Improves the detection limit

Acknowledgements

- Milad Niroumand Jadidi (FBK) for atmospheric correction of PRISMA image
- Stefan Plattner and Ian Somlai (DLR) for preparing DESIS image
- Nicole Pinnel and Raquel de los Reyes Lopez (DLR) for providing an EnMAP image
- Sebastian Fischer (DLR) and the EnMAP Mission Board for permission to show EnMAP results from the commissioning phase
- Martin Hieronymi (HEREON) for providing an absorption spectrum of cyanobacteria
- $-\;$ This study was partly funded by BMWK and DLR grant number 50EE1915

Thank you for your attention!

